IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ファイザー・インクの特許一覧

特許7492103気泡のない、流体チャンバの液体充填方法
<>
  • 特許-気泡のない、流体チャンバの液体充填方法 図1
  • 特許-気泡のない、流体チャンバの液体充填方法 図2
  • 特許-気泡のない、流体チャンバの液体充填方法 図3
  • 特許-気泡のない、流体チャンバの液体充填方法 図4A
  • 特許-気泡のない、流体チャンバの液体充填方法 図4B
  • 特許-気泡のない、流体チャンバの液体充填方法 図4C
  • 特許-気泡のない、流体チャンバの液体充填方法 図4D
  • 特許-気泡のない、流体チャンバの液体充填方法 図4E
  • 特許-気泡のない、流体チャンバの液体充填方法 図4F
  • 特許-気泡のない、流体チャンバの液体充填方法 図5
  • 特許-気泡のない、流体チャンバの液体充填方法 図6
  • 特許-気泡のない、流体チャンバの液体充填方法 図7
  • 特許-気泡のない、流体チャンバの液体充填方法 図8
  • 特許-気泡のない、流体チャンバの液体充填方法 図9
  • 特許-気泡のない、流体チャンバの液体充填方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-21
(45)【発行日】2024-05-29
(54)【発明の名称】気泡のない、流体チャンバの液体充填方法
(51)【国際特許分類】
   G01N 35/08 20060101AFI20240522BHJP
   G01N 37/00 20060101ALI20240522BHJP
【FI】
G01N35/08 A
G01N35/08 E
G01N37/00 101
【請求項の数】 18
(21)【出願番号】P 2021552547
(86)(22)【出願日】2020-03-03
(65)【公表番号】
(43)【公表日】2022-04-27
(86)【国際出願番号】 US2020020772
(87)【国際公開番号】W WO2020180858
(87)【国際公開日】2020-09-10
【審査請求日】2023-03-03
(31)【優先権主張番号】62/814,143
(32)【優先日】2019-03-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】593141953
【氏名又は名称】ファイザー・インク
(74)【代理人】
【識別番号】100102978
【弁理士】
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100205707
【弁理士】
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100160923
【弁理士】
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【弁理士】
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【弁理士】
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【弁理士】
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100188433
【弁理士】
【氏名又は名称】梅村 幸輔
(74)【代理人】
【識別番号】100128048
【弁理士】
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【弁理士】
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100114340
【弁理士】
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100214396
【弁理士】
【氏名又は名称】塩田 真紀
(74)【代理人】
【識別番号】100121072
【弁理士】
【氏名又は名称】川本 和弥
(74)【代理人】
【識別番号】100221741
【弁理士】
【氏名又は名称】酒井 直子
(74)【代理人】
【識別番号】100114926
【弁理士】
【氏名又は名称】枝松 義恵
(72)【発明者】
【氏名】マイアズ フランク ビー. ザ サード
(72)【発明者】
【氏名】リーバー クレイ ディー.
(72)【発明者】
【氏名】スミス テイバー エイチ.
(72)【発明者】
【氏名】マニアル ファイサル エス.
【審査官】外川 敬之
(56)【参考文献】
【文献】特開2014-142362(JP,A)
【文献】特開2002-243748(JP,A)
【文献】米国特許出願公開第2003/0082632(US,A1)
【文献】特表2001-515216(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 35/08
G01N 37/00
(57)【特許請求の範囲】
【請求項1】
アセンブリの流体チャンバを液体で満たす間の前記流体チャンバ内の気泡形成を回避するように構成されたアセンブリであって、前記アセンブリが、以下:
第1の表面と、
第1の突起と
を含む第1の部分;及び
第2の表面を含む第2の部分
を含み、
前記第1の部分及び前記第2の部分が、互いに動作可能に結合されて、前記アセンブリの前記流体チャンバを形成するように構成されている2つの別個の部分であり、
前記流体チャンバが、
入口と、
出口と、
前記第1の表面及び前記第2の表面によって境界を定められた容積であって、前記第1の部分の前記第1の突起が、前記第1の突起の頂点と前記第2の部分の前記第2の表面との間が第1の距離となるように前記流体チャンバの前記容積内に突出している、前記容積と、
前記第1の部分の前記第1の突起によって形成された第1のチャネルであって、前記入口及び前記出口の一方から前記第1の突起の頂点まで延びる、前記第1のチャネルと
を含み、
前記流体チャンバの前記入口及び前記出口が、前記流体チャンバの前記容積を通る最大移動距離が前記入口と前記出口との間に存在するように、前記流体チャンバに位置し、
前記流体チャンバの前記容積の断面積が、前記第1の突起の頂点から前記流体チャンバの横断面にかけて増加し、前記流体チャンバの前記横断面から、そこから延びる前記第1のチャネルを有していない、前記入口もしくは前記出口にかけて減少し、且つ
前記第1の部分の前記第1の表面が、1つまたは複数の第1の曲率半径を有し、かつ前記第2の部分の前記第2の表面が、1つまたは複数の第2の曲率半径を有し、前記第1の曲率半径および前記第2の曲率半径のそれぞれが、前記流体チャンバを満たす前記液体のメニスカスの曲率半径よりも大きい、
前記アセンブリ。
【請求項2】
前記断面積が、横断面から前記出口にかけて減少するように、前記第1のチャネルが前記流体チャンバの前記入口から延びるか、または
前記断面積が、横断面から前記入口にかけて減少するように、前記第1のチャネルが、前記流体チャンバの前記出口から延びる、
請求項1に記載のアセンブリ。
【請求項3】
前記流体チャンバの前記入口及び前記出口が、前記アセンブリの前記第1の部分に形成される、請求項1又は2に記載のアセンブリ。
【請求項4】
前記アセンブリが、前記流体チャンバから気泡を除去するようにさらに構成され、
(i)前記第1の部分の前記第1の表面が、前記第2の部分の前記第2の表面から離れるように、前記流体チャンバの前記入口もしくは前記出口に向かって非ゼロの傾斜で傾斜しているか、または
(ii)前記第2の部分の前記第2の表面が、前記第1の部分の前記第1の表面から離れるように、前記第1の突起の頂点に向かって非ゼロの傾斜で傾斜している、
請求項1~3のいずれか1項に記載のアセンブリ。
【請求項5】
前記第2の部分が、
第2の突起の頂点と前記第1の部分の前記第1の表面との間が第2の距離となるように前記流体チャンバの前記容積内に突出している、第2の突起;及び
前記第2の部分の前記第2の突起によって形成された第2のチャネルであって、前記流体チャンバの前記入口及び前記出口の他方から前記第2の突起の頂点まで延びる、前記第2のチャネル
をさらに含み、
前記流体チャンバの前記容積の前記断面積が、前記横断面から前記第2の突起の頂点にかけて減少する、
請求項1~4のいずれか1項に記載のアセンブリ。
【請求項6】
前記流体チャンバの前記入口が、前記アセンブリの前記第1の部分に形成され、前記流体チャンバの前記出口が、前記アセンブリの前記第2の部分に形成される、請求項1~5のいずれか1項に記載のアセンブリ。
【請求項7】
前記第1の部分の前記第1の表面及び前記第2の部分の前記第2の表面が、25マイクロインチ未満の粗さ値を有する、請求項1~6のいずれか1項に記載のアセンブリ。
【請求項8】
前記第1の部分及び前記第2の部分の少なくとも一方が、射出成形されている、請求項1~7のいずれか1項に記載のアセンブリ。
【請求項9】
前記第1の部分及び前記第2の部分の少なくとも一方が、レプリカ鋳造、真空成形、機械加工、化学エッチング、及び物理エッチングのうちの1つによって形成されている、請求項1~8のいずれか1項に記載のアセンブリ。
【請求項10】
前記第1の部分及び前記第2の部分の少なくとも一方が、疎水性材料及び疎油性材料のうちの1つを含む、請求項1~9のいずれか1項に記載のアセンブリ。
【請求項11】
前記第1の部分と前記第2の部分との間に配置されたガスケットをさらに含み、
前記ガスケットが、前記第1の部分及び前記第2の部分に動作可能に結合されて、前記流体チャンバに流体シールを形成する、請求項1~10のいずれか1項に記載のアセンブリ。
【請求項12】
前記流体チャンバの前記容積が、1μL~1000μLである、請求項1~11のいずれか1項に記載のアセンブリ。
【請求項13】
前記流体チャンバが、乾燥または凍結乾燥試薬を収容する、請求項1~12のいずれか1項に記載のアセンブリ。
【請求項14】
前記乾燥または凍結乾燥試薬が、アッセイ試薬を含む、請求項13に記載のアセンブリ。
【請求項15】
前記アッセイ試薬が、核酸増幅酵素及びDNAプライマを含む、請求項14に記載のアセンブリ。
【請求項16】
重力に直交するインテロゲーション経路を通って移動する光を使用して、前記流体チャンバに収容された前記液体をインテロゲートするように構成された、発光素子をさらに含む、請求項1~15のいずれか1項に記載のアセンブリ。
【請求項17】
流体チャンバを液体で満たす方法であって、以下:
請求項1に記載のアセンブリを受け取ること、および
(i) 前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体が、前記流体チャンバの前記入口から、前記第1のチャネルを通って前記第1の突起の頂点まで流れ、前記第1の突起の頂点に達すると、前記液体のメニスカスの曲率半径が、前記第1の突起の頂点から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記流体チャンバの前記出口にかけて減少するが、前記第1の曲率半径および前記第2の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入すること、または
(ii) 前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体のメニスカスの曲率半径が、前記流体チャンバの前記入口から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記第1の突起の頂点にかけて減少するが、前記第1の曲率半径および前記第2の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入すること
を含む、前記方法。
【請求項18】
流体チャンバを液体で満たす方法であって、以下:
請求項5に記載のアセンブリを受け取ること、および
(i) 前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体が、前記流体チャンバの前記入口から前記第1のチャネルを通って前記第1の突起の頂点まで流れ、
前記第1の突起の頂点に達すると、前記液体のメニスカスの曲率半径が、前記第1の突起の頂点から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記第2の突起の頂点にかけて減少するが、前記第1の曲率半径および前記第2の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入すること、または
(ii) 前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体が、前記流体チャンバの前記入口から、前記第2の突起によって形成された前記第2のチャネルを通って前記第2の突起の頂点まで流れ、前記第2の突起の頂点に達すると、前記液体のメニスカスの曲率半径が、前記第2の突起の頂点から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記第1の部分の前記第1の突起の頂点にかけて減少するが、前記第1の曲率半径および前記第2の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入することと
を含む、前記方法。
【発明の詳細な説明】
【技術分野】
【0001】
序論
流体チャンバは、サンプルの1つまたは複数の特性を決定するために使用される生物学的及び化学的アッセイを含むことができ、且つ、容易にすることができる。多くの場合、流体チャンバ内でそのようなアッセイを実行するために、サンプル自体を含むアッセイ反応物は、外部ソースから入口を通って流体チャンバに移される。アッセイ反応物が流体チャンバ内に配置されると、アッセイが行われ、アッセイ生成物が生成される。これらのアッセイ生成物は、分析し、特徴付けることができる。多くの場合、アッセイ生成物は、分析中、流体チャンバ内に収容されたままである。
【背景技術】
【0002】
背景
上記のように、多くの生物学的及び化学的アッセイシステムは、流体チャンバを液体で満たすことと、流体チャンバ内の液体を使用して実行されたアッセイの生成物を分析することとを含む。このような場合、気泡がアッセイの性能に影響を及ぼし、有効なアッセイ量を減少させ、及び/またはアッセイ生成物の分析を妨害する可能性があるため、気泡が入ることなく液体が流体チャンバを確実に満たすことが重要な場合が多い。
【0003】
生物学的及び化学的アッセイシステムの流体チャンバ、特にナノリットルまたはマイクロリットルの容積を有する流体チャンバを含むシステムの流体チャンバの開発において、重要な課題は、気泡の形成を防ぐようにシステムを構成する一方、製造コストを低く抑えることである。プラスチック部品の使用は、このようなアッセイシステムの費用効果の高い製造アプローチである。ただし、プラスチックは疎水性の傾向があるため、気泡のない充填を保証することは困難である。プラスチック表面は、プラズマ処理、親水性分子の化学吸着、または表面研磨を使用してより親水性にすることができるが、これらの技術によって、製造に時間とコストが追加される。
【0004】
流体チャンバ、特にプラスチック部品で構成される低コストの流体チャンバでの気泡の形成に対抗するために、流体チャンバを戦略的に成形することができる。しかしながら、従来の低コストの製造技術は、流体チャンバの形状を成形する能力を制限して、流体チャンバを液体で満たす間の気泡の形成を防止する。例えば、射出成形などの従来の製造技術を使用して流体チャンバを製造する場合、小さな特徴部の射出成形は一般にアンダーカットを許容しないため、流体チャンバの側壁は実質的に真っ直ぐであることが多い。その結果、多くの流体チャンバは、90度の角度で平面基板と合流する5つの壁を含む。流体チャンバの壁の間のそのような90度の角度は、液体が流体チャンバを満たすときに気泡が入ることを可能にし得る。従って、製造上の制限により、気泡形成を回避するように流体チャンバを構成することができない。
【0005】
気泡の形成を防ぐために流体チャンバの形状を成形する能力を制限するこれらの製造上の制限に対応して、単一平面に沿った従来の横方向の流れを使用して動作する平面アッセイシステムが開発された。これらの平面アッセイシステムは、流体チャンバの気泡のない充填を達成する可能性が高いが、バルクアッセイ量のインテロゲーションと分析はできない。具体的には、平面アッセイシステムの流体チャンバでは、システムが側面からのインテロゲーションアクセスを提供するように構成されていないため、分析は通常、システムの平面に垂直な軸に沿って行われるので、表面反応しかインテロゲートすることはできない。
【0006】
流体チャンバを液体で満たしている間の流体チャンバの気泡トラップに加えて、流体チャンバの充填後、流体チャンバ内で行われるアッセイ中に気泡が形成されることもある。例えば、気泡は、気体生成物の発生、凍結乾燥試薬にトラップされた空気の放出、及び/または溶存ガスの放出を通して、アッセイ中に形成される場合がある。上記のように、気泡の存在はアッセイ生成物の分析を妨げ得る。特に、気泡の存在は、気泡の反射特性及び屈折特性のため、並びに気泡が光学分析中に膨張、移動、または合体し、それによって分析を混乱させる可能性があるため、アッセイ生成物の光学分析を妨げ得る。
【0007】
上記の平面アッセイシステムでは、気泡は単に流体チャンバの最大高さまで上昇し、そこで気泡は平らな表面に沿って停滞したままであるため、アッセイ中に生成された気泡を除去することは困難である。上記のように、平面システムでのインテロゲーション及び分析は、一般に、装置の平面に垂直な軸に沿って実行されるため、平らな表面に沿った流体チャンバの上部での気泡のこの停滞は、平面システムで特に問題となる。従って、このインテロゲーション軸は、流体チャンバの平らな表面に沿って停滞した気泡と一致して、分析を妨害する。
【0008】
従って、生物学的及び化学的アッセイシステムにおける重要な課題は、流体チャンバを液体で満たす間の気泡形成を防止し、且つ、流体チャンバ内で実行されるアッセイ中に流体チャンバ内に形成される気泡を除去するように構成された低コストのバルク容積流体チャンバの開発である。
【発明の概要】
【0009】
概要
