(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-17
(45)【発行日】2024-05-27
(54)【発明の名称】グラフトポリマー、グラフトポリマーの製造方法、ゴム組成物及びタイヤ
(51)【国際特許分類】
C08L 51/06 20060101AFI20240520BHJP
C08F 255/00 20060101ALI20240520BHJP
C08F 4/6592 20060101ALI20240520BHJP
B60C 1/00 20060101ALI20240520BHJP
【FI】
C08L51/06
C08F255/00
C08F4/6592
B60C1/00 Z
(21)【出願番号】P 2020081399
(22)【出願日】2020-05-01
【審査請求日】2022-12-16
(73)【特許権者】
【識別番号】000005278
【氏名又は名称】株式会社ブリヂストン
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100119530
【氏名又は名称】冨田 和幸
(72)【発明者】
【氏名】タルディフ オリビエ
(72)【発明者】
【氏名】小谷 享平
(72)【発明者】
【氏名】田中 隆嗣
【審査官】久保 道弘
(56)【参考文献】
【文献】特開2002-053617(JP,A)
【文献】特開2002-003553(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 255/00
C08F 4/6592
C08L 51/06
B60C 1/00
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
幹ポリマー部と、該幹ポリマー部に結合した枝ポリマー部と、を具えるグラフトポリマーであって、
前記幹ポリマー部は、非共役オレフィン単位と、芳香族ビニル単位と、を含み、該芳香族ビニル単位の少なくとも一部は、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に由来し、
前記枝ポリマー部は、共役ジエン単位を含み、
前記幹ポリマー部と、前記枝ポリマー部と、の割合(幹ポリマー部/枝ポリマー部)が、質量%で、50/50~90/10である、グラフトポリマーを含むゴム組成物を用いたことを特徴とする、タイヤ。
【請求項2】
前記グラフトポリマーは、前記非共役オレフィン単位が、エチレン単位である、請求項1に記載のタイヤ。
【請求項3】
前記グラフトポリマーは、前記芳香族ビニル単位が、スチレン単位及び4-メチルスチレン単位である、請求項1又は2に記載のタイヤ。
【請求項4】
前記グラフトポリマーは、前記共役ジエン単位が、1,3-ブタジエン単位、イソプレン単位又はミルセン単位である、請求項1~3のいずれか一項に記載のタイヤ。
【請求項5】
前記グラフトポリマーの幹ポリマー部は、主鎖に不飽和結合を有しない、請求項1~4のいずれか一項に記載のタイヤ。
【請求項6】
前記グラフトポリマーは、結晶成分が、8%以下である、請求項1~5のいずれか一項に記載のタイヤ。
【請求項7】
前記グラフトポリマーは、数平均分子量が、10,000以上である、請求項1~6のいずれか一項に記載のタイヤ。
【請求項8】
前記グラフトポリマーの枝ポリマー部は、前記共役ジエン単位におけるビニル結合量が50mol%以上である、請求項1~7のいずれか一項に記載のタイヤ。
【請求項9】
前記グラフトポリマーの幹ポリマー部は、非共役オレフィン単位及び芳香族ビニル単位のみから構成されており、
前記グラフトポリマーの枝ポリマー部は、共役ジエン単位のみから構成されている、請求項1~8のいずれか一項に記載のタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グラフトポリマー、グラフトポリマーの製造方法、ゴム組成物及びタイヤに関するものである。
【背景技術】
【0002】
一般に、ゴム製品(タイヤ、コンベヤベルト、防振ゴム、免震ゴム等)や樹脂製品には高い耐久性(耐破壊特性、耐摩耗性、及び耐亀裂成長性等)及び耐候性(耐オゾン特性等)が求められており、かかる要求を満たすために様々な重合体又は共重合体が開発されてきている。
例えば、下記特許文献1は、共役ジエン部分(共役ジエン化合物由来部分)のシス-1,4結合含量が70.5mol%より大きく、非共役オレフィンの含有量が10mol%以上である、共役ジエン化合物と非共役オレフィンとの共重合体が開示されており、また、この共重合体が、耐亀裂成長性及び耐候性の良好なゴム組成物を製造するのに用いられることが開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、本発明者らが検討したところ、上記特許文献1に開示の共重合体は、主鎖に共役ジエン単位を含むため、耐オゾン性に依然として改善の余地があることが分かった。
一方、耐オゾン性に優れる合成ゴムとして、エチレン-プロピレン-非共役ジエンゴム(EPDM)が知られているが、本発明者らが検討したところ、EPDMを含むゴム組成物は、耐亀裂成長性に改善の余地があることが分かった。
【0005】
そこで、本発明は、上記従来技術の問題を解決し、耐オゾン性に優れ、ゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることが可能な共重合体及びその製造方法を提供することを課題とする。
また、本発明は、かかる共重合体を含み、耐オゾン性と耐亀裂成長性とに優れたゴム組成物及びタイヤを提供することを更なる課題とする。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決するために鋭意検討した結果、特定の構造のグラフトポリマーが、耐オゾン性に優れ、該グラフトポリマーをゴム組成物に配合することで、ゴム組成物の耐亀裂成長性が向上することを見出し、本発明を完成させるに至った。上記課題を解決する本発明の要旨構成は、以下の通りである。
【0007】
本発明のグラフトポリマーは、幹ポリマー部と、該幹ポリマー部に結合した枝ポリマー部と、を具えるグラフトポリマーであって、
前記幹ポリマー部は、非共役オレフィン単位と、芳香族ビニル単位と、を含み、該芳香族ビニル単位の少なくとも一部は、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に由来し、
前記枝ポリマー部は、共役ジエン単位を含み、
前記幹ポリマー部と、前記枝ポリマー部と、の割合(幹ポリマー部/枝ポリマー部)が、質量%で、50/50~90/10であることを特徴とする。
かかる本発明のグラフトポリマーは、耐オゾン性に優れ、また、ゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることができる。
【0008】
本発明のグラフトポリマーの好適例においては、前記非共役オレフィン単位が、エチレン単位である。この場合、グラフトポリマーの製造コストを低減できる。
【0009】
本発明のグラフトポリマーの他の好適例においては、前記芳香族ビニル単位が、スチレン単位及び4-メチルスチレン単位である。この場合、グラフトポリマーの製造コストを低減でき、また、グラフトポリマーを容易に得ることができる。
【0010】
本発明のグラフトポリマーの他の好適例においては、前記共役ジエン単位が、1,3-ブタジエン単位、イソプレン単位又はミルセン単位である。この場合、グラフトポリマーの製造コストを低減できる。
【0011】
本発明のグラフトポリマーの他の好適例においては、前記幹ポリマー部は、主鎖に不飽和結合を有しない。この場合、グラフトポリマーの耐オゾン性が更に向上する。
【0012】
本発明のグラフトポリマーは、結晶成分が、8%以下であることが好ましい。この場合、グラフトポリマーを配合したゴム組成物の耐亀裂成長性を更に向上させることができる。
【0013】
本発明のグラフトポリマーは、数平均分子量が、10,000以上であることが好ましい。この場合、グラフトポリマーを配合したゴム組成物の耐亀裂成長性を更に向上させることができる。
【0014】
本発明のグラフトポリマーの他の好適例において、前記枝ポリマー部は、前記共役ジエン単位におけるビニル結合量が50mol%以上である。この場合、グラフトポリマーの耐オゾン性が更に向上する。
【0015】
また、本発明のゴム組成物は、上記のグラフトポリマーを含むことを特徴とする。かかる本発明のゴム組成物は、耐オゾン性と耐亀裂成長性とに優れる。
【0016】
また、本発明のタイヤは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のタイヤは、耐オゾン性と耐亀裂成長性とに優れる。
【0017】
また、本発明のグラフトポリマーの製造方法は、幹ポリマー部と、該幹ポリマー部に結合した枝ポリマー部と、を具える、上記のグラフトポリマーの製造方法であって、
一種以上の非共役オレフィンと、一種以上の芳香族ビニル化合物と、を共重合して、前記幹ポリマー部を形成する工程Aと、
前記幹ポリマー部に、一種以上の共役ジエン化合物をグラフト重合して、前記枝ポリマー部を形成する工程Bと、
を含み、
前記工程Aで使用する芳香族ビニル化合物の少なくとも1種が、芳香環に結合したアルキル基を1つ以上有することを特徴とする。
かかる本発明のグラフトポリマーの製造方法によれば、耐オゾン性に優れたグラフトポリマーを得ることができ、また、該グラフトポリマーをゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることができる。
【発明の効果】
【0018】
本発明によれば、耐オゾン性に優れ、ゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることが可能なグラフトポリマー及びその製造方法を提供することができる。
また、本発明によれば、かかるグラフトポリマーを含み、耐オゾン性と耐亀裂成長性とに優れたゴム組成物及びタイヤを提供することができる。
【図面の簡単な説明】
【0019】
【
図2】参考例1のグラフトポリマーのGPCチャートを示す。
【発明を実施するための形態】
【0020】
以下に、本発明のグラフトポリマー、グラフトポリマーの製造方法、ゴム組成物及びタイヤを、その実施形態に基づき、詳細に例示説明する。
【0021】
<グラフトポリマー>
本発明のグラフトポリマーは、幹ポリマー部と、該幹ポリマー部に結合した枝ポリマー部と、を具えるグラフトポリマーであって、
前記幹ポリマー部は、非共役オレフィン単位と、芳香族ビニル単位と、を含み、該芳香族ビニル単位の少なくとも一部は、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に由来し、
前記枝ポリマー部は、共役ジエン単位を含み、
前記幹ポリマー部と、前記枝ポリマー部と、の割合(幹ポリマー部/枝ポリマー部)が、質量%で、50/50~90/10であることを特徴とする。
【0022】
本発明のグラフトポリマーは、幹ポリマー部が、非共役オレフィン単位と、芳香族ビニル単位と、を含む。該幹ポリマー部は、非共役オレフィン単位と、芳香族ビニル単位と、を含み、これらの単量体単位は、主鎖に不飽和結合を有しないため、耐オゾン性に優れる。
また、本発明のグラフトポリマーは、枝ポリマー部が、共役ジエン単位を含む。枝ポリマー部が、不飽和結合を有するため、架橋(加硫)可能であり、該グラフトポリマーをゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることができる。
