(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-20
(45)【発行日】2024-05-28
(54)【発明の名称】フィードフォワードアクティブノイズコントロール
(51)【国際特許分類】
G10K 11/178 20060101AFI20240521BHJP
【FI】
G10K11/178 100
G10K11/178 120
(21)【出願番号】P 2020543791
(86)(22)【出願日】2018-02-27
(86)【国際出願番号】 EP2018054811
(87)【国際公開番号】W WO2019166075
(87)【国際公開日】2019-09-06
【審査請求日】2021-01-26
【審判番号】
【審判請求日】2023-05-11
(73)【特許権者】
【識別番号】504147933
【氏名又は名称】ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(72)【発明者】
【氏名】ツォルナー, ユルゲン
(72)【発明者】
【氏名】クリストフ, マルクス
【合議体】
【審判長】畑中 高行
【審判官】樫本 剛
【審判官】高橋 宣博
(56)【参考文献】
【文献】特開平5-281979(JP,A)
【文献】米国特許第05852667(US,A)
【文献】特開2016-38416(JP,A)
【文献】特開2009-175534(JP,A)
【文献】米国特許出願公開第2010/0014685(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01H 1/00 - 17/00
G10K 11/00 - 13/00
H03F 1/00 - 3/45
H03F 3/50 - 3/52
H03F 3/62 - 3/64
H03F 3/68 - 3/72
H03G 1/00 - 3/34
H03H 15/00 - 15/02
H03H 17/00 - 17/08
H03H 19/00 - 21/00
H04B 1/00 - 1/14
H04B 15/00 - 15/06
H04R 3/00 - 3/14
H04S 1/00 - 7/00
(57)【特許請求の範囲】
【請求項1】
自動ノイズコントロールシステムであって、前記自動ノイズコントロールシステムは、
対象空間に存在する不要音に対応する参照信号を受信するように構成された参照入力経路と、
前記参照入力経路と動作可能に結合され、前記参照信号から、第1の信号を生成するように構成された一次経路と、
前記参照入力経路と動作可能に結合され、前記参照信号から、前記対象空間に存在する不要音を相殺するための相殺信号を生成するように構成されたアクティブノイズコントローラと、
前記アクティブノイズコントローラと動作可能に結合され、前記相殺信号に基づいて、前記対象空間に存在する前記不要音と減殺的に干渉する音を生成するように構成されたトランスデューサと、
前記トランスデューサと動作可能に結合され、前記トランスデューサによって生成された前記音から、第2の信号を生成するように構成された二次経路と、
前記一次経路及び前記二次経路と動作可能に結合され、前記第1の信号と前記第2の信号を合計するように構成された加算ノードと、
各々が前記アクティブノイズコントローラの上流及び下流にそれぞれ動作可能に結合され、前記参照信号と前記相殺信号の少なくとも1つを遅延させて、前記一次経路
のレイテンシ、前記二次経路
のレイテンシ、及び前記自動ノイズコントロールシステムのレイテンシに基づいて、レイテンシの差を補償するように構成された少なくとも2つの遅延要素と、
を備える、自動ノイズコントロールシステム。
【請求項2】
前記加算ノードと動作可能に結合され、前記対象空間に存在する音を表す誤差信号を生成するように構成されたエラーセンサをさらに備え、
前記アクティブノイズコントローラが、適応フィルタ及びフィルタコントローラを備え、
前記適応フィルタは、前記参照信号を受信し、制御可能な伝達関数で前記参照信号をフィルタリングすることによって前記相殺信号を提供するように構成され、
前記フィルタコントローラは、前記参照信号及び前記誤差信号を受信し、前記参照信号及び前記誤差信号に基づいて適応制御スキームに従って前記適応フィルタの前記伝達関数を制御するように構成されている、請求項1に記載のシステム。
【請求項3】
二次経路モデリングフィルタは、前記アクティブノイズコントローラに動作可能に結合されて、前記参照信号が前記アクティブノイズコントローラによって受信される前に前記参照信号を事前フィルタリングし、
前記二次経路モデリングフィルタは、前記二次経路の伝達関数の推定である伝達関数を有する、請求項2に記載のシステム。
【請求項4】
前記適応フィルタが時間領域で動作し、前記フィルタコントローラが周波数領域で動作する、請求項2または3に記載のシステム。
【請求項5】
前記フィルタコントローラの前記適応制御スキームが、合計クロススペクトルスキームを使用する、請求項4に記載のシステム。
【請求項6】
前記適応フィルタ及び前記フィルタコントローラが時間領域で動作する、請求項2または3に記載のシステム。
【請求項7】
前記フィルタコントローラの前記適応制御スキームが、最小二乗平均スキームを使用する、請求項6に記載のシステム。
【請求項8】
前記少なくとも2つの遅延要素が、ラッチ、レジスタ、ランタイム要素、またはフィルタのうちの1つである、請求項1~7のいずれかに記載のシステム。
【請求項9】
前記少なくとも2つの遅延要素がシフトレジスタである、請求項8に記載のシステム。
【請求項10】
前記少なくとも2つの遅延要素が、線形位相有限インパルス応答フィルタ及びオールパスフィルタのうちの少なくとも1つを備える、請求項8に記載のシステム。
【請求項11】
対象空間に存在する不要音に対応する参照信号を受信することと、
自動ノイズコントロールシステムの一次経路によって、前記参照信号に基づいて、第1の信号を生成することと、
前記参照信号に基づいて、前記対象空間に存在する前記不要音を表す相殺信号を生成することと、
前記相殺信号に基づいて、前記対象空間に存在する前記不要音と減殺的に干渉する音を生成することと、
前記自動ノイズコントロールシステムの二次経路によって、前記生成された音に基づいて、第2の信号を生成することと、
前記第1の信号と前記第2の信号を合計することと、