開示される主題は、概して、流体チャンバを液体で満たす間の流体チャンバ内の気泡形成を回避するための低コストの装置、システム、及び方法に関する。主題の装置は、入口と、出口と、流体チャンバの容積内に突出する突起とを備える流体チャンバを含む。主題の方法は、液体のメニスカスの曲率半径が、流体チャンバの1つまたは複数の内面の曲率半径を超えないように、液体が流体チャンバを徐々に満たすように、液体を流体チャンバの入口に導入することによって、流体チャンバ内の気泡形成を防ぐことを含む。いくつかの実施形態では、本明細書に開示される装置、システム、及び方法はまた、流体チャンバ内に形成される気泡の除去を可能にする。このような主題の装置は、流体チャンバの少なくとも1つの傾斜面をさらに含む。このような主題の方法は、気泡が、浮力によって、流体チャンバ内で傾斜面に向かって上昇し、次に、流体チャンバの傾斜面に沿って流体チャンバの中心から離れるように移動することをさらに含む。
【0010】
一態様では、本開示は、流体チャンバを液体で満たす間のアセンブリの流体チャンバ内の気泡形成を回避するように構成されたアセンブリを提供する。気泡形成を回避するために、このようなアセンブリの流体チャンバは、流体チャンバを満たす液体のメニスカスの曲率半径よりもそれぞれ大きい1つまたは複数の曲率半径を有する。流体チャンバのこの基本的な特性は、本明細書に記載するようにアセンブリを戦略的に構成することによって達成される。具体的には、アセンブリは、流体チャンバを形成するために互いに動作可能に結合される第1の部分及び第2の部分を含む。第1の部分は、第1の表面を含み、同様に第2の部分は、第2の表面を含む。第1の部分はまた、第1の部分の第1の表面によって境界を定められる突起を含む。流体チャンバは、入口、出口、及び容積を含む。流体チャンバの容積は、第1の部分の第1の表面及び第2の部分の第2の表面によって境界を定められる。第1の部分の突起は、突起の頂点とアセンブリの第2の部分の第2の表面との間が最小接近距離となるように、流体チャンバの容積内に突出している。突起はまた、入口及び出口の一方から突起の頂点まで延びるチャネルを形成する。突起及び突起によって形成されるチャネルにより、流体チャンバの入口及び出口は、流体チャンバの容積を通る最大移動距離が入口と出口との間に存在するように、流体チャンバに位置する。さらに、流体チャンバの容積の断面積は、突起の頂点から流体チャンバの横断面にかけて増加し、流体チャンバの横断面から流体チャンバの入口及び出口の他方にかけて減少する。流体チャンバのこの構成は、流体チャンバを満たす液体のメニスカスの曲率半径が、流体チャンバの1つまたは複数の曲率半径よりも小さい大きさを有することを保証し、それにより、流体チャンバが液体で満たされるとき、流体チャンバ内の気泡の形成を防止する。
【0011】
流体チャンバのこの基本的な構成に加えて、流体チャンバは、流体チャンバの充填中の気泡の形成を回避するのをさらに助ける追加の特徴を含むことができる。例えば、いくつかの実施形態では、突起の頂点と第2の部分の第2の表面との間の最小接近距離は、流体チャンバの横断面における流体チャンバの容積の断面積の最大寸法よりも小さい。この特徴は、流体チャンバを満たす液体のメニスカスの曲率半径のサイズを制限するので、流体チャンバ内の気泡形成の防止をさらに可能にする。さらなる実施形態では、突起の頂点は、入口及び出口の他方から流体チャンバの容積を横切って対角線上に位置することができる。さらに別の実施形態では、入口及び出口は両方とも、アセンブリの第1の部分に形成される。これらの各特徴は、入口と出口の間の流体チャンバの容積を通る移動距離を最大化し、流体チャンバを液体で満たす間の気泡防止をさらに支援する。
【0012】
特定の実施形態では、チャネルが延びる入口及び出口の一方は入口を構成し、入口及び出口の一方の他方は出口を構成する。代替実施形態では、反対のことが当てはまる。具体的には、代替実施形態では、チャネルが延びる入口及び出口の一方は出口を構成し、入口及び出口の一方の他方は入口を構成する。
【0013】
流体チャンバを液体で満たす間、アセンブリは、流体チャンバでの気泡の形成を防ぎながら、重力に対して任意の向きをとることができる。例えば、流体チャンバを液体で満たす間、いくつかの実施形態では、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置するように配向することができる。代替実施形態では、流体チャンバを液体で満たす間、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置するように配向することができる。
【0014】
本明細書に記載の流体チャンバの気泡防止機能にもかかわらず、いくつかの実施形態では、気泡が、流体チャンバの充填中に形成される場合がある。さらに、特定の実施形態では、流体チャンバが液体で満たされた後、アッセイが流体チャンバ内で実行され、流体チャンバ内に気泡の形成を引き起こし得る。これらの気泡は、アッセイの実行自体、及び/またはアッセイ結果の収集を妨げる場合がある。従って、気泡形成を回避するように流体チャンバを構成することに加えて、いくつかの実施形態では、流体チャンバ内の気泡を除去及び/または移動するように流体チャンバを構成することも有益な場合がある。
【0015】
このような実施形態では、第1の部分の第1の表面は、第1の表面に沿った傾斜点から、第2の部分の第2の表面から離れるように流体チャンバの入口及び出口の他方に向かって傾斜するように構成することができる。あるいは、第2の部分の第2の表面は、第2の表面に沿った第2の傾斜点から第1の部分の第1の表面から離れるように第1の表面の突起の頂点に向かって傾斜するように構成することができる。以下でさらに詳細に説明するように、これらの傾斜面により、浮力による、流体チャンバ内の気泡の除去及び/または移動が可能になる。従って、流体チャンバの充填中に気泡形成を防ぐアセンブリの向きとは異なり、流体チャンバからの気泡の除去及び/または移動中、アセンブリは、流体チャンバの傾斜面が流体チャンバの他の表面に対して重力の方向と反対に位置するように、重力に対して配向されるべきである。具体的には、第1の部分の第1の表面が、第1の表面に沿った傾斜点から第2の部分の第2の表面から離れるように流体チャンバの入口及び出口の他方に向かって傾斜するように構成されている場合、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置して流体チャンバからの気泡を除去及び/または移動させるように配向されるべきである。逆に、第2の部分の第2の表面が、第2の表面に沿った第2の傾斜点から第1の部分の第1の表面から離れるように第1の部分の突起の頂点に向かって傾斜するように構成されている場合、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置し、流体チャンバからの気泡を除去及び/または移動させるように配向されるべきである。
【0016】
別の態様では、本開示は、流体チャンバを液体で満たす間のアセンブリの流体チャンバ内の気泡形成を回避するように構成されたアセンブリの別の異なる実施形態を提供する。上記のアセンブリの実施形態と同様、気泡形成を回避するために、このようなアセンブリの流体チャンバは、流体チャンバを満たす液体のメニスカスの曲率半径よりもそれぞれ大きい1つまたは複数の曲率半径を有する。流体チャンバのこの基本的な特性は、上記のアセンブリの実施形態と比較してわずかに異なる方法で達成される。ここに記載のアセンブリの実施形態はまた、流体チャンバを形成するために互いに動作可能に結合される第1の部分及び第2の部分を含む。第1の部分は、第1の表面を含み、同様に第2の部分は、第2の表面を含む。アセンブリの上記実施形態と同様、第1の部分は、第1の部分の第1の表面によって境界を定められる突起を含む。しかしながら、ここに記載のアセンブリの実施形態では、第2の部分は、第2の部分の第2の表面によって境界が定められる第2の突起を含む。流体チャンバは、入口、出口、及び容積を含む。流体チャンバの容積は、第1の部分の第1の表面及び第2の部分の第2の表面によって境界を定められる。第1の部分の突起は、突起の頂点とアセンブリの第2の部分の第2の表面との間が最小接近距離となるように、流体チャンバの容積内に突出し、第2の部分の第2の突起は、第2の突起の頂点とアセンブリの第1の部分の第1の表面との間が第2の最小接近距離となるように、流体チャンバの容積内に突出する。突起は、入口及び出口の一方から突起の頂点まで延びるチャネルを形成し、第2の突起は、入口及び出口の一方の他方から第2の突起の頂点まで延びる第2のチャネルを形成する。上記と同様、2つの突起及びチャネルにより、流体チャンバの入口及び出口は、流体チャンバの容積を通る最大移動距離が入口と出口との間に存在するように、流体チャンバ内に位置する。さらに、流体チャンバの容積の断面積は、突起の頂点から流体チャンバの横断面にかけて増加し、流体チャンバの横断面から第2の突起の頂点にかけて減少する。流体チャンバのこの構成は、流体チャンバを満たす液体のメニスカスの曲率半径が、流体チャンバの1つまたは複数の曲率半径よりも小さい大きさを有することを保証し、それにより、流体チャンバが液体で満たされるとき、流体チャンバ内の気泡の形成を防止する。
【0017】
流体チャンバのこの基本的な構成に加えて、上記のように、流体チャンバは、流体チャンバの充填中の気泡の形成を回避するのを助ける追加の特徴をさらに含むことができる。例えば、いくつかの実施形態では、突起の頂点と第2の部分の第2の表面との間の最小接近距離及び/または第2の突起の頂点と第1の部分の第1の表面との間の第2の最小接近距離は、流体チャンバの横断面における流体チャンバの容積の断面積の最大寸法よりも小さくてよい。この特徴は、流体チャンバを満たす液体のメニスカスの曲率半径のサイズを制限するので、流体チャンバの気泡形成の防止をさらに可能にする。さらなる実施形態では、突起の頂点は、第2の突起の頂点から流体チャンバの容積を横切って対角線上に位置することができる。さらに別の実施形態では、入口と出口は、アセンブリの反対側の部品に形成される。例えば、入口は、アセンブリの第1の部分に形成することができ、出口は、アセンブリの第2の部分に形成することができる、あるいは、入口は、アセンブリの第2の部分に形成することができ、出口は、アセンブリの第1の部分に形成することができる。これらの各特徴は、入口と出口の間の流体チャンバの容積を通る移動距離を最大化し、流体チャンバを液体で満たす間の気泡防止をさらに支援する。
【0018】
特定の実施形態では、入口及び出口の一方は入口を構成し、入口及び出口の一方の他方は出口を構成する。代替実施形態では、逆のことが当てはまる。
【0019】
上記のように、流体チャンバを液体で満たす間、アセンブリは、流体チャンバでの気泡の形成を防ぎながら、重力に対して任意の向きを有し得る。例えば、流体チャンバを液体で満たす間、いくつかの実施形態では、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置するように配向することができる。代替実施形態では、流体チャンバを液体で満たす間、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置するように配向することができる。
【0020】
そして、これも上記のように、気泡形成を回避するように流体チャンバを構成することに加えて、いくつかの実施形態では、流体チャンバ内の気泡を除去及び/または移動するように流体チャンバを構成することも有益な場合がある。このような実施形態では、第1の部分の第1の表面は、第1の表面に沿った傾斜点から、第2の部分の第2の表面から離れるように第2の部分の第2の突起の頂点に向かって傾斜するように構成することができる。あるいは、第2の部分の第2の表面は、第2の表面に沿った第2の傾斜点から第1の部分の第1の表面から離れるように第1の部分の突起の頂点に向かって傾斜するように構成することができる。これらの傾斜面により、浮力による、流体チャンバ内の気泡の除去及び/または移動が可能になる。従って、気泡形成を防ぐための流体チャンバの充填中のアセンブリの向きとは異なり、流体チャンバからの気泡の除去及び/または移動中、アセンブリは、流体チャンバの傾斜面が流体チャンバの他の表面に対して重力の方向と反対に位置するように、重力に対して配向されるべきである。具体的には、第1の部分の第1の表面が、第1の表面に沿った傾斜点から第2の部分の第2の表面から離れるように第2の突起の頂点に向かって傾斜するように構成されている場合、アセンブリは、第2の部分が第1の部分に対して重力の方向に配置されて、流体チャンバからの気泡を除去及び/または移動させるように配向されるべきである。逆に、第2の部分の第2の表面が、第2の表面に沿った第2の傾斜点から第1の部分の第1の表面から離れるように第1の部分の突起の頂点に向かって傾斜するように構成されている場合、アセンブリは、第1の部分が第2の部分に対して重力の方向に配置されて、流体チャンバからの気泡を除去及び/または移動させるように配向されるべきである。
【0021】
上記の流体チャンバの2つの実施形態におけるわずかな違いにもかかわらず、両方の実施形態は、共通の複数の特徴を有する。これらの特徴の一部は、液体の充填中に流体チャンバ内での気泡の形成を防ぐのをさらに支援する。例えば、いくつかの実施形態では、流体チャンバの容積の形状は、実質的に四角柱を含むことができる。さらに、四角柱の1つまたは複数の角は、丸みを帯びていてよい。これらの特徴はそれぞれ、流体チャンバを満たす液体のメニスカスの曲率半径が、流体チャンバの1つまたは複数の曲率半径よりも小さい大きさを有することを保証し、それにより、流体チャンバが液体で満たされるとき、流体チャンバ内の気泡の形成を防止する。さらに別の実施形態では、第1の部分の第1の表面及び第2の部分の第2の表面は、流体チャンバの表面に沿った気泡の形成及び捕捉を防ぐために、25マイクロインチ未満の粗さ値を有する。
【0022】
アセンブリの第1の部分及び第2の部分を形成する様々な方法がある。いくつかの実施形態では、第1の部分及び第2の部分の少なくとも一方は射出成形される。いくつかの実施形態では、第1の部分及び第2の部分の少なくとも一方は、レプリカ鋳造、真空成形、機械加工、化学エッチング、及び物理エッチングのうちの1つによって形成される。第1の部分及び第2の部分の少なくとも一方は、プラスチック、金属、及びガラスのうちの1つを含むことができる。特定の実施形態では、第1の部分及び第2の部分の少なくとも一方は、流体チャンバを満たす液体と流体チャンバの第1の表面及び第2の表面の少なくとも一方との間の接触角が90度を超えるように、疎水性材料及び疎油性材料のうちの1つを含む。
【0023】
流体チャンバを形成するために第1の部分及び第2の部分を互いに動作可能に結合するための様々な方法がある。いくつかの実施形態では、ガスケットは、第1の部分と第2の部分の間に配置されている。このような実施形態では、ガスケットは、第1の部分及び第2の部分に動作可能に結合されて、流体チャンバに流体シールを形成する。特定の実施形態では、ガスケットは、熱可塑性エラストマ(TPE)のオーバーモールディングを含むことができる。ガスケットの容積は、第1の部分と第2の部分が動作可能に結合されると、5%~25%圧縮することができる。特定の実施形態では、第1の部分及び第2の部分は、圧縮、超音波溶接、熱溶接、レーザ溶接、溶剤結合、接着剤、及びヒートステーキングのうちの1つまたは複数によって動作可能に結合される。
【0024】
アセンブリの第1の部分及び第2の部分の動作可能な結合によって形成された流体チャンバは、様々な形態をとることができる。特定の実施形態では、流体チャンバの容積は、1uL~1000uLであってよい。好ましい実施形態では、流体チャンバの容積は、およそ30uLであってよい。いくつかの実施形態では、第1の部分及び第2の部分の動作可能な結合は、複数の流体チャンバを形成することができる。このような実施形態では、複数の流体チャンバのそれぞれは、複数の流体チャンバの少なくとも1つの他の流体チャンバと、流体チャンバの入口と出口の一方と少なくとも1つの他の流体チャンバの入口及び出口の一方の他方との間の流体接続を介して、流体連通してよい。
【0025】
いくつかの実施形態では、1つまたは複数の流体チャンバを使用して、1つまたは複数の化学的及び生物学的アッセイを含む及び実行することができる。このような実施形態では、流体チャンバは、乾燥または凍結乾燥された試薬を含むことができる。これらの乾燥または凍結乾燥試薬は、核酸増幅酵素及びDNAプライマなどの試薬をさらに含むことができる。
【0026】
流体チャンバが1つまたは複数の化学的及び生物学的アッセイを含み、実行するために使用されるこのような実施形態では、アセンブリは、流体チャンバの内容物をインテロゲートするための構成要素をさらに含むことができる。例えば、いくつかの実施形態では、アセンブリは、流体チャンバに収容された液体をインテロゲートするように構成された発光素子をさらに含むことができる。発光素子は、重力に直交するインテロゲーション経路を通って移動する光を使用して、流体チャンバに収容された液体をインテロゲートする。以下でさらに詳細に記載するように、インテロゲーション経路のこの向きは、バルク量の液体のインテロゲーションを可能にするだけでなく、以下に詳細に説明するように、流体チャンバ内の気泡による混乱させる妨害を回避し、それによってより正確なアッセイ結果をもたらす。
【0027】
アセンブリが流体チャンバに収容された液体をインテロゲートするための発光素子をさらに含むいくつかの実施形態では、第1の表面及び第2の表面の一方の少なくとも一部分は、透明な材料をさらに含み、発光素子が流体チャンバに収容された液体をインテロゲートするインテロゲーション経路が、透明な材料を通って延びることができる。いくつかのさらなる実施形態において、第1の表面及び第2の表面の一方は、第2の表面であってよい。アセンブリはまた、発光素子と流体チャンバとの間のインテロゲーション経路に沿って配置された光ガイド、光フィルタ、及びレンズのうちの1つまたは複数をさらに含むことができる。
【0028】
さらに別の態様では、本開示は、上記の第1のアセンブリ(1つの突起を備えたアセンブリ)の実施形態の流体チャンバに液体を満たす方法を提供する。この方法は、上記のような第1のアセンブリの実施形態を受け取ることを含む。特に、ここで説明する方法で使用されるアセンブリの実施形態は、アセンブリの流体チャンバの入口及び出口の一方が入口を構成し、流体チャンバの入口及び出口の他方が出口を構成するように構成される。従って、ここで説明する方法で使用されるアセンブリの実施形態は、流体チャンバの容積の断面積が流体チャンバの横断面から流体チャンバの出口にかけて減少するように構成される。この方法は、液体を流体チャンバの入口に導入することをさらに含み、導入されると、液体は、流体チャンバの入口から、突起によって形成されたチャネルを通って第1の部分の突起の頂点まで流れる。次に、突起の頂点に達すると、液体は、液体のメニスカスの曲率半径が突起の頂点から流体チャンバの横断面にかけて増加し、流体チャンバの横断面から流体チャンバの出口にかけて減少するが、流体チャンバの1つまたは複数の表面の曲率半径を超えないように流体チャンバの容積を徐々に満たすことによって、充填中の流体チャンバ内で気泡が入ることを最小限にする。この方法の特定の実施形態では、流体チャンバの出口に達すると、液体は出口を通って流体チャンバを出る。