また、本発明のグラフトポリマーは、前記幹ポリマー部と、前記枝ポリマー部と、の割合(幹ポリマー部/枝ポリマー部)が、質量%で、50/50~90/10であり、枝ポリマー部の割合が10質量%以上であるため、十分な架橋(加硫)能を有しつつ、幹ポリマー部の割合が50質量%以上であるため、耐オゾン性に優れる。
なお、本発明のグラフトポリマーは、幹ポリマー部の芳香族ビニル単位の少なくとも一部が、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に由来し、該芳香環に結合したアルキル基を結合部位(起点)として、共役ジエン単位が結合するため、本発明のグラフトポリマーは、共役ジエン単位を含む枝ポリマー部を具えることができる。
従って、本発明のグラフトポリマーは、耐オゾン性に優れ、ゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることができる。
【0023】
なお、非共役オレフィン単位と、芳香族ビニル単位と、を含む幹ポリマー部と、該幹ポリマー部に結合した、共役ジエン単位を含む枝ポリマー部と、を具えるグラフトポリマーを合成できたことの確認には、ゲルパーミエーションクロマトグラフィー(GPC)を使用でき、GPCのチャートにおいて、幹ポリマー部のピークとグラフトポリマーのピークを比較して、グラフトポリマーのピークがより高分子量側にシフトしていると、幹ポリマー部に枝ポリマー部が結合していることを確認できる。
【0024】
本発明のグラフトポリマーは、幹ポリマー部と、該幹ポリマー部に結合した枝ポリマー部と、を具える。
前記幹ポリマー部は、非共役オレフィン単位と、芳香族ビニル単位と、を含み、更に他の単量体単位を含んでもよいし、非共役オレフィン単位及び芳香族ビニル単位のみから構成されていてもよい。ここで、該芳香族ビニル単位の少なくとも一部は、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に由来する。
また、前記枝ポリマー部は、共役ジエン単位を含み、更に他の単量体単位を含んでもよいし、共役ジエン単位のみから構成されていてもよい。
【0025】
本発明のグラフトポリマーの幹ポリマー部は、主鎖に不飽和結合を有しないことが好ましい。幹ポリマー部が、主鎖に不飽和結合を有しない場合、グラフトポリマーの耐オゾン性が更に向上する。
【0026】
本発明のグラフトポリマーは、前記幹ポリマー部と、前記枝ポリマー部と、の割合(幹ポリマー部/枝ポリマー部)が、質量%で、50/50~90/10であり、60/40~80/20であることが好ましい。幹ポリマー部と枝ポリマー部との割合を上記の通り規定することで、耐オゾン性に優れ、ゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることが可能なグラフトポリマーとすることができる。
【0027】
本発明のグラフトポリマーは、結晶成分が、8%以下であることが好ましく、6%以下であることがより好ましく、4%以下であることが更に好ましく、0%であってもよい。ここで、グラフトポリマーにおける結晶成分の割合は、示差走査熱量計(DSC)で測定される。グラフトポリマーにおける結晶成分の割合が8%以下であると、グラフトポリマー自体が軟らかくなるため、グラフトポリマーを配合したゴム組成物の耐亀裂成長性を更に向上させることができる。
【0028】
本発明のグラフトポリマーは、数平均分子量(Mn)が、10,000以上であることが好ましく、10,000~10,000,000であることがより好ましい。グラフトポリマーの数平均分子量(Mn)が10,000以上であると、グラフトポリマーの架橋能が向上し、グラフトポリマーの耐亀裂成長性が更に向上する。
前記グラフトポリマーは、重量平均分子量(Mw)が、10,000以上であることが好ましく、10,000~10,000,000であることがより好ましい。グラフトポリマーの重量平均分子量(Mw)が10,000以上であると、グラフトポリマーの架橋能が向上し、グラフトポリマーの耐亀裂成長性が更に向上する。
前記グラフトポリマーは、分子量分布[Mw/Mn(重量平均分子量/数平均分子量)]が1.00~4.00であることが好ましく、1.50~3.50であることがより好ましく、1.80~3.00であることが更に好ましい。グラフトポリマーの分子量分布が4.00以下であれば、グラフトポリマーの物性に十分な均質性をもたらすことができる。
なお、上述した数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。
【0029】
前記非共役オレフィン単位は、単量体としての非共役オレフィン化合物に由来する構成単位である。ここで、非共役オレフィン化合物とは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する化合物を指す。グラフトポリマーの幹ポリマー部が非共役オレフィン単位を含むことで、グラフトポリマーの耐オゾン性が向上する。
前記非共役オレフィン化合物は、特に限定しないが、炭素数が2~10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィン、ピバリン酸ビニル、1-フェニルチオエテン、N-ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。前記非共役オレフィン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
前記非共役オレフィン化合物は、グラフトポリマーを用いたゴム組成物の耐オゾン性を更に向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、また、当該非環状の非共役オレフィン化合物としては、α-オレフィンが好ましい。α-オレフィンのような非環状の非共役オレフィン化合物は、得られるグラフトポリマーを用いたゴム組成物及びタイヤ等の耐オゾン性をより向上させることができる。換言すれば、前記グラフトポリマーにおいては、前記非共役オレフィン単位が、非環状の非共役オレフィン単位であることが好ましく、非共役オレフィン単位が非環状の非共役オレフィン単位である場合、得られるグラフトポリマーを用いたゴム組成物及びタイヤ等の耐オゾン性をより向上させることができる。
前記非共役オレフィン化合物は、エチレンであることが特に好ましく、換言すれば、本発明のグラフトポリマーにおいては、前記非共役オレフィン単位が、エチレン単位であることが好ましく、グラフトポリマー中の非共役オレフィン単位が、エチレン単位のみからなることが特に好ましい。非共役オレフィン単位がエチレン単位である場合、非共役オレフィン単位の由来となる非共役オレフィン化合物(即ち、エチレン)の入手が容易であり、グラフトポリマーの製造コストを低減できる。
なお、前記グラフトポリマーは、前記非共役オレフィン単位の含有量が、好ましくは40mol%以上、より好ましくは45mol%以上、より一層好ましくは50mol%以上、特に好ましくは55mol%以上であり、また、好ましくは97mol%以下、より好ましくは90mol%以下、より一層好ましくは80mol%以下である。非共役オレフィン単位の含有量が、グラフトポリマー全体の40mol%以上であると、グラフトポリマーの耐オゾン性が更に向上する。また、非共役オレフィン単位の含有量が97mol%以下であると、グラフトポリマーが軟らかくなり、グラフトポリマーを配合したゴム組成物の耐亀裂成長性を更に向上させることができる。
【0030】
前記芳香族ビニル単位は、単量体としての芳香族ビニル化合物に由来する構成単位である。該芳香族ビニル化合物とは、少なくともビニル基で置換された芳香族化合物を指す。グラフトポリマーの幹ポリマー部が芳香族ビニル単位を含むことを、グラフトポリマーの結晶成分の割合が少なくなり、グラフトポリマーを配合したゴム組成物の耐亀裂成長性を向上させることができる。
前記芳香族ビニル化合物は、特に限定しないが、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物としては、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン等が挙げられる。
【0031】
本発明のグラフトポリマーの幹ポリマー部に含まれる芳香族ビニル単位の少なくとも一部は、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に由来する。ここで、芳香環に結合するアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、メチル基が好ましい。
前記芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物としては、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン等が挙げられる。
【0032】
本発明のグラフトポリマーにおいては、前記芳香族ビニル単位が、スチレン単位及び4-メチルスチレン単位であることが好ましい。換言すれば、前記芳香族ビニル化合物は、スチレン及び4-メチルスチレンであることが好ましい。スチレン及び4-メチルスチレンは入手が容易であるので、グラフトポリマーの製造コストを低減でき、また、4-メチルスチレンは、後述する枝ポリマー部の形成に使用する共役ジエン化合物によるグラフト重合の結合部位(起点)として、確実に機能し、グラフトポリマーを得易い。
【0033】
前記芳香族ビニル化合物は、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物のみの一種単独であってもよいが、二種以上の組み合わせであってもよい。
なお、前記グラフトポリマーは、前記芳香族ビニル単位の含有量が、好ましくは2mol%以上、より好ましくは3mol%以上であり、また、好ましくは35mol%以下、より好ましくは30mol%以下、より一層好ましくは25mol%以下である。芳香族ビニル単位の含有量が2mol%以上であると、グラフトポリマーを配合したゴム組成物の耐亀裂成長性を更に向上させることができる。また、芳香族ビニル単位の含有量が35mol%以下であると、非共役オレフィン単位及び共役ジエン単位による効果が顕著になる。
【0034】
前記共役ジエン単位は、単量体としての共役ジエン化合物に由来する構成単位である。枝ポリマー部が、共役ジエン単位を含むことで、不飽和結合を有することとなり、グラフトポリマーが架橋(加硫)可能となる。そのため、該グラフトポリマーをゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることができる。
前記共役ジエン化合物は、特に限定しないが、炭素数が4~8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、ミルセン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられる。これらの中でも、入手が容易である点で、1,3-ブタジエン、イソプレン、ミルセンが好ましく、1,3-ブタジエンが特に好ましい。なお、前記共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