前記自動ノイズコントロールシステムのアクティブノイズコントローラの上流及び下流にそれぞれ動作可能に結合された
前記自動ノイズコントロールシステムの少なくとも2つの遅延要素を介して、前記参照信号と前記相殺信号の少なくとも1つを遅延させて、前記一次経路
のレイテンシ、前記二次経路
のレイテンシ、及び前記自動ノイズコントロールシステムのレイテンシに基づいて、レイテンシの差を補償することと、
を含む、音低減方法。
【請求項12】
前記対象空間に存在する音を表す誤差信号を生成することと、
前記参照信号を受信し、制御可能な伝達関数で前記参照信号をフィルタリングすることによって前記相殺信号を提供するように構成された適応フィルタリングと、
前記参照信号及び前記誤差信号を受信し、前記参照信号及び前記誤差信号に基づいて適応制御スキームに従って前記適応フィルタリングの前記伝達関数を制御するように構成された前記伝達関数を制御することと、
をさらに含む、請求項11に記載の方法。
【請求項13】
前記参照信号が前記アクティブノイズコントローラによって受信される前に前記参照信号を事前フィルタリングする二次経路モデリングフィルタリングをさらに備え、
前記アクティブノイズコントローラは、前記相殺信号を生成するように構成され、前記二次経路モデリングフィルタリングは、前記二次経路の伝達関数の推定である伝達関数に基づき、前記二次経路は、トランスデューサと加算ノードとの間にあり、前記トランスデューサは、前記アクティブノイズコントローラと動作可能に結合され、前記音を生成するように構成され、前記加算ノードは、前記一次経路及び前記二次経路と動作可能に結合され、前記第1の信号と前記第2の信号を合計するように構成され、前記加算ノードは、前記誤差信号を生成するように構成されたエラーセンサと動作可能に結合される、請求項12に記載の方法。
【請求項14】
前記適応フィルタリングが時間領域で実行され、前記適応フィルタリングの前記伝達関数の制御が周波数領域で実行される、請求項12または13に記載の方法。
【請求項15】
前記適応フィルタリングの前記伝達関数を制御するための前記適応制御スキームが、合計クロススペクトルスキームを使用する、請求項14に記載の方法。
【請求項16】
前記適応フィルタリングが時間領域で実行され、前記適応フィルタリングの前記伝達関数の制御が時間領域で実行される、請求項12または13に記載の方法。
【請求項17】
前記適応フィルタリングの前記伝達関数を制御するための前記適応制御スキームが、最小二乗平均スキームを使用する、請求項16に記載の方法。
【請求項18】
前記遅延が、ラッチ、レジスタ、ランタイム要素、またはフィルタのうちの1つを用いて実行される、請求項11~17のいずれかに記載の方法。
【請求項19】
前記遅延がシフトレジスタを用いて実行される、請求項18に記載の方法。
【請求項20】
前記遅延が、線形位相有限インパルス応答フィルタ及びオールパスフィルタのうちの少なくとも1つを用いて実行される、請求項18に記載の方法。
【請求項21】
コンピュータによって実行されたときに前記コンピュータに請求項11~20のいずれかに記載の方法を実行させる命令を備えるコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、アクティブノイズコントロールシステム及び方法(一般にシステムと称される)に関し、より詳細には、フィードフォワードアクティブノイズコントロールシステム及び方法に関する。
【背景技術】
【0002】
アクティブノイズコントロール(ANC)は、不要な音波と減殺的に干渉する音波を生成するのに使用される。減殺的に干渉する音波は、ラウドスピーカなどのトランスデューサによって、不要な音波と結合するように生成され得る。フィードバック構造、フィードフォワード構造、及びそれらの組み合わせといった様々なタイプのANC構造が存在する。フィードフォワードANCシステムは、ノイズなどの相殺されるべき不要な音を、ノイズ源の近くに配置されたマイクロフォンなどの参照センサを用いて拾得し、それに基づいて、ノイズが相殺されるべき対象空間においてラウドスピーカによって再生されるアンチノイズ信号を生成する。フィードバックANCシステムは、対象空間に配置されたマイクロフォンなどのエラーセンサしか使用せず、かくして、一次ノイズの予測可能なノイズ成分のみを相殺する。例えば標準最小二乗平均(LMS)アルゴリズムに基づきかつ適切なハードウェアによってサポートされているANC構造などのフィードフォワードANC構造は、通常、かなりの計算能力を必要とする。したがって、フィードフォワードANC構造の計算能力を削減する必要がある。
【発明の概要】
【課題を解決するための手段】
【0003】
自動ノイズコントロールシステムは、対象空間に存在する不要音に対応する参照信号を受信するように構成された参照入力経路と、参照入力経路と動作可能に結合されかつ参照信号から、対象空間に存在する不要音を相殺するための相殺信号を生成するように構成されたアクティブノイズコントローラとを含む。システムはさらに、アクティブノイズコントローラと動作可能に結合されかつ相殺信号に基づいて、対象空間に存在する不要音と減殺的に干渉する音を生成するように構成されたトランスデューサと、アクティブノイズコントローラと動作可能に結合されかつ参照信号と相殺信号の少なくとも1つを遅延させて、不要音を転送する1つ以上の信号経路と参照信号を対象空間に転送する1つ以上の信号経路のランタイムの差を低減させるように構成された少なくとも1つの遅延要素とを含む。
【0004】
音低減方法は、対象空間に存在する不要音に対応する参照信号を受信することと、参照信号に基づいて、対象空間に存在する不要音を相殺するための相殺信号を生成することとを含む。この方法はさらに、相殺信号に基づいて、対象空間に存在する不要音と減殺的に干渉する音を生成することと、参照信号と相殺信号の少なくとも1つを遅延させて、不要音を転送する1つ以上の信号経路と参照信号を対象空間に転送する1つ以上の信号経路のランタイムの差を低減させることとを含む。
【0005】
他のシステム、方法、特徴、及び利点は、以下の詳細な説明及び添付の図を検討することにより当業者に明らかであり、または明らかになろう。全てのそうした追加のシステム、方法、特徴、及び利点は、本明細書に含まれ、本発明の範囲内にあり、以下の特許請求の範囲によって保護されることが意図される。
【0006】