【0029】
代替の態様では、本開示は、上記の第1のアセンブリ(1つの突起を備えたアセンブリ)の実施形態の流体チャンバに液体を満たす異なる方法を提供する。この方法は、上記のような第1のアセンブリの実施形態を受け取ることを含む。ただし、ここで説明する方法で使用されるアセンブリの実施形態は、前述の方法で使用されるアセンブリの実施形態とはわずかに異なる。具体的には、ここで説明する方法で使用されるアセンブリの実施形態は、アセンブリの流体チャンバの入口及び出口の一方が出口を構成し、流体チャンバの入口及び出口の他方が入口を構成するように構成される。従って、ここで説明する方法で使用されるアセンブリの実施形態は、流体チャンバの容積の断面積が流体チャンバの横断面から流体チャンバの入口にかけて減少するように構成される。方法は、流体チャンバの入口に液体を導入することを含み、導入されると、液体は、液体のメニスカスの曲率半径が流体チャンバの入口から流体チャンバの横断面にかけて増加し、流体チャンバの横断面から突起の頂点にかけて減少するが、流体チャンバを満たす液体のメニスカスに垂直な流体チャンバの1つまたは複数の表面の曲率半径を超えないように流体チャンバの容積を徐々に満たすことによって、充填中の流体チャンバ内で気泡が入ることを最小限にする。この方法の特定の実施形態では、突起の頂点に達すると、液体は、突起によって形成されたチャネルに流れ込み、流体チャンバの出口に向かって流れ、次に、流体チャンバの出口に達すると、液体は、出口を通って流体チャンバを出ることができる。
【0030】
第1のアセンブリ(1つの突起を備えたアセンブリ)の実施形態の流体チャンバを液体で満たす間、アセンブリは、流体チャンバでの気泡の形成を防ぎながら、重力に対して任意の向きを有することができる。例えば、流体チャンバを液体で満たす間、いくつかの実施形態では、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置するように配向することができる。代替実施形態では、流体チャンバを液体で満たす間、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置するように配向することができる。
【0031】
上記のように、気泡形成を回避するように第1のアセンブリ(1つの突起を備えたアセンブリ)の実施形態の流体チャンバを構成することに加えて、いくつかの実施形態では、流体チャンバ内の気泡を除去及び/または移動するように流体チャンバを構成することも有益な場合がある。例えば、アセンブリの第1の部分の第1の表面は、第1の表面に沿った傾斜点から第2の部分の第2の表面から離れるように流体チャンバの出口に向かって傾斜することができる。このような実施形態では、方法は、流体チャンバ内に収容された液体を用いて少なくとも部分的に流体チャンバ内のアッセイを実行することをさらに含み、アッセイの実行中に形成される気泡は、流体チャンバで重力と反対の方向に上昇し、アセンブリの第1の部分の傾斜した第1の表面に沿って流体チャンバの出口に向かって移動し、それによって流体チャンバから気泡を除去する。流体チャンバから気泡を除去する間、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置するように重力に対して配向される。
【0032】
あるいは、アセンブリの第2の部分の第2の表面は、第2の表面に沿った傾斜点から第1の部分の第1の表面から離れるように第1の部分の突起の頂点に向かって傾斜することができる。このような実施形態では、方法は、流体チャンバ内に収容された液体を用いて少なくとも部分的に流体チャンバ内でアッセイを実行することをさらに含み、アッセイの実行中に形成される気泡は、流体チャンバで重力と反対の方向に上昇し、アセンブリの第2の部分の傾斜した第2の表面に沿って第1の部分の突起の頂点に向かって移動し、それによって流体チャンバの容積の中心から気泡を移動させる。流体チャンバから気泡を移動させる間、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置するように重力に対して配向される。
【0033】
別の代替の態様では、本開示は、上記の第2のアセンブリ(2つの突起を備えたアセンブリ)の実施形態の流体チャンバに液体を満たす方法を提供する。この方法は、上記のような第2のアセンブリの実施形態を受け取ることを含む。特に、ここで説明する方法で使用されるアセンブリの実施形態は、アセンブリの流体チャンバの入口及び出口の一方が入口を構成し、流体チャンバの入口及び出口の他方が出口を構成するように構成される。従って、ここで説明する方法で使用されるアセンブリの実施形態は、流体チャンバの容積の断面積が流体チャンバの横断面から第2の突起の頂点にかけて減少するように構成される。この方法は、液体を流体チャンバの入口に導入することをさらに含み、導入されると、液体は、流体チャンバの入口から、突起によって形成されたチャネルを通って第1の部分の突起の頂点まで流れる。次に、突起の頂点に達すると、液体は、液体のメニスカスの曲率半径が突起の頂点から流体チャンバの横断面にかけて増加し、流体チャンバの横断面から第2の部分の第2の突起の頂点にかけて減少するが、流体チャンバを満たす液体のメニスカスに垂直な流体チャンバの1つまたは複数の表面の曲率半径を超えないように流体チャンバの容積を徐々に満たし、それによって、充填中の流体チャンバ内で気泡が入ることを最小限にする。この方法の特定の実施形態では、第2の突起の頂点に達すると、液体は、第2の突起によって形成された第2のチャネルに流れ込み、流体チャンバの出口に向かって流れ、次に、流体チャンバの出口に達すると、液体は、出口を通って流体チャンバを出ることができる。
【0034】
さらに別の代替の態様では、本開示は、上記の第2のアセンブリ(2つの突起を備えたアセンブリ)の実施形態の流体チャンバに液体を満たす異なる方法を提供する。この方法は、上記のような第2のアセンブリの実施形態を受け取ることを含む。ただし、ここで説明する方法で使用される第2のアセンブリの実施形態は、上記で説明した方法で使用される第2のアセンブリの実施形態とはわずかに異なる。具体的には、ここで説明する方法で使用される第2のアセンブリの実施形態は、アセンブリの流体チャンバの入口及び出口の一方が出口を構成し、流体チャンバの入口及び出口の他方が入口を構成するように構成される。従って、ここで説明する方法で使用されるアセンブリの実施形態は、流体チャンバの容積の断面積が流体チャンバの横断面から第2の突起の頂点にかけて減少するように構成される。この方法は、液体を流体チャンバの入口に導入することをさらに含み、導入されると、液体は、流体チャンバの入口から、第2の突起によって形成された第2のチャネルを通って第2の部分の第2の突起の頂点まで流れる。次に、第2の突起の頂点に達すると、液体は、液体のメニスカスの曲率半径が第2の突起の頂点から流体チャンバの横断面にかけて増加し、流体チャンバの横断面から第1の部分の突起の頂点にかけて減少するが、流体チャンバを満たす液体のメニスカスに垂直な流体チャンバの1つまたは複数の表面の曲率半径を超えないように、流体チャンバの容積を徐々に満たすことによって、充填中の流体チャンバ内の気泡のトラップを最小限にする。この方法の特定の実施形態では、突起の頂点に達すると、液体は、突起によって形成されたチャネルに流れ込み、流体チャンバの出口に向かって流れ、次に、流体チャンバの出口に達すると、液体は、出口を通って流体チャンバを出ることができる。
【0035】
第2のアセンブリ(2つの突起を備えたアセンブリ)の実施形態の流体チャンバを液体で満たす間、アセンブリは、流体チャンバでの気泡の形成を防ぎながら、重力に対して任意の向きを有することができる。例えば、流体チャンバを液体で満たす間、いくつかの実施形態では、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置するように配向することができる。代替実施形態では、流体チャンバを液体で満たす間、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置するように配向することができる。
【0036】
上記のように、気泡形成を回避するように第2のアセンブリ(2つの突起を備えたアセンブリ)の実施形態の流体チャンバを構成することに加えて、いくつかの実施形態では、流体チャンバ内の気泡を除去及び/または移動するように流体チャンバを構成することも有益な場合がある。例えば、アセンブリの第2の部分の第2の表面は、第2の表面に沿った傾斜点から第1の部分の第1の表面から離れるように第1の部分の突起の頂点に向かって傾斜することができる。このような実施形態では、方法は、流体チャンバ内に収容された液体を用いて少なくとも部分的に流体チャンバ内でアッセイを実行することをさらに含み、アッセイの実行中に形成される気泡は、流体チャンバ内で重力と反対の方向に上昇し、アセンブリの第2の部分の傾斜した第2の表面に沿って第1の部分の突起の頂点に向かって移動し、それによって流体チャンバの容積の中心から気泡を移動させる。流体チャンバから気泡を移動させる間、アセンブリは、第1の部分が第2の部分に対して重力の方向に位置するように重力に対して配向される。
【0037】
あるいは、アセンブリの第1の部分の第1の表面は、第1の表面に沿った傾斜点から第2の部分の第2の表面から離れるように第2の部分の第2の突起の頂点に向かって傾斜することができる。このような実施形態では、方法は、流体チャンバ内に収容された液体を用いて少なくとも部分的に流体チャンバ内でアッセイを実行することをさらに含み、アッセイの実行中に形成される気泡は、流体チャンバ内で重力と反対の方向に上昇し、アセンブリの第1の部分の傾斜した第1の表面に沿って第2の部分の第2の突起の頂点に向かって移動し、それによって流体チャンバの容積の中心から気泡を移動させる。流体チャンバから気泡を移動させる間、アセンブリは、第2の部分が第1の部分に対して重力の方向に位置するように重力に対して配向される。
【0038】
アセンブリが上記のように流体チャンバ内の気泡を除去及び/または移動するように配向されている本明細書に記載の方法のさらなる実施形態において、アセンブリは、発光素子をさらに含むことができ、方法は、重力に直交するインテロゲーション経路を通って移動する光を使用して流体チャンバに収容された液体をインテロゲートすることをさらに含むことができる。アセンブリの向きにより、気泡は浮力の経路に沿って重力の方向と反対の方向に移動し、浮力の経路が重力に直交するインテロゲーション経路と一致しないので、流体チャンバの液体のインテロゲーションを妨害しない。これにより、流体チャンバに収容された液体のより正確なインテロゲーションが可能になる。さらなる実施形態では、アセンブリの第2の部分の第2の表面の少なくとも一部分は、透明な材料を含むことができ、重力に直交するインテロゲーション経路を通って進む光を使用して、流体チャンバに収容された液体をインテロゲートすることは、発光素子が透明な材料を通ってインテロゲーション経路に沿って流体チャンバの方向に、そして流体チャンバ内に光を放出することを含むことができる。材料のこの透明性は、インテロゲーション結果の精度をさらに向上させる。
【0039】
さらなる様々な実施形態が、本明細書に記載の方法のいずれかに適用される。例えば、本明細書に記載の方法の特定の実施形態では、流体チャンバの容積が実質的に満たされると、液体は流体チャンバの出口に達する。本明細書で使用される場合、「実質的に満たされる」という用語は、少なくとも90%満たされていることを意味する。本明細書に記載の方法のさらなる実施形態では、アセンブリの第1の部分及び第2の部分の動作可能な結合は、各流体チャンバの入口及び出口のうちの少なくとも一方を介して互いに流体連通する複数の流体チャンバを形成することができ、液体は、複数の流体チャンバ間で、各流体チャンバの入口と出口のうちの少なくとも一方を通って移動することができる。
【0040】
[本発明1001]
アセンブリの流体チャンバを液体で満たす間の前記流体チャンバ内の気泡形成を回避するように構成されたアセンブリであって、
前記アセンブリが、以下:
第1の部分であって、
第1の表面と、
突起と、
を含み、前記第1の部分の前記第1の表面が前記突起の境界を定める、前記第1の部分;及び
第2の表面を含む第2の部分
を含み、
前記第1の部分及び前記第2の部分が、互いに動作可能に結合されて、前記アセンブリの前記流体チャンバを形成し、
前記流体チャンバが、
入口と、
出口と、
前記第1の表面及び前記第2の表面によって境界を定められた容積であって、前記第1の部分の前記突起が、前記突起の頂点と前記2の部分の前記第2の表面との間が最小接近距離となるように前記流体チャンバの前記容積内に突出している、前記容積と、
前記第1の部分の前記突起によって形成されたチャネルであって、前記入口及び前記出口の一方から前記突起の前記頂点まで延びる、前記チャネルと
を含み、
前記流体チャンバの前記入口及び前記出口が、前記流体チャンバの前記容積を通る最大移動距離が前記入口と前記出口との間に存在するように、前記流体チャンバに位置し、且つ、
前記流体チャンバの前記容積の断面積が、前記突起の前記頂点から前記流体チャンバの横断面にかけて増加し、前記流体チャンバの前記横断面から前記流体チャンバの前記入口及び前記出口の他方にかけて減少する、
前記アセンブリ。
[本発明1002]
前記突起の頂点と前記第2の部分の前記第2の表面との間の前記最小接近距離が、前記流体チャンバの前記横断面における前記流体チャンバの前記容積の前記断面積の最大寸法よりも小さい、本発明1001のアセンブリ。
[本発明1003]
前記流体チャンバの前記入口及び前記出口の一方が、前記入口を構成し、前記流体チャンバの前記入口及び前記出口の前記一方の他方が、前記出口を構成する、本発明1001~1002のいずれかのアセンブリ。
[本発明1004]
前記流体チャンバの前記入口及び前記出口の一方が、前記出口を構成し、前記流体チャンバの前記入口及び前記出口の前記一方の他方が、前記入口を構成する、本発明1001~1002のいずれかのアセンブリ。
[本発明1005]
前記突起の前記頂点が、前記入口及び前記出口の前記一方の他方から前記流体チャンバの前記容積を横切って対角線上に位置する、本発明1001~1004のいずれかのアセンブリ。
[本発明1006]
前記流体チャンバの前記入口及び前記出口が、前記アセンブリの前記第1の部分に形成される、本発明1001~1005のいずれかのアセンブリ。
[本発明1007]
前記第1の部分に対して重力の方向に前記第2の部分が位置するように配向されている、本発明1001~1006のいずれかのアセンブリ。
[本発明1008]
前記アセンブリが、前記流体チャンバから気泡を除去するようにさらに構成され、
前記第1の部分の前記第1の表面が、前記第2の部分の前記第2の表面から離れるように、前記流体チャンバの前記入口及び前記出口の他方に向かって非ゼロの傾斜で傾斜している、
本発明1007のアセンブリ。
[本発明1009]
前記第2の部分に対して重力の方向に前記第1の部分が位置するように配向されている、本発明1001~1006のいずれかのアセンブリ。
[本発明1010]
前記アセンブリが、前記流体チャンバから気泡を除去するようにさらに構成され、
前記第2の部分の前記第2の表面が、前記第1の部分の前記第1の表面から離れるように、前記第1の部分の前記突起の前記頂点に向かって非ゼロの傾斜で傾斜している、
本発明1009のアセンブリ。
[本発明1011]
アセンブリの流体チャンバを液体で満たす間の前記流体チャンバ内の気泡形成を回避するように構成されたアセンブリであって、
前記アセンブリが、以下:
第1の部分であって、
第1の表面と、
突起と
を含み、前記第1の部分の前記第1の表面が、前記突起の境界を定める、前記第1の部分;及び
第2の部分であって、
第2の表面と、
第2の突起と
を含み、前記第2の部分の前記第2の表面が、前記第2の突起の境界を定める、前記第2の部分
を含み、
前記第1の部分及び前記第2の部分が、互いに動作可能に結合されて、前記アセンブリの前記流体チャンバを形成し、
前記流体チャンバが、
入口と、
出口と、
前記第1の表面及び前記第2の表面によって境界を定められた容積であって、
前記第1の部分の前記突起が、前記突起の頂点と前記2の部分の前記第2の表面との間が最小接近距離となるように、前記流体チャンバの前記容積内に突出し、
前記第2の部分の前記第2の突起が、前記第2の突起の頂点と前記1の部分の前記第1の表面との間が第2の最小接近距離となるように、前記流体チャンバの前記容積内に突出する、
前記容積と、
前記第1の部分の前記突起によって形成されたチャネルであって、前記入口及び前記出口の一方から前記突起の前記頂点まで延びる、前記チャネルと、
前記第2の部分の前記第2の突起によって形成された第2のチャネルであって、前記流体チャンバの前記入口及び前記出口の他方から前記第2の突起の前記頂点まで延びる、前記第2のチャネルと
を含み、
前記流体チャンバの前記入口及び前記出口が、前記流体チャンバの前記容積を通る最大移動距離が前記入口と前記出口の間に存在するように、前記流体チャンバに位置し、且つ、
前記流体チャンバの前記容積の断面積が、前記突起の前記頂点から前記流体チャンバの横断面にかけて増加し、前記横断面から前記第2の突起の前記頂点にかけて減少する、
前記アセンブリ。
[本発明1012]
前記流体チャンバの前記入口及び前記出口の前記一方が、前記入口を構成し、前記流体チャンバの前記入口及び前記出口の前記一方の他方が、前記出口を構成する、本発明1011のアセンブリ。
[本発明1013]
前記流体チャンバの前記入口及び前記出口の前記一方が、前記出口を構成し、前記流体チャンバの前記入口及び前記出口の前記一方の他方が、前記入口を構成する、本発明1011のアセンブリ。
[本発明1014]
前記突起の前記頂点と前記第2の部分の前記第2の表面との間の前記最小接近距離が、前記流体チャンバの前記横断面における前記流体チャンバの前記容積の前記断面積の最大寸法よりも小さい、本発明1011~1013のいずれかのアセンブリ。
[本発明1015]
前記第2の突起の前記頂点が、前記突起の前記頂点から前記流体チャンバの前記容積を横切って対角線上に位置する、本発明1011~1014のいずれかのアセンブリ。
[本発明1016]
