(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-16
(45)【発行日】2024-05-24
(54)【発明の名称】冷熱発電用のタービン
(51)【国際特許分類】
F01D 3/00 20060101AFI20240517BHJP
F01K 25/10 20060101ALI20240517BHJP
【FI】
F01D3/00
F01K25/10 A
(21)【出願番号】P 2020120825
(22)【出願日】2020-07-14
【審査請求日】2023-05-29
(73)【特許権者】
【識別番号】518131296
【氏名又は名称】三菱重工マリンマシナリ株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】▲高▼田 亮
(72)【発明者】
【氏名】川波 晃
【審査官】高吉 統久
(56)【参考文献】
【文献】実開昭54-171045(JP,U)
【文献】特開平08-218816(JP,A)
【文献】特開2012-087690(JP,A)
【文献】特表2014-532138(JP,A)
【文献】特開昭59-221408(JP,A)
【文献】特開平09-112207(JP,A)
【文献】特開平02-263061(JP,A)
【文献】国際公開第2008/090628(WO,A1)
【文献】特開2007-092653(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 3/00
F01D 15/10
F01K 25/10
(57)【特許請求の範囲】
【請求項1】
液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ラインに設けられる冷熱発電用のタービンであって、
ロータシャフトと、
前記ロータシャフトを回転可能に収容するケーシングと、
前記ロータシャフトに支持される被支持部を含む被駆動体と、
前記ロータシャフトの軸方向における前記被支持部よりも一方側に設けられた一方側動翼と、
前記ロータシャフトの前記軸方向における前記被支持部よりも他方側に設けられた他方側動翼と、
前記一方側動翼よりも前記一方側において前記ケーシングに支持される一方側静翼と、
前記他方側動翼よりも前記他方側において前記ケーシングに支持される他方側静翼と、
を備え
、
前記ケーシングは、
前記ロータシャフトの前記軸方向における前記一方側動翼と前記他方側動翼の間に配置され、前記ロータシャフトおよび前記被駆動体を収容する被駆動体収容部と、
前記被駆動体収容部の外周を覆う外側ケーシングであって、前記被駆動体収容部との間に前記一方側動翼を通過した熱媒体を下流側に導くための熱媒体流路および前記他方側動翼を通過した熱媒体を下流側に導くための熱媒体流路を形成する外側ケーシングと、を含む、
冷熱発電用のタービン。
【請求項2】
前記一方側動翼よりも下流側において前記ロータシャフトと前記
被駆動体収容部との間をシールする一方側シール部と、
前記他方側動翼よりも下流側において前記ロータシャフトと前記
被駆動体収容部との間をシールする他方側シール部と、
をさらに備える、
請求項1に記載の冷熱発電用のタービン。
【請求項3】
前記一方側動翼を通過した前記熱媒体を前記他方側静翼に導入するための連絡ラインをさらに備える、
請求項2に記載の冷熱発電用のタービン。
【請求項4】
前記連絡ラインを流れる前記熱媒体と、前記熱媒体よりも高温の第2の熱媒体と、の間で熱交換を行うように構成された熱交換器をさらに備える、
請求項3に記載の冷熱発電用のタービン。
【請求項5】
前記一方側動翼に前記熱媒体を導入するための熱媒体導入ラインから分岐して前記連絡ラインに合流する途中合流ラインをさらに備える、
請求項3又は4に記載の冷熱発電用のタービン。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ラインに設けられる冷熱発電用のタービンに関する。
【背景技術】
【0002】
液化ガス(例えば、液化天然ガス)は、輸送や貯蔵を目的として液化され、都市ガスや火力発電所などの供給先に供給するに際して、海水などの熱媒体で昇温して気化させることが行われる。液化ガスを気化させる際に、冷熱エネルギを海水に捨てるのではなく電力として回収する冷熱発電が行われることがある(例えば、特許文献1)。
【0003】
液化天然ガスの冷熱発電サイクルとしては、二次媒体ランキンサイクル方式などが知られている(例えば、特許文献1)。二次媒体ランキンサイクル方式は、クローズドループ内を循環する二次媒体を、蒸発器にて海水を熱源として加熱して蒸発させ、この蒸気を冷熱発電用のタービンに導入して動力を得た後に、液化天然ガスにて冷却、凝縮させる方式である。
【0004】
特許文献2には、二つの減速ピニオン軸の夫々を、独立して回転駆動される二台の膨張タービンに夫々連結し、二つのピニオン軸の間に配置された減速ギア軸を、発電機に連結した冷熱発電装置が開示されている。膨張タービンの夫々は、軸方向における同じ一方向から回収ガス(作動流体)を導入するように構成されたシングルフロー式のタービンからなる。
【先行技術文献】
【特許文献】
【0005】
【文献】実開昭61-59803号公報
【文献】実開昭58-173706号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記シングルフロー式のタービンは、タービンの作動中に上記一方向から反対方向に向かうスラスト荷重を受ける。発電機が大容量帯に属するような、発電容量の大きなものであると、タービンの体格の増加に伴い、上記スラスト荷重が大きくなる虞がある。
【0007】