システムは、以下の図面及び説明を参照してよりよく理解され得る。図中の構成要素は、必ずしも原寸に比例するとは限らず、代わりに、本開示の原理を明確に例示することを重視する。さらに、図における同様の参照数字は、様々な図全体を通じて、対応する部分を指定する。
本明細書は、例えば、以下の項目も提供する。
(項目1)
対象空間に存在する不要音に対応する参照信号を受信するように構成された参照入力経路と、
前記参照入力経路と動作可能に結合され、前記参照信号から、前記対象空間に存在する不要音を相殺するための相殺信号を生成するように構成されたアクティブノイズコントローラと、
前記アクティブノイズコントローラと動作可能に結合され、前記相殺信号に基づいて、前記対象空間に存在する前記不要音と減殺的に干渉する音を生成するように構成されたトランスデューサと、
前記アクティブノイズコントローラと動作可能に結合され、前記参照信号と前記相殺信号の少なくとも1つを遅延させて、前記不要音を転送する1つまたは複数の信号経路と前記参照信号を前記対象空間に転送する1つまたは複数の信号経路との間のランタイムの差を低減するように構成された少なくとも1つの遅延要素と、
を備える、自動ノイズコントロールシステム。
(項目2)
前記対象空間に存在する音を表す誤差信号を生成するように構成されたエラーセンサをさらに備え、
前記アクティブノイズコントローラが、適応フィルタ及びフィルタコントローラを備え、
前記適応フィルタは、前記参照信号を受信し、制御可能な伝達関数で前記参照信号をフィルタリングすることによって前記相殺信号を提供するように構成され、
前記フィルタコントローラは、前記参照信号及び前記誤差信号を受信し、前記参照信号及び前記誤差信号に基づいて適応制御スキームに従って前記適応フィルタの前記伝達関数を制御するように構成されている、項目1に記載のシステム。
(項目3)
二次経路モデリングフィルタは、前記アクティブノイズコントローラに動作可能に結合されて、前記参照信号が前記アクティブノイズコントローラによって受信される前に前記参照信号を事前フィルタリングし、
前記二次経路モデリングフィルタは、前記トランスデューサと前記エラーセンサとの間の音響二次経路の伝達関数の推定である伝達関数を有する、項目2に記載のシステム。
(項目4)
前記適応フィルタが時間領域で動作し、前記フィルタコントローラが周波数領域で動作する、項目2または3に記載のシステム。
(項目5)
前記フィルタコントローラの前記適応制御スキームが、合計クロススペクトルスキームを使用する、項目4に記載のシステム。
(項目6)
前記適応フィルタ及び前記フィルタコントローラが時間領域で動作する、項目2または3に記載のシステム。
(項目7)
前記フィルタコントローラの前記適応制御スキームが、最小二乗平均スキームを使用する、項目6に記載のシステム。
(項目8)
前記少なくとも1つの遅延要素が、ラッチ、レジスタ、ランタイム要素、またはフィルタのうちの1つである、項目1~7のいずれかに記載のシステム。
(項目9)
前記少なくとも1つの遅延要素がシフトレジスタである、項目8に記載のシステム。
(項目10)
前記少なくとも1つの遅延要素が、線形位相有限インパルス応答フィルタ及びオールパスフィルタのうちの少なくとも1つを備える、項目8に記載のシステム。
(項目11)
対象空間に存在する不要音に対応する参照信号を受信することと、
前記参照信号に基づいて、前記対象空間に存在する前記不要音を表す相殺信号を生成することと、
前記相殺信号に基づいて、前記対象空間に存在する前記不要音と減殺的に干渉する音を生成することと、
前記参照信号と前記相殺信号の少なくとも1つを遅延させて、前記不要音を転送する1つまたは複数の信号経路と前記参照信号を前記対象空間に転送する1つまたは複数の信号経路との間のランタイムの差を低減させることと、
を含む、音低減方法。
(項目12)
対象空間に存在する音を表す誤差信号を生成することと、
適応フィルタリングが、前記参照信号を受信し、制御可能な伝達関数で前記参照信号をフィルタリングすることによって前記相殺信号を提供するように構成されることと、
前記参照信号及び前記誤差信号を受信し、前記参照信号及び前記誤差信号に基づいて適応制御スキームに従って前記適応フィルタリングの前記伝達関数を制御するように構成された前記伝達関数を制御することと、
をさらに含む、項目11に記載の方法。
(項目13)
前記参照信号が前記アクティブノイズコントローラによって受信される前に前記参照信号を事前フィルタリングする二次経路モデリングフィルタリングをさらに備え、
前記二次経路モデリングフィルタリングは、前記トランスデューサと前記エラーセンサとの間の音響二次経路の伝達関数の推定である伝達関数に基づく、項目12に記載の方法。
(項目14)
前記適応フィルタリングが時間領域で実行され、前記適応フィルタリングの前記伝達関数の制御が周波数領域で実行される、項目12または13に記載の方法。
(項目15)
前記適応フィルタリングの前記伝達関数を制御するための前記適応制御スキームが、合計クロススペクトルスキームを使用する、項目14に記載の方法。
(項目16)
前記適応フィルタリングが時間領域で実行され、前記適応フィルタリングの前記伝達関数の制御が周波数領域で実行される、項目12または13に記載の方法。
(項目17)
前記適応フィルタリングの前記伝達関数を制御するための前記適応制御スキームが、最小二乗平均スキームを使用する、項目16に記載の方法。
(項目18)
前記遅延が、ラッチ、レジスタ、ランタイム要素、またはフィルタのうちの1つを用いて実行される、項目11~17のいずれかに記載の方法。
(項目19)
前記遅延がシフトレジスタを用いて実行される、項目18に記載の方法。
(項目20)
前記遅延が、線形位相有限インパルス応答フィルタ及びオールパスフィルタのうちの少なくとも1つを用いて実行される、項目18に記載の方法。
(項目21)
コンピュータによって実行されたときに、前記コンピュータに項目11~20のいずれかに記載の方法を実行させる命令を備える、コンピュータ可読記憶媒体。
【図面の簡単な説明】
【0007】
【
図1】ANCフィルタを備えたフィードフォワードタイプの例示的な基本的なマルチチャネル自動ノイズコントロールシステムを示す概略図である。
【
図2】ANCフィルタに供給される参照信号を遅延させる遅延を有する、
図1に示されるノイズコントロールシステムを示す概略図である。
【
図3】ANCフィルタによって供給される相殺信号を遅延させる遅延を有する、