前記第2の突起の前記頂点と前記第1の部分の前記第1の表面との間の前記第2の最小接近距離が、前記流体チャンバの前記横断面における前記流体チャンバの前記容積の前記断面積の最大寸法よりも小さい、本発明1011~1015のいずれかのアセンブリ。
[本発明1017]
前記流体チャンバの前記入口が、前記アセンブリの前記第1の部分に形成され、前記流体チャンバの前記出口が、前記アセンブリの前記第2の部分に形成される、本発明1011~1016のいずれかのアセンブリ。
[本発明1018]
前記第1の部分に対して重力の方向に前記第2の部分が位置するように配向されている、本発明1011~1017のいずれかのアセンブリ。
[本発明1019]
前記アセンブリが、前記流体チャンバから気泡を除去するようにさらに構成され、
前記第1の部分の前記第1の表面が、前記第2の部分の前記第2の表面から離れるように、前記第2の部分の前記第2の突起の前記頂点に向かって非ゼロの傾斜で傾斜している、
本発明1018のアセンブリ。
[本発明1020]
前記第2の部分に対して重力の方向に前記第1の部分が位置するように配向されている、本発明1011~1017のいずれかのアセンブリ。
[本発明1021]
前記アセンブリが、前記流体チャンバから気泡を除去するようにさらに構成され、
前記第2の部分の前記第2の表面が、前記第1の部分の前記第1の表面から離れるように、前記第1の部分の前記突起の前記頂点に向かって非ゼロの傾斜で傾斜している、
本発明1020のアセンブリ。
[本発明1022]
前記流体チャンバの前記容積の形状が、実質的に四角柱を含む、本発明1001~1021のいずれかのアセンブリ。
[本発明1023]
前記四角柱の1つまたは複数の角が、丸みを帯びている、本発明1022のアセンブリ。
[本発明1024]
前記第1の部分の前記第1の表面が、1つまたは複数の第1の曲率半径を有し、前記第2の部分の前記第2の表面が、1つまたは複数の第2の曲率半径を有し、前記第1の曲率半径及び前記第2の曲率半径のそれぞれが、前記流体チャンバを満たす前記液体のメニスカスの曲率半径よりも大きい、本発明1001~1023のいずれかのアセンブリ。
[本発明1025]
前記第1の部分の前記第1の表面及び前記第2の部分の前記第2の表面が、25マイクロインチ未満の粗さ値を有する、本発明1001~1024のいずれかのアセンブリ。
[本発明1026]
前記第1の部分及び前記第2の部分の少なくとも一方が、射出成形されている、本発明1001~1025のいずれかのアセンブリ。
[本発明1027]
前記第1の部分及び前記第2の部分の少なくとも一方が、レプリカ鋳造、真空成形、機械加工、化学エッチング、及び物理エッチングのうちの1つによって形成されている、本発明1001~1026のいずれかのアセンブリ。
[本発明1028]
前記第1の部分及び前記第2の部分の少なくとも一方が、プラスチック、金属、及びガラスのうちの1つを含む、本発明1001~1027のいずれかのアセンブリ。
[本発明1029]
前記第1の部分及び前記第2の部分の少なくとも一方が、疎水性材料及び疎油性材料のうちの1つを含む、本発明1001~1028のいずれかのアセンブリ。
[本発明1030]
前記流体チャンバを満たす前記液体と前記流体チャンバの前記第1の表面及び前記第2の表面の少なくとも一方との間の接触角が90度を超える、本発明1001~1029のいずれかのアセンブリ。
[本発明1031]
前記第1の部分と前記第2の部分の間に配置されたガスケットをさらに含み、
前記ガスケットが、前記第1の部分及び前記第2の部分に動作可能に結合されて、前記流体チャンバに流体シールを形成する、
本発明1001~1030のいずれかのアセンブリ。
[本発明1032]
前記ガスケットが、熱可塑性エラストマ(TPE)オーバーモールドを含む、本発明1031のアセンブリ。
[本発明1033]
前記第1の部分と前記第2の部分が動作可能に結合されている場合、前記ガスケットの容積が5%~25%圧縮される、本発明1031~1032のいずれかのアセンブリ。
[本発明1034]
前記第1の部分及び前記第2の部分が、圧縮、超音波溶接、熱溶接、レーザ溶接、溶剤結合、接着剤、及びヒートステーキングのうちの1つまたは複数によって動作可能に結合されている、本発明1001~1033のいずれかのアセンブリ。
[本発明1035]
前記流体チャンバの前記容積が、1uL~1000uLである、本発明1001~1034のいずれかのアセンブリ。
[本発明1036]
前記流体チャンバの前記容積が、およそ30uLである、本発明1035のアセンブリ。
[本発明1037]
前記流体チャンバが、乾燥または凍結乾燥試薬を含む、本発明1001~1036のいずれかのアセンブリ。
[本発明1038]
前記乾燥または凍結乾燥試薬が、アッセイ試薬を含む、本発明1037のアセンブリ。
[本発明1039]
前記アッセイ試薬が、核酸増幅酵素及びDNAプライマを含む、本発明1038のアセンブリ。
[本発明1040]
重力に直交するインテロゲーション経路を通って移動する光を使用して、前記流体チャンバに収容された前記液体をインテロゲートするように構成された、発光素子
をさらに含む、本発明1001~1039のいずれかのアセンブリ。
[本発明1041]
前記第1の表面及び前記第2の表面の一方の少なくとも一部分が、透明材料を含み、
前記流体チャンバに収容された前記液体をインテロゲーション経路を通ってインテロゲートするように前記発光素子が構成される前記インテロゲーション経路が、前記透明材料を通して延びる、
本発明1040のアセンブリ。
[本発明1042]
前記第1の表面及び前記第2の表面の前記一方が、前記第2の表面を含む、本発明1041のアセンブリ。
[本発明1043]
前記発光素子と前記流体チャンバとの間の前記インテロゲーション経路に沿って配置された、光ガイド、光フィルタ、及びレンズのうちの1つまたは複数をさらに含む、本発明1041~1042のいずれかのアセンブリ。
[本発明1044]
前記第1の部分及び前記第2の部分の前記動作可能な結合が、複数の流体チャンバを形成する、本発明1001~1043のいずれかのアセンブリ。
[本発明1045]
前記複数の流体チャンバのそれぞれが、前記流体チャンバの入口と出口の一方と、前記少なくとも1つの他の流体チャンバの前記入口及び前記出口の前記一方の他方との間の流体接続を介して、前記複数の流体チャンバの少なくとも1つの他の流体チャンバと流体連通している、本発明1044のアセンブリ。
[本発明1046]
流体チャンバを液体で満たす方法であって、以下:
本発明1001のアセンブリを受け取ることであって、
前記アセンブリの前記流体チャンバの前記入口及び前記出口の一方が、前記入口を構成し、前記流体チャンバの前記入口及び前記出口の他方が、前記出口を構成し、且つ、
前記流体チャンバの前記容積の前記断面積が、前記流体チャンバの前記横断面から前記流体チャンバの前記出口にかけて減少する、
前記アセンブリを受け取ることと;
前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体が、前記流体チャンバの前記入口から、前記突起によって形成された前記チャネルを通って前記第1の部分の前記突起の前記頂点まで流れ、前記突起の前記頂点に達すると、前記液体のメニスカスの曲率半径が、前記突起の前記頂点から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記流体チャンバの前記出口にかけて減少するが、前記流体チャンバの1つまたは複数の表面の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入することと
を含む、前記方法。
[本発明1047]
前記流体チャンバの前記出口に達すると、前記液体が、前記流体チャンバの前記出口を通って前記流体チャンバを出る、本発明1046の方法。
[本発明1048]
流体チャンバを液体で満たす方法であって、以下:
本発明1001のアセンブリを受け取ることであって、
前記アセンブリの前記流体チャンバの前記入口及び前記出口の一方が、前記出口を構成し、前記流体チャンバの前記入口及び前記出口の他方が、前記入口を構成し、且つ、
前記流体チャンバの前記容積の前記断面積が、前記流体チャンバの前記横断面から前記流体チャンバの前記入口にかけて減少する、
前記アセンブリを受け取ることと;
前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体のメニスカスの曲率半径が、前記流体チャンバの前記入口から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記突起の頂点にかけて減少するが、前記流体チャンバの1つまたは複数の表面の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入することと
を含む、前記方法。
[本発明1049]
前記突起の前記頂点に達すると、前記液体が、前記突起によって形成された前記チャネルに流れ込み、前記流体チャンバの前記出口に向かって流れ、前記流体チャンバの前記出口に達すると、前記液体が、前記出口を通って前記流体チャンバを出る、本発明1048の方法。
[本発明1050]
流体チャンバを液体で満たす方法であって、以下:
本発明1011のアセンブリを受け取ることであって、
前記流体チャンバの前記入口及び前記出口の一方が、前記入口を構成し、前記流体チャンバの前記入口及び前記出口の前記一方の他方が、前記出口を構成し、且つ、
前記流体チャンバの前記容積の前記断面積が、前記横断面から前記第2の突起の前記頂点にかけて減少する、
前記本発明1011のアセンブリを受け取ることと;
前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体が、前記流体チャンバの前記入口から前記突起によって形成された前記チャネルを通って前記第1の部分の前記突起の前記頂点まで流れ、
前記突起の前記頂点に達すると、前記液体のメニスカスの曲率半径が、前記突起の前記頂点から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記第2の部分の前記第2の突起の前記頂点にかけて減少するが、前記流体チャンバの1つまたは複数の表面の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内の気泡のトラップを最小限にする、
前記液体を導入することと
を含む、前記方法。
[本発明1051]
前記第2の突起の前記頂点に達すると、前記液体が、前記第2の突起によって形成された前記第2のチャネルに流れ込み、前記流体チャンバの前記出口に向かって流れ、前記流体チャンバの前記出口に達すると、前記液体が、前記流体チャンバの前記出口を通って前記流体チャンバを出る、本発明1050の方法。
[本発明1052]
流体チャンバを液体で満たす方法であって、以下:
本発明1011のアセンブリを受け取ることであって、
前記流体チャンバの前記入口及び前記出口の一方が、前記出口を構成し、前記流体チャンバの前記入口及び前記出口の前記一方の他方が、前記入口を構成し、且つ、
前記流体チャンバの前記容積の前記断面積が、前記横断面から前記第2の突起の前記頂点にかけて減少する、
本発明1011のアセンブリを受け取ることと;
前記流体チャンバの前記入口に前記液体を導入することであって、
導入されると、前記液体が、前記流体チャンバの前記入口から、前記第2の突起によって形成された前記第2のチャネルを通って前記第2の部分の前記第2の突起の頂点まで流れ、前記第2の突起の前記頂点に達すると、前記液体のメニスカスの曲率半径が、前記第2の突起の前記頂点から前記流体チャンバの前記横断面にかけて増加し、前記流体チャンバの前記横断面から前記第1の部分の前記突起の前記頂点にかけて減少するが、前記流体チャンバの1つまたは複数の表面の曲率半径を超えないように、前記液体が前記流体チャンバの前記容積を徐々に満たし、それによって、充填中の前記流体チャンバ内で気泡が入ることを最小限にする、
前記受け取ることと
を含む、前記方法。
[本発明1053]
前記突起の前記頂点に達すると、前記液体が、前記突起によって形成された前記チャネル内に流れ込み、前記流体チャンバの前記出口に向かって流れ、前記流体チャンバの前記出口に達すると、前記液体が、前記流体チャンバの前記出口を通って前記流体チャンバを出る、本発明1052の方法。
[本発明1054]
前記第1の部分に対して重力の方向に前記第2の部分が位置するように前記アセンブリを配向することをさらに含む、本発明1046~1049のいずれかの方法。
[本発明1055]
前記アセンブリの前記第1の部分の前記第1の表面が、前記第2の部分の前記第2の表面から離れるように、前記流体チャンバの前記出口に向かって非ゼロの傾斜で傾斜し、
前記方法が、前記流体チャンバ内に収容された前記液体を用いて少なくとも部分的に前記流体チャンバ内でアッセイを実行することをさらに含み、ここで、前記アッセイの実行中に形成される気泡は、重力と反対の方向に前記流体チャンバ内で上昇し、前記アセンブリの前記第1の部分の前記傾斜した第1の表面に沿って前記流体チャンバの前記出口に向かって移動し、それによって前記流体チャンバから気泡を除去する、
本発明1054の方法。
[本発明1056]
前記第2の部分に対して重力の方向に前記第1の部分が位置するように前記アセンブリを配向することをさらに含む、本発明1046~1049のいずれかの方法。
[本発明1057]
前記アセンブリの前記第2の部分の前記第2の表面が、前記第1の部分の前記第1の表面から離れるように、前記第1の部分の前記突起の頂点に向かって非ゼロの傾斜で傾斜し、
前記方法が、前記流体チャンバ内に収容された前記液体を用いて少なくとも部分的に前記流体チャンバ内でアッセイを実行することをさらに含み、ここで、前記アッセイの実行中に形成される気泡は、重力と反対の方向に前記流体チャンバ内で上昇し、前記アセンブリの前記第2の部分の前記傾斜した第2の表面に沿って前記第1の部分の前記突起の前記頂点に向かって移動し、それによって前記流体チャンバの前記容積の中心から気泡を移動させる、
本発明1056の方法。
[本発明1058]
前記第1の部分に対して重力の方向に前記第2の部分が位置するように前記アセンブリを配向することをさらに含む、本発明1050~1053のいずれかの方法。
[本発明1059]
前記アセンブリの前記第1の部分の前記第1の表面が、前記第2の部分の前記第2の表面から離れるように、前記第2の部分の前記第2の突起の前記頂点に向かって非ゼロの傾斜で傾斜し、
前記方法が、前記流体チャンバ内に収容された前記液体を用いて少なくとも部分的に前記流体チャンバ内でアッセイを実行することをさらに含み、ここで、前記アッセイの実行中に形成される気泡は、重力と反対の方向に前記流体チャンバ内で上昇し、前記アセンブリの前記第1の部分の前記傾斜した第1の表面に沿って前記第2の部分の前記第2の突起の前記頂点に向かって移動し、それによって前記流体チャンバの前記容積の中心から気泡を移動させる、
本発明1058の方法。
[本発明1060]
前記第2の部分に対して重力の方向に前記第1の部分が位置するように前記アセンブリを配向することをさらに含む、本発明1050~1053のいずれかの方法。
[本発明1061]
前記アセンブリの前記第2の部分の前記第2の表面が、前記第1の部分の前記第1の表面から離れるように、前記第1の部分の前記突起の前記頂点に向かって非ゼロの傾斜で傾斜し、
前記方法が、前記流体チャンバ内に収容された前記液体を用いて少なくとも部分的に前記流体チャンバ内でアッセイを実行することをさらに含み、ここで、前記アッセイの実行中に形成される気泡は、重力と反対の方向に前記流体チャンバ内で上昇し、前記アセンブリの前記第2の部分の前記傾斜した第2の表面に沿って前記第1の部分の前記突起の前記頂点に向かって移動し、それによって前記流体チャンバの前記容積の中心から気泡を移動させる、
本発明1060の方法。
[本発明1062]
前記流体チャンバの前記容積が実質的に満たされると、前記液体が前記流体チャンバの前記出口に達する、本発明1046~1061のいずれかの方法。
[本発明1063]
前記アセンブリが、発光素子をさらに含み、
前記方法が、重力に直交するインテロゲーション経路を通って移動する光を使用して、前記流体チャンバに収容された前記液体をインテロゲートすることをさらに含む、
本発明1055、1057、1059及び1061のいずれかの方法。
[本発明1064]
前記第2の表面の少なくとも一部が、透明な材料を含み、且つ、
重力に直交する前記インテロゲーション経路を通って進む光を使用して前記流体チャンバに収容された前記液体をインテロゲートすることが、
前記発光素子が、前記流体チャンバの方向へ前記インテロゲーション経路に沿って、前記透明な材料を通って前記流体チャンバ内に、光を放出すること
を含む、
本発明1063の方法。
[本発明1065]
前記アセンブリの前記第1の部分及び前記第2の部分の前記動作可能な結合が、各流体チャンバの前記入口及び前記出口の少なくとも一方を介して互いに流体連通する複数の流体チャンバを形成し、前記液体が、前記複数の流体チャンバ間で、各流体チャンバの前記入口及び前記出口の少なくとも一方を介して移動する、本発明1046~1064のいずれかの方法。
本出願は、添付の図面と併せて読むと一層、理解される。主題を説明する目的で、主題の例示的な実施形態が図面に示されている。しかしながら、現在開示されている主題は、開示されている特定の方法、装置、及びシステムに限定されない。さらに、図面は必ずしも一定の縮尺で描かれているわけではない。
【図面の簡単な説明】
【0041】
図1】ある実施形態による、アセンブリの流体チャンバを液体で満たす間、流体チャンバの気泡形成を回避するアセンブリの図である。
図2】ある実施形態による、アセンブリの流体チャンバを液体で満たす間、流体チャンバの気泡形成を回避するアセンブリの図である。
図3図3Aは、ある実施形態による、アセンブリの流体チャンバを液体で満たす間、流体チャンバの気泡形成を回避するアセンブリの第1の部分の第1の表面の図である。図3Bは、ある実施形態による、アセンブリの流体チャンバを液体で満たす間、流体チャンバの気泡形成を回避するアセンブリの第2の部分の第2の表面の図である。
図4A】ある実施形態による、アセンブリの流体チャンバを液体で満たす間の時刻Aにおけるアセンブリを示す。
図4B】ある実施形態による、アセンブリの流体チャンバを液体で満たす間の時刻Bにおけるアセンブリを示す。
図4C】ある実施形態による、アセンブリの流体チャンバを液体で満たす間の時刻Cにおけるアセンブリを示す。
図4D】ある実施形態による、アセンブリの流体チャンバを液体で満たす間の時刻Dにおけるアセンブリを示す。
図4E】ある実施形態による、アセンブリの流体チャンバを液体で満たす間の時刻Eにおけるアセンブリを示す。
図4F】ある実施形態による、アセンブリの流体チャンバを液体で満たす間の時刻Fにおけるアセンブリを示す。