前記共役ジエン化合物は、1,3-ブタジエン、イソプレン又はミルセンであることが好ましい。換言すれば、本発明のグラフトポリマーにおいては、前記共役ジエン単位が、1,3-ブタジエン単位、イソプレン単位又はミルセン単位であることが好ましい。1,3-ブタジエン、イソプレン及びミルセンは、入手が容易であり、グラフトポリマーの製造コストを低減できる。
また、前記共役ジエン化合物は、1,3-ブタジエンであることが更に好ましく、換言すれば、本発明のグラフトポリマーにおいては、前記共役ジエン単位が、1,3-ブタジエン単位であることが更に好ましく、また、グラフトポリマー中の共役ジエン単位が、1,3-ブタジエン単位のみからなることが特に好ましい。共役ジエン単位が、1,3-ブタジエン単位である場合、共役ジエン単位の由来となる共役ジエン化合物(即ち、1,3-ブタジエン)の入手が特に容易であり、グラフトポリマーの製造コストを更に低減できる。
なお、前記グラフトポリマーは、前記共役ジエン単位の含有量が、好ましくは1mol%以上、より好ましくは3mol%以上であり、また、好ましくは50mol%以下、より好ましくは40mol%以下、より好ましくは30mol%以下、より一層好ましくは25mol%以下、特に好ましくは15mol%以下である。共役ジエン単位の含有量が、グラフトポリマー全体の1mol%以上であると、グラフトポリマーの架橋(加硫)能が向上し、グラフトポリマーをゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を更に向上させることができる。また、共役ジエン単位の含有量が、グラフトポリマー全体の50mol%以下であると、耐オゾン性が更に向上する。
【0035】
本発明のグラフトポリマーの枝ポリマー部は、前記共役ジエン単位におけるビニル結合量が50mol%以上であることが好ましく、70mol%以上であることが更に好ましく、また、90mol%以下であることが好ましい。かかる枝ポリマー部は、側鎖に不飽和結合を多く有し、主鎖の反応性が低いため、主鎖に不飽和結合を多く有する枝ポリマー部よりも、耐オゾン性が高い。
【0036】
本発明のグラフトポリマーは、例えば、
一種以上の非共役オレフィン化合物と、一種以上の芳香族ビニル化合物と、を共重合して、前記幹ポリマー部を形成する工程Aと、
前記幹ポリマー部に、一種以上の共役ジエン化合物をグラフト重合して、前記枝ポリマー部を形成する工程Bと、を経て製造でき、更に、必要に応じ、カップリング工程、洗浄工程、その他の工程を経てもよい。
ここで、前記工程Aで使用する芳香族ビニル化合物の少なくとも1種は、芳香環に結合したアルキル基を1つ以上有することが好ましい。
かかるグラフトポリマーの製造方法によれば、耐オゾン性と耐亀裂成長性とに優れたグラフトポリマーを得ることができる。
【0037】
前記工程Aでは、一種以上の非共役オレフィン化合物と、一種以上の芳香族ビニル化合物と、を共重合して、非共役オレフィン単位と、芳香族ビニル単位と、を含むグラフトポリマーの幹ポリマー部を形成する。ここで、工程Aで使用する芳香族ビニル化合物の少なくとも1種は、芳香環に結合したアルキル基を1つ以上有する。また、工程Aでは、単量体として、非共役オレフィン化合物、芳香族ビニル化合物のみを使用してもよいし、更に、非共役オレフィン化合物、芳香族ビニル化合物以外の単量体を使用してもよい。
【0038】
前記工程Aにおける、非共役オレフィン化合物と、芳香族ビニル化合物と、のモル比(非共役オレフィン化合物/芳香族ビニル化合物)は、10/1~1/1の範囲が好ましく、7/1~3/1の範囲が更に好ましい。工程Aにおけるモル比(非共役オレフィン化合物/芳香族ビニル化合物)が、10/1~1/1の範囲であれば、十分な架橋(加硫)能を有しつつ、結晶成分が少なくなるため、耐オゾン性に優れ、ゴム組成物に配合することで、ゴム組成物の耐亀裂成長性を向上させることができるグラフトポリマーを得易い。
【0039】
前記工程Bでは、前記幹ポリマー部に、一種以上の共役ジエン化合物をグラフト重合して、共役ジエン単位を含むグラフトポリマーの枝ポリマー部を形成する。工程Bでは、単量体として、共役ジエン化合物のみを使用してもよいし、更に、共役ジエン化合物以外の単量体を使用してもよい。
【0040】
前記工程Bにおける、幹ポリマー部と、共役ジエン化合物と、の質量比(幹ポリマー部/共役ジエン化合物)は、15/1~1/5の範囲が好ましく、15/1~1/1の範囲が更に好ましい。工程Bにおける質量比(幹ポリマー部/共役ジエン化合物)が、15/1~1/5の範囲であれば、十分な架橋(加硫)能を有するグラフトポリマーを得易い。
【0041】
前記工程A(幹ポリマー部の形成工程)は、非共役オレフィン化合物と、芳香族ビニル化合物と、を共重合できる何れの方法で行ってもよい。ここで、非共役オレフィン化合物と、芳香族ビニル化合物と、の共重合反応を促進する観点から、工程Aは、遷移金属錯体を含む触媒組成物の存在下で行うことが好ましい。
前記遷移金属錯体としては、下記(A)成分が好ましい。
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物
また、前記触媒組成物は、前記(A)成分に加えて、下記(B)~(F)成分の1種以上を含むことが好ましい。
(B)成分:有機金属化合物
(C)成分:アルミノキサン
(D)成分:イオン性化合物
(E)成分:ハロゲン化合物
(F)成分:置換又は無置換のシクロペンタジエン(シクロペンタジエニル基を有する化合物)、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレン(フルオレニル基を有する化合物)から選択されるシクロペンタジエン骨格含有化合物(以下、単に「シクロペンタジエン骨格含有化合物」と称することがある。)
以下、(A)~(F)成分について詳細に説明する。
【0042】
前記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物((A)成分)としては、希土類元素-炭素結合を有する、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(以下、「(A-1)成分」ともいう。)、希土類元素-炭素結合を有しない、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(以下、「(A-2)成分」ともいう。)が挙げられる。
【0043】
前記(A-1)成分としては、例えば、下記一般式(I):
【化1】
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp
Rは、それぞれ独立して無置換もしくは置換インデニルを示し、R
a~R
fは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す]で表されるメタロセン錯体、及び下記一般式(II):
【化2】
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp
Rは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す]で表されるメタロセン錯体、並びに下記一般式(III):
【化3】
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp
R’は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示し、[B]
-は、非配位性アニオンを示す]で表されるハーフメタロセンカチオン錯体が挙げられる。
【0044】
上記一般式(I)及び(II)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C9H7-xRx又はC9H11-xRxで示され得る。ここで、Xは、0~7又は0~11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、一般式(I)及び(II)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
【0045】
上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。
【0046】
一般式(III)において、上記シクロペンタジエニル環を基本骨格とするCp
R’は、C
5H
5-xR
xで示される。ここで、Xは、0~5の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCp
R’として、具体的には、以下のものが例示される。
【化4】
[式中、Rは水素原子、メチル基又はエチル基を示す。]
【0047】
一般式(III)において、上記インデニル環を基本骨格とするCpR’は、一般式(I)及び(II)のCpRと同様に定義され、好ましい例も同様である。
【0048】
一般式(III)において、上記フルオレニル環を基本骨格とするCpR’は、C13H9-xRx又はC13H17-xRxで示され得る。ここで、Xは、0~9又は0~17の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
【0049】
一般式(I)、(II)及び(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0050】
一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR3)2]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa~Rf)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、Ra~Rfのうち少なくとも一つが水素原子であることが好ましい。Ra~Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりの嵩高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、Ra~Rcのうち少なくとも一つが水素原子であり、Rd~Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
【0051】
一般式(II)で表されるメタロセン錯体は、シリル配位子[-SiX’3]を含む。シリル配位子[-SiX’3]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。
【0052】
一般式(III)において、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1~20の一価の炭化水素基からなる群より選択される基である。ここで、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。
【0053】
一般式(III)において、Xが表すアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基等のアリールオキシ基等が挙げられ、これらの中でも、2,6-ジ-tert-ブチルフェノキシ基が好ましい。
【0054】
一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基等が挙げられ、これらの中でも、2,4,6-トリイソプロピルチオフェノキシ基が好ましい。