図1に示されるノイズコントロールシステムを示す概略図である。
【
図4】ANCフィルタに供給される参照信号を遅延させる遅延及びANCフィルタによって供給される相殺信号を遅延させる別の遅延を有する、
図1に示されるノイズコントロールシステムを示す概略図である。
【
図5】ANCフィルタを備えたフィードフォワードタイプの別のマルチチャネル自動ノイズコントロールシステムを示す概略図である。
【
図6】ANCフィルタに供給される参照信号を遅延させる遅延を有する、
図5に示されるノイズコントロールシステムを示す概略図である。
【
図7】ANCフィルタによって供給される相殺信号を遅延させる遅延を有する、
図5に示されるノイズコントロールシステムを示す概略図である。
【
図8】ANCフィルタを備えたフィードフォワードタイプの別のマルチチャネル自動ノイズコントロールシステムを示す概略図である。
【
図9】ANCフィルタに供給される参照信号を遅延させる遅延を有する、
図8に示されるノイズコントロールシステムを示す概略図である。
【
図10】ANCフィルタによって供給される相殺信号を遅延させる遅延を有する、
図8に示されるノイズコントロールシステムを示す概略図である。
【
図11】
図1~
図10に示されるシステムなどの例示的なANCシステムを実装する例示的な車両の上面図である。
【
図12】例示的なANC方法を示すフローチャートである。
【発明を実施するための形態】
【0008】
不要音とは、車両のエンジン音、ロードノイズなどを含むあらゆる種類のノイズといった聴取者に不快な任意の音であるが、それは、例えば聴取者が電話をかけたい場合には音楽または他の人の会話になる可能性もある。しかしながら、音楽または会話は、聴取者がそれを聞きたい場合には所望音になる可能性がある。他の種類の所望音としては、車両を操縦している運転手にとってフィードバック情報として機能する場合の音響警告信号または車両のエンジン音ですらあり得る。本明細書中の目的として、不要音とは、相殺されるべき音であり、所望音とは、相殺されるべきではない音である。
【0009】
ここで
図1を参照すると、例示的な基本的なフィードフォワードANCシステム100及び例示的な物理的環境が、ブロック図のフォーマットで表されている。一例では、K≧1個の周波数(またはサブバンドまたは時間)領域参照信号X
1...K(Kは整数)で表される不要音が、参照信号X
1...KのK個のソース(図示せず)のそれぞれから、例えばL個の周波数(またはサブバンドまたは時間)領域誤差信号E
1...L(Lは整数)を生成する加算ノードで図面に表されているマイクロフォン102といったL≧1個のエラーセンサのそれぞれまでの、K・L音響一次経路101と称される物理的経路を横断し得る。K・L一次経路101は、参照信号X
1...Kがそれを用いてフィルタリングされる周波数領域伝達関数Pを有する。参照信号X
1...Kは、物理的かつデジタル的両方の不要音を表し、デジタル表現は、アナログ・デジタル(A/D)コンバータの使用を介して生成され得る。参照信号X
1...Kはまた、K・M ANCフィルタ103の行列への入力としても用いられる。ANCフィルタ103は、周波数領域伝達関数Wを有し、例えば有限インパルス応答(FIR)フィルタなどの適切なデジタルフィルタまたは任意の他の適切なタイプのフィルタであり得、それぞれは、M≧1個のアンチノイズ信号Y
1...M(Mは整数)を出力として生成するために、参照信号X
1...Kのうちの対応する1つをフィルタリングするよう動的に適合されるように構成されている。
【0010】
アンチノイズ信号Y
1...Mは、M個のトランスデューサ(アクチュエータ)、例えばラウドスピーカ104を駆動し、ラウドスピーカ104は、ラウドスピーカ104のそれぞれからマイクロフォン102のそれぞれへと延びる音響二次経路105と称されるM・L物理的経路を進む、対応する音波を出力する。
図1に示す例示的なシステムの二次経路105は、周波数領域伝達関数Sを有する。アンチノイズ信号Y
1...Mに基づいてラウドスピーカ104によって生成された音波は、伝達関数Sでフィルタリングされ、次にマイクロフォン102への入力を形成するために、一次経路101からの信号と結合(合計)される。したがって、マイクロフォン102は、加算ノードで表され、加算ノードは、
図1に示す例示的なシステムで加算演算を実行してマイクロフォン102に対する入力信号を生成し、それは誤差信号E
1...Lに変換される。ANCフィルタ103は、適応フィルタであってもよく、または場合によっては、その伝達関数Wが参照信号X
1...Kに基づいてアンチノイズ信号Y
1...Mを生成するように適合または調整される固定フィルタであってもよい。アンチノイズ信号Y
1...Mは、ラウドスピーカ103によって送信され伝達関数Sで転送(フィルタリング)された後において、一次経路101の伝達関数Pで転送(フィルタリング)された後の参照信号X
1...Kの逆数である。したがって、マイクロフォン102において、不要音またはその表現、すなわち参照信号を参照する2つの異なる(グループの)信号が出現するが、異なる信号経路、すなわち一次経路(複数可)及び二次経路(複数可)を介して転送される。
【0011】
最小バルクのレイテンシの差が、一次経路101のいずれかにおけるレイテンシ
【化1】
と、ANCシステムのレイテンシ
【化2】
と組み合わせられた二次経路105のうちの対応する1つにおけるレイテンシ
【化3】
の間に
【数1】
に従って、生じ得る。
最小バルクのレイテンシの差を補償するために、ANCフィルタ103のデッドタイムについて妥協せずに遅延要素を用いる。本明細書中に記載されたANCシステムは、確率信号の相殺を可能とするために因果的である。等式(1)は、ANCフィルタ103は、相殺のため個別の残りのレイテンシを補償することができることを意味している。しかし、明らかなように、ANCフィルタ103は、利用可能なFIRフィルタ長が、適切なデッドタイムを模倣するために先行ゼロで満たされるので、精度が低下する。以下の例は、補償遅延がどのようにフィードフォワードANCのパフォーマンスに利益をもたらすかを示す。聴取者に近接しているラウドスピーカ、例えばヘッドレストラウドスピーカと関連して動作するANCシステムを仮定する。
【化4】
そうした例示的な状況において、因果関係基準を満たすために、フィードフォワードANCシステムは、レイテンシの差