スラスト荷重の低減を目的としたタービンとしては、車室中央寄りに位置する蒸気入口部に流入した作動流体が左右に分流するダブルフロー式のタービンが知られている。ダブルフロー式のタービンは、左側に分流した作動流体から受けるスラスト荷重と、右側に分流した作動流体から受けるスラスト荷重と、が相殺し合うので、タービンのスラスト荷重の低減を図ることができる。このようなダブルフロー式のタービンは、タービンとは軸方向における異なる位置に発電機などを配置する必要があるため、その構造の大型化を招く虞があった。
【0008】
上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、タービンのスラスト荷重を低減できるとともに、タービンのコンパクト化が図れる冷熱発電用のタービンを提供することにある。
【課題を解決するための手段】
【0009】
本開示にかかる冷熱発電用のタービンは、
液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ラインに設けられる冷熱発電用のタービンであって、
ロータシャフトと、
前記ロータシャフトを回転可能に収容するケーシングと、
前記ロータシャフトに支持される被支持部を含む被駆動体と、
前記ロータシャフトの軸方向における前記被支持部よりも一方側に設けられた一方側動翼と、
前記ロータシャフトの前記軸方向における前記被支持部よりも他方側に設けられた他方側動翼と、
前記一方側動翼よりも前記一方側において前記ケーシングに支持される一方側静翼と、
前記他方側動翼よりも前記他方側において前記ケーシングに支持される他方側静翼と、
を備える。
【発明の効果】
【0010】
本開示の少なくとも一実施形態によれば、タービンのスラスト荷重を低減できるとともに、タービンのコンパクト化が図れる冷熱発電用のタービンが提供される。
【図面の簡単な説明】
【0011】
【
図1】本開示の一実施形態にかかる冷熱発電用のタービンを備える冷熱発電システムの構成を概略的に示す概略構成図である。
【
図2】本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。
【
図3】本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。
【
図4】本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。
【
図5】本開示の一実施形態にかかる冷熱発電用のタービンを説明するための説明図である。
【発明を実施するための形態】
【0012】
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
なお、同様の構成については同じ符号を付し説明を省略することがある。
【0013】
(冷熱発電システム)
図1は、本開示の一実施形態にかかる冷熱発電用のタービンを備える冷熱発電システムの構成を概略的に示す概略構成図である。
冷熱発電システム1は、
図1に示されるように、冷熱発電用のタービン2(以下、タービン2とする)と、液化ガス供給ライン3と、熱媒体循環ライン4と、加熱水供給ライン5と、第1の熱交換器12と、第2の熱交換器13と、を備える。液化ガス供給ライン3、熱媒体循環ライン4および加熱水供給ライン5の夫々は、例えば管路などの流体が流通する流路を含むものである。
【0014】
液化ガス供給ライン3は、液化ガス貯留装置31から液化ガスを送るように構成されている。液化ガス貯留装置(例えば、液化ガスタンク)31は、液状の液化ガスを貯留するように構成されている。
【0015】
熱媒体循環ライン4は、水よりも凝固点が低い熱媒体を循環させるように構成されている。以下、液化ガスの具体例として液化天然ガス(LNG)を、熱媒体循環ライン4を流れる熱媒体の具体例としてプロパンを例に挙げて説明するが、本開示は、液化天然ガス以外の液化ガス(液体水素など)にも適用可能であり、また、プロパン以外の熱媒体を、熱媒体循環ライン4を流れる熱媒体とした場合にも適用可能である。
【0016】
図示される実施形態では、冷熱発電システム1は、液化ガス供給ライン3に設けられた液化ガス用ポンプ32と、熱媒体循環ライン4に設けられた熱媒体用の循環ポンプ41と、をさらに備える。液化ガス供給ライン3は、その一端側33が液化ガス貯留装置31に接続され、その他端側34が冷熱発電システム1の外部に設けられる液化ガス用の機器35に接続される。液化ガス用の機器35としては、例えば、陸上に設けられたガスホルダやこれに接続されるガス配管などが挙げられる。
【0017】
液化ガス用ポンプ32を駆動させることにより、液化ガス貯留装置31に貯留される液化ガスが液化ガス供給ライン3に送られて、液化ガス供給ライン3を上流側から下流側に向かって流れた後に、液化ガス用の機器35に送られる。
【0018】
熱媒体用の循環ポンプ41を駆動させることにより、熱媒体循環ライン4を熱媒体が循環する。タービン2は、液化ガスを加熱するための熱媒体が循環するように構成された熱媒体循環ライン4に設けられる。
【0019】
加熱水供給ライン5は、冷熱発電システム1の外部から導入された加熱水を送るように構成されている。「加熱水」は、熱交換器において熱媒として熱交換対象を加熱させる水であればよく、常温の水であってもよい。冷熱発電システム1が船体10又は水上に浮かぶ浮体10Aに搭載される場合には、加熱水は、船体10又は浮体10Aにおいて入手が容易な水(例えば、海水などの船外水や、船舶のエンジンを冷却した冷却水など)が好ましい。或る実施形態では、冷熱発電システム1や冷熱発電用のタービン2は、
図1に示されるような船体10又は浮体10Aに搭載される。他の或る実施形態では、冷熱発電システム1や冷熱発電用のタービン2は、陸上に設置される。
【0020】
図示される実施形態では、冷熱発電システム1は、水よりも凝固点が低い中間熱媒体を循環させるように構成された中間熱媒体循環ライン6と、中間熱媒体循環ライン6に設けられる中間熱媒体用の循環ポンプ61と、加熱水供給ライン5に設けられる加熱水用ポンプ51と、第3の熱交換器14と、をさらに備える。
【0021】
