IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人理化学研究所の特許一覧

<>
  • 特許-濃度検出装置と濃度検出方法 図1
  • 特許-濃度検出装置と濃度検出方法 図2
  • 特許-濃度検出装置と濃度検出方法 図3
  • 特許-濃度検出装置と濃度検出方法 図4A
  • 特許-濃度検出装置と濃度検出方法 図4B
  • 特許-濃度検出装置と濃度検出方法 図4C
  • 特許-濃度検出装置と濃度検出方法 図5
  • 特許-濃度検出装置と濃度検出方法 図6A
  • 特許-濃度検出装置と濃度検出方法 図6B
  • 特許-濃度検出装置と濃度検出方法 図7
  • 特許-濃度検出装置と濃度検出方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-15
(45)【発行日】2024-05-23
(54)【発明の名称】濃度検出装置と濃度検出方法
(51)【国際特許分類】
   G01N 23/222 20060101AFI20240516BHJP
【FI】
G01N23/222
【請求項の数】 9
(21)【出願番号】P 2020084238
(22)【出願日】2020-05-13
(65)【公開番号】P2021179345
(43)【公開日】2021-11-18
【審査請求日】2023-03-03
(73)【特許権者】
【識別番号】503359821
【氏名又は名称】国立研究開発法人理化学研究所
(74)【代理人】
【識別番号】100097515
【弁理士】
【氏名又は名称】堀田 実
(74)【代理人】
【識別番号】100136700
【弁理士】
【氏名又は名称】野村 俊博
(72)【発明者】
【氏名】若林 泰生
(72)【発明者】
【氏名】大竹 淑恵
(72)【発明者】
【氏名】池田 裕二郎
【審査官】井上 徹
(56)【参考文献】
【文献】国際公開第2019/198260(WO,A1)
【文献】特開昭62-282288(JP,A)
【文献】特開2001-194324(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00 - G01N 23/2276
G01T 1/00 - G01T 1/16
G01T 1/167- G01T 7/12
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
検査対象物の表面へ中性子線を照射する中性子源と、
前記検査対象物において前記中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して、該特定ガンマ線の検出量を求めるガンマ線検出装置と、
前記検出量に基づいて前記検査対象物における各深さ又は特定深さの対象成分の濃度を求める濃度算出装置と、を備え、
前記特定ガンマ線として、エネルギーが互いに異なる複数種類の特定ガンマ線があり、
前記複数種類のそれぞれに対応する複数の関係式が予め定められて前記濃度算出装置に保持されており、
各前記関係式は、前記検査対象物を仮想的に複数の層に区分した場合に、前記複数の層のそれぞれに同時に存在する対象成分の複数の濃度と当該関係式に対応する前記種類の前記特定ガンマ線の前記検出量との関係を表し、
前記ガンマ線検出装置が求めた前記複数種類の特定ガンマ線それぞれの複数の前記検出量を、当該複数種類にそれぞれ対応する前記複数の関係式に適用することにより連立方程式を生成し、該連立方程式を解くことにより、各深さ又は特定深さにおける前記層の前記濃度を算出する、濃度検出装置。
【請求項2】
検査対象物の表面へ中性子線を照射する中性子源と、
前記検査対象物において前記中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して、該特定ガンマ線の検出量を求めるガンマ線検出装置と、
前記検出量に基づいて、前記検査対象物における各深さ又は特定深さの対象成分の濃度を求める濃度算出装置と、を備え、
前記特定ガンマ線として、エネルギーが互いに異なる複数種類の特定ガンマ線があり、前記中性子源と前記ガンマ線検出装置のガンマ線検出器と前記検査対象物との位置関係及び姿勢関係の一方又は両方を配置関係として、複数の配置関係が設定され、
前記検査対象物を仮想的に複数の層に区分した場合に、前記複数の層における対象成分の複数の濃度と前記検出量との関係を表す関係式が、前記特定ガンマ線の前記種類毎に、当該種類と前記複数の配置関係の各々との組合せについて、予め定められて前記濃度算出装置に保持されており、
前記濃度算出装置は、前記種類毎に、各前記組合せに対して前記ガンマ線検出装置が求めた前記検出量を、当該組合せに対応する前記関係式に適用することにより連立方程式を生成し、該連立方程式を解くことにより、各深さ又は特定深さにおける前記層の前記濃度を算出する、濃度検出装置。
【請求項3】
前記関係式は、
ΣX×αi,k=D
で表され、
iは、前記層の番号であり、kは、前記種類の番号であり、iとkは、1~nの値をとり、nは、2以上の整数であり、
は、i番目の前記層における前記対象成分の濃度を示し、
αi,kは、i番目の層とk番目の前記種類とに対応する係数であり、予め求められたものであり、
Σは、前記複数の層iの全てに関する総和を示し、
は、k番目の前記種類について前記ガンマ線検出装置により求められる前記特定ガンマ線の検出量である、請求項1に記載の濃度検出装置。
【請求項4】
前記関係式は、
ΣX×αi,k,j=Dk,j
で表され、
iは、前記層の番号であり、kは、前記種類の番号であり、
jは、前記配置関係の番号であり、
は、i番目の前記層における前記対象成分の濃度を示し、
αi,k,jは、i番目の層とk番目の前記種類とj番目の前記配置関係とに対応する係数であり、予め求められたものであり、
Σは、前記複数の層iの全てに関する総和を示し、
k,jは、k番目の前記種類とj番目の前記配置関係との前記組合せについて前記ガンマ線検出装置により求められる特定ガンマ線の検出量である、請求項2に記載の濃度検出装置。
【請求項5】
前記検査対象物は、鉄筋を内部に含むコンクリート構造物であり、前記対象成分は塩分である、請求項1~4のいずれか一項に記載の濃度検出装置。
【請求項6】
(A)中性子源により検査対象物の表面へ中性子線を照射し、
(B)前記検査対象物において前記中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して、該特定ガンマ線の検出量を求め、
エネルギーが互いに異なる複数種類の前記特定ガンマ線について、前記(B)を行うことにより、当該複数の種類に対応する複数の前記検出量を求め、
(C)濃度算出装置により前記複数の検出量に基づいて対象成分の濃度を求め、
前記複数種類のそれぞれに対応する複数の関係式が予め定められて前記濃度算出装置に保持されており、
各前記関係式は、前記検査対象物を仮想的に複数の層に区分した場合に、前記複数の層のそれぞれに同時に存在する対象成分の複数の濃度と当該関係式に対応する前記種類の前記特定ガンマ線の前記検出量との関係を表し、
前記(C)において、前記(B)で求めた前記複数種類の特定ガンマ線それぞれの複数の前記検出量を、前記濃度算出装置が、当該複数種類にそれぞれ対応する前記複数の関係式に適用することにより連立方程式を生成し、該連立方程式を解くことにより、各深さ又は特定深さにおける前記層の前記濃度を算出する、濃度検出方法。
【請求項7】
(A)中性子源により検査対象物の表面へ中性子線を照射し、
(B)ガンマ線検出装置により、前記検査対象物において前記中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して、該特定ガンマ線の検出量を求め、
(C)濃度算出装置により前記検出量に基づいて対象成分の濃度を求め、
前記特定ガンマ線として、エネルギーが互いに異なる複数種類の前記特定ガンマ線があり、前記中性子源と前記ガンマ線検出装置のガンマ線検出器と前記検査対象物との位置関係及び姿勢関係の一方又は両方を配置関係として、複数の配置関係が設定され、
前記検査対象物を仮想的に複数の層に区分した場合に、前記複数の層における対象成分の複数の濃度と前記検出量との関係を表す関係式が、前記特定ガンマ線の前記種類毎に、当該種類と前記複数の配置関係の各々との組合せについて、予め定められて前記濃度算出装置に保持されており、
前記種類毎に、各前記組合せについて前記(B)を行うことにより、複数の前記組合せに対応する複数の前記検出量を求め、
前記(C)において、前記濃度算出装置が、前記種類毎に、各前記組合に対して前記(B)で求められた前記検出量を当該組合せに対応する前記関係式に適用することにより連立方程式を生成し、該連立方程式を解くことにより、各深さ又は特定深さにおける前記層の前記濃度を算出する、濃度検出方法。
【請求項8】
前記検査対象物は、鉄筋を内部に含むコンクリート構造物であり、前記対象成分は塩分である、請求項6又は7に記載の濃度検出方法。
【請求項9】
前記検査対象物は、鉄筋を内部に含むコンクリート構造物であり、
前記対象成分が前記鉄筋の成分であるとして、前記(A)~(C)を行うことにより、各前記層における前記鉄筋の成分の濃度を求め、
(D)当該濃度が閾値以上となった前記層を、鉄筋が存在する層として定め、
前記対象成分が塩分であるとして、前記(A)~(C)を行うことにより、前記(D)により定めた前記層における塩分の濃度を求める、請求項6又は7に記載の濃度検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査対象物内に存在する対象成分の濃度を求める技術に関する。
【背景技術】
【0002】
検査対象物内において対象成分が存在する深さと、その深さにおける対象成分の濃度を非破壊的に求める装置と方法が、下記特許文献1に開示されている。
【0003】
特許文献1では、次のように対象成分の存在深さと濃度を求めている。検査対象物に中性子線を入射し、中性子線により発生したガンマ線のうち検査対象物内の対象成分に由来の特定ガンマ線を検出する。この時、エネルギーが異なる複数種類の特定ガンマ線の強度を、検出強度としてそれぞれ検出する。
【0004】
