IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許-冷凍サイクル装置 図1
  • 特許-冷凍サイクル装置 図2
  • 特許-冷凍サイクル装置 図3
  • 特許-冷凍サイクル装置 図4
  • 特許-冷凍サイクル装置 図5
  • 特許-冷凍サイクル装置 図6
  • 特許-冷凍サイクル装置 図7
  • 特許-冷凍サイクル装置 図8
  • 特許-冷凍サイクル装置 図9
  • 特許-冷凍サイクル装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-20
(45)【発行日】2024-05-28
(54)【発明の名称】冷凍サイクル装置
(51)【国際特許分類】
   F25B 1/00 20060101AFI20240521BHJP
   B60H 1/22 20060101ALI20240521BHJP
   F25B 5/02 20060101ALI20240521BHJP
【FI】
F25B1/00 387D
B60H1/22 651A
B60H1/22 671
F25B1/00 351S
F25B1/00 361C
F25B1/00 383
F25B1/00 387L
F25B1/00 399Y
F25B5/02 B
【請求項の数】 12
(21)【出願番号】P 2020168603
(22)【出願日】2020-10-05
(65)【公開番号】P2022060863
(43)【公開日】2022-04-15
【審査請求日】2023-09-12
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110001472
【氏名又は名称】弁理士法人かいせい特許事務所
(72)【発明者】
【氏名】岡村 徹
(72)【発明者】
【氏名】三浦 功嗣
(72)【発明者】
【氏名】河野 紘明
(72)【発明者】
【氏名】牧本 直也
(72)【発明者】
【氏名】加藤 吉毅
【審査官】笹木 俊男
(56)【参考文献】
【文献】特開2015-183872(JP,A)
【文献】特開平4-344074(JP,A)
【文献】特開2019-066049(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/00 ~ 49/04
B60H 1/00 ~ 3/06
(57)【特許請求の範囲】
【請求項1】
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
前記圧縮機から吐出された前記冷媒と空調対象空間へ送風される空気とを熱交換させて前記空気に放熱させる放熱部(12、20、22)と、
前記冷媒を減圧させるとともに、前記冷媒の流路を閉じることが可能な第1減圧部(13)と、
前記第1減圧部で減圧された前記冷媒と前記空気とを熱交換させて前記空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
前記冷媒の流れにおいて前記第1減圧部と並列に配置され、前記冷媒を減圧させる第2減圧部(16)と、
前記第2減圧部で減圧された前記冷媒に吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
前記第1減圧部が前記流路を閉じており、且つ前記冷媒に混入している冷凍機油が前記第1蒸発部に滞留していると判定された場合、前記流路を開けるように前記第1減圧部を制御するオイル回収制御を実行する制御部(60)と
前記空気を前記第1蒸発部および前記放熱部に送風する送風機(53)とを備え、
前記制御部は、
空調負荷(TAO)に応じた前記送風機の風量である通常風量を決定し、
前記圧縮機を起動した際に吹出空気温度を所定温度以上にすることができないと判定される場合、前記送風機の風量を、前記通常風量よりも低い暖機風量に決定し、
前記冷凍機油が前記第1蒸発部に滞留していると判定され、且つ前記送風機が前記暖機風量で制御されている場合、前記オイル回収制御を実行する冷凍サイクル装置。
【請求項2】
前記放熱部で前記空気を加熱するための熱源として、ジュール熱を発生するジュール熱発生部(25)を備え、
前記制御部は、前記オイル回収制御を実行している場合、前記ジュール熱を発生するように前記ジュール熱発生部を制御する請求項に記載の冷凍サイクル装置。
【請求項3】
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
前記圧縮機から吐出された前記冷媒と空調対象空間へ送風される空気とを熱交換させて前記空気に放熱させる放熱部(12、20、22)と、
前記冷媒を減圧させるとともに、前記冷媒の流路を閉じることが可能な第1減圧部(13)と、
前記第1減圧部で減圧された前記冷媒と前記空気とを熱交換させて前記空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
前記冷媒の流れにおいて前記第1減圧部と並列に配置され、前記冷媒を減圧させる第2減圧部(16)と、
前記第2減圧部で減圧された前記冷媒に吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
前記第1減圧部が前記流路を閉じており、且つ前記冷媒に混入している冷凍機油が前記第1蒸発部に滞留していると判定された場合、前記流路を開けるように前記第1減圧部を制御するオイル回収制御を実行する制御部(60)と
前記放熱部で前記空気を加熱するための熱源として、ジュール熱を発生するジュール熱発生部(25)とを備え、
前記制御部は、前記オイル回収制御を実行している場合、前記ジュール熱を発生するように前記ジュール熱発生部を制御する冷凍サイクル装置。
【請求項4】
前記第1蒸発部に流入する前記空気における内気と外気との比率を調整する内外気調整部(52a)を備え、
前記制御部は、
前記第1蒸発部の熱交換負荷が高いほど前記圧縮機の冷媒吐出能力を高くし、
前記オイル回収制御を実行している場合、前記内気の比率が前記外気の比率よりも大きくなるように前記内外気調整部を制御する請求項1ないしのいずれか1つに記載の冷凍サイクル装置。
【請求項5】
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
前記圧縮機から吐出された前記冷媒と空調対象空間へ送風される空気とを熱交換させて前記空気に放熱させる放熱部(12、20、22)と、
前記冷媒を減圧させるとともに、前記冷媒の流路を閉じることが可能な第1減圧部(13)と、
前記第1減圧部で減圧された前記冷媒と前記空気とを熱交換させて前記空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
前記冷媒の流れにおいて前記第1減圧部と並列に配置され、前記冷媒を減圧させる第2減圧部(16)と、
前記第2減圧部で減圧された前記冷媒に吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
前記第1減圧部が前記流路を閉じており、且つ前記冷媒に混入している冷凍機油が前記第1蒸発部に滞留していると判定された場合、前記流路を開けるように前記第1減圧部を制御するオイル回収制御を実行する制御部(60)と
前記第1蒸発部に流入する前記空気における内気と外気との比率を調整する内外気調整部(52a)とを備え、
前記制御部は、
前記第1蒸発部の熱交換負荷が高いほど前記圧縮機の冷媒吐出能力を高くし、
前記オイル回収制御を実行している場合、前記内気の比率が前記外気の比率よりも大きくなるように前記内外気調整部を制御する冷凍サイクル装置。
【請求項6】
前記空気を送風する送風機(53)を備え、
前記制御部は、
前記第1蒸発部の熱交換負荷が高いほど前記圧縮機の冷媒吐出能力を高くし、
空調負荷(TAO)に応じた前記送風機の風量である通常風量を決定し、
前記オイル回収制御を実行している場合、前記送風機の風量を前記通常風量よりも増加させる請求項1ないしのいずれか1つに記載の冷凍サイクル装置。
【請求項7】
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
前記圧縮機から吐出された前記冷媒と空調対象空間へ送風される空気とを熱交換させて前記空気に放熱させる放熱部(12、20、22)と、
前記冷媒を減圧させるとともに、前記冷媒の流路を閉じることが可能な第1減圧部(13)と、
前記第1減圧部で減圧された前記冷媒と前記空気とを熱交換させて前記空気から吸熱させることによって前記冷媒を蒸発させる第1蒸発部(14)と、
前記冷媒の流れにおいて前記第1減圧部と並列に配置され、前記冷媒を減圧させる第2減圧部(16)と、
前記第2減圧部で減圧された前記冷媒に吸熱させることによって前記冷媒を蒸発させる第2蒸発部(17)と、