図示される実施形態では、冷熱発電システム1は、中間熱媒体用の循環ポンプ61を駆動させることにより、中間熱媒体循環ライン6を中間熱媒体が循環する。加熱水供給ライン5は、その一端側52が冷熱発電システム1の外部に設けられる加熱水の供給元15に接続され、その他端側53が冷熱発電システム1の外部に設けられる加熱水の排出先16に接続される。加熱水用ポンプ51を駆動させることにより、加熱水の供給元15から加熱水が加熱水供給ライン5に送られて、加熱水供給ライン5を上流側から下流側に向かって流れた後に、加熱水の排出先16に送られる。
【0022】
冷熱発電システム1が船体10又は浮体10Aに搭載される場合には、加熱水の供給元15としては、例えば、船体10に設けられた船外の水を導入するための取水口15Aが挙げられる。また、冷熱発電システム1が船体10又は浮体10Aに搭載される場合には、加熱水の排出先16としては、例えば、船体10に設けられた船外に水を排出するための排出口16Aが挙げられる。
【0023】
中間熱媒体は、熱媒体循環ライン4を流れる熱媒体と同種の熱媒体であってもよいし、異種の熱媒体であってもよい。図示される実施形態では、中間熱媒体は、プロパンからなり、加熱水は、船外から取得した海水からなる。
【0024】
第1の熱交換器12は、液化ガス供給ライン3を流れる液化ガスと、熱媒体循環ライン4を流れる熱媒体と、の間で熱交換を行うように構成されている。
図1に示される実施形態では、第1の熱交換器12は、液化ガス供給ライン3に設けられた液化ガスが流れる液化ガス流路121と、熱媒体循環ライン4に設けられた熱媒体が流れる熱媒体流路122と、を含む。熱媒体流路122内の熱媒体と、液化ガス流路121内の液化ガスと、の間で熱交換が行われて、液化ガス流路121内の液化ガスが加熱され、熱媒体流路122内の熱媒体が冷却される。
【0025】
第2の熱交換器13は、熱媒体循環ライン4を流れる熱媒体と、中間熱媒体循環ライン6を流れる中間熱媒体と、の間で熱交換を行うように構成されている。
図1に示される実施形態では、第2の熱交換器13は、熱媒体循環ライン4に設けられた熱媒体が流れる熱媒体流路131と、中間熱媒体循環ライン6に設けられた中間熱媒体が流れる中間熱媒体流路132と、を含む。中間熱媒体流路132内の中間熱媒体と、熱媒体流路131内の熱媒体と、の間で熱交換が行われて、熱媒体流路131内の熱媒体が加熱され、中間熱媒体流路132内の中間熱媒体が冷却される。
【0026】
なお、他の幾つかの実施形態では、第2の熱交換器13は、熱媒体循環ライン4を流れる熱媒体と、加熱水供給ライン5を流れる加熱水と、の間で熱交換を行うように構成されていてもよい。第2の熱交換器13は、上述した熱媒体流路131と、加熱水供給ライン5に設けられた加熱水が流れる加熱水流路であって、熱媒体流路132との間で熱交換を行うための加熱水流路を含んでいてもよい。この場合には、冷熱発電システム1は、中間熱媒体循環ライン6および第3の熱交換器14を備える必要がないため、その構造を大型化や複雑化を抑制できる。なお、冷熱発電システム1は、中間熱媒体循環ライン6および第3の熱交換器14を備え、中間熱媒体循環ライン6を循環する中間熱媒体を水よりも凝固点が低いものとすることで、第2の熱交換器13における熱交換により加熱媒体が凝固し、第2の熱交換器13を閉塞させることを抑制できる。
【0027】
第3の熱交換器14は、中間熱媒体循環ライン6を流れる中間熱媒体と、加熱水供給ライン5を流れる加熱水と、の間で熱交換を行うように構成されている。
図1に示される実施形態では、第3の熱交換器14は、中間熱媒体循環ライン6に設けられた中間熱媒体が流れる中間熱媒体流路141と、加熱水供給ライン5に設けられた加熱水が流れる加熱水流路142と、を含む。中間熱媒体流路141内の中間熱媒体と、加熱水流路142内の加熱水と、の間で熱交換が行われて、中間熱媒体流路141内の中間熱媒体が加熱される。
【0028】
第1の熱交換器12(具体的には液化ガス流路121)は、液化ガス供給ライン3の液化ガス用ポンプ32よりも下流側、且つ液化ガス用の機器35よりも上流側に設けられる。液化ガス用ポンプ32は、液化ガス供給ライン3の液化ガス貯留装置31よりも下流側に設けられる。また、第1の熱交換器12(具体的には熱媒体流路122)は、熱媒体循環ライン4のタービン2よりも下流側、且つ熱媒体用の循環ポンプ41よりも上流側に設けられる。
【0029】
第2の熱交換器13(具体的には熱媒体流路131)は、熱媒体循環ライン4の熱媒体用の循環ポンプ41よりも下流側、且つタービン2よりも上流側に設けられる。また、第2の熱交換器13(具体的には中間熱媒体流路132)は、中間熱媒体循環ライン6の第3の熱交換器14(具体的には中間熱媒体流路141)よりも下流側、且つ中間熱媒体用の循環ポンプ61よりも上流側に設けられる。
【0030】
第3の熱交換器14(具体的には加熱水流路142)は、加熱水供給ライン5の加熱水用ポンプ51よりも下流側、且つ加熱水の排出先16よりも上流側に設けられる。加熱水用ポンプ51は、加熱水供給ライン5の加熱水の供給元15よりも下流側に設けられる。
【0031】
第1の熱交換器12の液化ガス流路121には、液化ガス用ポンプ32により昇圧された液状の液化ガスが送られる。第1の熱交換器12における熱交換により、液化ガス流路121を流れる液化ガスが加熱され、熱媒体流路122を流れる熱媒体が冷却される。つまり、液化ガス流路121を流れる液化ガスの冷熱エネルギが熱媒体流路122を流れる熱媒体に回収される。
【0032】
第3の熱交換器14の中間熱媒体流路141には、中間熱媒体用の循環ポンプ61により昇圧された中間熱媒体が送られる。また、加熱水流路142には、加熱水用ポンプ51により昇圧された加熱水が送られる。第3の熱交換器14における熱交換により、中間熱媒体流路141を流れる中間熱媒体が加熱される。
【0033】