【化5】
を補償する必要がある。
【化6】
実際のANCシステムにおいて、特定の稼働サンプルレートFS
ANC=4[kHz]及びANCフィルタタップサイズTotal W_FIR_Taps=64が仮定され得る。これは、潜在的なANCのパフォーマンスを低下させるかなりの数の「使用不可能な」FIRのタップをもたらす。
因果関係を補償するFIRのタップ:27(=42%);及び
ノイズ制御に使用可能なFIRのタップ:37(=58%)。
【0012】
ここでは、フィードフォワード計算能力のほぼ半分が、レイテンシ調整のために浪費される。この欠点を克服するために、
図2~4に示すシステムでは、
図2に示すようなシステム前遅延201、
図3に示すようなシステム後遅延301、または
図4に示すようなシステム分散部分遅延401及び402のいずれかを用いて、1つまたは複数の補償遅延が挿入される。
図2に示すシステム例200では、システム前遅延201はそれぞれ、参照信号X
1...Kを提供する参照ソース(図示せず)からANCフィルタ103までの信号経路の1つに含まれる。すなわち、前システム遅延201は、ANCフィルタ103の上流に接続される。
図3に示すシステム例300では、システム後遅延301はそれぞれ、ANCフィルタ103からラウドスピーカ104までの信号経路の1つに含まれる。すなわち、システム後遅延201は、ANCフィルタ103の下流に接続される。完全なANCシステムは線形かつ時不変であると仮定されるので、
図4に示すシステム400に関連して説明したように、遅延を部分共有で上流かつ下流にさらに挿入することができ、そこでは、部分遅延401はそれぞれ、参照ソース(図示せず)からANCフィルタ103までの信号経路の1つに含まれ、かつ、部分遅延402はそれぞれ、ANCフィルタ103からラウドスピーカ104までの信号経路の1つに挿入される。
【0013】
システム後遅延は、対応する二次経路の変形のように扱うことができる。システム前遅延は、対応する二次経路に影響を与えないと仮定することができる。レイテンシ補償遅延は、シフトレジスタまたは先入れ先出しレジスタなどのラッチまたはレジスタとしてだけでなく、例えば多くのANCシステムでは対象のハードウェアのサンプルレートはANCシステムの動作サンプルレートの多重比率なので、オールパスフィルタまたは線形位相FIRアンチエイリアスフィルタとしても実装され得る。追加のレイテンシ補償遅延を導入するための他の代替手段は、例えば同期または非同期のサンプルレートコンバータを利用したシステムループバックである。いずれの場合でも、補償遅延を使用するには、欠落しているバルク遅延を推定するために、一次経路のレイテンシの詳細なコヒーレンス分析が必要とされる。いったん実装されると、補償遅延により、例えば二次経路が短いかまったくなくかつANCフィルタ長が短いシステムと比較して、ANCシステムのパフォーマンスは大幅に向上する。
【0014】
次に
図5を参照すると、不要音がK≧1個(k=1,…,K及びKは整数)の時間領域参照信号
Xk[n]で表される例示的なフィードフォワードANCシステム500は、参照信号
Xk[n]のK個のソース(図示せず)のそれぞれから例えばL個の時間領域誤差信号e
1[n](l=1,...,L及びLは整数)を生成するマイクロフォン502といったL≧1個のエラーセンサのそれぞれまでのK・L音響一次経路501と称される物理的経路を横断し得る。K・L一次経路501は、参照信号
Xk[n]がそれを用いてフィルタリングされる時間領域伝達関数p
k,l[n]を有する。参照信号
Xk[n]は、物理的かつデジタル的両方の不要音を表し、デジタル表現は、アナログ・デジタル(A/D)コンバータの使用を介して生成され得る。参照信号
Xk[n]はまた、K・M適応ANCフィルタ503の行列への入力としても用いられる。適応ANCフィルタ503は、時間領域伝達関数w
k,m[n]を有し、有限インパルス応答(FIR)フィルタなどの時間領域デジタルフィルタまたは任意の他の適切なタイプのフィルタであり得、それぞれは、M≧1個のアンチノイズ信号y
m[n](m=1,...,M及びMは整数)を出力として生成するために、参照信号
Xk[n]のうちの対応する1つをフィルタリングするよう動的に適合されるように構成されている。本明細書中で、離散時間(時間領域のサンプル)は整数[n]で、周波数ビンは整数[k]で、複素周波数は複素数(z)で表される。
【0015】
アンチノイズ信号y
m[n]は、音響二次経路505と称されるM・L物理的経路を進む、対応する音波を出力するM個のトランスデューサ、例えばラウドスピーカ504を駆動する。二次経路505は、ラウドスピーカ504のそれぞれからマイクロフォン502のそれぞれまで延びる。
図5に示すシステム例における二次経路505は、時間領域伝達関数
Sm,l[n]を有する。アンチノイズ信号y
m[n]に基づいてラウドスピーカ504によって生成された音波は、伝達関数
Sm,l[n]でフィルタリングされ、次に、一次経路501の出力における信号と結合(合計)されて、L個の加算ノード511(マイクロフォン502当たり1つのノード511)で表されるマイクロフォン502への入力を形成する。L個の加算ノード511は、
図5に示すシステム例において信号の重畳を表し、それは、誤差信号e
l[n]に変換される、マイクロフォン502に対する入力信号に寄与する。
【0016】
マイクロフォン502による誤差信号e
l[n]の出力は、周波数領域誤差信号E
l[k]を提供する時間-周波数領域変換器506によって、時間領域から周波数領域(スペクトル領域としても知られる)に変換される。周波数領域誤差信号E
l[k]は、M・Lフィルタコントローラ507に送信され、フィルタコントローラ507はまた、入力として、参照信号x
k[n]を、周波数領域参照信号X
k[k]に変換されM・Lフィルタ509の行列によって周波数領域でフィルタリングされた状態で受信する。フィルタ509は、周波数領域伝達関数
【化7】
を有し、二次経路505の時間領域伝達関数
Sm,l[n]に対応する周波数領域伝達関数
【化8】
をシミュレート、推定、またはモデル化するように構成されている。フィルタコントローラ507は、適応ANCフィルタ503の行列に供給される前に周波数-時間領域変換器510によって時間領域の更新信号に変換される周波数領域の更新信号によって、適応ANCフィルタ503を更新する。適応ANCフィルタ503は、不要時間領域参照信号x