【0055】
一般式(III)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基等が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。
【0056】
一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
【0057】
また、一般式(III)において、Xが表す炭素数1~20の一価の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
【0058】
一般式(III)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1~20の一価の炭化水素基が好ましい。
【0059】
一般式(III)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
【0060】
上記一般式(I)及び(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
【0061】
また、上記一般式(I)及び(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
【0062】
上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えば、カリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間~数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
【化5】
[式中、X”はハライドを示す。]
【0063】
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えば、カリウム塩やリチウム塩)及びシリルの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間~数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
【化6】
[式中、X”はハライドを示す。]
【0064】
上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
【化7】
【0065】
ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1~20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。
【0066】
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。
【0067】
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1~10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で、一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は(II)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で、一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
【0068】
上記一般式(I)及び(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
【0069】
更に、他の(A-1)成分としては、下記一般式(V):
RaMXbQYb・・・(V)
[式中、Rは、それぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Xは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該XはM及びQにμ配位しており、Qは、周期律表第13族元素を示し、Yは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは、2である]で表されるメタロセン系複合触媒が挙げられる。
【0070】
上記メタロセン系複合触媒の好適例においては、下記一般式(VI):
【化8】
[式中、M
1は、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp
Rは、それぞれ独立して無置換もしくは置換インデニルを示し、R
A及びR
Bは、それぞれ独立して炭素数1~20の炭化水素基を示し、該R
A及びR
Bは、M
1及びAlにμ配位しており、R
C及びR
Dは、それぞれ独立して炭素数1~20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系複合触媒を用いることで、多元共重合体を効率良く製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、多元共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、上記メタロセン系複合触媒を用いない従来の触媒系を用いると、多元共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、上記メタロセン系複合触媒を用いない従来の触媒系では、金属触媒に対して10モル当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5モル当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
【0071】
上記メタロセン系複合触媒において、上記一般式(V)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0072】
上記一般式(V)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニルの具体例としては、例えば、1,2,3-トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7-ヘキサメチルインデニル基等が挙げられる。
【0073】
上記一般式(V)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
【0074】
上記一般式(V)において、Xは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
【0075】
上記一般式(V)において、Yは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子を示し、該Yは、Qに配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0076】
上記一般式(VI)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57~71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0077】
上記一般式(VI)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C9H7-XRX又はC9H11-XRXで示され得る。ここで、Xは、0~7又は0~11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1~20であることが好ましく、1~10であることが更に好ましく、1~8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
置換インデニルとして、具体的には、2-フェニルインデニル、2-メチルインデニル等が挙げられる。なお、式(VI)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
【0078】
上記一般式(VI)において、RA及びRBは、それぞれ独立して炭素数1~20の一価の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位している。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
【0079】
上記一般式(VI)において、RC及びRDは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子である。ここで、炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0080】
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記一般式(VII):
【化9】
[式中、M
2は、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp
Rは、それぞれ独立して無置換もしくは置換インデニルを示し、R
E~R
Jは、それぞれ独立して炭素数1~3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0~3の整数を示す]で表されるメタロセン錯体を、AlR
KR
LR
Mで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間~数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、
1H-NMRやX線構造解析により決定することが好ましい。
【0081】
上記一般式(VII)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記一般式(VI)中のCpRと同義である。また、上記式(VII)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(VI)中の金属M1と同義である。
【0082】
上記一般式(VII)で表されるメタロセン錯体は、シリルアミド配位子[-N(SiR3)2]を含む。シリルアミド配位子に含まれるR基(RE~RJ基)は、それぞれ独立して炭素数1~3のアルキル基又は水素原子である。また、RE~RJのうち少なくとも一つが水素原子であることが好ましい。RE~RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
【0083】
上記一般式(VII)で表されるメタロセン錯体は、更に0~3個、好ましくは0~1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
【0084】
また、上記一般式(VII)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
【0085】
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKRLRMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1~20の一価の炭化水素基又は水素原子で、RMは炭素数1~20の一価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1~20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0086】