次いで、複数種類の特定ガンマ線の検出強度同士の比率を、対象成分が存在する深さを示す指標値として求める。この比率を、比率と深さとの対応関係に適用して、対象成分が存在する深さを求める。
【0005】
また、特許文献1では、求めた深さと特定ガンマ線の強度とを、深さとガンマ線の検出強度と対象成分の濃度との対応関係に適用して、求めた深さでの対象成分の濃度を求める。
【0006】
このような技術により、例えば、コンクリート構造物内の塩分を対象成分として塩分の深さと濃度を検出することができる。この検出結果に基づいて、コンクリート構造物における塩分による鉄筋の腐食可能性を把握することができる。
【先行技術文献】
【特許文献】
【0007】
【文献】国際公開第2019/198260号
【発明の概要】
【発明が解決しようとする課題】
【0008】
検査対象物内において、各深さにおける対象成分の濃度、又は、所望の特定深さにおける対象成分の濃度を非破壊的に検出する技術が望まれる。
【0009】
そこで、本発明の目的は、検査対象物内の各深さ又は所望の特定深さにおける対象成分の濃度を非破壊的に求めることができる装置と方法を提供することにある。
【課題を解決するための手段】
【0010】
上述の目的を達成するため、本発明による濃度検出装置は、検査対象物の表面へ中性子線を照射する中性子源と、前記検査対象物において前記中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して該特定ガンマ線の検出量を求めるガンマ線検出装置と、前記検出量に基づいて検査対象物における各深さ又は特定深さの対象成分の濃度を求める濃度算出装置とを備える。
検査対象物を仮想的に複数の層に区分した場合に、前記複数の層における対象成分の複数の濃度と前記検出量との関係を表す関係式が、特定ガンマ線の種類毎に又は検出条件毎に予め定められて前記濃度算出装置に保持されている。
前記濃度算出装置は、各前記種類又は各前記検出条件に対してガンマ線検出装置が求めた前記検出量を、当該種類又は検出条件に対応する前記関係式に適用することにより連立方程式を生成し、該連立方程式を解くことにより、各深さ又は特定深さにおける前記層の前記濃度を算出する。
【0011】
また、上述の目的を達成するため、本発明による濃度検出方法は、
(A)検査対象物の表面へ中性子線を照射し、
(B)前記検査対象物において前記中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して、該特定ガンマ線の検出量を求め、
互いに異なる複数種類の特定ガンマ線について、又は、互いに異なる複数の検出条件について、前記(B)を行うことにより、当該複数の種類又は検出条件に対応する複数の前記検出量を求め、
(C)濃度算出装置により前記複数の検出量に基づいて対象成分の濃度を求める。
検査対象物を仮想的に複数の層に区分した場合に、前記複数の層における対象成分の複数の濃度と前記検出量との関係を表す関係式が、前記種類毎又は前記検出条件毎に予め定められて前記濃度算出装置に保持されている。
前記(C)において、前記濃度算出装置により、各前記種類又は各前記検出条件に対してガンマ線検出装置が求めた前記検出量を、当該種類又は検出条件に対応する前記関係式に適用することにより連立方程式を生成し、該連立方程式を解くことにより、各深さ又は特定深さにおける前記層の前記濃度を算出する。
【発明の効果】
【0012】
本発明によると、各深さ又は所望の特定深さにおける対象成分の濃度を非破壊的に求めることができる。
【図面の簡単な説明】
【0013】
図1】本発明の第1実施形態による濃度検出装置の構成例を示す。
図2】検査対象物を仮想的に複数の層に区分した場合の一例を示す。
図3】本発明の第1実施形態による濃度検出方法における関係式取得処理を示すフローチャートである。
図4A】関係式取得処理の説明図である。
図4B】関係式取得処理の別の説明図である。
図4C】関係式取得処理の更に別の説明図である。
図5】本発明の第1実施形態による濃度検出方法における濃度検出処理を示すフローチャートである。
図6A-6B】本発明の第2実施形態による濃度検出装置の構成例を示し、関係式に関する説明図でもある。
図7】本発明の第3実施形態による濃度検出装置の構成例を示し、関係式に関する説明図でもある。
図8】本発明の第3実施形態による濃度検出方法における濃度検出処理を示すフローチャートである。
【発明を実施するための形態】
【0014】
本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。また、以下の説明は、特許請求の範囲に記載された発明を限定するものではない。例えば、本発明は、以下で述べる構成要素の全てを備えるものに限定されない。
【0015】
[第1実施形態]
(濃度検出装置)
図1は、本発明の第1実施形態による濃度検出装置10の構成を示す。濃度検出装置10は、検査対象物1の外部からその表面2へ中性子線を入射し、これにより検査対象物1において発生したガンマ線のうち検査対象物1内の対象成分に由来のガンマ線(以下で、単に特定ガンマ線という)を検出し、この検出結果に基づいて、検査対象物1における各深さ又は特定深さでの対象成分の濃度を求める。ここで、深さは、検査対象物1の表面2からの深さである。また、対象成分の濃度は元素としての濃度であってよい。
【0016】
1つの実施例では、検査対象物1は、鉄筋を内部に含むコンクリート構造物であり、対象成分は塩分(塩素)である。対象成分が塩分である場合、塩分は、例えば、安定して存在する塩素Clの同位体35Clであってよい。なお、検査対象物1と対象成分は、コンクリート構造物と塩分の組み合わせに限定されない。すなわち、検査対象物1はコンクリート構造物に限定されず、対象成分は、検査対象物1に入射された中性子線との反応により特定ガンマ線を放出するものであればよい。例えば、対象成分は、カルシウム(主に40Ca)、ケイ素(主に28Si)などであってもよい。なお、水素(H)は、1種類(単一のエネルギー)の特定ガンマ線しか放出しないので、後述するように複数種類の特定ガンマ線を利用する第1実施形態と第2実施形態では水素は対象成分として不適切であるが、後述する第3実施形態においては水素を対象成分としてもよい。
【0017】
濃度検出装置10は、中性子源3と、ガンマ線検出装置5と、濃度算出装置7とを備える。
【0018】
中性子源3は、検査対象物1の表面2へ多数の中性子線(neutron ray)を(例えば中性子ビームとして)照射し、中性子線を検査対象物1に入射させる。中性子源3は、一例では、中性子を発生する放射性線源(RI(radioactive isotope)線源)であってもよい。この場合、放射性線源は、252Cfであってよいが、これに限定されない。別の例では、中性子源3は、荷電粒子ビームが照射されることにより中性子線を発生するターゲットを有するものであってもよい。この場合、ターゲットは、ベリリウムであってよいが、これに限定されない。
【0019】
中性子源3により検査対象物1に入射された中性子線は、検査対象物1内の対象成分と反応する。これにより、対象成分に由来の特定ガンマ線が発生する。第1実施形態では、エネルギー(すなわち波長)が異なる複数種類の特定ガンマ線が対象成分から発生する。対象成分が塩分の場合には、複数種類の特定ガンマ線として、エネルギーが517keV、786keV、788keV、1165keV、1951keV、6111keVである特定ガンマ線がある。
【0020】
ガンマ線検出装置5は、検査対象物1において中性子線により発生したガンマ線のうち対象成分に由来の特定ガンマ線を検出して、該特定ガンマ線の検出量を求める。ガンマ線検出装置5は、ガンマ線検出器5aと検出量抽出部5bを有する。
【0021】
ガンマ線検出器5aは、検査対象物1からのガンマ線の各エネルギー(各波長)について、ガンマ線を検出し、その検出データを検出量抽出部5bに入力する。この検出データは、検出した各ガンマ線のエネルギーに対応する波高値であってよい。ガンマ線検出器5aは、例えばゲルマニウム検出器を用いたものであってよいが、これに限定されない。なお、第1実施形態において、ガンマ線検出器5aには、後述のコリメータ6が設けられてもよい。
【0022】
検出量抽出部5bは、入力された検出データに基づいて、特定ガンマ線の検出量を求める。例えば、検出量抽出部5bは、ガンマ線検出器5aから入力された検出データとしての各波高値に基づいて、ガンマ線のエネルギースペクトルを取得する。このエネルギースペクトルは、ガンマ線の各エネルギーにおけるガンマ線の検出回数を示す。検出量抽出部5bは、当該エネルギースペクトルに基づいて、特定ガンマ線(第1実施形態では発生した複数種類の特定ガンマ線のうちn(nは2以上の整数)種類の各々の特定ガンマ線)の検出回数を検出量として求める。
【0023】
この検出回数は、第1実施形態では、所定の測定時間にわたる検出回数であってよい。所定の測定時間は、中性子線を検査対象物1に照射している期間内の時間であってよい。所定の測定時間は、例えば、100秒、200秒、または300秒などの時間であってよいが、これらの時間に限定されない。
【0024】
濃度算出装置7は、ガンマ線検出装置5が求めた特定ガンマ線の検出量に基づいて、検査対象物1における各深さ又は特定深さの対象成分の濃度を求める。
【0025】
対象成分の濃度を求めるために、検査対象物1を仮想的に複数の層(本明細書において、単に層ともいう)に表面1と直交する方向に区分する。これらの層の各々の厚みは、数cm程度(例えば2cm又は3cm程度)であってよいが、他の範囲内の値であってもよい。
【0026】
図2は、検査対象物1を仮想的に複数の層1a,1b,1cに区分した場合の一例を示す。図2の例では、検査対象物1は3つの層1a,1b,1cに区分されている。区分された複数の層は、表面2と直交する方向に重なっているものであってよい。区分された各層において対象成分の濃度が一定であるとする。区分された複数の層における複数の濃度と、ガンマ線検出装置5により求められる特定ガンマ線の検出量との関係を表す関係式(関数)が、特定ガンマ線の種類(以下で単に種類ともいう)毎に予め定められて濃度算出装置7に保持されている。
【0027】
上述の関係式は、次の式(1)で表されてよい。