第2の熱交換器13の熱媒体流路131には、第1の熱交換器12により冷却された後に、熱媒体用の循環ポンプ41により昇圧された熱媒体が送られる。また、中間熱媒体流路132には、第3の熱交換器14により加熱された中間熱媒体が送られる。第2の熱交換器13における熱交換により、熱媒体流路131を流れる熱媒体が加熱され、中間熱媒体流路132が冷却される。
【0034】
図1に示される実施形態では、冷熱発電システム1は、熱媒体循環ライン4における第2の熱交換器13の熱媒体流路131よりも下流側から分岐して、タービン2を迂回して第1の熱交換器12の熱媒体流路122よりも上流側に接続されるバイパスライン17をさらに備える。上述した熱媒体循環ライン4におけるバイパスライン17が分岐する分岐部171からバイパスライン17が合流する合流部172までの間の流路(タービン2を通過する流路)を主流路42とする。
【0035】
図1に示される実施形態では、冷熱発電システム1は、主流路42のタービン2より上流側に設けられる開閉弁43と、バイパスライン17に設けられる開閉弁173と、をさらに備える。例えば、冷熱発電システム1の始動時には、開閉弁43を閉じ、開閉弁173を開いて熱媒体にタービン2を迂回させる。所定期間が経過した後に、開閉弁43を開いて、開閉弁173を閉じて熱媒体にタービン2を通過させる。
【0036】
(冷熱発電用のタービン)
図2および
図3の夫々は、本開示の一実施形態にかかる冷熱発電用のタービンを備える冷熱発電システムの構成を概略的に示す概略構成図である。
以下、タービン2における熱媒体の流れ方向における上流側を単に上流側と表すことがあり、タービン2における熱媒体の流れ方向における下流側を単に下流側と表すことがある。
【0037】
幾つかの実施形態にかかる冷熱発電用のタービン2は、
図2、
図3に示されるように、ロータシャフト21と、ロータシャフト21を回転可能に収容するケーシング7と、ロータシャフト21に支持される被支持部221を含む被駆動体22と、ロータシャフト21の軸方向における被支持部221よりも一方側(図中左側)に設けられた一方側動翼23Aと、ロータシャフト21の軸方向における被支持部221よりも他方側(図中右側、一方側とは反対側)に設けられた他方側動翼23Bと、一方側動翼23Aよりも上記一方側においてケーシング7に支持される一方側静翼24Aと、他方側動翼23Bよりも上記他方側においてケーシング7に支持される他方側静翼24Bと、を備える。
【0038】
以下、ロータシャフト21の軸方向、すなわちタービン2の軸線CAの延在する方向、における他方側動翼23Bに対して一方側動翼23Aが位置する側を前方側と定義し、上記前方側とは反対側を後方側と定義する。また、タービン2の径方向を単に径方向と称し、タービン2の周方向を単に周方向と称することがある。
図示される実施形態では、一方側静翼24Aは、一方側動翼23Aよりも前方側に配置され、他方側静翼24Bは、他方側動翼23Bよりも後方側に配置されている。
【0039】
図示される実施形態では、ロータシャフト21は、タービン2の軸線CAに沿って長手方向を有するシャフト部211と、シャフト部211の前方側における外面212Aから径方向における外側に円板状に突出する前方側ディスク部213Aと、シャフト部211の後方側における外面212Bから径方向における外側に円板状に突出する後方側ディスク部213Bと、を含む。前方側ディスク部213Aは、上述した一方側動翼23Aが外周に取り付けられる。後方側ディスク部213Bは、上述した他方側動翼23Bが外周に取り付けられる。
【0040】
図示される実施形態では、ケーシング7は、被駆動体収容部71と、外側ケーシング72と、を少なくとも含む。被駆動体収容部71は、タービン2の軸線CAに沿って長手方向を有し、タービン2の軸方向における一方側動翼23Aと他方側動翼23Bとの間に配置されている。
【0041】
被駆動体22は、ロータシャフト21の回転力を回収し、動力又は電力を発生させるように構成されている。被駆動体22は、発電機11、ポンプ、および圧縮機の少なくとも一つを含む。図示される実施形態では、被駆動体22は、発電機11を含む。発電機11は、ロータシャフト21に取り付けられた、永久磁石を含むモータロータ11Aと、モータロータ11Aよりも径方向における外側に配置され、被駆動体収容部71に支持されたモータステータ11Bと、を含む。上述した被支持部221は、上述したモータロータ11Aを含む。
【0042】
図示される実施形態では、被駆動体収容部71の内部に形成された空間710にロータシャフト21および被駆動体22(図示例では、モータロータ11Aおよびモータステータ11B)が収容される。ロータシャフト21の軸方向における両端部は、被駆動体収容部71よりも外側に突出している。外側ケーシング72は、タービン2の軸線CAに沿って長手方向を有し、被駆動体収容部71の外周を覆うとともに、被駆動体収容部71との間に熱媒体を下流側に導くための熱媒体流路73を形成するようになっている。
【0043】
図示される実施形態では、冷熱発電用のタービン2は、
図2、
図3に示されるように、一方側動翼23Aよりも軸方向における前方側において、ロータシャフト21の前方側の端部を覆う前方側カバー部材25Aと、他方側動翼23Bよりも軸方向における後方側において、ロータシャフト21の後方側の端部を覆う後方側カバー部材25Bと、をさらに備える。前方側カバー部材25Aは、一方側静翼24Aの内周部(内輪)を支持している。後方側カバー部材25Bは、他方側静翼24Bの内周部(内輪)を支持している。
【0044】
図示される実施形態では、外側ケーシング72は、一方側静翼24Aの外周部(外輪)および他方側静翼24Bの外周部(外輪)を支持するとともに、前方側カバー部材25Aおよび後方側カバー部材25Bの夫々を収容している。外側ケーシング72は、一方側静翼24Aよりも前方側に、一方側静翼24Aに前方側から軸方向に沿って熱媒体を導入するための前方側導入路74を形成する内面740を有する。外側ケーシング72は、他方側静翼24Bよりも後方側に、他方側静翼24Bに後方側から軸方向に沿って熱媒体を導入するための後方側導入路75を形成する内面750を有する。