前記第1減圧部が前記流路を閉じており、且つ前記冷媒に混入している冷凍機油が前記第1蒸発部に滞留していると判定された場合、前記流路を開けるように前記第1減圧部を制御するオイル回収制御を実行する制御部(60)と
前記空気を送風する送風機(53)とを備え、
前記制御部は、
前記第1蒸発部の熱交換負荷が高いほど前記圧縮機の冷媒吐出能力を高くし、
空調負荷(TAO)に応じた前記送風機の風量である通常風量を決定し、
前記オイル回収制御を実行している場合、前記送風機の風量を前記通常風量よりも増加させる冷凍サイクル装置。
【請求項8】
前記空気を前記第1蒸発部および前記放熱部に送風する送風機(53)を備え、
前記放熱部は、前記空気の流れにおいて前記第1蒸発部の下流側に配置されており、
前記制御部は、オイル回収制御を実行している場合、前記送風機を作動させる請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。
【請求項9】
前記制御部は、前記オイル回収制御を実行している場合、前記圧縮機の冷媒吐出能力を増減させる吐出能力制御、および前記第1減圧部の開度を増減させる開度制御のうち少なくとも一方を実行する請求項1ないしのいずれか1つに記載の冷凍サイクル装置。
【請求項10】
前記制御部は、前記第1減圧部が所定時間以上閉弁されている場合、前記冷凍機油が前記第1蒸発部に滞留していると判定する請求項1ないしのいずれか1つに記載の冷凍サイクル装置。
【請求項11】
前記制御部は、前記圧縮機が停止状態から起動状態になり、且つ前記第1減圧部が前記流路を閉じている場合、前記オイル回収制御を実行する請求項1ないし10のいずれか1つに記載の冷凍サイクル装置。
【請求項12】
前記第1減圧部から流出した前記冷媒と、前記第2減圧部から流出した前記冷媒とが合流する合流部(10)と、
前記第1蒸発部の冷媒流れ下流側、かつ前記合流部の冷媒流れ上流側に配置され、前記第1蒸発部から前記合流部へ向かって前記冷媒が流れることを許容し、前記合流部から前記第1蒸発部へ向かって前記冷媒が流れることを禁止する逆流防止部(19)とを備える請求項1ないし11のいずれか1つに記載の冷凍サイクル装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数個の蒸発器を有する冷凍サイクル装置に関する。
【背景技術】
【0002】
従来、特許文献1には、車室内の空調と電池の冷却とを行うことのできる冷凍サイクル装置が記載されている。
【0003】
この従来技術の冷凍サイクル装置では、第1膨張弁および空気冷却用蒸発器と、第2膨張弁及び冷却水冷却用蒸発器とが冷媒流れにおいて並列に接続されている。
【0004】
第1膨張弁は、空気冷却用蒸発器に流入する冷媒を減圧する。空気冷却用蒸発器は、車室内に送風される空気を冷却する。第2膨張弁は、冷却水冷却蒸発器に流入する冷媒を減圧する。冷却水冷却用蒸発器は、車室内に送風される空気を冷却する。
【0005】
暖房モードでは、第1膨張弁を閉弁させることによって空気冷却用蒸発器への冷媒の流入を遮断して、空気冷却用蒸発器での空気の冷却を停止させる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2019-26111号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記従来技術では、暖房モード時に第1膨張弁を閉弁させることによって空気冷却用蒸発器への冷媒の流入を遮断するが、空気冷却用蒸発器への冷媒の流入を完全に遮断し切れない場合がある。その場合、冷媒中に混入された冷凍機油が空気冷却用蒸発器に溜まってしまい、圧縮機の潤滑不足を招くおそれがある。
【0008】
本発明は上記点に鑑みて、蒸発器に溜まった冷凍機油を効果的に回収することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するため、請求項1に記載の冷凍サイクル装置では、
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
圧縮機から吐出された冷媒と空調対象空間へ送風される空気とを熱交換させて空気に放熱させる放熱部(12、20、22)と、
冷媒を減圧させるとともに、冷媒の流路を閉じることが可能な第1減圧部(13)と、
第1減圧部で減圧された冷媒と空気とを熱交換させて空気から吸熱させることによって冷媒を蒸発させる第1蒸発部(14)と、
冷媒の流れにおいて第1減圧部と並列に配置され、冷媒を減圧させる第2減圧部(16)と、
第2減圧部で減圧された冷媒に吸熱させることによって冷媒を蒸発させる第2蒸発部(17)と、
第1減圧部が流路を閉じており、且つ冷媒に混入している冷凍機油が第1蒸発部に滞留していると判定された場合、流路を開けるように第1減圧部を制御するオイル回収制御を実行する制御部(60)と
空気を第1蒸発部および放熱部に送風する送風機(53)とを備え、
制御部は、
空調負荷(TAO)に応じた送風機の風量である通常風量を決定し、
圧縮機を起動した際に吹出空気温度を所定温度以上にすることができないと判定される場合、送風機の風量を、通常風量よりも低い暖機風量に決定し、
冷凍機油が第1蒸発部に滞留していると判定され、且つ送風機が暖機風量で制御されている場合、オイル回収制御を実行する。
【0010】
これによると、第1減圧部が冷媒の流路を開けることによって第1蒸発部に冷媒が流れるので、第1蒸発部に滞留している冷凍機油を圧縮機に戻すことができる。
上記目的を達成するため、請求項3に記載の冷凍サイクル装置では、
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
圧縮機から吐出された冷媒と空調対象空間へ送風される空気とを熱交換させて空気に放熱させる放熱部(12、20、22)と、
冷媒を減圧させるとともに、冷媒の流路を閉じることが可能な第1減圧部(13)と、
第1減圧部で減圧された冷媒と空気とを熱交換させて空気から吸熱させることによって冷媒を蒸発させる第1蒸発部(14)と、
冷媒の流れにおいて第1減圧部と並列に配置され、冷媒を減圧させる第2減圧部(16)と、
第2減圧部で減圧された冷媒に吸熱させることによって冷媒を蒸発させる第2蒸発部(17)と、
第1減圧部が流路を閉じており、且つ冷媒に混入している冷凍機油が第1蒸発部に滞留していると判定された場合、流路を開けるように第1減圧部を制御するオイル回収制御を実行する制御部(60)と、
放熱部で空気を加熱するための熱源として、ジュール熱を発生するジュール熱発生部(25)とを備え、
制御部は、オイル回収制御を実行している場合、ジュール熱を発生するようにジュール熱発生部を制御する。
これにより、請求項1に記載の冷凍サイクル装置と同様の作用効果を奏することができる。
上記目的を達成するため、請求項5に記載の冷凍サイクル装置では、
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
圧縮機から吐出された冷媒と空調対象空間へ送風される空気とを熱交換させて空気に放熱させる放熱部(12、20、22)と、
冷媒を減圧させるとともに、冷媒の流路を閉じることが可能な第1減圧部(13)と、
第1減圧部で減圧された冷媒と空気とを熱交換させて空気から吸熱させることによって冷媒を蒸発させる第1蒸発部(14)と、
冷媒の流れにおいて第1減圧部と並列に配置され、冷媒を減圧させる第2減圧部(16)と、
第2減圧部で減圧された冷媒に吸熱させることによって冷媒を蒸発させる第2蒸発部(17)と、
第1減圧部が流路を閉じており、且つ冷媒に混入している冷凍機油が第1蒸発部に滞留していると判定された場合、流路を開けるように第1減圧部を制御するオイル回収制御を実行する制御部(60)と、
第1蒸発部に流入する空気における内気と外気との比率を調整する内外気調整部(52a)とを備え、
制御部は、
第1蒸発部の熱交換負荷が高いほど圧縮機の冷媒吐出能力を高くし、
オイル回収制御を実行している場合、内気の比率が外気の比率よりも大きくなるように内外気調整部を制御する。
これにより、請求項1に記載の冷凍サイクル装置と同様の作用効果を奏することができる。
上記目的を達成するため、請求項7に記載の冷凍サイクル装置では、
冷媒を吸入して圧縮し吐出する圧縮機(11)と、
圧縮機から吐出された冷媒と空調対象空間へ送風される空気とを熱交換させて空気に放熱させる放熱部(12、20、22)と、
冷媒を減圧させるとともに、冷媒の流路を閉じることが可能な第1減圧部(13)と、
第1減圧部で減圧された冷媒と空気とを熱交換させて空気から吸熱させることによって冷媒を蒸発させる第1蒸発部(14)と、
冷媒の流れにおいて第1減圧部と並列に配置され、冷媒を減圧させる第2減圧部(16)と、
第2減圧部で減圧された冷媒に吸熱させることによって冷媒を蒸発させる第2蒸発部(17)と、