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;ジエチルアルミニウムハイドライド、ジ-n-プロピルアルミニウムハイドライド、ジ-n-ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド、ジイソヘキシルアルミニウムハイドライド、ジオクチルアルミニウムハイドライド、ジイソオクチルアルミニウムハイドライド;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。
【0087】
前記(A-2)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、且つ、希土類元素と炭素との結合を有しない。該希土類元素化合物及び反応物が希土類元素-炭素結合を有しない場合、化合物が安定であり、取り扱い易い。ここで、希土類元素化合物とは、希土類元素(M)、即ち、周期律表中の原子番号57~71の元素から構成されるランタノイド元素、又はスカンジウム若しくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A-2)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
【0088】
また、上記希土類元素化合物は、2価若しくは3価の希土類金属の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(VIII)又は(IX):
M11X11
2・L11
w ・・・ (VIII)
M11X11
3・L11
w ・・・ (IX)
[それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0~3を示す]で表されることが好ましい。
【0089】
上記希土類元素化合物の希土類元素に結合する基(配位子)としては、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基が挙げられる。
該基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6-ジ-tert-ブチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2,6-ジネオペンチルフェノキシ基、2-tert-ブチル-6-イソプロピルフェノキシ基、2-tert-ブチル-6-ネオペンチルフェノキシ基、2-イソプロピル-6-ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn-ブトキシ基、チオイソブトキシ基、チオsec-ブトキシ基、チオtert-ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6-ジ-tert-ブチルチオフェノキシ基、2,6-ジイソプロピルチオフェノキシ基、2,6-ジネオペンチルチオフェノキシ基、2-tert-ブチル-6-イソプロピルチオフェノキシ基、2-tert-ブチル-6-チオネオペンチルフェノキシ基、2-イソプロピル-6-チオネオペンチルフェノキシ基、2,4,6-トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。
該基(配位子)として、更には、サリチルアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、2-ヒドロキシ-3-ナフトアルデヒド等のアルデヒドの残基;2’-ヒドロキシアセトフェノン、2’-ヒドロキシブチロフェノン、2’-ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のケトン残基(特には、ジケトンの残基);イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2-ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2-ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(ブチル)(2-エチルヘキシル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)等のリン酸エステルの残基;2-エチルヘキシルホスホン酸モノブチル、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、フェニルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ホスホン酸モノ-2-エチルヘキシル、ホスホン酸モノ-1-メチルヘプチル、ホスホン酸モノ-p-ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、ブチル(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(1-メチルヘプチル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2-エチルヘキシルホスフィン酸、1-メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p-ノニルフェニルホスフィン酸等のホスフィン酸の残基等を挙げることもできる。
なお、これらの基(配位子)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
【0090】
上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(一般式(VIII)及び(IX)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
【0091】
好適には、上記希土類元素化合物としては、下記一般式(X):
M-(AQ1)(AQ2)(AQ3) ・・・ (X)
[式中、Mは、スカンジウム、イットリウム又はランタノイド元素であり;AQ1、AQ2及びAQ3は、同一であっても異なっていてもよい官能基であり;Aは、窒素、酸素又は硫黄であり;但し、少なくとも1つのM-A結合を有する]で表される化合物が好ましい。ここで、ランタノイド元素とは、具体的には、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。該化合物は、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能な成分である。
【0092】
一般式(X)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
【0093】
一般式(X)中のAが窒素である場合、AQ1、AQ2及びAQ3(即ち、NQ1、NQ2及びNQ3)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM-N結合を有する。
【0094】
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6-ジ-tert-ブチルフェニルアミノ基、2,6-ジイソプロピルフェニルアミノ基、2,6-ジネオペンチルフェニルアミノ基、2-tert-ブチル-6-イソプロピルフェニルアミノ基、2-tert-ブチル-6-ネオペンチルフェニルアミノ基、2-イソプロピル-6-ネオペンチルフェニルアミノ基、2,4,6-トリ-tert-ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基等が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0095】
上記構成によれば、(A-2)成分を3つのM-N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
【0096】
一般式(X)中のAが酸素である場合、一般式(X)(即ち、M-(OQ1)(OQ2)(OQ3))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XI):
(RO)3M ・・・ (XI)
で表される希土類アルコラートや、下記一般式(XII):
(R-CO2)3M・・・ (XII)
で表される希土類カルボキシレート等が挙げられる。
ここで、上記一般式(XI)及び(XII)中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
【0097】
一般式(X)中のAが硫黄である場合、一般式(X)(即ち、M-(SQ1)(SQ2)(SQ3))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XIII):
(RS)3M ・・・ (XIII)
で表される希土類アルキルチオラートや、下記一般式(XIV):
(R-CS2)3M ・・・ (XIV)
で表される化合物等が挙げられる。
ここで、上記一般式(XIII)及び(XIV)中、Rは、同一であっても異なっていてもよく、炭素数1~10のアルキル基である。
【0098】
前記有機金属化合物((B)成分)は、下記一般式(XV):
YR1
aR2
bR3
c ・・・ (XV)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、炭素数1~10の炭化水素基又は水素原子で、R3は炭素数1~10の炭化水素基であり、但し、R1、R2及びR3はそれぞれ互いに同一でも異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される。
【0099】
上記一般式(XV)において、R1、R2及びR3が示す炭素数1~10の炭化水素基として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基等が好ましい。
【0100】
前記(B)成分としては、下記一般式(XVI):
AlR1R2R3 ・・・ (XVI)
[式中、R1及びR2は、炭素数1~10の炭化水素基又は水素原子で、R3は炭素数1~10の炭化水素基であり、但し、R1、R2及びR3はそれぞれ互いに同一又は異なっていてもよい]で表される有機アルミニウム化合物が好ましい。該有機アルミニウム化合物は、上記一般式(XV)において、YがAlで、a、b及びcが1である化合物に相当する。
【0101】
上記一般式(XVI)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;ジエチルアルミニウムハイドライド、ジ-n-プロピルアルミニウムハイドライド、ジ-n-ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド、ジイソヘキシルアルミニウムハイドライド、ジオクチルアルミニウムハイドライド、ジイソオクチルアルミニウムハイドライド;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドが好ましい。
【0102】
前記(B)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(B)成分の使用量は、上述の(A)成分と共に用いる場合、該(A)成分に対して1~50倍molであることが好ましく、約10倍molであることが更に好ましい。