図5図5Aは、ある実施形態による、第1の流体チャンバを示す。図5Bは、ある実施形態による、第2の流体チャンバを示す。図5Cは、ある実施形態による、第3の流体チャンバを示す。図5Dは、ある実施形態による、第4の流体チャンバを示す。図5Eは、ある実施形態による、第5の流体チャンバを示す。図5Fは、ある実施形態による、第6の流体チャンバを示す。
図6図6Aは、ある実施形態による、傾斜した表面を有する第1の流体チャンバを示す。図6Bは、ある実施形態による、傾斜した表面を有する第2の流体チャンバを示す。図6Cは、ある実施形態による、傾斜した表面を有する第3の流体チャンバを示す。図6Dは、ある実施形態による、傾斜した表面を有する第4の流体チャンバを示す。図6Eは、ある実施形態による、傾斜した表面を有する第5の流体チャンバを示す。図6Fは、ある実施形態による、傾斜した表面を有する第6の流体チャンバを示す。
図7図7Aは、ある実施形態による、流体チャンバを液体で満たす間の気泡形成を回避するように構成された流体チャンバを示す。図7Bは、ある実施形態による、流体チャンバを液体で満たす間の図7Aの流体チャンバを示す。
図8図8Aは、ある実施形態による、横断面を有する流体チャンバを示す。図8Bは、ある実施形態による、流体チャンバの容積の断面積Aと流体チャンバに沿った長さlとの間の関係を示す折れ線グラフである。
図9】ある実施形態による、流体チャンバを液体で満たす間の複数の連続した時点での例示の流体チャンバを示す。
図10】ある実施形態による、流体チャンバを液体で満たす間のアセンブリの流体チャンバ内での気泡形成を回避するための、且つ、流体チャンバ内に収容された液体のインテロゲーションのためのアセンブリの断面である。
【発明を実施するための形態】
【0042】
詳細な説明
流体チャンバを液体で満たす間に流体チャンバの気泡形成を回避するための装置、システム、及び方法が提供される。主題の装置は、入口と、出口と、流体チャンバの容積内に突出する突起とを備える流体チャンバを含む。主題の方法は、液体のメニスカスの曲率半径が流体チャンバの1つまたは複数の内面の曲率半径を超えないように、液体が流体チャンバを徐々に満たすように液体を流体チャンバの入口に導入することによって、流体チャンバ内の気泡形成を防ぐことを含む。いくつかの実施形態では、本明細書に開示される装置、システム、及び方法はまた、流体チャンバ内に形成される気泡の除去を可能にする。主題のこのような装置は、流体チャンバの少なくとも1つの傾斜面をさらに含む。主題のこのような方法は、気泡が、浮力によって、流体チャンバの中心から離れて、流体チャンバ内で傾斜面に向かって上昇し、次に流体チャンバの傾斜面に沿って移動することをさらに含む。
【0043】
本発明をより詳細に記載する前に、本発明は、記載される特定の実施形態に限定されず、従って、言うまでもなく、変化し得ることを理解されたい。本明細書で使用される専門用語は、特定の実施形態を記載するためのものに過ぎず、本発明の範囲は添付の請求項によってのみ限定されるため、本発明の範囲を限定するものとは意図されないことも理解されたい。
【0044】
値の範囲が提供される場合、その範囲の間の各値は、文脈が別途明確に指示しない限り、記載された範囲の上限値及び下限値と任意の他の記載されたもしくはその間の値との間で、下限値の単位の10分の1まで、発明の範囲に含まれると理解される。これらのより小さい範囲の上限値及び下限値は、より小さい範囲内に独立して含まれてもよく、また、記載範囲内の任意の具体的な除外制限に従って、本発明に含まれる。記載範囲が、限界値の一方または両方を含む場合、それらの含まれる限界値の片方または両方を除外する範囲もまた、本発明に含まれる。
【0045】
別途定義されない限り、本明細書で使用される全ての技術用語及び科学用語は、本発明が属する当業者が一般に理解する意味と同一の意味を有する。本明細書に記載されるものと類似または同等の方法及び材料を本発明の実践または試験において使用することができるが、代表的な例示の方法及び材料を本明細書に記載する。
【0046】
本明細書及び添付の特許請求の範囲において使用される、単数形「1つの(a)」、「1つの(an)」及び「その(the)」は、文脈が別途明確に指示しない限り、複数の指示対象を含むことに留意されたい。特許請求の範囲は、任意の要素を除外するように作成し得ることにさらに留意されたい。従って、この記載は、請求項の要素の列挙、または、「否定的な」制限の使用に関して「単に(solely)」、「のみ(only)」等の排他的な用語を使用するための先行的限定として働くことが意図される。
【0047】
さらに、開示された装置及び/または関連する方法の特定の実施形態は、この出願書に含み得る図面で表すことができる。装置並びに装置の特定の空間特性及び/または能力の実施形態は、図示もしくは実質的に図示されているまたは図面から合理的に推測できる装置並びに装置の空間特性及び/または能力を含む。このような特性は、例えば、平面(例えば、断面)もしくは軸(例えば、対称軸)に対する対称、エッジ、周辺、表面、特定の向き(例えば、近位、遠位)、及び/または数(例えば、3つの表面、4つの表面)、または、これらの任意の組み合わせのうちの1つまたは複数(例えば、1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、または、10等)を含む。このような空間特性は、例えば、平面(例えば、断面)もしくは軸(例えば、対称軸)に関する対称、エッジ、周辺、表面、特定の向き(例えば、近位)、及び/または数(例えば、3つの表面)、または、これらの任意の組み合わせのうちの1つまたは複数(例えば、1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、または、10等)がないこと(例えば、特定の欠如)も含む。
【0048】
本開示を読むと当業者には明らかであるように、本明細書に記載及び図示される個々の実施形態のそれぞれは、本発明の範囲または趣旨を逸脱することなく、他のいくつかの実施形態のうちのいずれかの特徴から容易に切り離され得る、または組み合わされ得る別個の構成要素及び特徴を有する。任意の列挙される方法は、列挙される事象の順序で、または論理的に可能な任意の他の順序で行うことができる。
【0049】
主題の発明をさらに記載する際に、主題の装置を実施する際に使用する主題の装置についてより詳細に説明し、次に、関連する方法の検討を行う。
【0050】
装置
主題の開示の態様は、流体チャンバを液体で満たす間に流体チャンバの気泡形成を回避するための装置を含む。いくつかの実施形態では、本明細書に開示される装置は、流体チャンバ内に形成される気泡の除去のための特徴をさらに含む。
【0051】
図1は、ある実施形態による、流体チャンバ130を液体で満たす間、アセンブリ100の流体チャンバ130の気泡形成を回避するアセンブリ100の図である。図1に示すように、アセンブリ100は、最小数の部品、具体的には、第1の部分110及び第2の部分120を含む。
【0052】
いくつかの実施形態では、第1の部分110及び第2の部分120の少なくとも一方は射出成形される。代替実施形態では、第1の部分110及び第2の部分120の少なくとも一方は射出成形されない場合がある。例えば、第1の部分110及び第2の部分120の少なくとも一方は、レプリカ鋳造、真空成形、機械加工、化学エッチング、及び物理エッチングのうちの1つによって形成することができる。いくつかの実施形態では、第1の部分110及び第2の部分120の少なくとも一方は、膜を含んでよい。
【0053】
様々な実施形態において、第1の部分110及び第2の部分120を含むアセンブリ100は、例えば、ポリマー材料(例えば、プラスチック及び/またはゴムを含む1つまたは複数のポリマーを有する材料)、ガラス、及び/または金属材料を含む1つまたは複数の材料を含む。アセンブリ100のいずれかを構成することができる材料は、ポリマー材料、例えば、天然ゴム、シリコーンゴム、エチレン-ビニルゴム、ニトリルゴム、ブチルゴムなどのエラストマーゴム、延伸ポリテトラフルオロエチレン(e-PFTE)、ポリエチレン、ポリエステル(Dacron(商標))、ナイロン、ポリプロピレン、ポリエチレン、高密度ポリエチレン(HDPE)、ポリウレタン、ポリジメチルシロキサン(PDMS)を含む、ポリテトラフルオロエテンまたはポリテトラフルオロエチレン(PFTE)などのプラスチック、アクリル接着剤、シリコーン接着剤、エポキシ接着剤、もしくはそれらの任意の組み合わせなどの接着剤、チタン、クロム、アルミニウム、ステンレス鋼などの金属及び金属合金、及び/またはガラスを含むが、これらに限定されない。様々な実施形態において、材料は透明な材料であり、従って、可視スペクトル内の光がそれを効率的に通過することを可能にする。いくつかの実施形態では、第1の部分110及び第2の部分120の少なくとも一方は、液体と材料の間の接触角が90度を超えるように、疎水性材料及び/または疎油性材料のうちの1つを含む。
【0054】
図1に示すように、アセンブリ100の第1の部分110及び第2の部分120は、流体チャンバ130を形成するために互いに動作可能に結合されるように構成される。本明細書で使用される場合、「動作可能に結合された」という用語は、開示された装置が動作することを可能にし、及び/または方法が本明細書に記載のように効果的に行われることを可能にする特定の方法で接続されていることを意味する。例えば、動作可能に結合することは、2つ以上の構成要素を取り外し可能に結合すること、または固定的に結合することを含み得る。動作可能に結合することは、2つ以上の構成要素を流体的に、電気的に、嵌合可能に、及び/または接着して結合することも含み得る。本明細書で使用される場合、「取り外し可能に結合された」とは、例えば、物理的、流体的及び/または電気的に結合されたことを意味し、ここで、2つ以上の結合された構成要素を切り離してから繰り返し再結合することができる。第1の部分110及び第2の部分120は、圧縮、超音波溶接、熱溶接、レーザ溶接、溶剤結合、接着剤、及びヒートステーキングのうちの1つまたは複数によって動作可能に結合することができる。
【0055】
特定の実施形態では、第1の部分110及び第2の部分120は、第1の部分110と第2の部分120との間に構成要素を配置せずに動作可能に結合される。しかしながら、図1に示される実施形態などの代替実施形態では、第1の部分110と第2の部分120とを動作可能に結合するために、ガスケット134を第1の部分110と第2の部分120の間に配置することができる。ガスケット134を使用して、流体チャンバ130を流体的に密封することができる。いくつかの実施形態では、ガスケット134は、流体チャンバ130の壁を形成する。壁を形成する際に、ガスケット134は、流体チャンバ130の端部の開口部を密封することができる及び/または開口部を覆って延びることができる。このように、ガスケット134及び/またはその一部は、流体チャンバ130の端部を規定することができる、及び/または流体チャンバ130内の培地(例えば、固体培地、液体培地、生物学的サンプル、光学特性改変試薬、及び/またはアッセイ試薬)を密封可能に収容することができる。
【0056】
例えば、図1に示されるアセンブリ100の実施形態では、乾燥または凍結乾燥された試薬135は、流体チャンバ130内に収容される。いくつかの実施形態において、乾燥または凍結乾燥された試薬135は、アッセイ試薬を含む。さらなる実施形態において、アッセイ試薬は、核酸増幅酵素及びDNAプライマを含む。このような実施形態では、アッセイ試薬は、反応チャンバ130に供給される生物学的サンプル中に存在する、または存在すると疑われる選択された核酸の増幅を可能にする。試薬135は、試薬135の、従ってアセンブリ100の貯蔵性を延長するために、乾燥または凍結乾燥される。
【0057】
ガスケット134が第1の部分110及び第2の部分120の間に配置され、第1の部分110と第2の部分120が動作可能に結合された実施形態では、ガスケット134の容積は、5%~25%圧縮することができる。特定の実施形態では、ガスケット134は、熱可塑性エラストマ(TPE)のオーバーモールディングを含む。このような実施形態では、ガスケット134は、第1の部分110及び/または第2の部分120上にオーバーモールドされて、流体チャンバ130の密閉を促進することができる。いくつかの実施形態では、ガスケット134は、0~0.4%w/wの残留水分まで予備乾燥することができる。好ましい実施形態では、ガスケット134は、最大0.2%w/wの残留水分まで予備乾燥することができる。ガスケット134のこの予備乾燥に基づいて、アセンブリ100は、12ヶ月の閾値を超える貯蔵性を有することができる。
【0058】
特定の実施形態では、ガスケット134は、射出成形によって形成することができる。このような実施形態では、ガスケット134のフラッシュの存在が、流体チャンバ130への液体の流れを妨害する可能性があるため、ガスケット134のフラッシュの最小化が重要である。具体的には、ガスケット134のフラッシュは、ガスケット134を通って流体チャンバ130に入る液体の流れを妨害し、それによって、液体が流体チャンバ130に入るときに液体に毛細管ピン止め効果(pinning effects)を引き起こす可能性がある。これらの望ましくない影響を回避するために、ガスケット134は、高い公差まで射出成形することができる。
【0059】
代替実施形態(図示せず)では、アセンブリ100は、第1の部分110及び第2の部分120などの2つの別個の動作可能に結合された部分ではなく、単一のモノリシック部分を含むことができる。
【0060】
上記のように、第1の部分110と第2の部分120との動作可能な結合が、流体チャンバ130を形成する。アセンブリの第1の部分110は、第1の表面111を含み、アセンブリの第2の部分120は、第2の表面121を含み、その結果、第1の部分110の第1の表面111及び第2の部分120の第2の表面121が流体チャンバ130の内面を形成する。言い換えると、流体チャンバ130の容積は、第1の部分110の第1の表面111及び第2の部分120の第2の表面121によって境界を定められる。第1の部分110と第2の部分120との動作可能な結合によって形成された流体チャンバ130は、入口131及び出口132を備える。
【0061】
流体チャンバ130の充填中に流体チャンバ130の気泡形成を防ぐために、第1の部分110の第1の表面111は、1つまたは複数の第1の曲率半径を有し、第2の部分120の第2の表面121は、1つまたは複数の第2の曲率半径を有し、第1の曲率半径及び第2の曲率半径のそれぞれは、流体チャンバ130を満たす液体のメニスカスの曲率半径よりも大きい。流体チャンバ130のこれらの丸みを帯びた表面は、流体チャンバ130の角における気泡の形成及びトラップを防止する。
【0062】
流体チャンバ130の気泡形成の回避を助ける流体チャンバ130の丸みを帯びた表面は、突起113を使用して流体チャンバ130を戦略的に成形することによって形成される。具体的には、図1に示すように、アセンブリ100の第1の部分110は、第1の部分110の第1の表面111によって境界が定められた突起113を含む。第1の部分110と第2の部分120が動作可能に結合されて、流体チャンバ130を形成するとき、突起113は、突起の頂点114と第2の部分120の第2の表面121との間が最小接近距離となるように、流体チャンバ130内に突出している。いくつかの実施形態では、突起の頂点114と第2の部分120の第2の表面121との間の最小接近距離は、流体チャンバ130の横断面における流体チャンバ130の容積の断面積の最大寸法よりも小さい。流体チャンバ130の横断面は、流体チャンバ130の断面積が、大きさの増加を停止し、大きさが減少し始める流体チャンバ130の平面である。本明細書に開示される流体チャンバの横断面は、図8A及び図8Bに関して以下でさらに詳細に説明する。
【0063】
第1の部分110と第2の部分120が動作可能に結合されて、流体チャンバ130を形成し、突起113が流体チャンバ130内に突出するとき、突起113は、チャネル115を形成する。チャネル115は、流体チャンバ130の入口131及び出口132のうちの一方から突起の頂点114まで延びる。例えば、図1に示す実施形態では、チャネル115は、入口131から突起の頂点114まで延びる。しかしながら、図5及び図6に関して以下でさらに詳細に説明する代替実施形態では、チャネル115は、出口132から突起の頂点114まで延びてよい。
【0064】
上記のように、流体チャンバ130の容積は、第1の部分110の第1の表面111及び第2の部分120の第2の表面121によって境界を定められる。突起113は、第1の部分110に含まれ、第1の部分110の第1の表面111によって境界を定められるので、突起113は、部分的に、流体チャンバ130の容積を規定する。いくつかの実施形態では、流体チャンバ130は、マイクロ流体チャンバである。例えば、特定の実施形態では、流体チャンバ130の容積は、1μL~1100μLであってよい。さらなる実施形態では、流体チャンバ130の容積は、およそ30μLであってよい。
【0065】
突起113はまた、部分的に、流体チャンバ130の容積の形状を規定する。具体的には、突起113は、第1の部分110と第2の部分120が動作可能に結合され、突起113が流体チャンバ130内に突出するように形作られるとき、流体チャンバ130の容積の断面積が、最小接近距離によって部分的に規定される突起の頂点114から、流体チャンバ130の横断面にかけて増加し、次に、流体チャンバ130の横断面から、チャネル115が延びる入口131及び出口132の一方の他方にかけて減少するように、形作られる。流体チャンバ130の容積の断面積が、突起の頂点114から横断面にかけて増加し、横断面から、チャネル115が延びる入口131及び出口132の一方の他方にかけて減少するこのような実施形態では、チャネル115を別にして、流体チャンバ130の容積は、図1に示すように、実質的に四角柱として形作られる。代替実施形態では、流体チャンバ130の容積は、任意の他の形状、例えば、円筒、長方形の箱、立方体、またはそれらの任意の組み合わせを含むことができる。
【0066】