第1減圧部が流路を閉じており、且つ冷媒に混入している冷凍機油が第1蒸発部に滞留していると判定された場合、流路を開けるように第1減圧部を制御するオイル回収制御を実行する制御部(60)と、
空気を送風する送風機(53)とを備え、
制御部は、
第1蒸発部の熱交換負荷が高いほど圧縮機の冷媒吐出能力を高くし、
空調負荷(TAO)に応じた送風機の風量である通常風量を決定し、
オイル回収制御を実行している場合、送風機の風量を通常風量よりも増加させる。
これにより、請求項1に記載の冷凍サイクル装置と同様の作用効果を奏することができる。
【0011】
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【図面の簡単な説明】
【0012】
図1】第1実施形態における冷凍サイクル装置の全体構成図である。
図2】第1実施形態における冷凍サイクル装置の電気制御部を示すブロック図である。
図3】第1実施形態における冷凍サイクル装置の冷房モードでの作動状態を示す全体構成図である。
図4】第1実施形態における冷凍サイクル装置の暖房モードでの作動状態を示す全体構成図である。
図5】第1実施形態における冷凍サイクル装置の除湿暖房モードでの作動状態を示す全体構成図である。
図6】第1実施形態における冷凍サイクル装置の電池冷却モードでの作動状態を示す全体構成図である。
図7】第1実施形態の制御装置が実行する制御処理の一部を示すフローチャートである。
図8】第1実施形態の制御装置が実行する制御処理の一部を示すフローチャートである。
図9】第2実施形態の制御装置が実行する制御処理の一部を示すフローチャートである。
図10】第3実施形態における冷凍サイクル装置の全体構成図である。
【発明を実施するための形態】
【0013】
(第1実施形態)
以下、実施形態について図に基づいて説明する。図1に示す車両用空調装置1は、車室内空間(換言すれば、空調対象空間)を適切な温度に調整する空調装置である。車両用空調装置1は、冷凍サイクル装置10を有している。本実施形態では、冷凍サイクル装置10を、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に搭載されている。
【0014】
本実施形態のハイブリッド自動車は、車両停車時に外部電源(換言すれば商用電源)から供給された電力を、車両に搭載された電池(換言すれば車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
【0015】
エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、冷凍サイクル装置10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
【0016】
冷凍サイクル装置10は、圧縮機11、凝縮器12、レシーバ18、第1膨張弁13、
空気用蒸発器14、定圧弁15、第2膨張弁16および冷却用蒸発器17を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。
【0017】
圧縮機11は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。圧縮機11は、ベルトによって駆動される可変容量圧縮機であってもよい。
【0018】
凝縮器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路20の冷却水とを熱交換させることによって高圧側冷媒を凝縮させる高圧側冷媒熱媒体熱交換器である。
【0019】
高温冷却水回路20の冷却水は、熱媒体としての流体である。高温冷却水回路20の冷却水は高温熱媒体である。本実施形態では、高温冷却水回路20の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。高温冷却水回路20は、高温熱媒体が循環する高温熱媒体回路である。
【0020】
レシーバ18は、凝縮器12から流出した冷媒の気液を分離して液相冷媒を下流側に流出させるとともに、サイクルの余剰冷媒を貯える気液分離部である。レシーバ18から流出した液相冷媒の流れは、分岐部10aにて分岐される。
【0021】
第1膨張弁13は、レシーバ18から流出した液相冷媒を減圧膨張させる第1減圧部である。第1膨張弁13は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒の流路の開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。
【0022】
第1膨張弁13は、冷媒の流路を全閉する全閉機能付きの可変絞り機構で構成されている。つまり、第1膨張弁13は、冷媒の流路を全閉にすることで冷媒の流れを遮断することができる。第1膨張弁13の作動は、図2に示す制御装置60から出力される制御信号によって制御される。
【0023】
空気用蒸発器14は、第1膨張弁13から流出した冷媒と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を冷却する冷媒空気熱交換器である。空気用蒸発器14は、車室内へ送風される空気から冷媒に吸熱させて冷媒を蒸発させる第1蒸発部である。
【0024】
定圧弁15は、空気用蒸発器14の出口側における冷媒の圧力を所定値に維持する圧力調整部(換言すれば圧力調整用減圧部)である。定圧弁15は、機械式の可変絞り機構で構成されている。具体的には、定圧弁15は、空気用蒸発器14の出口側における冷媒の圧力が所定値を下回ると冷媒の流路の面積(すなわち絞り開度)を減少させ、空気用蒸発器14の出口側における冷媒の圧力が所定値を超えると冷媒の流路の面積(すなわち絞り開度)を増加させる。
【0025】
サイクルを循環する循環冷媒流量の変動が少ない場合等には、定圧弁15に代えて、オリフィス、キャピラリチューブ等からなる固定絞りを採用してもよい。
【0026】
第2膨張弁16および冷却用蒸発器17は、冷媒の流れにおいて、第1膨張弁13、空気用蒸発器14および定圧弁15に対して並列に配置されている。
【0027】
第2膨張弁16は、凝縮器12から流出した液相冷媒を減圧膨張させる第2減圧部である。第2膨張弁16は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒の流路の開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。
【0028】
第2膨張弁16は、冷媒の流路を全閉する全閉機能付きの可変絞り機構で構成されている。つまり、第2膨張弁16は、冷媒の流路を全閉にすることで冷媒の流れを遮断することができる。第2膨張弁16は、制御装置60から出力される制御信号によって、その作動が制御される。
【0029】
冷却用蒸発器17は、第2膨張弁16を流出した低圧冷媒と低温冷却水回路30の冷却水とを熱交換させることによって冷却水を冷却する低圧側冷媒熱媒体熱交換器である。冷却用蒸発器17は、冷却水から冷媒に吸熱させて冷媒を蒸発させる第2蒸発部である。冷却用蒸発器17で蒸発した気相冷媒は、定圧弁15から流出した冷媒と合流部10にて合流した後、圧縮機11に吸入されて圧縮される。
【0030】
低温冷却水回路30の冷却水は、熱媒体としての流体である。低温冷却水回路30の冷却水は低温熱媒体である。本実施形態では、低温冷却水回路30の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。低温冷却水回路30は、低温熱媒体が循環する低温熱媒体回路である。
【0031】
高温冷却水回路20には、凝縮器12、高温側ポンプ21、ヒータコア22、高温側ラジエータ23、開閉弁24および電気ヒータ25が配置されている。
【0032】
高温側ポンプ21は、冷却水を吸入して吐出する熱媒体ポンプである。高温側ポンプ21は電動式のポンプである。高温側ポンプ21は、高温冷却水回路20を循環する冷却水の流量を調整する高温側流量調整部である。低温側ポンプ31は、低温冷却水回路30を循環する冷却水の流量を調整する低温側流量調整部である。
【0033】
ヒータコア22は、高温冷却水回路20の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。ヒータコア22では、冷却水が車室内へ送風される空気に放熱する。凝縮器12、高温冷却水回路20およびヒータコア22は、圧縮機11から吐出された冷媒と車室内へ送風される空気とを熱交換させて空気に放熱させる放熱部である。
【0034】
高温側ラジエータ23は、高温冷却水回路20の冷却水と外気とを熱交換させる高温熱媒体外気熱交換器である。高温側ラジエータ23および開閉弁24は、高温側冷却水の流れにおいて、ヒータコア22に対して並列に配置されている。
【0035】