【0103】
前記アルミノキサン((C)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。(C)成分を用いることによって、重合反応系における触媒活性を更に向上させることができるので、目的とする共重合体を容易に得ることができる。また、反応時間を更に短くし、反応温度を更に高くすることもできる。
【0104】
ここで、前記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
一方、前記縮合剤としては、例えば、水等が挙げられる。
【0105】
前記(C)成分としては、例えば、下記式(XVII):
-(Al(R7)O)n- ・・・ (XVII)
[式中、R7は、炭素数1~10の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;R7は、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である]で表されるアルミノキサンを挙げることができる。
上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
上記式(XVII)中のnは、10以上であることが好ましい。
また、上記式(XVII)中のR7に関して、炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。該炭化水素基は、1種でもよいし、2種以上を組み合わせてもよい。式(XVII)中のR7に関して、炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
ここで、脂肪族炭化水素としては、ヘキサン、シクロヘキサン等が挙げられる。
【0106】
前記(C)成分は、特に、下記式(XVIII):
-(Al(CH3)x(i-C4H9)yO)m- ・・・ (XVIII)
[式中、x+yは1であり;mは5以上である]で表される修飾アルミノキサン(以下、「TMAO」ともいう。)としてもよい。TMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「TMAO-341」が挙げられる。
【0107】
また、前記(C)成分は、特に、下記式(XIX):
-(Al(CH3)0.7(i-C4H9)0.3O)k- ・・・ (XIX)
[式中、kは5以上である]で表される修飾アルミノキサン(以下、「MMAO」ともいう。)としてもよい。MMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「MMAO-3A」が挙げられる。
【0108】
更に、前記(C)成分は、特に、下記式(XX):
-[(CH3)AlO]i- ・・・ (XX)
[式中、iは5以上である]で表される修飾アルミノキサン(以下、「PMAO」ともいう。)としてもよい。PMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「PMAO-211」が挙げられる。
【0109】
前記(C)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、特に、触媒活性を向上させる効果を更に高める観点から、TMAOであることが更に好ましい。
【0110】
前記(C)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(C)成分は、触媒活性を向上させる観点から、前記(A)成分と共に用いる場合、該(A)成分中の希土類元素1molに対して、当該(C)成分中のアルミニウムが10mol以上となるように使用されることが好ましく、100mol以上となるように使用されることが更に好ましく、また、1000mol以下となるように使用されることが好ましく、800mol以下となるように使用されることが更に好ましい。
【0111】
前記イオン性化合物((D)成分)は、非配位性アニオンとカチオンとからなる。該(D)成分を上述の(A)成分と共に用いる場合、(D)成分としては、前記(A)成分と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。
【0112】
ここで、非配位性アニオンとしては、4価のホウ素アニオン、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
【0113】
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン(「トリチルカチオン」ともいう)、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、アンモニウムカチオン等が挙げられ、アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N-ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N-ジアルキルアニリニウムカチオンが特に好ましい。
【0114】
従って、前記イオン性化合物((D)成分)としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。
【0115】
前記(D)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(D)成分の使用量は、上述の(A)成分と共に用いる場合、該(A)成分に対して0.1~10倍molであることが好ましく、約1倍molであることが更に好ましい。
【0116】
前記ハロゲン化合物((E)成分)としては、ルイス酸であるハロゲン含有化合物(以下、「(E-1)成分」ともいう。)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E-2)成分」ともいう。)、活性ハロゲンを含む有機化合物(以下、「(E-3)成分」ともいう。)等が挙げられる。該(E)成分は、例えば、上述の(A)成分と共に用いる場合、該(A)成分と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。
【0117】
上記(E-1)成分としては、例えば、周期律表中の第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン化合物を用いることができる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。
上記ルイス酸であるハロゲン含有化合物として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチルスズジクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、トリ(ペンタフルオロフェニル)ボレート、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
上記(E-1)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0118】
上記(E-2)成分を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記(E-2)成分を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1mol当り、0.01~30mol、好ましくは0.5~10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記(E-2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0119】
上記(E-3)成分としては、ベンジルクロライド等が挙げられる。
【0120】
前記(E)成分は、一種単独で使用することも、2種以上を混合して用いることもできる。また、前記(E)成分の使用量は、前記(A)成分と共に用いる場合、該(A)成分に対して0~5倍molであることが好ましく、1~5倍molであることが更に好ましい。
【0121】
前記シクロペンタジエン骨格含有化合物((F)成分)は、シクロペンタジエニル基、インデニル基、及びフルオレニル基から選択される基を有し、該シクロペンタジエン骨格含有化合物(F)は、置換又は無置換シクロペンタジエン、置換又は無置換のインデン、置換又は無置換のフルオレンからなる群から選択される少なくとも1種の化合物である。上記(F)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0122】
前記置換又は無置換のシクロペンタジエンとしては、例えば、シクロペンタジエン、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル-テトラメチルシクロペンタジエン、(1-ベンジルジメチルシリル)シクロペンタ[l]フェナントレン等が挙げられる。
【0123】
前記置換又は無置換のインデンとしては、例えば、インデン、2-フェニル-1H-インデン、3-ベンジル-1H-インデン、3-メチル-2-フェニル-1H-インデン、3-ベンジル-2-フェニル-1H-インデン、1-ベンジル-1H-インデン、1-メチル-3-ジメチルベンジルシリル-インデン、1,3-ビス(t-ブチルジメチルシリル)-インデン、(1-ベンジルジメチルシリル-3-シクロペンチル)インデン、(1-ベンジル-3-t-ブチルジメチルシリル)インデン等が挙げられ、特に、分子量分布を小さくする観点から、3-ベンジル-1H-インデン、1-ベンジル-1H-インデンが好ましい。
【0124】
前記置換又は無置換のフルオレンとしては、フルオレン、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。
【0125】
特に、シクロペンタジエン骨格含有化合物((F)成分)は、置換シクロペンタジエン、置換インデン又は置換フルオレンであることが好ましく、置換インデンであることがより好ましい。これにより、重合触媒としての嵩高さが有利に増大するため、反応時間を短くし、反応温度を高くすることができる。また、共役電子を多く具えるため、反応系における触媒活性を更に向上させることができる。
【0126】
ここで、置換シクロペンタジエン、置換インデン、置換フルオレンの置換基としては、ヒドロカルビル基、メタロイド基が挙げられ、ヒドロカルビル基の炭素数は1~20であることが好ましく、1~10であることが更に好ましく、1~8であることがより一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
【0127】
前記(F)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(F)成分の使用量は、触媒活性を向上させる観点から、前記(A)成分と共に用いる場合、該(A)成分に対するモル比として、0超であることが好ましく、0.5以上であることが更に好ましく、1以上であることが特に好ましく、また、3以下であることが好ましく、2.5以下であることが更に好ましく、2.2以下であることが特に好ましい。
【0128】
上述の(A)~(F)成分は、様々に組み合わせ、触媒組成物として、前記重合工程に用いることが好ましい。好適な触媒組成物としては、以下の第一の触媒組成物及び第二の触媒組成物が挙げられる。