k[n]及び時間領域の更新信号を受信し、アンチノイズ信号y
m[n]を調整する。
【0017】
時間-周波数領域変換器506及び508は、示されるような高速フーリエ変換(FFT)、または離散フーリエ変換(DFT)及びフィルタバンクを含む他の任意の適切な時間-周波数領域変換アルゴリズムを使用し得る。周波数-時間領域変換器510は、示されるような逆高速フーリエ変換(IFFT)または任意の他の適切な周波数-時間領域変換アルゴリズムを使用し得る。既に述べたように、[n]は、時間領域のn番目のサンプルを示し、[k]は、周波数領域のk番目のビンを示す。さらに、時間領域参照信号Xk[n]は、K個の参照チャネルにおけるk=1サンプル内に提供される。
【0018】
フィルタコントローラ507は、最小二乗平均(LMS)、再帰的最小二乗平均(RLMS)、正規化最小二乗平均(NLMS)、または任意の他の適切なアルゴリズムなどの様々な可能な適応制御構造の1つを実装し得る。
図1に示す例示的なシステムでは、フィルタコントローラ507は、適応ANCフィルタ503の伝達関数を更新するために使用することができかつここで周波数領域にLMSスキームを実装するために使用される合計クロススペクトルを使用する。二次経路における測定値は、所与の設定または状況のスナップショットにすぎないため、それらは推定値として扱われ得、合計クロススペクトルで強調される適応プロセスへの重要な貢献を表し得る。mとkの各組み合わせにおける合計クロススペクトルは、等式(2)に示すように記述することができる。
【数2】
これを考慮して、例えばFIRフィルタタップで表されるK・M時間領域伝達関数w
k,m[n]の行列を更新することを、等式(3)及び(4)に示すように記述することができる。
【数3】
【数4】
ここで、w
k,m[n+1]は、K・M時間領域伝達関数w
k,m[n]の更新を表し;
【化9】
は、更新されていない時間領域伝達関数w
k,m[n]に対応するK・M周波数領域伝達関数の行列であり;
【化10】
は、K・Mが個別に調整され周波数依存の漏れ値の行列であり;
【化11】
は、K・Mが個別に調整され周波数依存の適応ステップサイズの行列であり;
【化12】
は、合計クロススペクトルを表す周波数領域の収束値の行列である。
【0019】
更新メカニズムは、参照信号のエネルギーによる正規化を含みかつ個別に調整された周波数依存のステップサイズ及び漏れを適用する、正規化されたフィルタードx最小二乗平均(NFXLMS)フィルタ更新スキームまたはルーチンを利用し得る。以下の例では、異なるタイプのNFXLMSは区別しないが、前述の正規化は使用される。正規化は、参照信号のエネルギーによって合計クロススペクトルに逆スケーリングを適用する。したがって、収束ステップサイズは、自動的に参照信号のエネルギーに合わせて調整され、参照信号のエネルギー量に関係なく、可能な限り高速な適応レートを可能とする。正規化はすでにANCシステムを向上させているかもしれないが、安定性及びパフォーマンスの少なくとも1つを強化するために、追加の技術が適用され得る。
【0020】
そのような追加の技術の1つは、遅延と称される1つまたは複数の時間遅延要素またはプロセスを、ANCフィルタを含む信号経路に組み込むことである。遅延は、要素またはプロセスに入力された信号の構造が、特定の遅延時間後に要素またはプロセスの出力における信号に現れる、任意の要素またはプロセスであると理解される。本明細書中で説明する遅延の使用は、ラッチ、レジスタ、ランタイム要素、またはフィルタを含む特定のタイプの遅延に限定されない。それでもやはり、使用される遅延のタイプは、制御可能な遅延時間に重点を置くために、一例では制限される場合がある。この例では、遅延時間を個別に調整し得るため、遅延時間を特定の二次経路に適合させることができる。信号フローにおいて様々な位置に1つまたは複数の遅延を含めることができる。以下に示す例では、時間領域または周波数領域の処理に適したいくつかの例示的な位置のみが説明されている。複数の遅延の組み合わせが、例えば、一次及び/または二次経路の遅延の様々な原因に対処するために有用である可能性がある。FIRフィルタタップを消費するメモリ及び計算リソースは、デッドタイムを模倣するだけでは「浪費」されないので、ここでの遅延は非常に効率的であり得る。
【0021】
適応ANCフィルタ503のそれぞれ上流かつ下流で参照信号(複数可)を遅延させるように構成されたANC構造内の2つの例示的な位置が、
図6及び7に示されている。
図5に関連して上述したANCシステム500に基づく
図6に示す1つの例示的なANCシステム600では、遅延要素601は、適応ANCフィルタ(複数可)503の入力経路(複数可)に挿入される。同じくANCシステム500に基づく
図7に示される別の例示的なANCシステム700では、遅延要素701は、適応ANCフィルタ(複数可)503の出力経路(複数可)に挿入される。
【0022】
図8を参照すると、マルチチャネルANCシステム800は、M個のラウドスピーカ801(またはラウドスピーカのグループ)にM個の出力信号を供給するためのM≧1個の出力チャネルと、L個のマイクロフォン802(またはマイクロフォンのグループ)からL個の誤差信号を受信するためのL≧1個の記録チャネルとを有し得る。ラウドスピーカのグループには、1つ以上のラウドスピーカが含まれ、マイクロフォンのグループには、1つ以上のマイクロフォンが含まれる。各グループは、単一のチャネル、つまり1つの出力チャネルまたは1つの記録チャネルにそれぞれ接続される。対応する室内またはラウドスピーカ-室内-マイクロフォンシステム(少なくとも1つのラウドスピーカ及び少なくとも1つのマイクロフォンが配置されている室内)は、線形かつ時不変であり、例えばその室内音響インパルス応答によって記述することができると仮定される。ANCシステム800は、ANCフィルタリングのために最小二乗平均(LMS)スキームを使用し得るが、ANCシステム800で使用されるようなフィルタード入力最小二乗平均(FxLMS)、再帰的最小二乗(RLS)または任意の他の変更されたLMSアルゴリズムなどの任意の他の適応制御スキームを採用し得る。LMSアルゴリズムは、最適な最小二乗平均(LMS)解を得るための反復アルゴリズムである。LMSアルゴリズムの適応手法により、一次かつ/または二次経路の電気音響伝達関数に変化が発生するたびに、ANCフィルタを再調整することが可能となる。