【0045】
上記の構成によれば、一方側静翼24Aは、ロータシャフト21の軸方向における一方側動翼23Aよりも上記一方側(前方側)に設けられており、他方側静翼24Bは、ロータシャフト21の軸方向における他方側動翼23Bよりも上記他方側(後方側)に設けられている。一方側静翼(24A)を通過した熱媒体は、上記他方側に流れて一方側動翼23Aに導入されるので、一方側動翼23Aには、上記他方側(後方側)に向かうスラスト荷重T1(第1スラスト荷重)が生じる。他方側静翼24Bを通過した熱媒体は、上記一方側に流れて他方側動翼23Bに導入されるので、他方側動翼23Bには、上記一方側(前方側)に向かうスラスト荷重T2(第2スラスト荷重)が生じる。これにより、第1スラスト荷重T1と第2スラスト荷重T2が互いに相殺し合うので、ロータシャフト21にかかるスラスト荷重を低減することができる。ロータシャフト21にかかるスラスト荷重を低減することで、ロータシャフト21の摩耗や損傷を抑制できるため、冷熱発電用のタービン2の信頼性を向上させることができる。
【0046】
また、上記の構成によれば、ロータシャフト21にかかるスラスト荷重を低減することで、スラスト荷重を受ける構成(例えば、スラスト軸受)の容量を小さなものにできるため、冷熱発電用のタービン2のコンパクト化が図れる。また、被駆動体22の被支持部221を軸方向における一方側動翼23Aと他方側動翼23Bとの間に配置することによっても、冷熱発電用のタービン2のコンパクト化が図れる。
【0047】
幾つかの実施形態では、上述した冷熱発電用のタービン2は、
図2、
図3に示されるように、一方側動翼23Aよりも下流側においてロータシャフト21とケーシング7との間をシールする一方側シール部26Aと、他方側動翼23Bよりも下流側においてロータシャフト21とケーシング7との間をシールする他方側シール部26Bと、をさらに備える。
【0048】
図示される実施形態では、ケーシング7は、上述した被駆動体収容部71の前方端から径方向に沿って径方向における内側に突出する前方側突出部76Aと、被駆動体収容部71の後方端から径方向に沿って径方向における内側に突出する後方側突出部76Bと、を含む。一方側シール部26Aは、前方側突出部76Aの内周部と、ロータシャフト21のシャフト部211における前方側突出部76Aに対面する部分と、の間をシールしている。他方側シール部26Bは、後方側突出部76Bの内周部と、ロータシャフト21のシャフト部211における後方側突出部76Bに対面する部分と、の間をシールしている。一方側シール部26Aおよび他方側シール部26Bの夫々は、メカニカルシールを含んでいてもよいし、ラビリンスシールを含んでいてもよい。
【0049】
仮に、冷熱発電用のタービン2が、一方側動翼23Aおよび他方側動翼23Bの夫々に対して、上述した方向とは逆方向から熱媒体が導入される構成になっている場合(一方側静翼24Aが一方側動翼23Aよりも後方側に位置し、且つ他方側静翼24Bが他方側動翼23Bよりも前方側に位置する場合)には、被駆動体収容部71内に形成された、被支持部221が収容された空間710への熱媒体の流入を防止するために、一方側動翼23Aや他方側動翼23Bよりも上流側にシール部を設ける必要がある。この場合には、シール部は、一方側動翼23Aや他方側動翼23Bを通過後の熱媒体に比べて高圧である、一方側動翼23Aや他方側動翼23Bを通過する前の熱媒体をシールする必要がある。このため、シール部の大型化を招く虞がある。
【0050】
上記の構成によれば、一方側動翼23Aや他方側動翼23Bよりも下流側にシール部(一方側シール部26A、他方側シール部26B)を設けることで、被支持部221が収容された空間710への熱媒体の流入を防止することができる。この場合には、一方側動翼23Aおよび他方側動翼23Bへの熱媒体の導入方向が逆方向である場合に比べて、シール部(一方側シール部26A、他方側シール部26B)のコンパクト化が図れ、ひいては冷熱発電用のタービン2のコンパクト化が図れる。
【0051】
幾つかの実施形態では、
図2、
図3に示されるように、上述した被駆動体収容部71は、その内部に形成された空間710に、スラストカラー101と、スラストカラー101よりも前方側にスラストカラー101に対面して配置される前方側スラスト軸受102と、スラストカラー101よりも後方側にスラストカラー101に対面して配置される後方側スラスト軸受103と、を収容している。スラストカラー101は、ロータシャフト21のシャフト部211に取り付けられており、前方側スラスト軸受102および後方側スラスト軸受103の夫々は、被駆動体収容部71に支持されている。
【0052】
上記の構成によれば、シャフト収容部91の内部にスラストカラー101やスラスト軸受(前方側スラスト軸受102、後方側スラスト軸受103)を収容することで、スラストカラー101やスラスト軸受を外部に設ける場合に比べて、冷熱発電用のタービン2の大型化を抑制できる。
【0053】
幾つかの実施形態では、
図2に示されるように、上述した冷熱発電用のタービン2は、一方側静翼24Aに熱媒体を導入するための第1の熱媒体導入ライン81と、第1の熱媒体導入ライン81から分岐して、他方側静翼24Bに熱媒体を導入するための第2の熱媒体導入ライン82と、をさらに備える。第1の熱媒体導入ライン81には、熱媒体循環ライン4における第2の熱交換器13の熱媒体流路131よりも下流側を流れる熱媒体が供給される。第1の熱媒体導入ライン81は、上述した前方側導入路74を含み、第2の熱媒体導入ライン82は、上述した後方側導入路75を含む。前方側導入路74に供給された熱媒体は、一方側静翼24Aに軸方向に沿って導入される。後方側導入路75に供給された熱媒体は、他方側静翼24Bに軸方向に沿って導入される。