【0129】
前記第一の触媒組成物は、前記(A-1)成分と、前記(B)成分と、前記(D)成分と、を含み、更に、任意成分として、前記(C)成分及び前記(E)成分の一種以上を含むことが好ましい。なお、前記(A-1)成分が、前記一般式(V)で表わされメタロセン系複合触媒である場合は、前記(B)成分も任意成分となる。
【0130】
前記第二の触媒組成物は、前記(A-2)成分と、前記(B)成分と、前記(D)成分と、を含み、更に、任意成分として、前記(C)成分、前記(E)成分及び前記(F)成分の一種以上を含むことが好ましい。なお、第二の触媒組成物が(F)成分を含む場合、触媒活性が向上する。
【0131】
前記工程B(枝ポリマー部の形成工程)は、前記幹ポリマー部に、共役ジエン化合物をグラフト重合できる何れの方法で行ってもよい。ここで、前記工程Aで使用する、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物の、該芳香環に結合したアルキル基を結合部位とするグラフト重合を促進する観点から、工程Bは、アニオン重合で行うことが好ましい。
【0132】
前記アニオン重合は、重合開始剤として、リチウム化合物を使用することが好ましい。該リチウム化合物としては、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチル-フェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等のヒドロカルビルリチウムを用いることができる。
また、前記アニオン重合には、重合開始剤として、リチウムアミド化合物を使用してもよい。該リチウムアミド化合物としては、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジヘキシルアミド、リチウムジヘプチルアミド、リチウムジオクチルアミド、リチムジ-2-エチルヘキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピペラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムメチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。
前記工程Bを、アニオン重合で行った場合、枝ポリマー部の共役ジエン単位におけるビニル結合量を増加させることができる。ここで、枝ポリマー部の共役ジエン単位におけるビニル結合量は、50mol%以上であることが好ましい。共役ジエン単位におけるビニル結合量が50mol%以上である枝ポリマー部は、側鎖に不飽和結合を多く有し、主鎖の反応性が低いため、主鎖に不飽和結合を多く有する枝ポリマー部よりも、耐オゾン性が高い。
【0133】
前記アニオン重合で用いる重合開始剤は、前記工程Aで使用する、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物のアルキル基を容易に活性化して(例えば、リチウム化合物を使用した場合は、アルキル基をリチオ化して)、該アルキル基を起点とするグラフト重合が進み易い。
【0134】
前記アニオン重合における重合開始剤の使用量は、前記工程Aで使用する、芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物1molに対して、0.01~1molの範囲が好ましい。芳香環に結合したアルキル基を1つ以上有する芳香族ビニル化合物に対して、重合開始剤の使用量を少なくすると、枝ポリマー部の数を減らすことができ、また、重合開始剤の使用量を多くすると、枝ポリマー部の数を多くすることができる。
また、前記アニオン重合における重合開始剤の使用量は、前記工程Bで使用する、共役ジエン化合物1molに対して、0.1~1.0molの範囲が好ましい。共役ジエン化合物に対して、重合開始剤の使用量を少なくすると、枝ポリマー部の長さが長くなり、また、重合開始剤の使用量を多くすると、枝ポリマー部の長さが短くなる。
【0135】
前記工程A及び工程Bにおいて、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。
【0136】
前記工程A及び工程Bにおいて、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。
上記重合反応の重合温度は、特に制限されないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。
また、上記重合反応の圧力は、原料の単量体を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒~10日の範囲が好ましいが、重合触媒の種類、重合温度等の条件によって適宜選択することができる。
また、前記工程A及び工程Bにおいては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
【0137】
前記カップリング工程は、前記工程A及び工程Bを経て得られたグラフトポリマーの少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
前記カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
前記カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
なお、カップリング反応を行うことにより、数平均分子量(Mn)の増加を行うことができる。
【0138】
前記洗浄工程は、前記工程A及び工程Bで得られたグラフトポリマーを洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノール等が挙げられるが、重合触媒としてルイス酸由来の触媒を使用する際は、特にこれらの溶媒に対して酸(例えば、塩酸、硫酸、硝酸等)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では、酸がグラフトポリマー中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
この洗浄工程により、グラフトポリマー中の触媒残渣量を好適に低下させることができる。
【0139】
<ゴム組成物>
本発明のゴム組成物は、上記のグラフトポリマーを含むことを特徴とする。本発明のゴム組成物は、上述の耐オゾン性に優れるグラフトポリマーを含むため、耐オゾン性に優れ、また、ゴム組成物に一般に使用されている老化防止剤を含まなくても、十分な耐オゾン性を有し、原料コストを低減できる。また、本発明のゴム組成物は、上述の十分な架橋(加硫)能を有するグラフトポリマーを含むため、十分な架橋(加硫)能を有し、耐亀裂成長性にも優れる。
本発明のゴム組成物は、ゴム成分として、上述のグラフトポリマーを含み、更に必要に応じて、その他のゴム成分、充填剤、架橋剤、その他の成分を含むことができる。
【0140】
本発明のゴム組成物において、前記ゴム成分中の、前記グラフトポリマーの含有率は、1~100質量%の範囲が好ましく、1~50質量%の範囲が更に好ましく、1~40質量%の範囲がより一層好ましい。ゴム成分中の、前記グラフトポリマーの含有率が1質量%以上であれば、グラフトポリマーによる作用が十分に発揮され、ゴム組成物の耐オゾン性と耐亀裂成長性が更に向上する。
【0141】
なお、その他のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
【0142】
前記ゴム組成物が充填剤を含む場合、ゴム組成物の補強性を向上させることができる。該充填剤としては、特に制限はなく、カーボンブラック、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられるが、これらの中でも、カーボンブラックを用いることが好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記充填剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、10~100質量部が好ましく、20~80質量部がより好ましく、30~60質量部が特に好ましい。前記充填剤の配合量が10質量部以上であることにより、充填剤を配合したことによる補強性向上の効果が得られ、また、100質量部以下であることにより、良好な作業性を保持することができる。
【0143】
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム-ニトロソアミン系架橋剤等が挙げられる。なお、タイヤ用ゴム組成物としては、これらの中でも硫黄系架橋剤(加硫剤)がより好ましい。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1~20質量部が好ましい。
【0144】
前記加硫剤を用いる場合には、更に加硫促進剤を併用することもできる。前記加硫促進剤としては、グアニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。
【0145】
また、本発明のゴム組成物には、必要に応じて、軟化剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
【0146】
本発明のゴム組成物は、後述するタイヤ用途以外にも、防振ゴム、免震ゴム、コンベヤベルト等のベルト、ゴムクローラ、各種ホース等に用いることができる。
【0147】
<タイヤ>
本発明のタイヤは、上記のゴム組成物を用いたことを特徴とする。かかる本発明のタイヤは、耐オゾン性と耐亀裂成長性とに優れる。
タイヤにおける本発明のゴム組成物の適用部位としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラー等が挙げられるが、特には、サイドウォールが好ましい。
【0148】
前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴム組成物及び/又はコードからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。
【実施例】
【0149】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
【0150】
(触媒溶液の合成)
窒素雰囲気下のグローブボックス中で、ガラス製容器に1-ベンジルジメチルシリル-3-(1-メチルプロピル)インデン{[1-(PhCH2)Me2Si]-3-CH2(CH3)CH2CH3]C9H6}0.55mmol、トリス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{Gd[N(SiHMe2)2]3}0.50mmol、トリメチルアルミニウム4.0mmolを仕込み、トルエン22.1mLを加えて80℃で10時間反応させた。
【0151】
(幹ポリマー部Aの合成)