ΣX×αi,k=D ・・・(1)
【0028】
この関係式(1)における各記号の意味は、次の通りである。
iは、上述の層の番号であり、1~nの値をとり、nは、上述した層の数である。
kは、特定ガンマ線の種類を示す。すなわち、kは、検出量を求める対象となる特定ガンマ線の種類の番号である。kは、1~nの値をとり、nは、上述した層の数である。すなわち、互いに異なるこれらの種類の数は、検査対象物1を区分した層の数と同じである。各種類kについて関係式が予め求められている。言い換えると。n個の関係式(1)が予め求められている。例えば、対象成分が塩素(35Cl)である場合は、k=1,2,3は、それぞれ1165keV,1951keV,6111keVのエネルギーを有する特定ガンマ線を示す。対象成分がケイ素(28Si)である場合は、k=1,2,3は、それぞれ2092keV,3538keV,4933keVのエネルギーを有する特定ガンマ線を示す。
【0029】
は、i番目の層における対象成分の濃度(質量濃度)を示す。Xは、未知数である。
αi,kは、k番目の種類とi番目の層とに対応する係数である。αi,kは、予め求められたものである。
は、ガンマ線検出装置5により求められる、k番目の種類の特定ガンマ線の検出量である。
Σは、全てのi(すなわち複数の層の全て)に関する総和を示す。
【0030】
第1実施形態では、濃度検出装置10が検査対象物1に対する検査(後述の濃度検出処理)において、複数種類の特定ガンマ線の検出量を求める時に、これら複数の(n個の)種類の間で、検出条件は同じであってよい。ここで、検出条件は、後述の前提事項(b)と(c)や、検査対象物1とガンマ線源とガンマ線検出器5aとの位置関係及び姿勢関係などを含む。
【0031】
第1実施形態では、各種類kについての上記関係式(例えば上述の関係式(1))は、当該種類kに対応する種類の特定ガンマ線に関する式である。言い換えると、各種類kにおける上記関係式(1)のDは、k番目の種類の特定ガンマ線の検出量である。このように、第1実施形態では、Dは、添え字kが示す種類の特定ガンマ線の検出量である。
【0032】
濃度算出装置7は、ガンマ線検出装置5が求めた、各種類kの特定ガンマ線の検出量を、当該種類についての上述の関係式に適用することにより連立方程式を生成し、当該連立方程式を解くことにより、各深さ又は特定深さにおける層での対象成分の濃度を算出する。例えば、濃度算出装置7は、ガンマ線検出装置5が求めたn個の検出量D(kは1~nの整数)を、それぞれに対応するn個の関係式(1)に適用することにより、Dの数値が特定されたn個の関係式(連立方程式)を生成し、当該連立方程式を解くことにより、各深さ又は特定深さにおける層での対象成分の濃度を算出する。
【0033】
<濃度検出のより詳しい説明>
以下において、濃度検出についてより詳しく説明する。第1実施形態では、次の事項(a)~(d)を前提とする。なお、後述の第2実施形態と第3実施形態でも、これらの事項(a)~(d)を前提とする。
【0034】
(a)検査対象物1を仮想的に複数の層に区分した場合に、これらの層の各々において対象成分の濃度が上述のように一定である。これについて、各層において、対象成分の濃度は、当該層の厚み方向と直交する方向において、ある程度の範囲では一定であるとする。当該範囲を、特定ガンマ線を発生させる濃度検出対象の範囲とする。
(b)中性子源3から検査対象物1に放射される中性子線のスペクトルが、既知であり、各種類の特定ガンマ線の検出量は、一定のスペクトルの中性子線に対して求められる。中性子線のスペクトルは、単位時間あたりに中性子源3から放射される多数の中性子のエネルギー分布であり、この分布において、各エネルギーについて、当該エネルギーを有する中性子の数が表される。
(c)中性子源3から検査対象物1に照射される中性子線の強度が、既知であり、各種類の特定ガンマ線の検出量は、一定の強度の中性子線に対して求められる。中性子線の強度は、単位時間あたりに中性子源3から検査対象物1へ照射される中性子の数である。
(d)ガンマ線検出装置5により求められる上述の検出量が、複数の層における対象成分の複数の濃度の関数(上述の関係式)により表される。この関数が線形である場合には、当該関係式は、上述の関係式(1)であってよい。
【0035】
検査対象物1を図2のように3つの層1a,1b,1cに区分する場合には、上述の関係式(1)は、次の3つの関係式(2)~(4)となる。