【0054】
幾つかの実施形態では、
図2に示されるように、外側ケーシング72は、軸方向における一方側動翼23Aと他方側動翼23Bとの間において、上述した熱媒体流路73から径方向に沿って外側ケーシング72(ケーシング7)の外部に熱媒体を排出するための排出口722を有する熱媒体排出部721を含む。一方側動翼23Aを通過した熱媒体は、熱媒体流路73を後方側に向かって流れた後に、排出口722を通じて外側ケーシング72(ケーシング7)の外部に排出される。他方側動翼23Bを通過した熱媒体は、熱媒体流路73を前方側に向かって流れた後に、排出口722を通じて外側ケーシング72(ケーシング7)の外部に排出される。この場合には、一方側動翼23Aを通過した熱媒体および他方側動翼23Bを通過した熱媒体の両方を排出口722から排出できるため、冷熱発電用のタービン2のコンパクト化が図れる。
【0055】
図2に示される実施形態では、上述した冷熱発電用のタービン2は、被駆動体収容部71と外側ケーシング72との間に配置される隔壁77を備える。隔壁77は、軸方向において熱媒体排出部721に少なくとも一部が重複する位置に配置され、周方向に沿って延在して熱媒体流路73の一部を閉塞するように構成された。このような隔壁77は、一方側動翼23Aを通過した熱媒体や他方側動翼23Bを通過した熱媒体を、排出口722に案内できる。
【0056】
幾つかの実施形態では、
図3に示されるように、上述した冷熱発電用のタービン2は、一方側動翼23Aを通過した熱媒体を他方側静翼24Bに導入するための連絡ライン83をさらに備える。
【0057】
図3に示される実施形態では、上述した冷熱発電用のタービン2は、一方側静翼24Aに熱媒体を導入するための熱媒体導入ライン81を備える。熱媒体導入ライン81には、熱媒体循環ライン4における第2の熱交換器13の熱媒体流路131よりも下流側を流れる熱媒体が供給される。熱媒体導入ライン81は、上述した前方側導入路74を含む。前方側導入路74に供給された熱媒体は、一方側静翼24Aに軸方向に沿って導入される。
【0058】
図3に示される実施形態では、上述した冷熱発電用のタービン2は、被駆動体収容部71と外側ケーシング72との間に配置される隔壁78を備える。隔壁78は、周方向に沿って延在して熱媒体流路73を閉塞し、熱媒体流路73を軸方向における一方側(前方側)に設けられる前方側熱媒体流路73Aと、軸方向における他方側(後方側)に設けられる後方側熱媒体流路73Bと、に区分する。
【0059】
図3に示される実施形態では、上述した外側ケーシング72は、熱媒体連絡部723と、熱媒体排出部724と、を含む。熱媒体連絡部723は、軸方向における一方側動翼23Aと隔壁78との間において、上述した前方側熱媒体流路73Aから径方向に沿って径方向における外側に熱媒体を導くための連絡口725を有する。熱媒体排出部724は、軸方向における他方側動翼23Bと隔壁78との間において、上述した後方側熱媒体流路73Bから径方向に沿って外側ケーシング72(ケーシング7)の外部に熱媒体を排出するための排出口726を有する。
【0060】
上述した連絡ライン83は、上述した前方側熱媒体流路73Aと、連絡口725と、後方側導入路75と、を含む。後方側導入路75の上流端は、連絡口725の下流端に接続され、連絡口725と後方側導入路75との間で熱媒体の流通が可能になっている。一方側動翼23Aを通過した熱媒体は、前方側熱媒体流路73Aを後方側に向かって流れた後に、連絡口725および後方側導入路75を通じて他方側静翼24Bおよび他方側動翼23Bに導入される。他方側動翼23Bを通過した熱媒体は、後方側熱媒体流路73Bを前方側に向かって流れた後に、排出口726を通じて外側ケーシング72(ケーシング7)の外部に排出される。
【0061】
上記の構成によれば、冷熱発電用のタービン2は、一方側動翼23Aを通過した熱媒体を他方側静翼24Bに導入するための連絡ライン83を備える。連絡ライン83により、一方側動翼23Aを通過した熱媒体を他方側静翼24Bおよび他方側動翼23Bに導入することができる。つまり、冷熱発電用のタービン2は、多段式のタービン2Aからなる。多段式のタービン2Aの動翼(一方側動翼23Aおよび他方側動翼23B)をロータシャフト21の軸方向における両側に配置することで、冷熱発電用のタービン2の組立性を向上できる。特に、一方側動翼23Aを初段とし、他方側動翼23Bを二段目とする二段式のタービン2Aの場合には、ロータシャフト21の両軸を単段化できるので、三段以上の複数段のタービン2Aに比べて、冷熱発電用のタービン2の組立性を効果的に向上できる。
【0062】
図4は、本開示の一実施形態にかかる冷熱発電用のタービンの軸線に沿った断面を概略的に示す概略断面図である。
図5は、本開示の一実施形態にかかる冷熱発電用のタービンを説明するための説明図である。
幾つかの実施形態では、
図4、
図5に示されるように、上述した冷熱発電用のタービン2は、上述した連絡ライン83を流れる熱媒体と、この熱媒体よりも高温の第2の熱媒体と、の間で熱交換を行うように構成された熱交換器84をさらに備える。
【0063】
図示される実施形態では、
図4、
図5に示されるように、熱交換器84は、連絡ライン83に設けられて連絡ライン83を流れる熱媒体が流れる熱媒体流路85と、第2の熱媒体が流れる第2熱媒体流路86と、を含む。熱媒体流路85内の熱媒体と、第2熱媒体流路86内の第2の熱媒体と、の間で熱交換が行われて、熱媒体流路85内の熱媒体が加熱される。第2の熱媒体は、熱媒体流路85に導入される熱媒体よりも高温であればよい。この第2の熱媒体は、上述した加熱水供給ライン5を流れる加熱水であってもよいし、上述した中間熱媒体循環ライン6を流れる中間熱媒体であってもよい。
【0064】