図7A及び図7Bに関して以下に詳細に説明するように、突起113によって規定される流体チャンバ130の容積の形状は、流体チャンバ130に複数の方法で、液体で満たす間の気泡形成の回避を助ける。第1に、突起113、及び突起113によって形成されるチャネル115によって、流体チャンバ130の容積を通る最大移動距離が入口131と出口132の間に存在するように、入口131と出口132を互いに可能な限り分離することができる。具体的には、突起113、従ってチャネル115を入口131と出口132との間に配置することにより、入口131と出口132との間の流体チャンバ130の容積を通る移動距離が増加する。さらに、図1に示す実施形態などの特定の実施形態では、突起の頂点114が、入口131または出口132から流体チャンバ130の容積を横切って対角線上に位置するように、アセンブリ100の第1の部分110に入口131と出口132の両方を形成することによって、入口131と出口132の間の分離をさらに最大化する。流体チャンバの入口131と出口132の間のこの可能な最大の分離は、流体チャンバ130が液体で満たされるときに気泡形成を回避するのを助ける、なぜならば…。
【0067】
第2に、流体チャンバ130の容積の断面積が、突起の頂点114から横断面にかけて増加し、横断面から、チャネル115が延びる流体チャンバ130の入口131及び出口132の一方の他方にかけて減少することは、突起の頂点114と入口131及び出口132の一方の他方との間で液体が流体チャンバ130を徐々に満たすことを可能にし、それによって流体チャンバ130に液体を満たす間の気泡形成の回避をさらに助ける。具体的には、流体チャンバ130の容積の断面積が、突起の頂点114から横断面にかけて増加し、横断面から、チャネル115が延びる流体チャンバ130の入口131及び出口132の一方の他方にかけて減少することは、液体のメニスカスの曲率半径が、突起の頂点114から流体チャンバ130の横断面にかけて増加し、流体チャンバ130の横断面から流体チャンバ130の入口131及び出口132の一方の他方にかけて減少するが、流体チャンバ130の表面の曲率半径を超えないように、流体チャンバ130の容積を液体で徐々に満たすのを可能にする。図7A及び図7Bに関して以下でさらに説明するように、流体チャンバ130の形状によって可能になる、流体チャンバ130の表面の曲率半径に対する流体チャンバ130を満たす液体の半径のこの最小化は、充填中の流体チャンバ130内で気泡が入ることを最小限にする。
【0068】
いくつかの実施形態では、第1の部分110の第1の表面111及び第2の部分120の第2の表面121は、流体チャンバ130の表面に沿った気泡の形成及び捕捉をさらに防ぐために、25マイクロインチ未満の粗さ値を有する。
【0069】
図2は、ある実施形態による、アセンブリの流体チャンバ230を液体で満たす間、流体チャンバ230の気泡形成を回避するアセンブリ200の図である。図2のアセンブリ200は、図1のアセンブリ100と類似している。しかしながら、図1のアセンブリ100とは異なり、図2のアセンブリ200の第1の部分210及び第2の部分220は、可視化するために切り離されている。図2に示すように、第1の部分110は、流体チャンバ230内に突出するように構成された突起213を含み、それにより、第1の部分210及び第2の部分220が互いに動作可能に結合されるとき、流体チャンバ230の容積及び形状を規定する。
【0070】
さらに、図2の実施形態に示すように、アセンブリ200の第1の部分210と第2の部分220との動作可能な結合は、単一の流体チャンバ230を形成するだけでなく、複数の流体チャンバを形成する。このような実施形態では、複数の流体チャンバの各流体チャンバの容積は同じであってよい。あるいは、複数の流体チャンバのうちの少なくとも1つの容積は、複数の流体チャンバのうちの少なくとも1つの他の流体チャンバの容積と異なってよい。さらに、いくつかの実施形態では、複数の流体チャンバの各流体チャンバは、他の流体チャンバから独立していてよい。あるいは、複数の流体チャンバの各流体チャンバは、複数の流体チャンバの少なくとも1つの他の流体チャンバと流体連通してよい。第1の流体チャンバと第2の流体チャンバの間の流体連通は、第1の流体チャンバの入口と出口の一方と、第2の流体チャンバの入口と出口の一方の他方との間の流体接続の存在によって達成されてよい。例えば、第1の流体チャンバ及び第2の流体チャンバは、第1の流体チャンバの出口と、第2の流体チャンバの入口との間の流体接続によって互いに流体連通してよい。さらなる例として、第2の流体チャンバはまた、第2の流体チャンバの出口と第3の流体チャンバの入口の間の流体接続によって第3の流体チャンバと流体連通してよい。
【0071】
図3Aは、ある実施形態による、アセンブリの流体チャンバ330を液体で満たす間、流体チャンバ330の気泡形成を回避するアセンブリの第1の部分310の第1の表面311の図である。同様に、図3Bは、ある実施形態による、アセンブリの流体チャンバ330を液体で満たす間、流体チャンバ330の気泡形成を回避するアセンブリの第2の部分320の第2の表面321の図である。図2のアセンブリ200のように、図3A及び図3Bの第1の部分310及び第2の部分320は、視覚化のために切り離されている。上記のように、第1の部分310及び第2の部分320が互いに動作可能に結合されると、流体チャンバ330が形成され、流体チャンバ330の容積は、第1の部分310の第1の表面311及び第2の部分320の第2の表面321によって境界が定められる。
【0072】
図2のアセンブリ200のように、図3A及び図3Bに示すアセンブリの実施形態においては、第1の部分310と第2の部分320との動作可能な結合は、単一の流体チャンバ330を形成するだけでなく、複数の流体チャンバも形成する。図3A及び図3Bに示すアセンブリの実施形態では、複数の流体チャンバの各流体チャンバ330は、他の流体チャンバから独立している。より具体的には、図3A及び図3Bに示すアセンブリの実施形態では、液体が流体チャンバに入ると、液体は、その流体チャンバを出て別の流体チャンバに入ることはできない。(図3Aの流体チャンバを接続するチャネルは、液体を共通の供給源から各流体チャンバに供給するが、液体が流体チャンバに入った後は、流体チャンバを流体的に接続しないように構成される。)しかしながら、代替実施形態では、複数の流体チャンバの各流体チャンバは、液体が1つの流体チャンバから他の流体チャンバに移動できるように、複数の流体チャンバの少なくとも1つの他の流体チャンバと流体連通してよい。例えば、代替実施形態では、第1の流体チャンバ及び第2の流体チャンバは、第1の流体チャンバの出口と、第2の流体チャンバの入口の間の流体接続によって互いに流体連通してよい。さらなる例として、第2の流体チャンバはまた、第2の流体チャンバの出口と、第3の流体チャンバの入口の間の流体接続によって第3の流体チャンバと流体連通してよい。
【0073】
図4A図4Fは、ある実施形態による、アセンブリ400の流体チャンバ430を液体で満たす間の複数の連続した時点でのアセンブリ400を示す。液体の流れは、図4A図4Fに矢印によって示される。
【0074】
図4A図4Fから分かるように、アセンブリ400は、流体チャンバ430を形成するために第2の部分420に動作可能に結合された第1の部分410を含む。流体チャンバ430は、入口431及び出口432を備える。アセンブリ400の第1の部分410は、突起の頂点414と第2の部分420の第2の表面421との間が最小接近距離となるように、流体チャンバ430内に突出する突起413を含む。突起413はまた、入口431から突起の頂点414まで延びるチャネル415を形成する。図5図6に関してさらに詳細に説明する代替実施形態では、突起415は、チャネル413が出口432から突起の頂点414まで延びるように、流体チャンバ430内に異なるように配置されてよい。
【0075】
図4A図4Fに示すように、流体チャンバ430の容積を通る可能な最大移動距離は、入口431と出口432の間に存在する。入口431と出口432のこの最大の分離は、突起413、従って、チャネル415を入口431と出口432の間に配置することによって、且つ、突起の頂点414が出口432から流体チャンバ430の容積を横切って対角線上に位置するように入口431と出口432の両方がアセンブリ400の第1の部分410に形成されることによって、達成される。さらに、流体チャンバ430の容積の断面積は、突起の頂点414から横断面にかけて増加し、横断面から出口432にかけて減少する。突起の頂点414から横断面までの流体チャンバ430の容積のこの増加する断面積は、部分的に、突起の頂点414と第2の部分420の第2の表面421の間の最小接近距離が、流体チャンバ430の横断面における流体チャンバ430の容積の断面積の最大寸法よりも小さいことによって達成される。
【0076】
図4A図4Cは、ある実施形態による、アセンブリ400の流体チャンバ430を液体で満たす間の時刻A~Cのそれぞれでのアセンブリ400を示す。特に、図4A図4Cは、液体が、流体チャンバ430の入口431に達するまで、液体がアセンブリ400の第1の部分410を通って流れることを示す。
【0077】
図4Dは、ある実施形態による、アセンブリ400の流体チャンバ430を液体で満たす間の時刻Dにおけるアセンブリを示す。特に、図4Dは、液体が、流体チャンバ430の入口431からチャネル415を通って突起の頂点414に向かうことを示す。
【0078】
図4Eは、ある実施形態による、アセンブリ400の流体チャンバ430を液体で満たす間の時刻Eにおけるアセンブリ400を示す。特に、図4Eは、液体が頂点414と第2の部分420の第2の表面421との間の最小接近距離から、流体チャンバ430の出口432に向かって流れるのを示す。入口431と出口432の間の流体チャンバ430の容積を通る可能な最大移動距離と、突起の頂点414から横断面にかけて増加し、次に、横断面から出口432にかけて減少する流体チャンバ430の容積の断面積とによって、流体チャンバ430を満たす液体のメニスカスの曲率半径が、流体チャンバ430の表面の曲率半径を超えることを防止し、それによって、流体チャンバ430を液体で満たす間の気泡形成を最小限にする。
【0079】
図4Fは、ある実施形態による、アセンブリ400の流体チャンバ430を液体で満たす間の時刻Fにおけるアセンブリ400を示す。特に、図4Fは、アセンブリ400を通る液体の流れの最終段階を示す。図4Fでは、全ての液体は、流体チャンバ430の容積に収容され、液体は、気泡を形成することなく流体チャンバ430を満たしている。図4A図4Fのアセンブリの実践的な実施形態の流体チャンバの充填を示す一連のタイムラプス画像が、図9に示され、以下に詳細に記載される。
【0080】
流体チャンバ
図5A図5Fは、流体チャンバ530を液体で満たす間、気泡形成を回避するように構成された流体チャンバ530の複数の実施形態を示す。図5A図5Fの流体チャンバ530の実施形態はそれぞれ、重力に対する流体チャンバ530の向き、流体チャンバ530の突起及びチャネルの数、並びに、流体チャンバ530の入口及び出口に対する流体チャンバ530のチャネルの位置のうちの1つまたは複数に応じて異なる。重力の方向は、図5A図5Fのセットの上部に示されている。図5A図5Fの流体チャンバ530の実施形態のそれぞれを以下に詳細に説明する。
【0081】
最初に、図5Aに示される流体チャンバの実施形態に目を向けると、図5Aは、ある実施形態による、第1の流体チャンバ530を示す。流体チャンバ530は、第1の部分510と第2の部分520との動作可能な結合によって形成される。図5Aに示す実施形態では、第1の部分510及び第2の部分520は、ガスケット534によって動作可能に結合される。第1の部分510の第1の表面511及び第2の部分520の第2の表面521は、流体チャンバ530の容積の境界を定める。流体チャンバ530は、入口531及び出口532を備える。
【0082】
第1の部分510は、第1の部分510の第1の表面511によって境界を定められる突起513を含む。突起513は、突起の頂点514と第2の部分520の第2の表面521との間が最小接近距離となるように、流体チャンバ530内に突出している。図5Aに示す実施形態では、突起の頂点514と第2の部分520の第2の表面521との間の最小接近距離は、流体チャンバ530の横断面における流体チャンバ530の容積の断面積の最大寸法よりも小さい。
【0083】
突起513はまた、流体チャンバ530の出口532から突起の頂点514まで延びるチャネル515を形成する。流体チャンバ530の入口531及び出口532の両方は、突起の頂点514が入口531から流体チャンバ530の容積を横切って対角線上に位置するように、且つ、流体チャンバ530の容積を通る最大移動距離が、入口531と出口532との間に存在するように。流体チャンバ530の第1の部分510に形成される。
【0084】
流体チャンバ530の容積の断面積は、断面積が最小接近距離によって部分的に規定される突起の頂点514から、流体チャンバの横断面にかけて増加し、流体チャンバ530の横断面から流体チャンバ530の入口531にかけて減少する。
【0085】
図5Aに示すように。流体チャンバ530は、流体チャンバ530の第2の部分520が重力の方向に位置するように、重力に対して配向されている。この向きにおいて、並びに(図5Cに関して以下でさらに詳細に説明する)他の任意の向きにおいて、図5Aの流体チャンバ530は、流体チャンバ530を液体で満たす間の気泡形成を回避することができる。
【0086】
次に図5Bに示す流体チャンバの実施形態に目を向けると、図5Bは、ある実施形態による、第2の流体チャンバ530を示す。図5Bの流体チャンバ530は、図5Aの流体チャンバに類似している。しかしながら、図5Aの流体チャンバとは異なり、図5Bの流体チャンバ530の第1の部分510は、流体チャンバ530の入口531から突起の頂点514まで延びるチャネル515を形成する突起513を含む。
【0087】
流体チャンバ530の入口531及び出口532の両方は、突起の頂点514が出口532から流体チャンバ530の容積を横切って対角線上に位置するように、且つ、流体チャンバ530の容積を通る最大移動距離が、入口531と出口532との間に存在するように、流体チャンバ530の第1の部分510に形成される。
【0088】
流体チャンバ530の容積の断面積は、距離が最小接近距離を含む突起の頂点514から、流体チャンバ530の横断面にかけて増加し、流体チャンバ530の横断面から流体チャンバ530の出口532にかけて減少する。
【0089】
図5Bに示すように、流体チャンバ530は、流体チャンバ530の第2の部分520が重力の方向に位置するように、重力に対して配向されている。この向きにおいて、並びに(図5Dに関して以下でさらに詳細に説明する)他の任意の向きにおいて、図5Bの流体チャンバ530は、流体チャンバ530を液体で満たす間の気泡形成を回避することができる。
【0090】
次に図5Cに示す流体チャンバの実施形態に目を向けると、図5Cは、ある実施形態による、第3の流体チャンバ530を示す。図5Cの流体チャンバ530は、図5Aの流体チャンバと同じである。しかしながら、図5Aの流体チャンバとは異なり。図5Cの流体チャンバ530は、流体チャンバ530の第1の部分510が重力の方向に位置するように、重力に対して配向されている。図5Cの流体チャンバ530のこの反転した向きにもかかわらず、図5Cの流体チャンバ530は、流体チャンバ530を液体で満たす間の気泡形成を依然として回避することができる。言い換えると、図5A及び図5Cの流体チャンバ530は、流体チャンバ530の第1の部分510が重力の方向に位置するように、流体チャンバ530が配向されている場合、及び流体チャンバ530の第2の部分520が重力の方向に位置するように流体チャンバ530が配向されている場合の両方とも、流体チャンバ530の充填中、気泡形成を回避するように構成される。さらに、図5A及び図5Cに示される向きに加えて、図5A及び5Cの流体チャンバ530は、任意の向きで流体チャンバ530を充填する間の気泡形成を回避するように構成される。そして、以下の追加の例に関して説明するように、任意の向きで充填中に気泡形成を回避するこの能力は、図5A及び図5Cの流体チャンバ530だけでなく、本明細書に開示されている流体チャンバの任意の実施形態に当てはまる。
【0091】
次に図5Dに示す流体チャンバの実施形態に目を向けると、図5Dは、ある実施形態による、第4の流体チャンバ530を示す。図5Dの流体チャンバ530は、図5Bの流体チャンバと同じである。しかしながら、図5Bの流体チャンバとは異なり、図5Dの流体チャンバ530は、流体チャンバ530の第1の部分510が重力の方向に位置するように、重力に対して配向されている。図5Dの流体チャンバ530のこの反転した向きにもかかわらず、図5Dの流体チャンバ530は、流体チャンバ530を液体で満たす間の気泡形成を依然として回避することができる。言い換えると、図5B及び図5Dの流体チャンバ530は、流体チャンバ530の第1の部分510が重力の方向に位置するように、流体チャンバ530が配向されている場合、及び流体チャンバ530の第2の部分520が重力の方向に位置するように流体チャンバ530が配向されている場合の両方とも、流体チャンバ530の充填中、気泡形成を回避するように構成される。さらに、図5B及び図5Dに示される向きに加えて、図5B及び5Dの流体チャンバ530は、任意の向きで流体チャンバ530を充填する間の気泡形成を回避するように構成される。そして、上記のように、任意の向きで充填中の気泡形成を回避するこの能力は、図5B及び図5Dの流体チャンバ530だけでなく、本明細書に開示されている流体チャンバの任意の実施形態に当てはまる。
【0092】
次に図5Eに示す流体チャンバの実施形態に目を向けると、図5Eは、ある実施形態による、第5の流体チャンバ530を示す。図5A図5Dに示される流体チャンバの実施形態とは異なり、図5Eに示される流体チャンバ530は、2つの突起及び2つのチャネルを含み、各チャネルは、2つの突起のうちの1つによって形成される。
【0093】
図5Eの流体チャンバ530は、第1の部分510と第2の部分520との動作可能な結合によって形成される。第1の部分510の第1の表面511及び第2の部分520の第2の表面521は、流体チャンバ530の容積の境界を定める。流体チャンバ530は、入口531及び出口532を備える。
【0094】
第1の部分510は、第1の部分510の第1の表面511によって境界を定められる突起513を含む。突起513は、突起の頂点514と第2の部分520の第2の表面521との間が最小接近距離となるように、流体チャンバ530内に突出している。図5Eに示す実施形態では、突起の頂点514と第2の部分520の第2の表面521との間の最小接近距離は、流体チャンバ530の横断面における流体チャンバ530の容積の断面積の最大寸法よりも小さい。突起513は、流体チャンバ530の入口531から突起の頂点514まで延びるチャネル515を形成する。