開閉弁24は、高温側ラジエータ23側の冷却水流路を開閉する電磁弁である。開閉弁24の作動は、制御装置60によって制御される。開閉弁24は、高温冷却水回路20における冷却水の流れを切り替える高温切替部である。
【0036】
開閉弁24は、サーモスタットであってもよい。サーモスタットは、温度によって体積変化するサーモワックスによって弁体を変位させて冷却水流路を開閉する機械的機構を備える冷却水温度応動弁である。
【0037】
電気ヒータ25は、高温冷却水回路20の冷却水を補助的に加熱する補助加熱部である。電気ヒータ25は、ヒータコア22で空気を加熱するための補助的な熱源である。電気ヒータ25としては、電力を供給されることによって発熱するPTCヒータ等を採用することができる。電気ヒータ25は、ジュール熱を発生するジュール熱発生部である。電気ヒータ25の発熱量は、制御装置60から出力される制御電圧によって制御される。
【0038】
低温冷却水回路30には、冷却用蒸発器17、低温側ポンプ31、低温側ラジエータ32、電池33および三方弁38が配置されている。
【0039】
低温側ポンプ31は、冷却水を吸入して吐出する熱媒体ポンプである。低温側ポンプ31は電動式のポンプである。低温側ラジエータ32は、低温冷却水回路30の冷却水と外気とを熱交換させる低温熱媒体外気熱交換器である。
【0040】
電池33は、車両に搭載された車載機器であり、作動に伴って発熱する発熱機器である。電池33は、作動に伴って発生する廃熱を低温冷却水回路30の冷却水に放熱する。換言すれば、電池33は、低温冷却水回路30の冷却水に熱を供給する。
【0041】
低温側ラジエータ32および電池33は、低温側冷却水の流れにおいて互いに並列に配置されている。三方弁38は、低温側ラジエータ32および電池33に対する低温側冷却水の流れを切り替える。三方弁38の作動は、制御装置60によって制御される。
【0042】
空気用蒸発器14およびヒータコア22は、図1に示す室内空調ユニット50のケーシング51(以下、空調ケーシングと言う。)に収容されている。室内空調ユニット50は、車室内前部の図示しない計器盤の内側に配置されている。空調ケーシング51は、空気通路を形成する空気通路形成部材である。
【0043】
ヒータコア22は、空調ケーシング51内の空気通路において、空気用蒸発器14の空気流れ下流側に配置されている。空調ケーシング51には、内外気切替箱52と室内送風機53とが配置されている。内外気切替箱52は、内外気切替ドア52aを有している。内外気切替ドア52aは、空調ケーシング51内の空気通路に内気と外気とを切替導入する内外気切替部である。内外気切替ドア52aは、空調ケーシング51内の空気通路に導入される内気と外気との比率を調整する内外気調整部である。
【0044】
室内送風機53は、内外気切替箱52を通して空調ケーシング51内の空気通路に導入された内気および外気を吸入して送風する。内外気切替ドア52aおよび室内送風機53は、制御装置60によって制御される。
【0045】
空調ケーシング51内の空気通路において空気用蒸発器14とヒータコア22との間には、エアミックスドア54が配置されている。エアミックスドア54は、空気用蒸発器14を通過した冷風のうちヒータコア22に流入する冷風と冷風バイパス通路55を流れる冷風との風量割合を調整する。
【0046】
冷風バイパス通路55は、空気用蒸発器14を通過した冷風がヒータコア22をバイスして流れる空気通路である。
【0047】
エアミックスドア54は、空調ケーシング51に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア54の開度位置を調整することによって、空調ケーシング51から車室内に吹き出される空調風の温度を所望温度に調整できる。
【0048】
エアミックスドア54の回転軸は、サーボモータによって駆動される。サーボモータの作動は、制御装置60によって制御される。
【0049】
エアミックスドア54は、空気流れと略直交する方向にスライド移動するスライドドアであってもよい。スライドドアは、剛体で形成された板状のドアであってもよいし。可撓性を有するフィルム材で形成されたフィルムドアであってもよい。
【0050】
エアミックスドア54によって温度調整された空調風は、空調ケーシング51に形成された吹出口56から車室内へ吹き出される。
【0051】
図2に示す制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置60の出力側には各種制御対象機器が接続されている。制御装置60は、各種制御対象機器の作動を制御する制御部である。
【0052】
制御装置60によって制御される制御対象機器は、圧縮機11、第1膨張弁13、第2膨張弁16、高温側ポンプ21、開閉弁24、電気ヒータ25、低温側ポンプ31、三方弁38、内外気切替ドア52aおよび室内送風機53等である。
【0053】
制御装置60のうち圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、冷媒吐出能力制御部である。制御装置60のうち第1膨張弁13を制御するソフトウェアおよびハードウェアは、第1絞り制御部である。制御装置60のうち第2膨張弁16を制御するソフトウェアおよびハードウェアは、第2絞り制御部である。
【0054】
制御装置60のうち高温側ポンプ21を制御するソフトウェアおよびハードウェアは、高温熱媒体流量制御部である。制御装置60のうち開閉弁24を制御するソフトウェアおよびハードウェアは、開閉弁制御部である。
【0055】
制御装置60のうち電気ヒータ25を制御するソフトウェアおよびハードウェアは、補助加熱制御部である。制御装置60のうち低温側ポンプ31を制御するソフトウェアおよびハードウェアは、低温熱媒体流量制御部である。制御装置60のうち三方弁38を制御するソフトウェアおよびハードウェアは、三方弁制御部である。
【0056】
制御装置60の入力側には、内気温度センサ61、外気温度センサ62、日射量センサ63、蒸発器温度センサ64、ヒータコア温度センサ65、冷媒圧力センサ66、高温冷却水温度センサ67、低温冷却水温度センサ68、窓表面湿度センサ69等の種々の制御用センサ群が接続されている。
【0057】
内気温度センサ61は車室内温度Trを検出する。外気温度センサ62は外気温Tamを検出する。日射量センサ63は車室内の日射量Asを検出する。
【0058】
蒸発器温度センサ64は、冷却用蒸発器17の温度TEを検出する温度検出部である。蒸発器温度センサ64は、例えば、冷却用蒸発器17の熱交換フィンの温度を検出するフィンサーミスタや、冷却用蒸発器17を流れる冷媒の温度を検出する冷媒温度センサ等である。
【0059】
ヒータコア温度センサ65は、ヒータコア22の温度THを検出する温度検出部である。ヒータコア温度センサ65は、例えば、ヒータコア22の熱交換フィンの温度を検出するフィンサーミスタや、ヒータコア22を流れる冷却水の温度を検出する冷媒温度センサ、ヒータコア22から流出した空気の温度を検出する空気温度センサ等である。
【0060】
冷媒圧力センサ66は、圧縮機11から吐出された冷媒の圧力を検出する冷媒圧力検出部である。冷媒圧力センサ66の代わりに冷媒温度センサが制御装置60の入力側に接続されていてもよい。冷媒温度センサは、圧縮機11から吐出された冷媒の温度を検出する冷媒圧力検出部である。制御装置60は、冷媒の温度に基づいて冷媒の圧力を推定してもよい。
【0061】
高温冷却水温度センサ67は、高温冷却水回路20の冷却水の温度を検出する温度検出部である。例えば、高温冷却水温度センサ67は、凝縮器12の冷却水の温度を検出する。
【0062】
低温冷却水温度センサ68は、低温冷却水回路30の冷却水の温度を検出する温度検出部である。例えば、低温冷却水温度センサ68は、冷却用蒸発器17の冷却水の温度を検出する。
【0063】
窓表面湿度センサ69は、窓近傍湿度センサ、窓近傍空気温度センサおよび窓表面温度センサで構成されている。
【0064】
窓近傍湿度センサは、車室内のフロントガラス近傍の車室内空気の相対湿度(以下、窓近傍相対湿度と言う。)を検出する。窓近傍空気温度センサは、フロントガラス近傍の車室内空気の温度を検出する。窓表面温度センサは、フロントガラスの表面温度を検出する。
【0065】
制御装置60の入力側には、図示しない各種操作スイッチが接続されている。各種操作スイッチは操作パネル70に設けられており、乗員によって操作される。操作パネル70は車室内前部の計器盤付近に配置されている。制御装置60には、各種操作スイッチからの操作信号が入力される。
【0066】
各種操作スイッチは、エアコンスイッチ、温度設定スイッチ等である。エアコンスイッチは、室内空調ユニット50にて空気の冷却を行うか否かを設定する。温度設定スイッチは、車室内の設定温度を設定する。
【0067】