×α1,1+X×α2,1+X×α3,1=D ・・・(2)
×α1,2+X×α2,2+X×α3,2=D ・・・(3)
×α1,3+X×α2,3+X×α3,3=D ・・・(4)
【0036】
関係式(2)は、1番目(k=1)の種類の特定ガンマ線に関する関係式であり、関係式(3)は、2番目(k=2)の種類の特定ガンマ線に関する関係式であり、関係式(3)は、3番目(k=3)の種類の特定ガンマ線に関する関係式である。すなわち、関係式(2)~(4)のDとDとDは、それぞれ、互いに種類(エネルギー、すなわち、波長)が異なる特定ガンマ線の検出量であり、検査対象物1の検査時(例えば後述のステップS13)において求められる。3つの関係式(2)~(4)において、9つの係数α1,1~α3,3は、後述するように予め求められている。したがって、DとDとDが求められた関係式(2)~(4)を連立方程式として解くことにより、3つの未知数X,X,Xを求めることができる。検査対象物1を、3以外の複数の層に区分する場合についても同様である。
【0037】
(濃度検出方法)
第1実施形態による濃度検出方法について説明する。濃度検出方法は、上述した濃度検出装置10を用いて行われる。濃度検出方法は、関係式取得処理と濃度検出処理を含む。
【0038】
<関係式取得処理>
図3は、関係式取得処理を示すフローチャートである。関係式取得処理では、検査対象物1を複数の層に仮想的に区分した場合に、これら複数の層のそれぞれにおける対象成分の複数の濃度と検出量との関係を表す関係式(例えば上記関係式(1))を求める。関係式取得処理は、ステップS1~S5を有する。
【0039】
ステップS1では、検査対象物1を模擬した供試体と中性子源3とガンマ線検出器5aとを配置する。ステップS1で配置した供試体と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係は、実際の検査時(すなわち後述の濃度検出処理を行う時)における検査対象物1と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係と同じである。
【0040】
供試体は、上述の複数(n個)の層のそれぞれに対応する複数のブロックを、順に配置して互いに重ねたものである。複数の層の数とブロックの数とは、同じである。これらのブロックは、検査対象物1(対応する層の部分)と同じ材質と構成で形成されており、それぞれ上記複数の層と同じ厚みを有する。供試体を構成するこれらのブロックのうち、1つのブロック(以下で成分含有ブロックという)のみが既知の濃度で対象成分を含んでおり、他のブロック(以下で成分ゼロブロックという)は対象成分を含んでいない。供試体を構成する複数のブロックは、同じ大きさと形状を有していてよい。
【0041】
検査対象物1が図2のように3つの層1a,1b,1cからなると仮定した場合(n=3の場合)、ステップS1では、例えば、図4Aのように、3つのブロック101a,101bからなる供試体101と中性子源3とガンマ線検出器5aを配置している。図4Aにおいて、3つブロック101a,101bのうち、ブロック101aは、成分含有ブロックであり、他の2つのブロック101bは、成分ゼロブロックである。
【0042】
ステップS1において、供試体を構成するように複数のブロックを中性子源3側から順に配置して互いに重ねる。この配置において、中性子源3側から数えた成分含有ブロックの順番をi番目にする。図4Aの例では、成分含有ブロック101aの順番は1番目である。上述のように供試体を構成するブロックの数をnとした場合、成分含有ブロックの取り得る順番は、1番目からn番目までのn通りある。
【0043】
ステップS2では、ステップS1で配置した供試体と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係の状態で、中性子源3により中性子線を供試体に照射する。例えば、図4Aにおいて、中性子源3により中性子線を供試体101に照射する。
【0044】
ステップS3では、ステップS2で照射した中性子線により供試体(すなわち成分含有ブロック)において発生した、対象成分に由来の複数種類の特定ガンマ線を、ガンマ線検出器5aで検出する。また、ステップS3では、この検出データが、ガンマ線検出器5aから検出量抽出部5bに入力され、当該検出データに基づいて、検出量抽出部5bにより、n種類の特定ガンマ線のそれぞれの検出量di,kを求める。
【0045】
当該検出量を表わすdi,kの添え字iは、ステップS1において配置された成分含有ブロックの上記順番を示す。すなわち、添え字iは、供試体101を構成する複数のブロックのうち成分含有ブロックがi番目に配置されている場合の検出量であることを示す。di,kの添え字kは、上記n種類のうちk番目の種類の特定ガンマ線の検出量であることを示す。図4Aの状態でステップS2、S3を行った場合には、当該ステップS3において、3つの検出量d1,1,d1,2,d1,3が求められる。
【0046】
このようなステップS1~S3を、ステップS1における成分含有ブロックの上記順番を変えて繰り返すように、ステップS3を終えたら、ステップS4の判断を行う。ステップS4では、成分含有ブロックを、取り得るn通りの全ての上記順番の各々に配置した状態でステップS2とステップS3を行ったかを判断する。
【0047】
ステップS4の判断の結果が否定である場合には、ステップS1に戻り、上述したステップS1~S4を再び行う。戻った再度のステップS1では、成分含有ブロックを未だ配置していない順番にして構成した供試体と中性子源3とガンマ線検出器5aを配置する。再度のステップS1についての他の点は、上述と同じであってよい。例えば、再度のステップS2で配置した供試体と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係は、実際の検査時における検査対象物1と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係と同じである。なお、再度のステップS2において、中性子源3とガンマ線検出器5aの位置と向きは、最初のステップS2で配置した状態に保たれていてよい。
【0048】
1回目のステップS1で、図4Aのように成分含有ブロック101aの順番を1番目にした場合には、例えば、2回目のステップS1では図4Bのように成分含有ブロック101aの順番を2番目にし、3回目のステップS1では図4Cのように成分含有ブロック101aの順番を3番目にする。この場合、2回目のステップS3では、3つの検出量d2,1,d2,2,d2,3が求められ、3回目のステップS3では、3つの検出量d3,1,d3,2,d3,3が求められる。
【0049】
ステップS1~S4を繰り返すことにより、ステップS4の判断の結果が肯定となったら、ステップS5へ進む。
【0050】
ステップS5では、複数回のステップS3の各々で求めたn種類の特定ガンマ線の検出量di,kと、成分含有ブロックにおける対象成分の既知の濃度Cとに基づいて、検査対象物1の複数の層におけるそれぞれの対象成分の濃度と検出量との関係を表す上記関係式を求める。例えば、ステップS5では、複数回のステップS3の各々で求めたn種類の特定ガンマ線の検出量di,kと、成分含有ブロックにおける対象成分の濃度Cとに基づいて、上述の関係式(1)の各係数αi,kを求める。各層における対象成分の濃度と各種類の特定ガンマ線の検出量とが比例関係にあるとして、各係数αi,kを、次の式(5)で求めることができる。

αi,k=di,k/C ・・・(5)
【0051】
したがって、検査対象物1のn個の層におけるそれぞれの対象成分の濃度と検出量との関係を表す上記関係式(1)として次の関係式(6)が求められる。この関係式(6)は、記憶部7bに記憶され、後述の濃度検出処理で用いられる。

ΣX×di,k/C=D ・・・(6)
【0052】
図4A図4Cのように、供試体101を3つのブロック101a,101bで構成した場合(n=3の場合)には、関係式(6)として次の3つの関係式(7)~(9)が得られる。

×d1,1/C+X×d2,1/C+X×d3,1/C=D ・・・(7)
×d1,2/C+X×d2,2/C+X×d3,2/C=D ・・・(8)
×d1,3/C+X×d2,3/C+X×d3,3/C=D ・・・(9)
【0053】
<濃度検出処理>
図5は、濃度検出処理を示すフローチャートである。濃度検出処理では、検査対象物1に対して実際に検査を行うことにより、検査対象物1の各層又は特定の層に相当する検査対象物1の各深さ又は特定深さにおける対象成分の濃度を検出する。濃度検出処理は、ステップS11~S14を有する。
【0054】
ステップS11では、検査対象物1に対して中性子源3とガンマ線検出器5aを配置する。ステップS11での配置では、検査対象物1と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係を、上述のステップS1において配置した供試体と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係と同じになるようにする。より詳しくは、ステップS11での配置において検査対象物1の表面2から見た中性子源3とガンマ線検出器5aの位置と姿勢が、ステップS1での配置において供試体の表面(例えば図4A図4Cにおける表面102)から見た中性子源3とガンマ線検出器5aの位置と姿勢と同じになるようにする。
【0055】
ステップS12では、ステップS11での配置による検査対象物1と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係の状態で、検査対象物1の表面2に、中性子源3により中性子線を照射する。
【0056】
ステップS13では、ステップS12で照射した中性子線により検査対象物1において発生した、対象成分に由来の複数種類の特定ガンマ線を、ガンマ線検出器5aで検出する。また、ステップS13では、この検出データが、ガンマ線検出器5aから検出量抽出部5bに入力され、当該検出データに基づいて、検出量抽出部5bによりn種類の特定ガンマ線のそれぞれの検出量D(kは1~nまでの整数)求める。
【0057】
ここで求められる検出量Dの数は、検査対象物1において区分された複数の層の数nと同じである。また、当該検出量Dの添え字kは、ガンマ線検出装置5が求めた、k番目の種類の特定ガンマ線の検出量を示す。
【0058】
図2のように複数の層の数nが3である場合には、ステップS13では、1番目の種類の特定ガンマ線の検出量Dと、2番目の種類の特定ガンマ線の検出量Dと、3番目の種類の特定ガンマ線の検出量Dが求められる。
【0059】
ステップS14では、ステップS13で求めたn種類の検出量Dを、濃度算出部7aにより、それぞれに対応し記憶部7bに記憶されている上述のn個の関係式(1)に、すなわち、ΣX×αi,k=DのD(kは1~nまでの整数)に適用する。これにより、濃度算出部7aが、Dが具体的な数値となった連立方程式ΣX×αi,k=Dを生成し、該連立方程式を解くことにより、検査対象物1における複数の層のうち、各深さ又は特定深さに存在する層における対象成分の濃度を、検査対象物1の各深さ又は特定深さにおける対象成分の濃度として算出する。
【0060】
図2のように複数の層の数nが3である場合には、ステップS14では、濃度算出部7aは、検出量Dと検出量Dと検出量Dを、上述の関係式(7)~(9)のDとDとDにそれぞれに適用する。これにより、濃度算出部7aは、DとDとDが具体的な数値となった関係式(7)~(9)を連立方程式として生成する。濃度算出部7aは、当該連立方程式を解くことにより、検査対象物1の各層における対象成分の濃度X,X,X、あるいは、特定深さにおける層の濃度X,X又はXを求める。
【0061】
(第1実施形態の効果)
第1実施形態では、検査対象物1を仮想的に複数の層に区分し、これら複数の層のそれぞれにおける対象成分の濃度と、特定ガンマ線の検出量との関係式を特定ガンマ線の種類毎に予め求めておく。検査時に、検査対象物1に中性子線を照射することにより、検査対象物1において発生した対象成分に由来の特定ガンマ線を検出して、その検出量を求める。この検出量を特定ガンマ線の種類毎に求める。求められた複数の検出量を、予め求めた複数の関係式に適用することにより連立方程式を生成する。この連立方程式を解くことにより、検査対象物1における複数の層のうち、各深さ又は特定深さに存在する層における対象成分の濃度を、検査対象物1の各深さ又は特定深さにおける対象成分の濃度として算出することができる。このように、検査対象物1の各深さ又は所望の特定深さにおける対象成分の濃度を非破壊的に求めることができる。
【0062】
[第2実施形態]
(濃度検出装置)
本発明の第2実施形態による濃度検出装置10を説明する。図6A図6Bは、第2実施形態による濃度検出装置10の構成例を示す。図6Aは、後述のコリメータ6が設けられている場合を示し、図6Bは、コリメータ6が設けられていない場合を示す。図6A図6Bでは、一例として、検査対象物1を3つの層1a,1b,1cに仮想的に区分している。第2実施形態について、以下において説明しない点は、第1実施形態と同じであってよい。第2実施形態による濃度検出装置10は、第1実施形態と同様に、中性子源3と、ガンマ線検出装置5と、濃度算出装置7とを備える。
【0063】
第2実施形態において、第1実施形態と同様に、検査対象物1を仮想的に複数の層に区分した場合に、これら複数の層のそれぞれにおけるαi,kを求めるための測定または計算を予め行っておく。
【0064】
また、第2実施形態において、第1実施形態と同様に、各種類についての当該関係式は、例えば上述の関係式(1)、すなわち、ΣX×αi,k=Dであってよい。また、第2実施形態においても、上記関係式(上述の関係式(1))は、各種類kの特定ガンマ線に関する式である。
【0065】
第2実施形態では、上述の関係式(1)の各係数αi,kの求め方が第1実施形態の場合と異なる。
【0066】
αi,kは、次の式(10)で表される。