【0095】
第1の部分510に含まれる突起513に加えて、第2の部分520も、第2の突起523を含む。第2の突起523は、第2の部分520の第2の表面521によって境界が定められている。第2の突起523は、第2の突起の頂点524と第1の部分510の第1の表面511との間が第2の最小接近距離となるように、流体チャンバ530内に突出している。図5Eに示す実施形態では、第2の突起の頂点524と第1の部分510の第1の表面511との間の第2の最小接近距離は、流体チャンバ530の横断面における流体チャンバ530の容積の断面積の最大寸法よりも小さい。第2の突起523はまた、流体チャンバ530の出口532から第2の突起の頂点524まで延びる第2のチャネル525を形成する。
【0096】
図5Eに示すように、第2の突起の頂点524が、突起の頂点514から流体チャンバ530の容積を横切って対角線上に位置し、流体チャンバ530の入口531が、流体チャンバ530の出口532から流体チャンバ530の容積を横切って対角線上に位置し、且つ、流体チャンバ530の容積を通る最大移動距離が入口531と出口532との間に存在するように、流体チャンバ530の入口531は、流体チャンバ530の第1の部分510に形成され、流体チャンバ530の出口532は、流体チャンバ530の第2の部分520に形成される。
【0097】
上記のように、流体チャンバ530の容積は、第1の部分510の第1の表面511及び第2の部分520の第2の表面521によって境界を定められる。突起513は、第1の部分510に含まれ、第1の部分510の第1の表面511によって境界を定められ、第2の突起523は、第2の部分520に含まれ、第2の部分520の第2の表面521によって境界を定められるので、突起513及び第2の突起523は、部分的に、流体チャンバ530の容積を規定する。流体チャンバが1つの突起のみを含む実施形態と同様に、いくつかの実施形態では、流体チャンバ530は、マイクロ流体チャンバである。例えば、特定の実施形態では、流体チャンバ530の容積は、1μL~1100μLであってよい。さらなる実施形態では、流体チャンバ530の容積は、約30μLであってよい。
【0098】
突起513及び523はまた、流体チャンバ530の容積の形状を規定する。具体的には、突起513は、第1の部分510と第2の部分520が動作可能に結合され、突起513が流体チャンバ530内に突出しているとき、流体チャンバ530の容積の断面積が、断面積が最小接近距離によって部分的に規定される突起の頂点514から、流体チャンバ530の横断面に向けて増加するように、形作られる。そして、さらに第2の突起523は、第1の部分510と第2の部分520が動作可能に結合され、突起523が流体チャンバ530内に突出しているとき、流体チャンバ530の容積の断面積が、流体チャンバ530の横断面から流体チャンバ530の第2の突起の頂点524にかけて減少し、第2の突起の頂点524で、断面積が第2の最小接近距離によって部分的に規定されるように、形作られる。流体チャンバ530の容積の断面積が、突起の頂点514から横断面にかけて増加し、横断面から第2の突起の頂点524にかけて減少するこのような実施形態では、チャネル115及びチャネル125とは別に、流体チャンバ530の容積は、実質的に四角柱として形作られている。代替実施形態では、流体チャンバ530の容積は、任意の他の形状、例えば、円筒、長方形の箱、立方体、またはそれらの任意の組み合わせを含むことができる。
【0099】
図7A及び図7Bに関して以下に詳細に記載するように、突起513及び第2の突起523によって部分的に規定される流体チャンバ530の容積の形状は、流体チャンバ530に複数の方法で液体を満たす間の気泡形成の回避を助ける。第1に、突起513及び523と、突起513及び523によってそれぞれ形成されるチャネル515及び525は、流体チャンバ530の容積を通る最大移動距離が入口531と出口532の間に存在するように、入口531と出口532を互いに可能な限り分離することを可能にする。具体的には、突起513及び523、従ってチャネル515及び525を入口531と出口532との間に配置することにより、入口531と出口532の間の流体チャンバ530の容積を通る移動距離が増加する。さらに、第2の突起の頂点524が、突起の頂点514から流体チャンバ530の容積を横切って対角線上に位置し、且つ、流体チャンバ530の入口531が、流体チャンバの出口532から流体チャンバ530の容積を横切って対角線上に位置するように、流体チャンバ530の反対側の部分(例えば、第1の部分510及び第2の部分520)に入口531及び出口532を形成することは、入口531と出口532の間の分離をさらに最大化する。流体チャンバの入口531と出口532の間のこの可能な最大の分離は、流体チャンバ530が液体で満たされるときに気泡形成を回避するのを助ける、なぜならば・・・。
【0100】
第2に、流体チャンバ530の容積の断面積が突起の頂点514から横断面にかけて増加し、横断面から第2の突起の頂点524にかけて減少することは、突起の頂点514と第2の突起524の間で液体が流体チャンバ130を徐々に満たすことを可能にし、それによって流体チャンバ530に液体を満たす間の気泡形成の回避をさらに助ける。具体的には、流体チャンバ530の容積の断面積が突起の頂点514から横断面にかけて増加し、横断面から第2の突起の頂点524にかけて減少することによって、液体のメニスカスの曲率半径が、突起の頂点514から、流体チャンバ530の横断面にかけて増加し、流体チャンバ530の横断面から、流体チャンバ530の第2の突起の頂点524にかけて減少するが、流体チャンバ530の表面の曲率半径を超えないように、液体が流体チャンバ530の容積を徐々に満たすのを可能にする。図7A及び図7Bに関して以下でさらに説明するように、流体チャンバ530の形状によって可能になる、流体チャンバ530の表面の曲率半径に対する流体チャンバ530を満たす液体のメニスカスの曲率半径のこの最小化は、充填中の流体チャンバ530内で気泡が入ることを最小限にする。
【0101】
図5Eに示すように、流体チャンバ530は、流体チャンバ530の第2の部分520が重力の方向に位置するように、重力に対して配向されている。重力に対するこの向きにおいて、並びに(図5Fに関して以下でさらに詳細に説明する)重力に対する他の任意の向きにおいて、図5Eの流体チャンバ530は、流体チャンバ530を液体で満たす間の気泡形成を回避することができる。
【0102】
最後に図5Fに示す流体チャンバの実施形態に目を向けると、図5Fは、ある実施形態による、第6の流体チャンバ530を示す。図5Fの流体チャンバ530は、図5Eの流体チャンバと同じである。しかしながら、図5Eの流体チャンバとは異なり、図5Fの流体チャンバ530は、流体チャンバ530の第1の部分510が重力の方向に位置するように、重力に対して配向されている。図5Fの流体チャンバ530のこの反転した向きにもかかわらず。図5Fの流体チャンバ530は、流体チャンバ530を液体で満たす間の気泡形成を依然として回避することができる。言い換えると、図5E及び図5Fの流体チャンバ530は、流体チャンバ530の第1の部分510が重力の方向に位置するように、流体チャンバ530が配向されているとき、及び、流体チャンバ530の第2の部分520が重力の方向に位置するように流体チャンバ530が配向されているときの両方とも、流体チャンバ530の充填中、気泡形成を回避するように構成される。さらに、図5E及び図5Fに示される向きに加えて、図5E及び図5Fの流体チャンバ530は、任意の向きで流体チャンバ530の充填中の気泡形成を回避するように構成される。任意の向きで充填中の気泡形成を回避するこの能力は、本明細書に開示されている流体チャンバの任意の実施形態に当てはまる。
【0103】
本明細書に記載の流体チャンバの気泡防止機能にもかかわらず、いくつかの実施形態では、気泡が、流体チャンバの充填中に形成される場合がある。さらに、特定の実施形態では、流体チャンバが液体で満たされた後、アッセイが流体チャンバ内で実行され、流体チャンバ内に気泡の形成を引き起こし得る。本開示全体を通して説明されるように、これらの気泡は、アッセイの実行自体、及び/またはアッセイ結果の収集を妨げる場合がある。例えば、気泡はアッセイの光学特性の検出を妨げる場合がある。従って、気泡形成を回避するように流体チャンバを構成することに加えて、いくつかの実施形態では、流体チャンバ内の気泡を除去及び/または移動するように流体チャンバを構成することも有益な場合がある。このような実施形態を図6A図6Fに示す。
【0104】
図6A図6Fは、流体チャンバ630を液体で満たす間に気泡形成を回避するだけでなく、流体チャンバ630内の気泡を及び/または移動するように構成された流体チャンバ630の複数の実施形態を示す。図6A図6Fの流体チャンバ630の実施形態は、図5A図5Fの流体チャンバ530の実施形態と類似している。しかしながら、図5A図5Fの流体チャンバ530の実施形態とは異なり、図6A図6Fの流体チャンバ630の各実施形態の表面(例えば、第1の表面または第2の表面)は、傾斜点を含む。以下でさらに詳細に説明するように、流体チャンバ630の表面の傾斜点は、その表面が、流体チャンバ630の他の表面から離れるように傾斜し始める流体チャンバ630の表面の位置を示す。傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、流体チャンバ630の他の表面に対して重力と反対の方向に位置する傾斜面に依存する。重力の方向は、図6A図6Fのセットの上部に示されている。流体チャンバ630のこの向きを条件として、浮力により、気泡は、流体チャンバ630内で傾斜面に向かって上昇し、次に、流体チャンバ630の傾斜面に沿って、重力の方向と反対の方向に、流体チャンバ630の入口、出口、または突起の頂点のうちの1つに向かって移動することができ、ここで、気泡は流体チャンバ630から逃げることができる。図6A図6Fの流体チャンバ630の実施形態のそれぞれを以下に詳細に説明する。
【0105】
最初に、図6Aに示される流体チャンバの実施形態に目を向けると、図6Aは、ある実施形態による、第1の流体チャンバ630を示す。図6Aの流体チャンバ630は、図5A及び図5Cの流体チャンバ530に類似している。しかしながら、図5A及び図5Cの流体チャンバ530とは異なり、図6Aの流体チャンバ630の第1の表面611は、傾斜点616を含む。図6Aに示すように、第1の表面611は、傾斜点616から、流体チャンバ630の第2の表面621から離れるように流体チャンバ630の入口631に向かって傾斜している。
【0106】
上記のように、傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、傾斜面が流体チャンバ630の他の表面に対して重力と反対の方向に位置することに依存する。従って、図6Aの流体チャンバ630は、傾斜点616を含む第1の表面611が、流体チャンバ630の第2の表面621に対して重力と反対の方向に位置するように、重力に対して配向されている。この向きにおいて、流体チャンバ630内に形成された気泡は、浮力により、流体チャンバ630内で第1の表面611に向かって上昇し、次に、流体チャンバ630の第1の表面611に沿って重力の方向と反対の方向に流体チャンバ630の入口631に向かって移動することができる。いくつかの実施形態では、気泡が流体チャンバ630の入口631に達すると、気泡は、入口631を通って流体チャンバ630を出る。あるいは、気泡は、第1の表面611に沿って流体チャンバ630内に留まり得るが、例えば、アッセイの実行及び/またはアッセイ結果の収集を妨害しないように、流体チャンバ630の容積の中心から移動される。流体チャンバ630の第1の表面611ではなく第2の表面621が傾斜点を含む流体チャンバ630の実施形態を図6Cに関して以下に詳細に説明する。
【0107】
次に図6Bに示す流体チャンバの実施形態に目を向けると、図6Bは、ある実施形態による、第2の流体チャンバ630を示す。図6Bの流体チャンバ630は、図5B及び図5Dの流体チャンバ530に類似している。しかしながら、図5B及び図5Dの流体チャンバ530とは異なり、図6Bの流体チャンバ630の第1の表面611は、傾斜点616を含む。図6Bに示すように、第1の表面611は、傾斜点616から流体チャンバ630の第2の表面621から離れるように流体チャンバ630の出口631に向かって傾斜している。
【0108】
上記のように、傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、傾斜面が流体チャンバ630の他の表面に対して重力と反対の方向に位置することに依存する。従って、図6Bの流体チャンバ630は、傾斜点616を含む第1の表面611が、流体チャンバ630の第2の表面621に対して重力と反対の方向に位置するように、重力に対して配向されている。この向きにおいて、流体チャンバ630内に形成された気泡は、浮力により、流体チャンバ630内で第1の表面611に向かって上昇し、次に、流体チャンバ630内で第1の表面611に沿って重力の方向と反対の方向に流体チャンバ630の出口632に向かって移動することができる。いくつかの実施形態では、気泡が流体チャンバ630の出口632に達すると、気泡は、出口632を通って流体チャンバ630を出る。あるいは、気泡は、第1の表面611に沿って流体チャンバ630内に留まり得るが、例えば、アッセイの実行及び/またはアッセイ結果の収集を妨害しないように、流体チャンバ630の容積の中心から移動される。流体チャンバ630の第1の表面611ではなく第2の表面621が傾斜点を含む流体チャンバ630の実施形態を図6Dに関して以下に詳細に説明する。
【0109】
次に図6Cに示す流体チャンバの実施形態に目を向けると、図6Cは、ある実施形態による、第3の流体チャンバ630を示す。図6Cの流体チャンバ630は、図6Aの流体チャンバ630に類似している。しかしながら、図6Aの流体チャンバ630とは異なり、図6Cの流体チャンバ630の第1の表面611が傾斜点を有する代わりに、図6Cの流体チャンバ630の第2の表面621が、傾斜点616を含む。図6Cに示すように、第2の表面621は、傾斜点616から流体チャンバ630の第1の表面611から離れるように流体チャンバ630の突起614の頂点に向かって傾斜している。
【0110】
上記のように、傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、傾斜面が流体チャンバ630の他の表面に対して重力と反対の方向に位置することに依存する。従って、図6Cの流体チャンバ630は、傾斜点616を含む第2の部分620が、流体チャンバ630の第1の表面611に対して重力と反対の方向に位置するように、重力に対して配向されている。この向きにおいて、流体チャンバ630内に形成された気泡は、浮力により、流体チャンバ630内で第2の表面621に向かって上昇し、次に、流体チャンバ630の第2の表面621に沿って重力の方向と反対の方向に流体チャンバ630の突起614の頂点に向かって移動することができる。気泡が突起614の頂点に達すると、気泡は、第2の表面621に沿って流体チャンバ630内に留まるが、例えば、アッセイの実行及び/またはアッセイ結果の収集を妨害しないように、流体チャンバ630の容積の中心から移動される。
【0111】
次に図6Dに示す流体チャンバの実施形態に目を向けると、図6Dは、ある実施形態による、第4の流体チャンバ630を示す。図6Dの流体チャンバ630は、図6Bの流体チャンバ630に類似している。しかしながら、図6Bの流体チャンバ630とは異なり、図6Dの流体チャンバ630の第1の表面611が傾斜点を有する代わりに、図6Dの流体チャンバ630の第2の表面621が、傾斜点616を含む。図6Dに示すように、第2の表面621は、傾斜点616から流体チャンバ630の第1の表面611から離れるように流体チャンバ630の突起614の頂点に向かって傾斜している。
【0112】
上記のように、傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、傾斜面が流体チャンバ630の他の表面に対して重力と反対の方向に位置することに依存する。従って、図6Dの流体チャンバ630は、傾斜点616を含む第2の表面620が、流体チャンバ630の第1の表面611に対して重力と反対の方向に位置するように、重力に対して配向されている。この向きにおいて、流体チャンバ630内に形成された気泡は、浮力により、流体チャンバ630内で第2の表面621に向かって上昇し、次に、流体チャンバ630の第2の表面621に沿って重力の方向と反対の方向に流体チャンバ630の突起614の頂点に向かって移動することができる。気泡が突起614の頂点に達すると、気泡は、第2の表面621に沿って流体チャンバ630内に留まるが、例えば、アッセイの実行及び/またはアッセイ結果の収集を妨害しないように、流体チャンバ630の容積の中心から移動される。
【0113】
次に図6Eに示す流体チャンバの実施形態に目を向けると、図6Eは、ある実施形態による、第5の流体チャンバ630を示す。図6Eの流体チャンバ630は、図5Eの流体チャンバ530に類似している。しかしながら、図5Eの流体チャンバ530とは異なり、図6Eの流体チャンバ630の第1の表面611は、傾斜点616を含む。図6Eに示すように、第1の表面611は、傾斜点616から流体チャンバ630の第2の表面621から離れるように流体チャンバ630の突起624の頂点に向かって傾斜している。
【0114】
上記のように、傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、傾斜面が流体チャンバ630の他の表面に対して重力と反対の方向に位置することに依存する。従って、図6Eの流体チャンバ630は、傾斜点616を含む第1の表面611が、流体チャンバ630の第2の表面621に対して重力と反対の方向に位置するように、重力に対して配向されている。この向きにおいて、流体チャンバ630内に形成された気泡は、浮力により、流体チャンバ630内で第1の表面611に向かって上昇し、次に、流体チャンバ630の第1の表面611に沿って重力の方向と反対の方向に流体チャンバ630の第2の突起624の頂点に向かって移動することができる。気泡が突起624の頂点に達すると、気泡は、第1の表面611に沿って流体チャンバ630内に留まるが、例えば、アッセイの実行及び/またはアッセイ結果の収集を妨害しないように、流体チャンバ630の容積の中心から移動される。流体チャンバ630の、第1の表面611ではなく、第2の表面621が傾斜点を含む流体チャンバ630の実施形態を図6Fに関して以下に詳細に説明する。