次に、上記構成における作動を説明する。制御装置60は、目標吹出温度TAO等に基づいて空調の運転モードを、図3に示す冷房モード、図4に示す暖房モードおよび図5に示す除湿暖房モードのいずれかに切り替える。
【0068】
目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。目標吹出温度TAOは、車両用空調装置1に要求される空調負荷(換言すれば、空調熱負荷)を示す指標である。制御装置60は、目標吹出温度TAOを以下の数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
この数式において、Tsetは操作パネル70の温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ61によって検出された内気温、Tamは外気温度センサ62によって検出された外気温、Asは日射量センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
【0069】
制御装置60は、暖房モードにおいて、車両の窓が曇る可能性があると判定した場合、除湿暖房モードに切り替える。例えば、制御装置60は、暖房モードにおいて、窓表面湿度センサ69の検出値に基づいて車室内側表面の相対湿度RHW(以下、窓表面相対湿度と言う。)を算出し、車室内側表面の相対湿度RHWに基づいて車両の窓が曇る可能性があるか否かを判定する。
【0070】
窓表面相対湿度RHWは、フロントガラスが曇る可能性を表す指標である。具体的には、窓表面相対湿度RHWの値が大きいほど、フロントガラスが曇る可能性が高いことを意味する。
【0071】
次に、冷房モード、暖房モードおよび除湿暖房モードにおける作動について説明する。
【0072】
(冷房モード)
冷房モードでは、制御装置60が、第1膨張弁13を絞り状態とし、第2膨張弁16を全閉状態とする。
【0073】
制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
【0074】
圧縮機11出力される制御信号(換言すれば、圧縮機11の回転数)については、目標蒸発器温度TEOと冷却用蒸発器17の温度TEとの偏差に基づいて、フィードバック制御手法により、冷却用蒸発器17の温度TEが目標蒸発器温度TEOに近づくように決定される。
【0075】
目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。
【0076】
室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、目標吹出温度TAOに基づいて決定される。例えば、室内送風機53へ出力される制御信号は、目標吹出温度TAOの高温域および低温域では室内送風機53の風量が多くなるように決定される。
【0077】
第1膨張弁13へ出力される制御信号(換言すれば、第1膨張弁13の絞り開度)については、圧縮機11へ流入する冷媒の過熱度が、サイクルの成績係数(いわゆるCOP)を最大値に近づくように予め定められた目標過熱度に近づくように決定される。
【0078】
エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が図3に示す位置に操作されてヒータコア22の空気通路を閉塞し、空気用蒸発器14を通過した送風空気の全流量がヒータコア22の空気通路を迂回して流れるように決定される。
【0079】
冷房モードでは、圧縮機11および高温側ポンプ21を作動させる。冷房モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を開ける。これにより、高温冷却水回路20では、図3の太実線に示すように、高温側ラジエータ23に冷却水が循環してラジエータ23で冷却水から外気に放熱される。
【0080】
このとき、ヒータコア22にも高温冷却水回路20の冷却水が循環するが、エアミックスドア54がヒータコア22の空気通路を閉塞しているので、ヒータコア22では冷却水から空気への放熱が殆ど行われない。
【0081】
冷房モード時の冷凍サイクル装置10では、図3の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、以下のように変化する。
【0082】
すなわち、圧縮機11から吐出された高圧冷媒が凝縮器12に流入する。凝縮器12に流入した冷媒は、高温冷却水回路20の冷却水に放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。
【0083】
凝縮器12から流出した冷媒は、第1膨張弁13へ流入して、第1膨張弁13にて低圧冷媒となるまで減圧膨張される。第1膨張弁13にて減圧された低圧冷媒は、空気用蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却される。
【0084】
そして、空気用蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
【0085】
以上の如く、冷房モードでは、空気用蒸発器14にて低圧冷媒に空気から吸熱させて、冷却された空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。
【0086】
冷房モードでは、電池33を冷却する必要がある場合、第2膨張弁16を絞り状態とするとともに低温側ポンプ31を作動させる。
【0087】
これにより、図3の実線矢印に示すように、凝縮器12から流出した冷媒は、第2膨張弁16へ流入して、第2膨張弁16にて低圧冷媒となるまで減圧膨張される。第2膨張弁16にて減圧された低圧冷媒は、冷却用蒸発器17に流入し、低温冷却水回路30の冷却水から吸熱して蒸発する。これにより、低温冷却水回路30の冷却水が冷却される。
【0088】
電池33を冷却する必要がある場合、三方弁38は、図3の実線矢印に示すように、低温冷却水回路30の冷却水が電池33に循環する状態にする。これにより、低温冷却水回路30の冷却水によって電池33が冷却される。
【0089】
(暖房モード)
暖房モードでは、制御装置60は、第1膨張弁13を全閉状態とし、第2膨張弁16を絞り状態とする。
【0090】
制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
【0091】
圧縮機11出力される制御信号(換言すれば、圧縮機11の回転数)については、目標ヒータコア温度THOとヒータコア22の温度THとの偏差に基づいて、フィードバック制御手法により、ヒータコア22の温度THが目標ヒータコア温度THOに近づくように決定される。
【0092】
目標ヒータコア温度THOは、目標吹出温度TAOに基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標ヒータコア温度THOが上昇するように決定される。
【0093】
圧縮機11出力される制御信号は、目標凝縮器温度TCOと凝縮器12の温度TCとの偏差に基づいて、フィードバック制御手法により、凝縮器12の温度TCが標凝縮器温度TCOに近づくように決定されてもよい。
【0094】
室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、冷房モードと同様に、目標吹出温度TAOに基づいて決定される。例えば、室内送風機53へ出力される制御信号は、目標吹出温度TAOの高温域および低温域では室内送風機53の風量が多くなるように決定される。目標吹出温度TAOに基づいて決定される室内送風機53の風量を、以下、通常風量と言う。
【0095】
圧縮機11を起動した直後の暖機中においては、室内送風機53の風量が、通常風量よりも少ない暖機風量に決定される。これにより、暖機時に冷たい空気が乗員に吹き出されて乗員が寒気を感じることを抑制する。
【0096】
すなわち、冷凍サイクル装置10の暖機中は吹出空気温度を十分に高くすることができず乗員が吹出空気によって寒気を感じてしまうので、室内送風機53の風量が、通常風量よりも少ない暖機風量に決定される。
【0097】
例えば、圧縮機11を起動してからの経過時間が所定時間以下である場合、室内送風機53の風量が暖機風量に決定される。室内空調ユニット50の吹出空気温度が所定温度以下である場合、室内送風機53の風量が暖機風量に決定されてもよい。ヒータコア22の温度THが所定温度以下である場合、室内送風機53の風量が暖機風量に決定されてもよい。
【0098】
第2膨張弁16へ出力される制御信号については、冷却用蒸発器17から流出した冷媒の過熱度が、予め定められた目標過熱度に近づくように決定される。目標過熱度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。
【0099】
エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が図4に示す位置に操作されてヒータコア22の空気通路を全開し、空気用蒸発器14を通過した送風空気の全流量がヒータコア22の空気通路を通過するように決定される。
【0100】
暖房モードでは、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させる。暖房モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を閉じる。これにより、図4の高温冷却水回路20中の太実線に示すように、ヒータコア22に高温冷却水回路20の冷却水が循環してヒータコア22で冷却水から、車室内へ送風される空気に放熱される。
【0101】
暖房モードでは、三方弁38が低温側ラジエータ32側の冷却水流路を開ける。これにより、図4の低温冷却水回路30中の太実線に示すように、低温側ラジエータ32に低温冷却水回路30の冷却水が循環する。
【0102】
暖房モードの冷凍サイクル装置10では、図4の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、次のように変化する。
【0103】
すなわち、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、高温冷却水回路20の冷却水が加熱される。
【0104】
凝縮器12から流出した冷媒は、第2膨張弁16に流入し、低圧冷媒となるまで減圧される。そして、第2膨張弁16にて減圧された低圧冷媒は、冷却用蒸発器17に流入して、低温冷却水回路30の冷却水から吸熱して蒸発する。
【0105】
そして、冷却用蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
【0106】
以上の如く、暖房モードでは、圧縮機11から吐出された高圧冷媒の有する熱を凝縮器12にて高温冷却水回路20の冷却水に放熱させ、高温冷却水回路20の冷却水が有する熱をヒータコア22にて空気に放熱させ、ヒータコア22で加熱された空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。
【0107】
低温冷却水回路30の冷却水が低温側ラジエータ32を循環するので、外気から低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。したがって、外気の熱を車室内の暖房に利用できる。
【0108】
暖房モードの低温冷却水回路30では、図4の実線矢印に示すように、低温冷却水回路30の冷却水を電池33にも循環させることによって、電池33の廃熱を低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。
【0109】
したがって、電池33の廃熱を車室内の暖房に利用できる。また、電池33の廃熱を、低温側ラジエータ32の除霜に利用できる。
【0110】
なお、低温冷却水回路30の冷却水を電池33にも循環させることによって、電池33の廃熱を車室内の暖房や除霜に利用できる。
【0111】
(除湿暖房モード)
除湿暖房モードでは、制御装置60は、第1膨張弁13を絞り全閉状態とし、第2膨張弁16を全閉状態とする。
【0112】
制御装置60は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
【0113】
圧縮機11出力される制御信号(換言すれば、圧縮機11の回転数)、および室内送風機53へ出力される制御信号(換言すれば、室内送風機53の風量)については、暖房モードと同様に決定される。
【0114】
第1膨張弁13へ出力される制御信号については、空気用蒸発器14から流出した冷媒の過熱度が、予め定められた目標過熱度に近づくように決定される。目標過熱度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。
【0115】
エアミックスドア54のサーボモータへ出力される制御信号については、エアミックスドア54が、図5に示す位置に操作されてヒータコア22の空気通路を全開し、空気用蒸発器14を通過した送風空気の全流量がヒータコア22の空気通路を通過するように決定される。
【0116】
除湿暖房モードでは、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させる。
【0117】
除湿暖房モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を閉じる。これにより、除湿暖房モードの高温冷却水回路20では、図5の太実線に示すように、ヒータコア22に高温冷却水回路20の冷却水が循環してヒータコア22で冷却水から、車室内へ送風される空気に放熱される。
【0118】
除湿暖房モードの冷凍サイクル装置10では、図5の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、次のように変化する。
【0119】
すなわち、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、高温冷却水回路20の冷却水が加熱される。
【0120】
凝縮器12から流出した冷媒は、第1膨張弁13に流入し、低圧冷媒となるまで減圧される。そして、第1膨張弁13にて減圧された低圧冷媒は、空気用蒸発器14に流入し、車室内へ送風される空気から吸熱して蒸発する。これにより、車室内へ送風される空気が冷却除湿される。そして、空気用蒸発器14から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
【0121】
以上の如く、除湿暖房モードでは、圧縮機11から吐出された高圧冷媒の有する熱を凝縮器12にて高温冷却水回路20の冷却水に放熱させ、高温冷却水回路20の冷却水が有する熱をヒータコア22にて空気に放熱させる。
【0122】
また、第2膨張弁16にて減圧された低圧冷媒に、空気用蒸発器14にて車室内へ送風される空気から吸熱させ、空気用蒸発器14で冷却除湿された空気を、ヒータコア22で加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。
【0123】
除湿暖房モードにおいて、第2膨張弁16を絞り状態とすることによって、第2膨張弁16にて減圧された低圧冷媒が冷却用蒸発器17に流入して、低温冷却水回路30の冷却水から吸熱して蒸発する。
【0124】
そして、低温冷却水回路30では、図5の太実線に示すように、低温側ラジエータ32に低温冷却水回路30の冷却水を循環させることによって、外気から低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。したがって、外気の熱を車室内の暖房に利用できる。
【0125】
また、図5の実線矢印に示すように、冷却用蒸発器17で冷却された冷却水を電池33にも循環させることによって、電池33の廃熱を低温冷却水回路30の冷却水に吸熱させ、冷却用蒸発器17にて低温冷却水回路30の冷却水から低圧冷媒に吸熱させることができる。したがって、電池33の廃熱を車室内の暖房に利用できる。
【0126】
このように、本実施形態の車両用空調装置1では、空気用蒸発器14および冷却用蒸発器17に対する冷媒流れと、高温冷却水回路20および低温冷却水回路30における冷却水流れとを切り替えることによって、車室内の適切な冷房、暖房および除湿暖房を実行することができ、ひいては車室内の快適な空調を実現することができる。
【0127】
(電池冷却モード)
空調がOFFされているときに電池33を冷却する必要がある場合、制御装置60は電池冷却モードを実行する。
【0128】
電池冷却モードでは、制御装置60は、第1膨張弁13を全閉状態とし、第2膨張弁16を絞り状態とする。
【0129】
制御装置60は、電池33の目標温度、センサ群の検出信号等に基づいて、制御装置60に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。
【0130】
圧縮機11の制御へ出力される制御信号(換言すれば、圧縮機11の回転数)については、池33の目標温度と電池33の温度との偏差に基づいて、フィードバック制御手法により、電池33の温度が目標温度に近づくように決定される。
【0131】
第2膨張弁16へ出力される制御信号については、冷却用蒸発器17から流出した冷媒の過熱度が、予め定められた目標過熱度に近づくように決定される。目標過熱度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。
【0132】
電池冷却モードでは、圧縮機11、高温側ポンプ21、低温側ポンプ31を作動させる。電池冷却モードでは、開閉弁24は、高温側ラジエータ23側の冷却水流路を開ける。これにより、図6の高温冷却水回路20中の太実線に示すように、高温側ラジエータ23に高温冷却水回路20の冷却水が循環してラジエータ23で冷却水から外気に放熱される。