αi,k=N×Ti,k×εi,k×b×d×σ×(N×r/A) ・・・(10)
【0067】
αi,kは、上述した前提(a)~(d)の下で、予め求められている。αi,kを表わす上記式(10)の各記号について説明する。なお、以下で適宜に図6A図6Bを参照して補足説明する。図6Aの例のように、ガンマ線検出器5aにはコリメータ6が設けられている場合には、ガンマ線検出器5aは、検査対象物1において発生した特定ガンマ線のうち、コリメータ6の向きと一致する方向からガンマ線検出器5aに進行して来た特定ガンマ線のみを選択的に検出してもよい。式(10)の各記号の意味は以下の通りである。
【0068】
は、上述した所定の測定時間にわたるi番目の層への入射中性子量である。詳しくは、検査時における検査対象物1と中性子線とガンマ線検出器5aとの位置関係及び姿勢関係は予め定められており、当該位置関係及び姿勢関係の下で中性子源3が中性子線を表面2に照射することにより、検査対象物1のi番目の層に入射する中性子の数が入射中性子量Niである。入射中性子量Nは、中性子源3から散乱せずにi番目の層に入射する中性子の数であってもよいし、当該数を含むだけでなく、検査対象物1内において散乱してi番目の層に入射する中性子の数も含んでよい。
【0069】
コリメータ6を設けた場合には、i番目の層において、コリメータ6の向きの方向にガンマ線検出器5aと重なる重複領域Rに入射する中性子の数が中性子量Nであってよい。この重複領域Rは、図6Aの例では、1番目の層ではRであり、2番目の層ではRであり、3番目の層ではRである。
【0070】
は、放射線輸送シミュレーション又は事前の実験により予め求められている。放射線輸送シミュレーションでは、例えば、次のようにNを求めてよい。材質が既知である検査対象物1において、中性子源3から入射された中性子の挙動を、放射線輸送シミュレーションにより把握して、当該挙動に基づいてNを求める。事前の実験では、例えば、次のように放射化法によりNを求めてよい。検査対象物1と材質が同じであり、検査対象物1の表面2からi番目の層までの厚みを有する供試体を用意する。この供試体の裏面に金箔を張り付ける。このような供試体の表面に中性子源3(例えば252Cf線源)から中性子線を照射する。その後、金箔からのガンマ線を測定し、そのガンマ線スペクトルに基づいてNを求める。
【0071】
i,kは、i番目の層で発生したk番目の種類の特定ガンマ線が、i番目の層からガンマ線検出器5aまで進行する経路において検査対象物1の内部を透過する率である。透過率Ti,kは、当該経路上におけるi番目の層における基準位置Pから当該経路上の表面2の位置P(以下で表面位置という)までの距離に基づいて求められてよい。例えば、当該距離と同じ厚みを有し検査対象物1と同じ材質で形成された供試体を用意し、この供試体に対して。その厚み方向に、152Euなどのガンマ線標準線源からガンマ線を照射する実験により、Ti,kを求めてよい。あるいは、ガンマ線の透過率に関するデータベースに基づいてTi,kを求めてもよい。透過率Ti,kは、i番目の層の基準位置Pから表面位置Pまでをk番目の種類の特定ガンマ線が透過する率である。
【0072】
図6Aの例のようにガンマ線検出器5aにコリメータ6が設けられている場合には、上記の基準位置Pは、上述した重複領域R内の位置(例えば重複領域Rの中心位置)であってよい。図6Bの例のようにガンマ線検出器5aにコリメータ6が設けられていない場合には、上記の基準位置Pは、検査時に検査対象物へ照射された中性子線が通過する領域内の位置(例えば当該領域の中心位置)であってよい。図6A図6Bの例では、基準位置Pは、1番目の層ではPであり、2番目の層ではPであり、3番目の層ではPである。図6Bでは、上述の位置Pは層毎に異なる。Ti,kは、シミュレーション又は事前の実験又は理論計算により予め求められている。
【0073】
εi,kは、予め定められた上述の位置関係により定まる値であって、i番目の層で発生したk番目の種類の特定ガンマ線に対するガンマ線検出器5aの検出効率である。言い換えると、検出効率εi,kは、i番目の層で発生したk番目の種類の特定ガンマ線の量に対する、当該量のうちガンマ線検出器5aが検出するk番目の種類の特定ガンマ線の量の割合である。一般的に、検出効率は、ガンマ線検出器5aの形状、ガンマ線発生位置とガンマ線検出器5aとの距離、ガンマ線のエネルギーなどに依存する。したがって、検出効率εi,kは、ガンマ線検出器5aの形状、k番目の種類の特定ガンマ線のエネルギー、ガンマ線検出器5aとi番目の層との距離などに依存する。例えば、εi,kは、152Euなどのガンマ線標準線源を用いて求められてよい。その際、当該線源とガンマ線検出器5aとの間には、物体が何も存在しないようにする。
【0074】
図6A図6Bのように、検出効率εi,kは、ガンマ線の発生位置とみなす基準位置Pとガンマ線検出器5aとの距離と、k番目の種類の特定ガンマ線のエネルギーと、ガンマ線検出器5aの形状とに基づいて求められてよい。
【0075】
は、k番目の種類の特定ガンマ線の絶対強度(%)を示す。言い換えると、100個の中性子が対象成分に捕獲された場合に、k番目の種類の特定ガンマ線が対象成分からm個放出されたとすると、bはm%である。bとして、文献などに記載されている値を用いてよい。
は、i番目の層の厚みである。
【0076】
σは、i番目の層における対象成分の中性子捕獲反応断面積である。σは、中性子のエネルギーに依存する。σは、Japanese Evaluated Nuclear Data Library (JENDL)などのデータベースから取得されてよい。σは、i番目の層での中性子エネルギースペクトルに依存する。この中性子エネルギースペクトルは、例えば放射線輸送シミュレーションにより求められてよい。また、σは、平均的な値であってよい。例えば、σ=∫I(E)・f(E)dE/∫I(E)dEにより、σを求めてもよい。ここで、I(E)は、i番目の層内での深さによる中性子エネルギースペクトルの変化や、(i+1)番目の層から散乱により戻ってくる中性子等を考慮した、i番目の層での平均的な中性子線のスペクトルにおけるエネルギーEを有する中性子の数であり、f(E)は、エネルギーEでの捕獲断面積であり、∫はEについての積分である。
【0077】
は、アボガドロ数(6.022x1023個/mol)である。Aは、対象成分の原子量である。対象成分が同一の元素に属する複数種類の同位体のいずれかである場合に、rは、これら複数種類の同位体における対象成分の自然存在比である。この場合、上述の関係式(1)におけるXは、当該元素としての濃度である。対象成分が塩素の35Clの場合は、r=0.7577、A=35.4527である。
【0078】
このように予め求めたNとTi,kとεi,kとb等により、αi,k=N×Ti,k×εi,k×b×d×σ×(N×r/A)を定めておき、αi,kを用いた上述の関係式(1)を記憶部7bに記憶させておく。
【0079】
図6の例のように、層の数nが3である場合には、上述の関係式(1)は、次の3つの関係式(11)~(13)となる。