【0023】
一例では、単一の時間領域参照信号x(n)は、1つのノイズソース(図示せず)から様々な位置にあるL個のマイクロフォン802への途中にある、伝達関数P(z)の行列で表されるK≧1個の一次経路803によってフィルタリングされ、一次経路803の終端で、つまりL個のマイクロフォン802で、K・Lの不要妨害信号d[n]を提供する。ANCシステム800では、伝達関数W(z)の行列で表される時間領域適応ANCフィルタ804は、参照信号x[n]を修正するように制御され、M個のラウドスピーカ801に供給されかつ伝達関数S(z)の行列で表されるML二次経路805によって転送そしてフィルタリングされた結果として生じたM個の出力信号が、信号y’[n]として、妨害信号d(n)と逆一致するようにする。ANCフィルタコントローラ806は、伝達関数
【化13】
の行列で表される二次経路推定フィルタ807でフィルタリングされた参照信号x[n]及びL個のマイクロフォン802からのL個の誤差信号e[n]を評価して、ANCフィルタ804を制御する。
図8では、マイクロフォン802は、二次経路805からのM・L信号y’[n]と一次経路803からの妨害信号d[n]を合計する加算ノードで表される。
【0024】
適応ANCフィルタ804のそれぞれ上流かつ下流に参照信号x[n]を遅延させるように構成された、ANC構造800内の2つの例示的な位置を、
図9及び10に示す。
図8に関連して上述されたANCシステム800に基づく
図9に示される一例のANCシステム900では、遅延要素901は、適応ANCフィルタ(複数可)804の入力経路(複数可)に挿入される。同じくANCシステム800に基づく
図10に示される別の例のANCシステム1000では、遅延要素1001は、適応ANCフィルタ(複数可)804の出力経路(複数可)に挿入される。
【0025】
図11を参照すると、
図2、3、4、6、7、9及び10に示されるANCシステム200、300、400、600、700、900及び1000のいずれかと同一または同様であり得る例示的なANCシステム1100は、例示的な車両1101に実装され得、示される。一例では、ANCシステム1100は、車両1101に関連する不要音を低減または除去するように構成され得る。例えば、不要音は、例えばタイヤ1103に関連するロードノイズ1102(
図11では破線矢印として表されている)であり得る。しかしながら、エンジンノイズまたは車両1101で発生するもしくはそれに関連する任意の他の不要音などの様々な不要音が、低減または除去の対象となり得る。ロードノイズ1102は、少なくとも1つの参照信号を提供する少なくとも1つの参照センサを通して検出され得る。一例では、少なくとも1つの参照センサは、タイヤ1103の現在の動作状態に基づきかつロードノイズ1102のレベルを示す、ANCシステム1100の参照信号として機能するロードノイズ信号1105を生成し得る2つの加速度計1104であり得る。マイクロフォン、非音響センサ、または車両1101、例えばタイヤ1103もしくはエンジン1106に関連する可聴音を検出するのに適した任意の他のセンサなどの他の音検出法が実装され得る。
【0026】
車両1101は、様々なオーディオ/ビデオコンポーネントを含み得る。
図11では、車両1101は、AM/FMラジオ、CD/DVDプレーヤ、携帯電話、ナビゲーションシステム、MP3プレーヤ、または個人の音楽プレーヤインターフェイスなどの、オーディオ/ビジュアル情報を提供するための様々なデバイスを含み得るオーディオシステム1107を含むものとして示されている。オーディオシステム1107は、ダッシュボード1108に、例えば、そこに配置されたヘッドユニット1109に組み込まれ得る。オーディオシステム1107はまた、モノラル、ステレオ、5チャネル、及び7チャネル動作、または任意の他のオーディオ出力構成用に構成され得る。オーディオシステム1107は、車両1101内に複数のラウドスピーカを含み得る。オーディオシステム1107はまた、トランク1110といった、車両1101内の様々な場所に配置され得る1つまたは複数の増幅器(図示せず)などの他の構成要素を含み得る。
【0027】
一例では、車両1101は、左リアラウドスピーカ1111及び右リアラウドスピーカ1112などの、リアシェルフ1113上または内に配置され得る複数のラウドスピーカを含み得る。車両1101はまた、それぞれ車両リアドア1116及び1117内にそれぞれ取り付けられた左サイドラウドスピーカ1114及び右サイドラウドスピーカ1115を含み得る。車両1101はまた、それぞれ車両フロントドア1120、1121内にそれぞれ取り付けられた左フロントラウドスピーカ1118及び右フロントラウドスピーカ1119を含み得る。車両1101はまた、運転席1125のヘッドレスト1124内またはヘッドレスト1124に配置されたヘッドレストラウドスピーカ1122を含み得る。他の例では、車両1101内のオーディオシステム1107の他の構成が可能である。例えば、2つ以上のラウドスピーカがヘッドレスト1124内またはヘッドレスト1124に配置され得る。追加としてまたは代替として、1つまたは複数のラウドスピーカは、車両1101の1つもしくは複数の他のヘッドレスト内または1つもしくは複数の他のヘッドレストに配置され得る。追加としてまたは代替として、1つもしくは複数のラウドスピーカ及び/または1つもしくは複数のマイクロフォンは、座席、ルーフライナーもしくはピラー内またはその上などの、ヘッドレストの近くに配置され得る。
【0028】
一例では、
図1~10に示すシステムにおけるスピーカ(複数可)104、504、及び801と同様に、ヘッドレストラウドスピーカ1122を使用して、対象空間1123で聞こえ得るロードノイズ1102を低減するアンチノイズを送信し得る。一例では、対象空間1123は、運転手の耳に最も近い領域、例えば、運転席1125のヘッドレスト1124に最も近くあり得る。
図7では、マイクロフォン1126などのエラーセンサが、ヘッドレスト1124内に、ヘッドレスト1124に、またはヘッドレスト1124に隣接して配置され得る。マイクロフォン1126は、
図1~10に関連して説明されたマイクロフォン(複数可)102、502、及び802と同様の方法で、ANCシステム1100に接続され得る。