【0133】
電池冷却モードでは、三方弁38は、低温冷却水回路30の冷却水が電池33に循環する状態にする。これにより、低温冷却水回路30の冷却水によって電池33が冷却される。
【0134】
電池冷却モードの冷凍サイクル装置10では、図6の太実線に示すように冷媒が流れ、サイクルを循環する冷媒の状態については、次のように変化する。
【0135】
すなわち、圧縮機11から吐出された高圧冷媒は、凝縮器12へ流入して、高温冷却水回路20の冷却水と熱交換して放熱する。これにより、凝縮器12で冷媒が冷却されて凝縮する。
【0136】
凝縮器12から流出した冷媒は、第2膨張弁16に流入し、低圧冷媒となるまで減圧される。そして、第2膨張弁16にて減圧された低圧冷媒は、冷却用蒸発器17に流入して、低温冷却水回路30の冷却水から吸熱して蒸発する。
【0137】
そして、冷却用蒸発器17から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。
【0138】
以上の如く、電池冷却モードでは、冷却用蒸発器17にて低温冷却水回路30の冷却水が冷却され、低温冷却水回路30の冷却水が電池33に循環して電池33が冷却される。
【0139】
次に、本実施形態のオイル回収制御について説明する。制御装置60は、空気用蒸発器14でのオイル寝込みを防止するため、図7のフローチャートに示すオイル回収制御を実行する。空気用蒸発器14でのオイル寝込みとは、冷媒中に混入された冷媒が空気用蒸発器14に滞留する現象のことである。
【0140】
まずステップS100では、冷却用蒸発器17の単独運転であるか否かが判定される。すなわち、暖房モードまたは電池冷却モードであるか否かが判定される。具体的には、空気用蒸発器14への冷媒の流入が遮断され、冷却用蒸発器17に冷媒が流入する運転状態である場合、冷却用蒸発器17の単独運転であると判定される。
【0141】
ステップS100にて冷却用蒸発器17の単独運転であると判定された場合、ステップS110へ進み、今回の寝込み量カウンタtnの値として、前回の寝込み量カウンタtn-1の値に所定値dtが加算された値が決定されてステップS120へ進む。ステップS100にて冷却用蒸発器17の単独運転であると判定されなかった場合、ステップS150へ進み、寝込み量カウンタtnの値が0にリセットされてステップS100へ戻る。
【0142】
ステップS120では、寝込み量カウンタtnの値が閾値α1を上回ったか否かが判定される。ステップS120にて寝込み量カウンタtnの値が閾値α1を上回ったと判定された場合、オイル寝込みがあると判断してステップS140へ進む。ステップS120にて寝込み量カウンタtnの値が閾値α1を上回っていないと判定された場合、ステップS130へ進み、圧縮機11が停止状態から起動状態になったか否かが判定される。
【0143】
ステップS130にて圧縮機11が停止状態から起動状態になったと判定された場合、オイル寝込みがあると判断してステップS140へ進む。ステップS130にて圧縮機11が停止状態から起動状態になっていないと判定された場合、オイル寝込みがないと判断してステップS100へ戻る。
【0144】
ステップS140では、オイル回収制御が行われる。ステップS140のオイル回収制御では、図8に示すように、まずステップS1410にて第1膨張弁13を開弁する。これにより、空気用蒸発器14に冷媒が流れるので、空気用蒸発器14に滞留した冷凍機油を圧縮機11に戻すことができる。
【0145】
このとき、第1膨張弁13を周期的に開閉させれば、空気用蒸発器14の冷媒流れが脈動するので空気用蒸発器14に滞留した冷凍機油が回収されやすくなる。圧縮機11の回転数を周期的に増減させることによって空気用蒸発器14の冷媒流れを脈動させてもよい。
【0146】
このとき、空気用蒸発器14に流入する冷媒の流量が、冷却用蒸発器17に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16の開度を決定すれば、空気用蒸発器14に滞留している冷凍機油を効果的に回収できる。
【0147】
冷却用蒸発器17に流入する冷媒の流量が、空気用蒸発器14に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16の開度を決定すれば、冷却用蒸発器17での吸熱量の減少を極力抑制できる。
【0148】
ステップS1420では、空気用蒸発器14通過後の空気をヒータコア22で加熱できるようにする。具体的には、室内送風機53および高温側ポンプ21を作動させ、ヒータコア22の空気通路を開くようにエアミックスドア54を操作する。
【0149】
これにより、オイル回収時に車室内に不快な臭いが発生することを抑制できる。すなわち、空気用蒸発器14に冷媒が流れることで空気用蒸発器14で空気中の水分が凝縮または凍結して臭いが発生しやすくなるが、空気用蒸発器14通過後の空気をヒータコア22で加熱することによって、空気用蒸発器14通過後の空気の相対湿度を低下させて臭いを感じにくくすることができる。
【0150】
ステップS1430では、第2膨張弁16を全閉状態にするとともに電気ヒータ25を作動させる。これにより、空気用蒸発器14における冷媒流量が増えるので空気用蒸発器14に滞留した冷凍機油が回収されやすくなる。電気ヒータ25を作動させることで、車室内への吹出空気温度の低下を抑制できる。すなわち、冷却用蒸発器17に冷媒が流れなくなることで冷却用蒸発器17での吸熱量が減少し、凝縮器12での冷却水の加熱量が減少する場合があることから、電気ヒータ25を作動させることで凝縮器12での冷却水の加熱量の減少を補うことができ、ひいてはヒータコア22での空気の加熱量の減少を抑制できる。
【0151】
ステップS1440では、空調ケーシング51に導入される空気の内気率が増加するように内外気切替ドア52aを制御するとともに、空調ケーシング51に導入される空気の風量が増加するように室内送風機53を制御する。
【0152】
空調ケーシング51に導入される空気の内気率が増加することで空気用蒸発器14に流入する空気の温度が上昇するので、空気用蒸発器14の熱交換負荷が増える。空調ケーシング51に導入される空気の風量が増加することで空気用蒸発器14の熱交換負荷が増える。空気用蒸発器14の熱交換負荷が増えると圧縮機11の回転数が増加するので空気用蒸発器14における冷媒流量が増えて空気用蒸発器14に滞留した冷凍機油が回収されやすくなる。
【0153】
空気用蒸発器14に流入する空気の温度が上昇することで、空気用蒸発器14に滞留した冷凍機油の温度も上昇して冷凍機油の粘性が低下するので冷凍機油が回収されやすくなる。
【0154】
ステップS1450では、ステップS1410にて第1膨張弁13を開弁してから所定時間T1(例えば10秒)が経過したか否かが判定される。ステップS1450にて所定時間T1が経過したと判定された場合、ステップS1460へ進みオイル回収制御を終了する。すなわち、オイル回収制御を実行する前の制御状態に戻す。ステップS1450にて所定時間T1が経過していないと判定された場合、ステップS1450を繰り返す。
【0155】
本実施形態では、制御装置60は、第1膨張弁13が流路を閉じており、且つ冷凍機油が空気用蒸発器14に滞留していると判定された場合、オイル回収制御を実行する。オイル回収制御では、冷媒流路を開けるように第1膨張弁13が制御される。
【0156】
これによると、第1膨張弁13が冷媒流路を開けることによって空気用蒸発器14に冷媒が流れるので、空気用蒸発器14に滞留している冷凍機油を圧縮機11に戻すことができる。
【0157】
本実施形態では、制御装置60は、オイル回収制御を実行している場合、室内送風機53を作動させる。これにより、オイル回収制御時に空気用蒸発器14で冷却された空気を凝縮器12で加熱して車室内空間に吹き出すことができるので、オイル回収制御時に空気用蒸発器14で凝縮水が発生したり凝縮水が凍結したりしても、吹出空気の相対湿度を下げて臭いを感じにくくすることができる。
【0158】
本実施形態では、制御装置60は、オイル回収制御を実行している場合、圧縮機11の回転数(換言すれば、冷媒吐出能力)を増減させる回転数制御(換言すれば、吐出能力制御)、および第1膨張弁13の開度を増減させる開度制御のうち少なくとも一方を実行する。
【0159】
これにより、オイル回収制御時に空気用蒸発器14を流れる冷媒を脈動させて、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
【0160】
本実施形態では、制御装置60は、オイル回収制御を実行している場合、空気用蒸発器14に流入する冷媒の流量が、冷却用蒸発器17に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16を制御する。