×N×T1,1×ε1,1×b×d×σ×(N×r/A)+X×N×T2,1×ε2,1×b×d×σ×(N×r/A)+X×N×T3,1×ε3,1×b×d×σ×(N×r/A)=D ・・・(11)

×N×T1,2×ε1,2×b×d×σ×(N×r/A)+X×N×T2,2×ε2,2×b×d×σ×(N×r/A)+X×N×T3,2×ε3,2×b×d×σ×(N×r/A)=D ・・・(12)

×N×T1,3×ε1,3×b×d×σ×(N×r/A)+X×N×T2,3×ε2,3×b×d×σ×(N×r/A)+X×N×T3,3×ε3,3×b×d×σ×(N×r/A)=D ・・・(13)
【0080】
(濃度検出方法)
第2実施形態による濃度検出方法において関係式取得処理は、上述のようにNとTi,kとεi,kとbとdとσi等予め求め、αi,k=N×Ti,k×εi,k×b×d×σ×(N×r/A)を用いた上述の関係式(1)を記憶部7bに記憶させておく処理である。
【0081】
第2実施形態による濃度検出方法において濃度検出処理は、第1実施形態の場合と同様であるので、図3のフローチャートに基づいて説明する。第2実施形態による濃度検出処理は、ステップS11~S14を有する。
【0082】
ステップS11では、検査対象物1に対して中性子源3とガンマ線検出器5aを、上述のように予め定めた位置関係及び姿勢関係となるように配置する。
【0083】
ステップS12では、ステップS11での配置による検査対象物1と中性子源3とガンマ線検出器5aとの位置関係及び姿勢関係の状態で、検査対象物1の表面2に、中性子源3により中性子線を照射する。例えば、図6において、検査対象物1の表面2に、中性子源3により中性子線を照射する。
【0084】
ステップS13では、ステップS12で照射した中性子線により検査対象物1において発生した、対象成分に由来の複数種類の特定ガンマ線を、ガンマ線検出器5aで検出する。また、ステップS13では、この検出データが、ガンマ線検出器5aから検出量抽出部5bに入力され、当該検出データに基づいて、検出量抽出部5bによりn種類の特定ガンマ線のそれぞれの検出量D(kは1~nまでの整数)を求める。
【0085】
図6のように複数の層の数nが3である場合には、ステップS13では、1番目の種類の特定ガンマ線の検出量Dと、2番目の種類の特定ガンマ線の検出量Dと、3番目の種類の特定ガンマ線の検出量Dが求められる。
【0086】
ステップS14では、ステップS13で求めたn種類の検出量Dを、濃度算出部7aにより、それぞれに対応し記憶部7bに記憶された上述のn個の関係式(1)に、すなわち、ΣX×αi,k=DのD(kは1~nまでの整数)に適用する。これにより、濃度算出部7aが、Dが具体的な数値となった連立方程式ΣX×αi,k=Dを生成し、該連立方程式を解くことにより、検査対象物1における上述の複数の層のうち、各深さ又は特定深さに存在する層における対象成分の濃度を、検査対象物1の各深さ又は特定深さにおける対象成分の濃度として算出する。
【0087】
図6のように複数の層の数nが3である場合には、ステップS14では、濃度算出部7aは、検出量Dと検出量Dと検出量Dを、上述の関係式(11)~(13)のDとDとDにそれぞれに適用する。これにより、濃度算出部7aは、DとDとDが具体的な数値となった関係式(11)~(13)を連立方程式として生成する。濃度算出部7aは、当該連立方程式を解くことにより、検査対象物1の各層における対象成分の濃度X,X,X、あるいは、特定深さにおける層の濃度X,X又はXを求める。
【0088】
(第2実施形態の効果)
第2実施形態においても、第1実施形態と同様に、検査対象物1の各深さ又は所望の特定深さにおける対象成分の濃度を非破壊的に求めることができる。
【0089】
[第3実施形態]
(濃度検出装置)
本発明の第3実施形態による濃度検出装置10を説明する。図7は、第3実施形態による濃度検出装置10の構成例を示す。図7では、一例として、検査対象物1を3つの層1a,1b,1cに仮想的に区分している。第3実施形態について、以下において説明しない点は、第2実施形態と同じであってよい。
【0090】
第3実施形態による濃度検出装置10は、第2実施形態と同様に、中性子源3と、ガンマ線検出装置5と、濃度算出装置7とを備える。図7の例では、3つのガンマ線検出器5aが図示されているが、後述のように、1つのガンマ線検出器5aを、1番目の位置と、2番目の位置と、3番目の位置に順に配置する場合に、これらの位置に配置した状態を同時に図示している。すなわち、濃度検出装置10は、1つのガンマ線検出装置5(1つのガンマ線検出器5a)を有していてよい。また、濃度検出装置10は、1つのガンマ線検出装置5を有している場合に限定されず、後述のように複数のガンマ線検出装置5を有していてもよい。
【0091】
第3実施形態において、検査対象物1を仮想的に複数の層に区分した場合に、これら複数の層のそれぞれにおける対象成分の濃度と、特定ガンマ線の検出量との関係式を検出条件毎に予め求めておく。ここで、第3実施形態では関係式が検出条件毎に求められるのに対して、第1実施形態では関係式が特定ガンマ線の種類毎に求められる点で両実施形態は相違するが、第3実施形態における関係式の求め方の他の点は、第1実施形態と同様であってよい。検出条件は、ガンマ線検出装置5が特定ガンマ線を検出して特定ガンマ線の検出量を求めることに関する条件である。
【0092】
また、第3実施形態において、各検出条件についての当該関係式は、例えば上述の関係式(1)、すなわち、ΣX×αi,k=Dであってよい。ここで、kは、検出条件の番号であり、1~nの値をとり、nは、上述した層の数である。すなわち、互いに異なるこれらの検出条件の数は、検査対象物1を区分した層の数と同じである。各検出条件kについて関係式が予め求められている。言い換えると、n個の関係式(1)が予め求められている。例えば、各検出条件kについての上記関係式(上述の関係式(1))は、当該検出条件kに対応する配置関係に関する式である。この配置関係は、中性子源3とガンマ線検出器5aと検査対象物1との位置関係及び姿勢関係の一方又は両方であり、以下で単に配置関係という。記号kは、第2実施形態では特定ガンマ線の種類を示していたが、第3実施形態では、上述の配置関係を示す。即ち、複数の配置関係を予め定めておく。予め定めた複数の配置関係の数はnである。すなわち、配置関係を示す記号kは1~nの整数をとる。
【0093】
第3実施形態において、中性子源3が検査対象物1に中性子線を照射することにより、検査対象物1内において対象成分から放出される特定ガンマ線の種類は1種類であってもよい。対象成分から放出される特定ガンマ線の種類が複数種類である場合には、これら種類のうち、予め定めた1つの種類の特定ガンマ線の検出量が、各検出条件kについての上記関係式(上述の関係式(1))における検出量である。
【0094】
第3実施形態では、上述の関係式(1)の各αi,kは、第1実施形態又は第2実施形態の場合と同じであってよい。すなわち、関係式(1)の各αi,kは、第1実施形態又は第2実施形態の場合と同様に求められてよい。各αi,kを第1実施形態の場合と同様に求める場合には、上述した成分含有ブロックの各順番iについて、各検出条件k(配置関係)の下で上述のステップS1~S3を行う。これにより、上述のステップS5のように各αi,k=di,k/Cを求めることができる。第3実施形態において、第2実施形態のように各αi,kを求める場合については、以下のように補足説明する。
【0095】
αi,kは、上述の式(10)と同じ次の式(14)で表される。