図5に示される実施形態では、上述した熱交換器84は、上述した第2の熱交換器13を含む。すなわち、上述した熱交換器84は、上述した熱媒体循環ライン4に設けられた熱媒体が流れる熱媒体流路131と、上述した中間熱媒体循環ライン6に設けられた中間熱媒体が流れる中間熱媒体流路132と、上述した連絡ライン83に設けられた熱媒体が流れる熱媒体流路85と、を含む。熱媒体流路131内の熱媒体や熱媒体流路85内の熱媒体は、中間熱媒体流路132内の熱媒体により加熱される。
【0065】
上記の構成によれば、連絡ライン83を流れる熱媒体は、一方側動翼23A(前段側動翼)を通過して、その温度が低下している。この温度が低下した熱媒体を熱交換器84により加熱(再熱)した後に、他方側動翼23B(後段側動翼)に送ることで、冷熱発電用のタービン2の熱効率および出力を向上させることができる。
【0066】
幾つかの実施形態では、
図4、
図5に示されるように、上述した冷熱発電用のタービン2は、上述した一方側動翼23Aに熱媒体を導入するための熱媒体導入ライン81から分岐して連絡ライン83に合流する途中合流ライン87をさらに備える。
【0067】
図4に示される実施形態では、途中合流ライン87は、分岐部P1において上流端871が熱媒体導入ライン81に熱媒体が流通可能に接続され、熱交換器84(の熱媒体流路85)よりも下流側に位置する合流部P2において下流端872が連絡ライン83に熱媒体が流通可能に接続されている。
【0068】
上記の構成によれば、冷熱発電用のタービン2は、熱媒体導入ライン81から分岐して連絡ライン83に合流する途中合流ライン87を備える。例えば、熱源である海水の温度が低い場合や液化ガスの流量が大きい場合には、タービン2に供給される熱媒体の温度が低下する。タービン2に供給される熱媒体の温度低下に伴い、タービン2の飽和圧を低下させる必要がある。このため、熱源である海水の温度が低い場合や液化ガスの流量が大きい場合には、タービン2の一方側静翼24A(前段側静翼)に導入される熱媒体の量が制限され、タービン2の出力が低下する虞がある。他方側静翼24B(後段側静翼)には、一方側動翼23Aに対して仕事をして温度低下した熱媒体が導入されるので、他方側静翼24Bは、一方側静翼24Aに比べて、導入可能な熱媒体の温度が低い。このため、一方側静翼24Aおよび一方側動翼23Aを迂回する途中合流ライン87を通じて熱媒体を他方側静翼24Bに導入することで、他方側静翼24Bの下流側に位置する他方側動翼23Bへの熱媒体の導入量を増加させることができる。他方側動翼23Bに導入される熱媒体の量を増加させることで、冷熱発電用のタービン2の出力を向上させることができる。
【0069】
また、上記の構成によれば、途中合流ライン87により、部分負荷運転時にタービン2に供給可能な熱媒体の量を増やすことができる。これにより、タービン2を迂回するバイパスライン17を流れる熱媒体の量を減らすことができるため、冷熱発電システム1の出力を向上させることができる。また、途中合流ライン87を通じて連絡ライン83に導入される熱媒体は、一方側動翼23Aにおいて仕事をした熱媒体よりも高温であるため、他方側動翼23Bに導入される熱媒体の温度を上昇でき、ひいては冷熱発電システム1の出力を向上させることができる。
【0070】
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0071】
上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
【0072】
1)本開示の少なくとも一実施形態にかかる冷熱発電用のタービン(2)は、
液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ライン(4)に設けられる冷熱発電用のタービン(2)であって、
ロータシャフト(21)と、
前記ロータシャフトを回転可能に収容するケーシング(7)と、
前記ロータシャフトに支持される被支持部(221)を含む被駆動体(22)と、
前記ロータシャフトの軸方向における前記被支持部よりも一方側に設けられた一方側動翼(23A)と、
前記ロータシャフトの前記軸方向における前記被支持部よりも他方側に設けられた他方側動翼(23B)と、
前記一方側動翼よりも前記一方側において前記ケーシングに支持される一方側静翼(24A)と、
前記他方側動翼よりも前記他方側において前記ケーシングに支持される他方側静翼(24B)と、
を備える。
【0073】
上記1)の構成によれば、一方側静翼は、ロータシャフトの軸方向における一方側動翼よりも上記一方側に設けられており、他方側静翼は、ロータシャフトの軸方向における他方側動翼よりも上記他方側に設けられている。一方側静翼を通過した熱媒体は、上記他方側に流れて一方側動翼に導入されるので、一方側動翼には、上記他方側に向かうスラスト荷重(第1スラスト荷重T1)が生じる。他方側静翼を通過した熱媒体は、上記一方側に流れて他方側動翼に導入されるので、他方側動翼には、上記一方側に向かうスラスト荷重(第2スラスト荷重T2)が生じる。これにより、第1スラスト荷重と第2スラスト荷重が互いに相殺し合うので、ロータシャフトにかかるスラスト荷重を低減することができる。ロータシャフトにかかるスラスト荷重を低減することで、ロータシャフトの摩耗や損傷を抑制できるため、冷熱発電用のタービンの信頼性を向上させることができる。
【0074】
また、上記1)の構成によれば、ロータシャフトにかかるスラスト荷重を低減することで、スラスト荷重を受ける構成(例えば、スラスト軸受)の容量を小さなものにできるため、冷熱発電用のタービンのコンパクト化が図れる。また、被駆動体の被支持部を軸方向における一方側動翼と他方側動翼との間に配置することによっても、冷熱発電用のタービンのコンパクト化が図れる。
【0075】
2)幾つかの実施形態では、上記1)に記載の冷熱発電用のタービン(2)であって、