十分に乾燥した2000mLの耐圧ステンレス反応器に、芳香族ビニル化合物として、4-メチルスチレンを45g(0.38mol)と、トルエン200gと、ジイソブチルアルミニウムハイドライド1.0mmolとを加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器に、上記で調製した触媒溶液を1.0ml、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]0.044mmol、ジイソブチルアルミニウムハイドライド1.0mmolを仕込み、トルエン20mLを加えて、触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、100℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを加え、圧下(1.00MPa)で、160分間、共重合を行った。
共重合後、イソプロパノール溶液10mLを耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体A(幹ポリマー部A)を得た。得られた幹ポリマー部Aの収量は、89gであった。
【0152】
(幹ポリマー部Bの合成)
十分に乾燥した2000mLの耐圧ステンレス反応器に、芳香族ビニル化合物として、スチレンを45g(0.43mol)と、4-メチルスチレンを9g(0.08mol)と、トルエン200gと、ジイソブチルアルミニウムハイドライド1.0mmolとを加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器に、上記で調製した触媒溶液を1.0ml、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]0.044mmol、ジイソブチルアルミニウムハイドライド1.0mmolを仕込み、トルエン20mLを加えて、触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、100℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを加え、圧下(0.9MPa)で、140分間、共重合を行った。
共重合後、イソプロパノール溶液10mLを耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体B(幹ポリマー部B)を得た。得られた幹ポリマー部Bの収量は、79gであった。
【0153】
(幹ポリマー部Cの合成)
十分に乾燥した2000mLの耐圧ステンレス反応器に、芳香族ビニル化合物として、スチレンを45g(0.43mol)と、4-メチルスチレンを7g(0.06mol)と、トルエン200gと、ジイソブチルアルミニウムハイドライド0.2mmolとを加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器に、上記で調製した触媒溶液を1.0ml、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]0.044mmol、ジイソブチルアルミニウムハイドライド0.1mmolを仕込み、トルエン20mLを加えて、触媒溶液とした。該触媒溶液を、前記耐圧ステンレス反応器に加え、72℃に加温した。次いで、この耐圧ステンレス反応器に、非共役オレフィン化合物としてのエチレンを加え、圧下(0.8MPa)で、230分間、共重合を行った。
共重合後、イソプロパノール溶液10mLを耐圧ステンレス反応器に加えて反応を停止させ、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、共重合体C(幹ポリマー部C)を得た。得られた幹ポリマー部Cの収量は、77gであった。
【0154】
(実施例1)
十分に乾燥した1000mLのグラスレアクター反応器に、合成した幹ポリマー部Aを16gと、シクロヘキサン160gとを加え、24時間で溶解させた。その後、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)3.0mlを加え、sec-ブチルリチウム(ヘキサン溶液、1.04M)6.30ml加え、55℃で60分間熟成させた。その後、共役ジエン化合物としての1,3-ブタジエン(シクロヘキサン溶液中、25wt%)を5.3g加え、55℃で5分間反応させ、グラフト反応を行った。
反応後、脱気イソプロパノール溶液7mLをグラスレアクター反応器に加えて反応を停止させ、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを加え、更に大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥して、グラフトポリマーを得た。得られたグラフトポリマーの収量は、20.6gであった。
【0155】
(実施例2)
実施例1の条件において、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)6.1mlを加え、sec-ブチルリチウムを12.5mlとした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、20.8gであった。
【0156】
(参考例1)
実施例1の条件において、幹ポリマー部Bを10g用い、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)5.0mlを加え、sec-ブチルリチウムを5.5ml、1,3-ブタジエンを29.6g加え、グラフト反応時間を30分とした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、39.6gであった。
【0157】
(実施例3)
実施例1の条件において、幹ポリマー部Bを10g用い、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)1.2mlを加え、sec-ブチルリチウムを1.7ml、1,3-ブタジエンを3.0g加え、グラフト反応時間を5分とした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、11.1gであった。
【0158】
(参考例2)
実施例1の条件において、幹ポリマー部Bを10g用い、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)5.0mlを加え、sec-ブチルリチウムを5.5ml、1,3-ブタジエンを3.0g加えグラフト反応時間を5分とした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、10.9gであった。
【0159】
(実施例4)
実施例1の条件において、幹ポリマー部Cを20g用い、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)0.46mlを加え、sec-ブチルリチウムを0.96ml、熟成時間を40分、1,3-ブタジエンを7.0g加え、グラフト反応時間を75分とした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、27.0gであった。
【0160】
(実施例5)
実施例1の条件において、幹ポリマー部Cを20g用い、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)0.76mlを加え、sec-ブチルリチウムを1.58ml、熟成時間を40分、1,3-ブタジエンを22.2g加え、グラフト反応時間を75分とした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、39.4gであった。
【0161】
(実施例6)
実施例1の条件において、幹ポリマー部Cを20g用い、テトラメチルエチレンジアミン(シクロヘキサン溶液中、4.28M)0.57mlを加え、sec-ブチルリチウムを1.58ml、熟成時間を40分、イソプレンを11.7g加え、グラフト反応時間を20分とした以外は、実施例1と同様の条件にてグラフト反応を行った。得られた重合体の収量は、29.6gであった。
【0162】
<幹ポリマー部及びグラフトポリマーの分析方法>
合成した幹ポリマー部及びグラフトポリマーについて、以下の方法で、数平均分子量(Mn)、エチレン単位、スチレン単位、メチルスチレン単位、共役ジエン単位(ブタジエン単位、イソプレン単位)の含有量(質量%、mol%)、結晶成分の割合を測定し、また、結合様式を確認した。結果を表1及び表2に示す。
【0163】
(1)数平均分子量(Mn)及び結合様式
ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8121GPC/HT、カラム:東ソー社製GMH
HR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、幹ポリマー部及びグラフトポリマーのポリスチレン換算の数平均分子量(Mn)を求めた。なお、測定温度は40℃である。
この際、GPCチャートから、幹ポリマー部に枝ポリマー部が結合していることを確認した。具体的には、GPCチャートにおいて、幹ポリマーのピークとグラフトポリマーのピークを比較して、グラフトポリマーのピークがより高分子量側にシフトしていることから、幹ポリマー部に枝ポリマー部が結合していることを確認できる。
参考として、幹ポリマー部BのGPCチャートを
図1に示し、参考例1のグラフトポリマーのGPCチャートを
図2に示す。
図1中、RI、UVと記載されたピークが幹ポリマー部に由来するピークであり、また、
図2中、RI、UVと記載されたピークがグラフトポリマーに由来するピークである。
【0164】
(2)エチレン単位、スチレン単位、メチルスチレン単位、共役ジエン単位(ブタジエン単位、イソプレン単位)の含有量
幹ポリマー部及びグラフトポリマー中のエチレン単位、スチレン単位、メチルスチレン単位、共役ジエン単位(ブタジエン単位、イソプレン単位)(質量%、mol%)を、1H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)における、各ピークの積分比より求めた。
【0165】
(3)結晶成分の割合
得られたグラフトポリマーを、-150℃~150℃まで、10℃/minで昇温し、その時の吸熱ピークエネルギー(ΔH1)を測定した。
また、同様にして、100%結晶成分のポリエチレンの結晶融解エネルギー(ΔH0)を測定した。
前記ポリエチレンの結晶融解エネルギー(ΔH0)に対する、グラフトポリマーの吸熱ピークエネルギー(ΔH1)の比率(ΔH1/ΔH0)から、グラフトポリマー中の結晶成分の割合を算出した。
なお、グラフトポリマーの吸熱ピークエネルギーと、ポリエチレンの結晶融解エネルギーは、示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)で測定した。
【0166】
【0167】
【0168】
実施例1~6及び参考例1~2の結果から、非共役オレフィン単位と、芳香族ビニル単位と、を含む幹ポリマー部と、該幹ポリマー部に結合した、共役ジエン単位を含む枝ポリマー部と、を具えるグラフトポリマーが得られたことが分かる。
特には、幹ポリマー部BのGPCチャートを示す
図1と、参考例1のグラフトポリマーのGPCチャートを示す
図2から、幹ポリマー部に、共役ジエン化合物を重合反応させた場合において、共役ジエン化合物の単独重合体が生成せずに、所望のグラフトポリマーが生成することが分かる。
【産業上の利用可能性】
【0169】
本発明のグラフトポリマーは、ゴム組成物のゴム成分として利用できる。また、本発明のゴム組成物は、タイヤを始め、各種ゴム製品に利用できる。