αi,k=N,k ×Ti,k×εi,k×b×d×σ×(N×r/A) ・・・(14)
【0096】
αi,kは、上述した前提(a)~(d)の下で、予め求められている。αi,kを表わす上記式(14)の各記号について、以下で説明するが、以下で説明しない点は、第2実施形態における上述の式(10)の各記号の場合と同じであってよい。なお、以下で適宜に図7を参照して補足説明する。図7の例のように、第3実施形態では、ガンマ線検出器5aにはコリメータ6が設けられており、ガンマ線検出器5aは、検査対象物1において発生した特定ガンマ線のうち、コリメータ6の向きと一致する方向からガンマ線検出器5aに進行して来た特定ガンマ線のみを選択的に検出する。
【0097】
i,kは、第3実施形態では、i番目の層において、k番目の配置関係の下でコリメータ6の向きの方向にガンマ線検出器5aと重なる重複領域Ri,kに、上述した所定の測定時間にわたって入射する中性子の数である。図7の例では、3つの配置関係(すなわち1番目~3番目の位置のガンマ線検出器5a)を同時に示しており、3つの配置関係の間で検査対象物1と中性子源3との位置関係及び姿勢関係は一定であるが、ガンマ線検出器5aの位置kが互いに異なり、ガンマ線検出器5a(コリメータ6)の向きは互いに一定である。
【0098】
図7の例のように、複数の層の数nが3である場合には、ガンマ線検出器5aの位置としてnと同じ数の3つの位置(配置関係)を予め設定する。この場合、図7において、1番目(k=1)のガンマ線検出器5aの位置についてはR1,1,R2,1,R3,1の3つのRi,kがあり、2番目(k=2)のガンマ線検出器5aの位置についてはR1,2,R2,2,R3,2の3つのRi,kがあり、3番目(k=3)のガンマ線検出器5aの位置についてはR1,3,R2,3,R3,3の3つのRi,kがある。Ni,kは、第2実施形態の場合と同様に、シミュレーション又は事前の実験により予め求められる。
【0099】
i,kは、重複領域Ri,kで発生した特定ガンマ線がガンマ線検出器5aまで進行する経路において検査対象物1の内部を透過する率である。透過率Ti,kは、当該経路上における重複領域Ri,kにおける基準位置Pi,kから当該経路上の表面2の位置(以下で表面位置Pという)までの距離に基づいて求められてよい。言い換えると、透過率Ti,kは、k番目の配置関係の下で、i番目の層の基準位置P,k から表面位置Pまでを特定ガンマ線が透過する率である。
【0100】
上記の基準位置Pi,kは、上述した重複領域Ri,k内の位置(例えば重複領域Ri,kの中心位置)であってよい。図7のように、複数の配置関係の間で、ガンマ線検出器5aの位置が異なり、ガンマ線検出器5aとコリメータ6の向きが同じである場合には、Ti,kは、検出条件k(ガンマ線検出器5aの位置k)によらず一定であり、層の番号iに応じて変化する。図7の例では、T1,1は、基準位置P1,1と、基準位置P1,1から1番目の位置のガンマ線検出器5aまでの経路上の表面位置PS,1との距離に基づいて定められ、T1,2とT1,3は、T1,1と同じ値である。同様に、図7の例では、T2,1は、基準位置P2,1と表面位置PS,1との距離に基づいて定められ、T2,2とT2,3は、T2,1と同じ値であり、T3,1は、基準位置P3,1と表面位置PS,1との距離に基づいて定められ、T3,2とT3,3は、T3,1と同じ値である。
【0101】
εi,kは、予め定められた上述の配置関係により定まる値であって、重複領域Ri,kで発生した特定ガンマ線に対するガンマ線検出器5aの検出効率である。検出効率εi,kは、ガンマ線の発生位置とみなす上述の基準位置Pi,kとガンマ線検出器5aとの距離と、特定ガンマ線のエネルギーと、ガンマ線検出器5aの形状とに基づいて求められてよい。図7のように、複数の配置関係の間で、ガンマ線検出器5aの位置kが異なり、ガンマ線検出器5aとコリメータ6の向きが同じである場合には、εi,kは、検出条件k(ガンマ線検出器5aの位置k)によらず一定であり、層の番号iに応じて変化する。
【0102】
、d、σ等は、第2実施形態の場合と同じである。このように予め求めたNi,k,Ti,k,εi,k等によりαi,k=N,k ×Ti,k×εi,k×b×d×σ×(N×r/A)を定めておき、αi,kを用いた上述の関係式(1)を記憶部7bに記憶させておく。
【0103】
図7の例のように、層の数nが3である場合には、上述の関係式(1)は、第2実施形態における上述の関係式(11)~(13)と同じになる。
【0104】
(濃度検出方法)
第3実施形態による濃度検出方法において関係式取得処理は、上述のようにαi,kを予め求め、αi,kを用いた上述の関係式(1)を記憶部7bに記憶させておく処理である。
【0105】
図8は、第3実施形態による濃度検出方法における濃度検出処理を示すフローチャートである。第3実施形態による濃度検出処理は、ステップS21~S24を有する。
【0106】
ステップS21では、検査対象物1に対して中性子源3とガンマ線検出器5aを、k番目の配置関係で配置する。図7の場合には、例えば、この図における1番目の位置(k=1)のガンマ線検出器5aの位置にガンマ線検出器5aを配置する。
【0107】
ステップS22では、ステップS11での配置関係の状態で、検査対象物1の表面2に、中性子源3により中性子線を照射する。
【0108】
ステップS23では、ステップS12で照射した中性子線により検査対象物1において発生した、対象成分に由来の特定ガンマ線を、ガンマ線検出器5aで検出する。また、ステップS13では、この検出データが、ガンマ線検出器5aから検出量抽出部5bに入力され、当該検出データに基づいて、検出量抽出部5bにより特定ガンマ線の検出量D 求める。
【0109】
ステップS24では、全ての配置関係について上述のステップS22とステップS23を行ったかを判断する。この判断の結果が否定である場合には、ステップS21へ戻り、ステップS21~S24を再び行う。再度のステップS21では、予め定めた複数の配置関係のうち、中性子源3とガンマ線検出器5aをまだ配置していない配置関係で、中性子源3とガンマ線検出器5aを検査対象物1に対して配置する。この状態で、ステップS22~S24を再び行う。
【0110】
図7の場合には、例えば、2回目のステップS21では、この図における2番目の位置(k=2)のガンマ線検出器5aの位置にガンマ線検出器5aを配置して、ステップS22,S23を再び行い、3回目のステップS21では、この図における3番目の位置(k=3)のガンマ線検出器5aの位置にガンマ線検出器5aを配置して、ステップS22,S23を再び行う。
【0111】
ステップS24の判断の結果が肯定である場合には、ステップS25へ進む。この場合、予め定めた全て(n種類)の配置関係について、ステップS23で検出量D(kは1~nの整数)が求められている。図7のようにnが3である場合には、1番目の配置関係についての検出量Dと、2番目の配置関係についての検出量Dと、3番目の配置関係についての検出量Dが、3回のステップS23で求められている。
【0112】
ステップ25では、複数回(n回)のステップS23で求めたn個の検出量Dを、濃度算出部7aにより、それぞれに対応し記憶部7bに記憶されている上述のn個の関係式(1)に、すなわち、ΣX×αi,k=DのD(kは1~nまでの整数)に適用する。これにより、濃度算出部7aが、Dが具体的な数値となった連立方程式ΣX×αi,k=Dを生成し、該連立方程式を解くことにより、検査対象物1における上述の複数の層のうち、各深さ又は特定深さに存在する層における対象成分の濃度を、検査対象物1の各深さ又は特定深さにおける対象成分の濃度として算出する。
【0113】
図7のように複数の層の数nが3である場合には、濃度算出部7aは、3回のステップS23で求めた検出量Dと検出量Dと検出量Dを、第1実施形態の場合と同様の上述の関係式(7)~(9)又は第2実施形態の場合と同じ上述の関係式(11)~(13)のDとDとDにそれぞれに適用する。これにより、濃度算出部7aは、DとDとDが具体的な数値となった関係式(7)~(9)又は(11)~(13)を連立方程式として生成する。濃度算出部7aは、当該連立方程式を解くことにより、検査対象物1の各層における対象成分の濃度X,X,X、あるいは、特定深さにおける層の濃度X,X又はXを求める。
【0114】
<複数のガンマ線検出装置を設ける場合>
第3実施形態において、濃度検出装置10は、複数(n個)のガンマ線検出装置5を有していてもよい。この場合、1回のステップS21において、n個のガンマ線検出器5aを互いに異なる位置に同時に配置することにより、各ガンマ線検出器5aと中性子源3と検査対象物1との配置関係を1つの配置関係として、n個の配置関係を同時に成立させてよい。例えば、nが3である場合には、図7における1番目~3番目の各位置にガンマ線検出器5aを同時に配置することで、3つのガンマ線検出器5aにより1回のステップS21で3つの配置関係を同時に成立させてよい。
【0115】
したがって、続いてのステップS22とステップS23により、各ガンマ線検出装置5により検出量D(kは1~nまでの整数)が求められる。ここで、Dは、k番目のガンマ線検出器5aを有するガンマ線検出装置5により求められた特定ガンマ線の検出量である。このように、ステップS21~S23を1回行うことにより、n個の検出量Dが得られる。その後、ステップS24を省略して、ステップS25へ進み、ステップS25では、濃度算出部7aにより、n個の検出量Dを上記関係式(1)に適用して、上述と同様に、各深さ又は特定深さに存在する層における対象成分の濃度を算出する。
【0116】
(第3実施形態の効果)
第3実施形態においても、第1実施形態と同様に、検査対象物1の各深さ又は所望の特定深さにおける対象成分の濃度を非破壊的に求めることができる。
【0117】
[応用例]
上述した各実施形態による濃度検出装置10と濃度検出方法は、様々な構造物や材料・部材に適用可能であるが、検査対象物1は、例えば、鉄筋を内部に含むコンクリート構造物であってよい。検査対象物1が鉄筋を内部に含むコンクリート構造物である場合には、次のように濃度検出方法を行ってもよい。ここで、行われる濃度検出方法は、第1実施形態と第2実施形態と第3の実施形態のいずれによる濃度検出方法であってもよい。
【0118】
対象成分が鉄筋の成分(例えば鋼又は他の成分)であるとして、上述の関係式取得処理を行うことにより、鉄筋の成分に関する上記関係式(例えば上記関係式(1))を予め求めて鉄筋用の関係式として記憶部7bに記憶させておく。
【0119】
更に、対象成分が塩分であるとして、上述の関係式取得処理を行うことにより、塩分に関する上記関係式(例えば上記関係式(1))を予め求めて塩分用の関係式として記憶部7bに記憶させておく。
【0120】
その後、対象成分が鉄筋の成分であるとして、上述の濃度検出処理を行うことにより、各層における鉄筋の成分の濃度を求める。この時に用いる上記関係式は、鉄筋用の上記関係式である。この時に求めた鉄筋の成分の上記濃度が予め定めた閾値以上となった層を、鉄筋が存在する特定深さの層として定める。
【0121】
次に、対象成分が塩分であるとして、上述の濃度検出処理を行うことにより、鉄筋の成分の濃度が上記閾値以上となった層(特定深さの層)における塩分の濃度を求める。この時に用いる上記関係式は、塩分用の上記関係式である。
【0122】
このように、鉄筋の成分の濃度が上記閾値以上となった層を鉄筋が存在する層として定め、当該層における塩分の濃度を求めることにより、鉄筋が存在する層(深さ)における塩分の濃度を求めることができる。塩分の当該濃度が高い場合には、鉄筋が腐食する可能性があると判断できる。
【0123】
本発明は上述した実施の形態に限定されず、本発明の技術的思想の範囲内で種々変更を加え得ることは勿論である。例えば、以下の変更例1又は変更例2を採用してもよい。この場合、以下で述べない点は、上述と同じであってよい。
【0124】
(変更例1)
変更例1によると、以下のように、上述した第1実施形態又は第2実施形態において、複数種類の特定ガンマ線の利用に加えて、複数種類の配置関係を利用してもよい。この変更例1では、上述の関係式(1)は、次の式(15)となる。