前記一方側動翼(23A)よりも下流側において前記ロータシャフト(21)と前記ケーシング(7)との間をシールする一方側シール部(26A)と、
前記他方側動翼(23B)よりも下流側において前記ロータシャフト(21)と前記ケーシング(7)との間をシールする他方側シール部(26B)と、
をさらに備える。
【0076】
仮に、冷熱発電用のタービンが、一方側動翼および他方側動翼の夫々に対して、上述した方向とは逆方向から熱媒体が導入される構成になっている場合には、被支持部が収容された空間への熱媒体の流入を防止するために、一方側動翼や他方側動翼よりも上流側にシール部を設ける必要がある。この場合には、シール部は、一方側動翼や他方側動翼に導入前の高圧の熱媒体をシールする必要があるため、シール部の大型化を招く虞がある。上記2)の構成によれば、一方側動翼や他方側動翼よりも下流側にシール部(一方側シール部、他方側シール部)を設けることで、被支持部が収容された空間への熱媒体の流入を防止することができる。この場合には、一方側動翼および他方側動翼への熱媒体の導入方向が逆方向である場合に比べて、シール部(一方側シール部、他方側シール部)のコンパクト化が図れ、ひいては冷熱発電用のタービンのコンパクト化が図れる。
【0077】
3)幾つかの実施形態では、上記2)に記載の冷熱発電用のタービン(2)であって、
前記一方側動翼(23A)を通過した前記熱媒体を前記他方側静翼(24B)に導入するための連絡ライン(83)をさらに備える。
【0078】
上記3)の構成によれば、冷熱発電用のタービンは、一方側動翼を通過した熱媒体を他方側静翼に導入するための連絡ラインを備える。連絡ラインにより、一方側動翼を通過した熱媒体を他方側静翼および他方側動翼に導入することができる。つまり、冷熱発電用のタービンは、多段式のタービンからなる。多段式のタービンの動翼をロータシャフトの両側に配置することで、冷熱発電用のタービンの組立性を向上できる。
【0079】
4)幾つかの実施形態では、上記3)に記載の冷熱発電用のタービン(2)であって、
前記連絡ライン(83)を流れる前記熱媒体と、前記熱媒体よりも高温の第2の熱媒体と、の間で熱交換を行うように構成された熱交換器(84)をさらに備える。
【0080】
上記4)の構成によれば、連絡ラインを流れる熱媒体は、一方側動翼(前段側動翼)を通過して、その温度が低下している。この温度が低下した熱媒体を熱交換器により加熱(再熱)した後に、他方側動翼(後段側動翼)に送ることで、冷熱発電用のタービンの熱効率および出力を向上させることができる。
【0081】
5)幾つかの実施形態では、上記3)又は4)に記載の冷熱発電用のタービン(2)であって、
前記一方側動翼(23A)に前記熱媒体を導入するための熱媒体導入ライン(81)から分岐して前記連絡ライン(83)に合流する途中合流ライン(87)をさらに備える。
【0082】
上記5)の構成によれば、冷熱発電用のタービンは、熱媒体導入ラインから分岐して連絡ラインに合流する途中合流ラインを備える。例えば、熱源である海水の温度が低い場合や液化ガスの流量が大きい場合には、タービンに供給される熱媒体の温度が低下する。タービンに供給される熱媒体の温度低下に伴い、タービンの飽和圧を低下させる必要がある。このため、熱源である海水の温度が低い場合や液化ガスの流量が大きい場合には、タービンの一方側静翼(前段側静翼)に導入される熱媒体の量が制限され、タービンの出力が低下する虞がある。他方側静翼(後段側静翼)には、一方側動翼に対して仕事をして温度低下した熱媒体が導入されるので、他方側静翼は、一方側静翼に比べて、導入可能な熱媒体の温度が低い。このため、一方側静翼および一方側動翼を迂回する途中合流ラインを通じて熱媒体を他方側静翼に導入することで、他方側静翼の下流側に位置する他方側動翼への熱媒体の導入量を増加させることができる。他方側動翼に導入される熱媒体の量を増加させることで、冷熱発電用のタービンの出力を向上させることができる。
【0083】
また、上記5)の構成によれば、途中合流ラインにより、部分負荷運転時にタービンに供給可能な熱媒体の量を増やすことができる。これにより、タービンを迂回するバイパスラインを流れる熱媒体の量を減らすことができるため、冷熱発電システムの出力を向上させることができる。また、途中合流ラインを通じて連絡ラインに導入される熱媒体は、一方側動翼において仕事をした熱媒体よりも高温であるため、他方側動翼に導入される熱媒体の温度を上昇でき、ひいては冷熱発電システムの出力を向上させることができる。
【符号の説明】
【0084】
1 冷熱発電システム
2,2A タービン
21 ロータシャフト
211 シャフト部
212A,212B 外面
213A 前方側ディスク部
213B 後方側ディスク部
22 被駆動体
221 被支持部
23A 一方側動翼
23B 他方側動翼
24A 一方側静翼
24B 他方側静翼
25A 前方側カバー部材
25B 後方側カバー部材
26A 一方側シール部
26B 他方側シール部
3 液化ガス供給ライン
31 液化ガス貯留装置
32 液化ガス用ポンプ
35 機器
4 熱媒体循環ライン
41 循環ポンプ
43 開閉弁
5 加熱水供給ライン
51 加熱水用ポンプ
6 中間熱媒体循環ライン
61 循環ポンプ
7 ケーシング
71 被駆動体収容部
710 空間
72 外側ケーシング
721,724 熱媒体排出部
722 排出口
723 熱媒体連絡部
725 連絡口
73 熱媒体流路
73A 前方側熱媒体流路
73B 後方側熱媒体流路
74 前方側導入路
75 後方側導入路
76A 前方側突出部
76B 後方側突出部
77,78 隔壁
81,82 熱媒体導入ライン
83 連絡ライン
84 熱交換器
87 途中合流ライン
10 船体
10A 浮体
11 発電機
12 第1の熱交換器
13 第2の熱交換器
14 第3の熱交換器
15 供給元
15A 取水口
16 排出先
16A 排出口
17 バイパスライン
CA 軸線
T1,T2 スラスト荷重