【0161】
これにより、空気用蒸発器14を流れる冷媒の流量を極力増やして、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
【0162】
本実施形態では、制御装置60は、オイル回収制御を実行している場合、電気ヒータ25を作動させる。これにより、冷却用蒸発器17に流入する冷媒の流量が少なくなって冷却用蒸発器17での吸熱量が少なくなることによって凝縮器12での冷媒から冷却水への放熱量が少なくなっても、冷却水への放熱量を電気ヒータ25のジュール熱で補うことができる。そのため、オイル回収制御時に吹出空気温度を極力維持できる。
【0163】
本実施形態では、制御装置60は、オイル回収制御を実行している場合、冷却用蒸発器17に流入する冷媒の流量が、空気用蒸発器14に流入する冷媒の流量よりも多くなるように第1膨張弁13および第2膨張弁16を制御する。
【0164】
これにより、オイル回収時に冷却用蒸発器17に流入する冷媒の流量が減少することを極力抑制できるので、冷却用蒸発器17での吸熱量が減少することを極力抑制できる。そのため、凝縮器12での冷媒からの放熱量が減少することを極力抑制できるので、オイル回収制御時における吹出空気温度の変動を極力抑制できる。
【0165】
本実施形態では、制御装置60は、第1膨張弁13が所定時間以上閉弁されている場合、冷凍機油が空気用蒸発器14に滞留していると判定する。これにより、空気用蒸発器14に冷凍機油が滞留しているか否かを適切に判定できる。
【0166】
本実施形態では、制御装置60は、圧縮機11が停止状態から起動状態になり、且つ第1膨張弁13が流路を閉じている場合、オイル回収制御を実行する。これにより、圧縮機11が停止している間に空気用蒸発器14に冷媒が逆流することによって空気用蒸発器14に滞留した冷凍機油を速やかに圧縮機11に戻すことができる。
【0167】
本実施形態では、制御装置60は、空気用蒸発器14の熱交換負荷が高いほど圧縮機11の回転数を高くし、オイル回収制御を実行している場合、内気の比率が外気の比率よりも大きくなるように内外気切替ドア52aを制御する。
【0168】
これによると、オイル回収制御時に空気用蒸発器14の熱交換負荷を高めて圧縮機11の吐出冷媒流量を増加させることができるので、空気用蒸発器14に流入する冷媒の流量を増加させて、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
【0169】
空気用蒸発器14に流入する空気の温度を高めることで空気用蒸発器14に滞留している冷凍機油の粘性を低下させることができるので、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
【0170】
本実施形態では、制御装置60は、オイル回収制御を実行している場合、室内送風機53の風量を通常風量よりも増加させる。これによると、オイル回収制御時に空気用蒸発器14の熱交換負荷を高めて圧縮機11の吐出冷媒流量を増加させることができるので、空気用蒸発器14に流入する冷媒の流量を増加させて、空気用蒸発器14に滞留している冷凍機油を効果的に圧縮機11に戻すことができる。
【0171】
(第2実施形態)
上記実施形態では、空気用蒸発器14にオイル寝込みがある場合にオイル回収制御を実行するが、本実施形態では、空気用蒸発器14にオイル寝込みがあり且つ冷凍サイクル装置10の暖機中である場合にオイル回収制御を実行する。
【0172】
制御装置60は、空気用蒸発器14でのオイル寝込みを防止するため、図9のフローチャートに示すオイル回収制御を実行する。図9のフローチャートでは、上記第1実施形態の図7のフローチャートに対してステップS135が追加されている。
【0173】
ステップS120にて寝込み量カウンタtnが閾値α1を上回ったと判定された場合、オイル寝込みがあると判断してステップS135へ進む。ステップS120にて寝込み量カウンタtnが閾値α1を上回っていないと判定された場合、ステップS130へ進み、圧縮機11が停止状態から起動状態になったか否かが判定される。ステップS130にて圧縮機11が停止状態から起動状態になったと判定された場合、オイル寝込みがあると判断してステップS135へ進む。ステップS130にて圧縮機11が停止状態から起動状態になっていないと判定された場合、オイル寝込みがないと判断してステップS100へ戻る。
【0174】
ステップS135では、室内送風機53の風量が暖機風量以下で制御されている状態であるか否かが判定される。ステップS135にて、室内送風機53の風量が暖機風量で制御されている状態であると判定された場合、ステップS140へ進みオイル回収制御が行われる。これにより、室内送風機53の風量が少ない場合にオイル回収制御が行われることとなるので、オイル回収中に空気用蒸発器14に凝縮水が発生したり凝縮水が凍結して車室内に不快な臭いが発生することを抑制できる。空気用蒸発器14へ送風される風量が増加されることなくオイル回収が行われるので、冷凍サイクル装置10の暖機を遅らせることなくオイル回収を行うことができる。
【0175】
ステップS135にて、室内送風機53の風量が暖機風量で制御されている状態でないと判定された場合、オイル回収を行うと車室内に不快な臭いが発生するおそれがあると判断して、オイル回収を行うことなくステップ100へ戻る。
【0176】
本実施形態では、制御装置60は、冷凍機油が空気用蒸発器14に滞留していると判定され、且つ室内送風機53が暖機風量で制御されている場合、オイル回収制御を実行する。
【0177】
これにより、オイル回収制御時に空気用蒸発器14で凝縮水が発生したり凝縮水が凍結したりすることを抑制できるので、空気用蒸発器14で臭いが発生することを抑制できる。
【0178】
(第3実施形態)
上記実施形態では、圧縮機11の起動時にオイル回収制御を行うが、本実施形態では、圧縮機11の起動時のオイル回収制御を不要とすることを目的として、図10に示すように空気用蒸発器14の冷媒出口側に逆流防止弁19が配置されている。
【0179】
逆流防止弁19は、圧縮機11の停止後にレシーバ18に貯留された冷媒が空気用蒸発器14に逆流するのを防止する逆流防止部である。
【0180】
逆流防止弁19は、空気用蒸発器14の冷媒流れ下流側、かつ合流部10bの冷媒流れ上流側に配置されている。逆流防止弁19は、空気用蒸発器14から合流部10bへ向かって冷媒が流れることを許容し、合流部10bから空気用蒸発器14へ向かって冷媒が流れることを禁止する。
【0181】
逆流時の差圧は小さいことから、逆流防止弁19は、逆流時にバネの力で弁体を閉じるバネ式逆止弁が望ましい。逆流防止弁19は、制御装置60によって制御される電磁弁であってもよい。
【0182】
本実施形態では、圧縮機11の停止後にレシーバ18に貯留された冷媒が空気用蒸発器14に逆流するのを防止できるので、空気用蒸発器14に冷媒が逆流することによって空気用蒸発器14に冷凍機油が滞留することを抑制できる。
【0183】
本実施形態では、逆流防止弁19は、空気用蒸発器14から合流部10bへ向かって冷媒が流れることを許容し、合流部10bから空気用蒸発器14へ向かって冷媒が流れることを禁止する。
【0184】
これにより、圧縮機11が停止している間に空気用蒸発器14に冷媒が逆流することによって空気用蒸発器14に冷凍機油が滞留するという減少が発生することを抑制できる。
【0185】
(他の実施形態)
上記実施形態を例えば以下のように種々変形可能である。
【0186】
(1)上記実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。
【0187】
(2)上記実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
【0188】
また、上記実施形態の冷凍サイクル10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
【0189】
(3)上記実施形態では、高温側ラジエータ23と低温側ラジエータ32とが別々のラジエータになっているが、高温側ラジエータ23と低温側ラジエータ32とが1つのラジエータで構成されていてもよい。
【0190】
例えば、高温側ラジエータ23のタンクと低温側ラジエータ32のタンクとが互いに一体化されていることによって、高温側ラジエータ23と低温側ラジエータ32とが1つのラジエータで構成されていてもよい。
【0191】
(4)上記実施形態では、第1膨張弁13は、冷媒を減圧する減圧部と、冷媒の流路の開度を調整する開度調整部とが一体に構成されたものであるが、減圧部と開度調整部とが別体になっていてもよい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10