ΣX×αi,k,j=Dk,j ・・・(15)
【0125】
式(15)において、αi,k,jとDk,jの添え字jは、配置関係の番号であり、1~qの値をとり、qは、配置関係の数である。配置関係jは、中性子源3とガンマ線検出器5aと検査対象物1との位置関係及び姿勢関係の一方又は両方である。したがって、αi,k,jは、特定ガンマ線のk番目の種類とi番目の層とj番目の配置関係に対応する係数である。このように、変更例1では、αi,k,jは、上述のαi,kに対して更に配置関係jにも依存するが、αi,k,jの他の点は、上述のαi,kと同様である。
【0126】
変更例1において、配置関係jの数を上述のようにqとし、使用する特定ガンマ線の種類kの数をsとし(すなわち、kは、1~sの値をとる)、検査対象物1を仮想的に区分した層iの数をnとして(すなわち、iは、1~nの値をとる),nとqとsとの関係は、後述のように連立方程式を解くためには、n≦q×sを満たせばよい。nとqとsは、それぞれ2以上であってよい。なお、nとqがそれぞれ2以上であり、sが1であってもよいが(例えば、n=3、q=3、且つs=1)、この場合は、上述の第3実施形態に含まれる。
【0127】
式(15)の関係式(すなわちαi,k,j)を、層iと種類kと配置関係jとの各組合せについて、第1実施形態又は第2実施形態の場合と同様の関係式取得処理により予め求めておく。これについて、第1実施形態に対する変更例1では、図3のフローチャートにおいて、ステップS1で、qの(全ての)配置関係jが同時に成り立つように複数のガンマ線検出装置5(ガンマ線検出器5a)を配置し、この状態で関係式取得処理の以降の各ステップを行うことにより、関係式取得処理を1回だけ行うようにしてもよい。あるいは、ステップS1で、一部の配置関係jが成り立つように1つ又は複数のガンマ線検出装置5(ガンマ線検出器5a)を、配置して当該一部の配置関係jについて関係式取得処理を行い、その後、残りの配置関係jについて同様に関係式取得処理を行うように関係式取得処理を2回以上行ってもよい。
【0128】
濃度検出処理は、図5のフローチャートにおいて、上述のステップS11で、qの(全ての)配置関係jが同時に成り立つように複数(q個)のガンマ線検出装置5(ガンマ線検出器5a)を配置してよい。すなわち、濃度検出装置10は、複数のガンマ線検出装置5を有していてもよい。
【0129】
ステップS12では、ステップS11での配置の状態で、検査対象物1の表面2に、中性子源3により中性子線を照射する。
【0130】
ステップS13では、ステップS12で照射した中性子線により検査対象物1において発生した、対象成分に由来の複数種類(s種類)の特定ガンマ線を、q個のガンマ線検出装置5の各々において、ガンマ線検出器5aで検出し、この検出データが、ガンマ線検出器5aから対応する検出量抽出部5bに入力され、当該検出データに基づいて、検出量抽出部5bによりs種類の特定ガンマ線のそれぞれの検出量Dk,jを求める。
【0131】
ステップS14では、ステップS13で求めたq×s種類の検出量Dk,jを、濃度算出部7aにより、それぞれに対応し記憶部7bに予め記憶された上述のq×s個の関係式(15)に、すなわち、ΣX×αi,k,j=Dk,jのDk,jに適用する。これにより、濃度算出部7aが、Dk,jが具体的な数値となった連立方程式ΣX×αi,k,j=Dk,jを生成し、該連立方程式を解くことにより、検査対象物1における上述の複数の層のうち、各深さ又は特定深さに存在する層における対象成分の濃度を、検査対象物1の各深さ又は特定深さにおける対象成分の濃度として算出する。
【0132】
ステップS11で、sの配置関係のうち一部の配置関係jが成り立つように1つ又は複数のガンマ線検出装置5(ガンマ線検出器5a)を配置し、当該一部の配置関係jについてステップS12とステップS13を行い、その後、残りの配置関係jについて同様にステップS11~S13を行うようにステップS11~S13を2回以上行い、これにより、全ての種類(q×s種類)の検出量Dk,jを求めてもよい。その後、これら検出量Dk,jについて、上述と同様にステップS14を行う。
【0133】
変更例1によると、配置関係jの数をqとし、特定ガンマ線の種類kの数をsとし、層iの数をnとした場合に、n≦q×sであればよいので、使用する特定ガンマ線の種類を減らすことができる。例えば、対象成分に由来の特定ガンマ線の種類が少ない場合には、本変更例1により、層iの数を減らすことなく、検査対象物1の各深さの対象成分の濃度を求めることができる。
【0134】
(変更例2)
複数の層における複数の濃度と、ガンマ線検出装置5により求められる特定ガンマ線の検出量との関係を表す関係式(関数)は、上述の関係式(1)のように線形でなくてもよい。この場合、当該関係式は、例えば次の式(16)で表されてもよい。

ΣFi,k(X)=D ・・・(16)
【0135】
ここで、Fi,kは、上述の特定ガンマ線の種類k又は上述の検出条件k(配置関係)についての、i番目の層に関するXの関数である。Fi,kは、層毎に異なっていてもよい。ただし、Fi,kは、各層について同じ関数であってもよい。また、Fi,kは、各kについて同じであってもよいし、k毎に異なっていてもよい。このような関係式(16)を、シミュレーション又は実験又は理論計算により予め求め、記憶部7bに記憶させておいてよい。
【0136】
また、変更例1において、上述の関係式(15)の代わりに、次の式(17)を用いてもよい。

ΣFi,k,j(X)=Dk,j ・・・(17)

ここで、Fi,k,jは、特定ガンマ線の種類kと配置関係jの組み合わせについての、i番目の層に関するXの関数である。関係式(17)を、シミュレーション又は実験又は理論計算により予め求め、記憶部7bに記憶させておいてよい。
【符号の説明】
【0137】
1 検査対象物、1a,1b,1c 層、2 表面、3 中性子源、5 ガンマ線検出装置、5a ガンマ線検出器、5b 検出量抽出部、6 コリメータ、7 濃度算出装置、7a 濃度算出部、7b 記憶部、10 濃度検出装置、101 供試体、101a 成分含有ブロック、101b 成分ゼロブロック、102 表面

図1
図2
図3
図4A
図4B
図4C
図5
図6A
図6B
図7
図8