図11では、ANCシステム1100及びオーディオシステム1107は、ヘッドレストラウドスピーカ1122に接続されているので、オーディオシステム1107及びANCシステム1100によって生成された信号は結合されて、ヘッドレストラウドスピーカ1122を駆動しかつラウドスピーカ出力1127(破線矢印として表される)を生成し得る。このラウドスピーカ出力1127は、アンチノイズが対象空間1123でロードノイズ1102と減殺的に干渉するように音波として生成され得る。車両1101内の1つまたは複数の他のラウドスピーカは、相殺音、すなわちアンチノイズを含む音波を生成するのに選択され得る。さらに、マイクロフォン1126は、1つまたは複数の所望の対象空間に、車両全体の様々な位置に配置され得る。
【0029】
図11から把握することができるように、ANCシステムは、不要音と減殺的に干渉する音を生成することを意図する。不要音とは、例えば道路を走行する車両によって生成されるロードノイズまたはエンジンノイズであり得る。同時に、例えばユーザの娯楽のためのラジオの歌または音声などの、車両に座っているユーザが望ましいと考える他の音を生成することを意図する。したがって、ANCシステムは、不要なロードノイズと減殺的に干渉する音を生成する(例えば、所望音を生成するオーディオシステムに関連して)。望ましいオーディオ信号は、ヘッドレストラウドスピーカ1122などの1つまたは複数のラウドスピーカによって受信されて、対象空間に所望音を生成する。しかしながら、所望音は、参照センサ、例えば加速度計1104に、かつ/または、エラーセンサ、例えばマイクロフォン1126に送信され得、オーディオ信号を参照する参照信号及び/または誤差信号に信号コンポーネントを生成し、それらは相殺されない。
【0030】
図12を参照すると、例示的なANC方法は、対象空間に存在する不要音に対応する参照信号を受信すること(手順1201)と、参照信号に基づいて、対象空間に存在する不要音を表す相殺信号を生成すること(手順1202)とを含む。この方法は、さらに、相殺信号に基づいて、対象空間に存在する不要音と減殺的に干渉する音を生成すること(1203)と、参照信号と相殺信号の少なくとも1つを遅延させて、参照信号を対象空間に転送する信号経路間のランタイムの差を低減または補償すること(手順1204)とを含む。
【0031】
本開示の実施形態は、一般に、複数の回路、電気デバイス、及び/または少なくとも1つのコントローラを提供する。回路、少なくとも1つのコントローラ、及び他の電気デバイス、ならびにこれらのそれぞれによって提供される機能へのすべての言及は、本明細書中に図示かつ説明されるものだけを包含することに限定されると意図するものではない。開示された様々な回路(複数可)、コントローラ(複数可)及び他の電気デバイスに特定のラベルを割り当て得るが、そのようなラベルは、様々な回路(複数可)、コントローラ(複数可)及び他の電気デバイスの動作の範囲を限定することを意図していない。このような回路(複数可)、コントローラ(複数可)及び他の電気デバイスは、所望される特定のタイプの電気的実装に基づいて任意の方法で、互いに組み合わされ得、かつ/または、分離され得る。
【0032】
本明細書に開示される任意のコンピュータ、プロセッサ及びコントローラは、任意の数のマイクロプロセッサ、集積回路、メモリデバイス(例えば、FLASH(登録商標)、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、電気的プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、または他の適切な変形)、及び本明細書に開示される動作(複数可)を行うために相互に協働するソフトウェアを含み得ると理解される。加えて、開示される任意のコントローラは、開示される任意の数の機能を行うようにプログラムされる非一時的なコンピュータ可読媒体で具体化されるコンピュータプログラムを実行する任意の1つ以上のマイクロプロセッサを利用する。さらに、本明細書で提供される任意のコントローラは、ハウジングと、ハウジング内に配置される様々な数のマイクロプロセッサ、集積回路、及びメモリデバイス(例えば、FLASH(登録商標)、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、電気的プログラマブル読み取り専用メモリ(EPROM)、電気的消去可能プログラマブル読み取り専用メモリ(EEPROM))とを含む。開示されるコンピュータ(複数可)、プロセッサ(複数可)及びコントローラ(複数可)はまた、本明細書で論じられるような他のハードウェアベースのデバイスとの間でそれぞれデータを受信かつ送信するためのハードウェアベースの入力及び出力も含む。
【0033】
実施形態の説明は、図示及び説明の目的で提示されている。実施形態に対する好適な変更及び変形は、上記の説明に照らして実行してもよく、または、方法を実施することから得てもよい。例えば、特段に明記しない限り、記載された方法の1つまたは複数は、適切なデバイス及び/またはデバイスの組み合わせによって実行され得る。記載された方法及び関連する行為はまた、本出願に記載された順に加えて様々な順で、並行して、かつ/または同時に実行され得る。記載されたシステムは、本質的に例示であり、追加の要素を含んでもよく、かつ/または要素を省略してもよい。
【0034】
本出願で使用される単数で列挙され単語「a」または「an」が先行する要素またはステップは、特段の除外が規定されない限り、複数の当該要素またはステップを除外しないとして理解されるべきである。さらに、本開示の「一実施形態」または「一例」に対する言及は、列挙される特徴をやはり組み込む追加の実施形態の存在を除外すると解釈されることを意図しない。用語「第1の」、「第2の」及び「第3の」などは、単にラベルとして使用され、数値要件または特定の位置順序をそれらの対象に課すことを意図しない。
【0035】
発明の様々な実施形態を説明してきたが、発明の範囲内でさらに多くの実施形態及び実装が可能であることは、当業者には明らかであろう。特に、当業者は、異なる実施形態からの様々な特徴の互換性を認識するであろう。これらの技術及びシステムは、特定の実施形態及び例の文脈で開示されてきたが、これらの技術及びシステムは、具体的に開示された実施形態を超えて他の実施形態及び/またはその使用と明らかな変更に拡張され得ることが理解されよう。