【0115】
最後に図6Fに示す流体チャンバの実施形態に目を向けると、図6Fは、ある実施形態による、第6の流体チャンバ630を示す。図6Fの流体チャンバ630は、図6Eの流体チャンバ630に類似している。しかしながら、図6Eの流体チャンバ630とは異なり、図6Fの流体チャンバ630の第1の表面611が傾斜点を有する代わりに、図6Fの流体チャンバ630の第2の表面621が、傾斜点616を含む。図6Fに示すように、第2の表面621は、傾斜点616から流体チャンバ630の第1の表面611から離れるように流体チャンバ630の突起614の頂点に向かって傾斜している。
【0116】
上記のように、傾斜面による流体チャンバ630からの気泡の除去は、重力に対する流体チャンバ630の向きに依存する。具体的には、傾斜面による流体チャンバ630からの気泡の除去は、傾斜面が流体チャンバ630の他の表面に対して重力と反対の方向に位置することに依存する。従って、図6Fの流体チャンバ630は、傾斜点616を含む第2の部分620が、流体チャンバ630の第1の表面611に対して重力と反対の方向に位置するように、重力に対して配向されている。この向きにおいて、流体チャンバ630内に形成された気泡は、浮力により、流体チャンバ630内で第2の表面621に向かって上昇し、次に、流体チャンバ630の第2の表面621に沿って重力の方向と反対の方向に流体チャンバ630の突起614の頂点に向かって移動することができる。気泡が突起614の頂点に達すると、気泡は、第2の表面621に沿って流体チャンバ630内に留まるが、例えば、アッセイの実行及び/またはアッセイ結果の収集を妨害しないように、流体チャンバ630の容積の中心から移動される。
【0117】
図6A図6Fに示される流体チャンバ630の実施形態は、1つの傾斜点のみを含むが、代替実施形態では、流体チャンバの両方の表面(例えば、第1の表面及び第2の表面)が傾斜点を含み得ることに留意されたい。流体チャンバの両方の表面が傾斜点を含むこのような実施形態では、気泡を流体チャンバから除去及び/または移動させるために、流体チャンバは、第1の表面または第2の表面のいずれかが、流体チャンバの他の表面に対して重力と反対の方向に位置するように配向されてよい。
【0118】
さらに、流体チャンバからの気泡除去の前後に、流体チャンバは任意の向きに配向されてよい。言い換えれば、流体チャンバは、気泡除去中にのみ上記のように向けられてよく、他の時点では別のように向けられてよい。流体チャンバの配向は、手動で、機械で、または任意の他の手段によって行われてよい。
【0119】
図7Aは、ある実施形態による、流体チャンバ730を液体で満たす間、気泡形成を回避するように構成された流体チャンバ730を示す。流体チャンバ730は、第1の部分710と第2の部分720との動作可能な結合によって形成される。図7Aに示す実施形態では、第1の部分710及び第2の部分720は、ガスケット734によって動作可能に結合される。第1の部分710の第1の表面711及び第2の部分720の第2の表面721は、流体チャンバ730の容積の境界を定める。流体チャンバ730は、入口731及び出口732を備える。
【0120】
第1の部分710は、第1の部分710の第1の表面711によって境界を定められる突起713を含む。突起713は、突起の頂点714と第2の部分720の第2の表面721との間が最小接近距離となるように、流体チャンバ730内に突出している。図7Aに示す実施形態では、突起の頂点714と第2の部分720の第2の表面721との間の最小接近距離は、流体チャンバ730の横断面における流体チャンバ730の容積の断面積の最大寸法よりも小さい。
【0121】
突起713は、流体チャンバ730の入口731から突起の頂点714まで延びるチャネル715を形成する。流体チャンバ730の入口731及び出口732の両方は、突起の頂点714が出口732から流体チャンバ730の容積を横切って対角線上に位置するように、且つ、流体チャンバ730の容積を通る最大移動距離が、入口731と出口732との間に存在するように、流体チャンバ730の第1の部分710に形成される。
【0122】
流体チャンバ730の容積の断面積は、断面積が最小接近距離によって部分的に規定される突起の頂点714から、流体チャンバ730の横断面にかけて増加し、流体チャンバ730の横断面から流体チャンバ730の出口732にかけて減少する。
【0123】
流体チャンバ730の第1の表面711は、傾斜点716を含む。図7Aに示すように、第1の表面711は、傾斜点716から流体チャンバ730の第2の表面721から離れるように流体チャンバ730の出口732に向かって傾斜している。
【0124】
図7Aに示すように。流体チャンバ730の角は丸みを帯びている。結果として、第1の部分710の第1の表面711は、1つまたは複数の第1の曲率半径を有する。例えば、第1の部分710の第1の表面711は、第1の曲率半径712を含む。同様に、第2の部分720の第2の表面721は、1つまたは複数の第2の曲率半径を有する。例えば、第2の部分720の第2の表面721は、第2の曲率半径721を含む。図7Bに関して以下でさらに詳細に説明するように、第1の曲率半径712及び第2の曲率半径722を含む第1の曲率半径及び第2の曲率半径のそれぞれは、流体チャンバ730を満たす液体のメニスカスの曲率半径よりも大きい。
【0125】
図7Bは、ある実施形態による、流体チャンバ730を液体750で満たす間の図7Aの流体チャンバ730を示す。具体的には、図7Bは、液体750が流体チャンバ730を満たすときの、時間の経過に伴う液体750のメニスカスの拡大を示す。時間の経過に伴う液体750のメニスカスの拡大は、同心弧として描かれている。突起の頂点714で始まる最小の同心弧は、第1の時点での液体750のメニスカスである。真ん中のサイズの同心弧は、第1の時点に続く第2の時点での液体750のメニスカスである。最大の同心弧は、第2の時点に続く第3の時点での液体750のメニスカスである。
【0126】
図7Bに示すように。流体チャンバ730の容積の断面積は、突起の頂点714から横断面にかけて増加し、横断面から出口732にかけて減少するので、液体750は、液体750内の気泡形成を回避しながら流体チャンバ730を徐々に満たす。具体的には、流体チャンバ730の容積の断面積が、突起の頂点714から横断面にかけて増加し、横断面か出口732にかけて減少するので、液体750は、液体のメニスカスの曲率半径751が、突起の頂点714から、流体チャンバ730の横断面にかけて増加するが、流体チャンバ730の第1の表面711及び第2の表面721の曲率半径を超えないように、液体750が流体チャンバ730の容積を徐々に満たす。例えば、図7Bに示すように、3つの時点のそれぞれにおいて、液体のメニスカスの曲率半径751は、流体チャンバ730の第2の曲率半径722よりも小さい。流体チャンバ730の形状によって可能になる、流体チャンバ730の表面の曲率半径に対する流体チャンバ730を満たす液体の曲率半径751のこの最小化は、充填中の流体チャンバ730内で気泡が入ることを最小限にする。
【0127】
図8Aは、ある実施形態による、横断面833を有する流体チャンバ830を示す。本開示全体を通して説明するように、流体チャンバの横断面は、流体チャンバの容積の断面積が、大きさの増加と大きさの減少の間で移行する流体チャンバの平面である。より具体的には、図8Aに示すように、流体チャンバ830の横断面833は、流体チャンバ830の容積の断面積Aが、流体チャンバの長さに沿って、大きさの増加と大きさの減少の間で移行する流体チャンバ830の平面である。横断面833のこの機能的定義は、図8Bにさらに例示されている。
【0128】
図8Bは、ある実施形態による、流体チャンバ830の容積の断面積Aと流体チャンバ830に沿った長さlとの間の関係を示す折れ線グラフである。図8Bに示すように、流体チャンバ830の容積の断面積Aは、横断面833に達するまで、流体チャンバ830の長さlに従って増加する。横断面833に達すると、流体チャンバ830の容積の断面積Aは、流体チャンバ830の長さlに従って減少する。
【0129】
横断面833のこの機能的定義の結果として、流体チャンバ830の容積の断面積Aは、横断面833で最大の大きさである。従って、液体が流体チャンバ830を満たすとき、流体チャンバ830を満たす液体のメニスカスの曲率半径は、流体チャンバ830の容積の横断面833で最大の大きさに達する。
【0130】
流体チャンバの容積の断面積が大きさの増加と減少の間で遷移する流体チャンバの平面としての横断面の機能的定義にもかかわらず、いくつかの実施形態では、流体チャンバの容積の断面積は、大きさの増加と減少の間で厳密に遷移しない場合があることに留意されたい。具体的には、いくつかの実施形態では、流体チャンバの総断面積のx%までは、増加-減少パターンに従わない可能性がある。例えば、流体チャンバの容積の断面積は、大きさが増加し、流体チャンバの総断面積のx%までの間、一定の大きさになり、次に、大きさが減少してよい。流体チャンバの容積の断面積が大きさの増加と減少の間で厳密に遷移しないこれらの代替実施形態は、本明細書に記載のように流体チャンバを液体で満たす間の気泡の形成を回避するように依然として動作可能である。
【実施例
【0131】
実施例
図9は、ある実施形態による、流体チャンバ930を液体950で満たす間、複数の連続した時点での例示の流体チャンバ930を示す。具体的には、図9は、流体チャンバ930に液体950を満たしている間の時点t=0秒、0.2秒、0.3秒、0.5秒、0.8秒、0.9秒、1.1秒、及び1.3秒における流体チャンバ930を示す。図9の液体950は、色の濃い流体として示される。
【0132】
図9に示すように、第1の部分910は、第2の部分920に動作可能に結合されて、流体チャンバ930を形成する。流体チャンバ930の容積は、第1の部分910の第1の表面911及び第2の部分920の第2の表面921によって境界を定められる。流体チャンバ930は、入口931及び出口932を備える。第1の部分910は、第1の表面911によって境界を定められた突起913を含む。突起913は、突起の頂点914と第2の部分920の第2の表面921との間が最小接近距離となるように、流体チャンバ930内に突出している。突起913はまた、入口931から突起の頂点914まで延びるチャネル915を形成する。
【0133】
流体チャンバ930の容積を通る可能な最大移動距離は、入口931と出口932の間に存在する。さらに、流体チャンバ930の容積の断面積は、突起の頂点914から流体チャンバ930の横断面にかけて増加し、横断面から出口932にかけて減少する。
【0134】
時点t=0秒で、液体950は、流体チャンバ930の入口931に導入されておらず、従って、流体チャンバ930にまだ入っていない。
【0135】
時点t=0.2秒で、液体950は、流体チャンバ930の入口931に導入されており、入口931から突起の頂点914の方向にチャネル915内に流れ込んでいる。
【0136】
時点t=0.3秒で、液体950は、チャネル915を通って流れて、突起の頂点914に達している。
【0137】
時点t=0.5秒で、液体950は、流体チャンバ930の容積を徐々に満たし始める。具体的には、液体950は、突起の頂点914と第2の部分920の第2の表面921との間の最小接近距離によって部分的に規定される流体チャンバ930の容積の断面積を通って流れ、液体のメニスカスの曲率半径951が、液体のメニスカスの曲率半径951が最小接近距離によって拘束される突起の頂点914から、流体チャンバ930の容積の断面積が最大である流体チャンバ930の横断面にかけて増加するように、流体チャンバ930の容積を徐々に満たす。時点t=0.5秒で、液体950は、流体チャンバ930の横断面にまだ達しておらず、従って、液体のメニスカスの曲率半径951は、まだ最大になっていない。言い換えれば、時点t=0.5秒で、液体のメニスカスの曲率半径951の大きさはまだ増加中である。
【0138】
時点t=0.8秒で、液体950は、流体チャンバ930の横断面に達し、従って、液体のメニスカスの曲率半径951は、最大の大きさである。しかしながら、液体のメニスカスの曲率半径951は、その最大の大きさであっても、第1の表面911の曲率半径も第2の表面921の曲率半径も超えないことに留意されたい。液体のメニスカスの曲率半径951と第1の表面911または第2の表面921の曲率半径との間のこの不一致の結果として、流体チャンバ930内に気泡が入らない。
【0139】
時点t=0.9秒で、液体950は、流体チャンバ930の横断面を超えて流れ、流体チャンバ930の容積を徐々に満たし続ける。しかしながら、液体のメニスカスの曲率半径951は、横断面での流体チャンバ930の容積が最大断面積となるために最大の大きさであった横断面から、液体950が流体チャンバ930の出口932に移動するにつれて、減少する。従って、時点t=0.9秒で、液体のメニスカスの曲率半径951の大きさはまだ減少中である。
【0140】
時点t=1.1秒で、液体950は、流体チャンバ930の容積を徐々に満たし続ける。液体950が流体チャンバ930の横断面から流体チャンバ930の出口932に向かって移動するにつれて、液体のメニスカスの曲率半径951は減少し続ける。
【0141】
時点t=1.3秒で、液体950は、流体チャンバ930の出口932に達する。図9に示す実施形態などのいくつかの実施形態では、液体950は、流体チャンバ930の容積が液体950で実質的に満たされると、流体チャンバ930の出口932に達する。本明細書で使用される場合、「実質的に満たされた」という用語は、少なくとも90%満たされていることを意味する。代替実施形態では、液体950は、流体チャンバ930が実質的に満たされる前に、流体チャンバ930の出口932に到達し得る。
【0142】
図9に示すように。いくつかの実施形態では、液体950が出口932に達すると、液体950は、出口932を通って流体チャンバ930を出てよい。複数の流体チャンバが、図1に関して前述したように、各流体チャンバの入口及び出口のうちの少なくとも1つを介して互いに流体連通しているさらなる実施形態では、液体が第1の流体チャンバの出口を通って第1の流体チャンバを出るとき、液体は、第1の流体チャンバの出口と流体連通している第2の流体チャンバの入口を通って第2の流体チャンバに移動してよい。代替実施形態では、液体950は、流体チャンバ930を出ることができない場合がある。
【0143】
図9の流体チャンバ930は、図5B及び図5Dの流体チャンバ530と類似するように構成される。しかしながら、図5A図5Fに関して前述したように、流体チャンバは、図9の流体チャンバ930とは異なるように構成されてよい。具体的には、図5A図5Fに関して前述したように、流体チャンバは、1つまたは複数の突起及びチャネルを有してよく、これらの突起(複数可)及びチャネル(複数可)は、交互に配置されてよい。流体チャンバへの液体の充填は、以下でさらに詳細に説明するように、流体チャンバの特定の構成に基づいてわずかに異なってよい。
【0144】
例えば、図5A及び図5Cの流体チャンバ530の実施形態に戻ると、液体は、流体チャンバ530の入口531に導入されてよく、導入されると、液体は、液体のメニスカスの曲率半径が流体チャンバ530の入口531から流体チャンバ530の横断面にかけて増加し、流体チャンバ530の横断面から突起の頂点514にかけて減少するが、流体チャンバ530の1つまたは複数の表面の曲率半径を超えないように流体チャンバの容積を徐々に満たして、充填中の流体チャンバ内で気泡が入ることを最小限にする。このような実施形態では、突起の頂点514に達すると、液体は、突起513によって形成されたチャネル515に流れ込み、流体チャンバ530の出口532に向かって流れてよい。そして、いくつかのさらなる実施形態では、流体チャンバ530の出口532に達すると、液体は出口532を通って流体チャンバ530を出る。
【0145】
次に、図5E及び図5Fの流体チャンバ530の実施形態に目を向けると、液体は、流体チャンバ530の入口531に導入され、導入されると、液体は、流体チャンバ530の入口531からチャネル515(または第2のチャネル525)を通って突起の頂点514(または第2の突起の頂点524)に流れる。次に、突起の頂点514(または、第2の突起の頂点524)に達すると、液体は、液体のメニスカスの曲率半径が、突起の頂点514(または、第2の突起の頂点524)から流体チャンバ530の横断面にかけて増加し、流体チャンバ530の横断面から第2の突起の頂点524(または、突起の頂点514)にかけて減少するが、流体チャンバ530の1つまたは複数の表面の曲率半径を超えないように、流体チャンバの容積を徐々に満たして、充填中の流体チャンバ530内で気泡が入ることを最小限にする。このような実施形態では、第2の突起の頂点524(または、突起の頂点514)に達すると、液体は、第2の突起523(または、突起513)によって形成された第2のチャネル525(または、チャネル515)に流れ込み、流体チャンバ530の出口532に向かって流れてよい。そして、いくつかのさらなる実施形態では、流体チャンバ530の出口532に達すると、液体は出口532を通って流体チャンバ530を出る。
【0146】
流体チャンバの光学的インテロゲーション
図10は、ある実施形態による、アセンブリ1000の流体チャンバ1030を液体で満たす間、流体チャンバ1030の気泡形成を回避するための、且つ、流体チャンバ1030内に収容された液体のインテロゲーションのためのアセンブリ1000の断面である。アセンブリ1000は、流体チャンバ1030を形成するためにガスケット1034によって互いに動作可能に結合される第1の部分1010及び第2の部分1020を含む。第1の部分1010の第1の表面1011及び第2の部分1020の第2の表面1021は、流体チャンバ1030の容積の境界を定める。流体チャンバ1030は、上記の実施形態のうちの1つまたは複数に従って、構成され、液体で満たされてよい。
【0147】
流体チャンバ1030内に収容される液体のインテロゲーションは、発光素子1040によって少なくとも部分的に行われる。発光素子1040は、重力に直交するインテロゲーション経路1041を通って流体チャンバ1030の方向に光を送ることによって、流体チャンバ1030内に収容された液体をインテロゲートするように構成される。言い換えると、流体チャンバ1030のインテロゲーションは、流体チャンバ1030の表面ではなく、流体チャンバ1030の側面を通して行われる。これにより、流体チャンバ1030のバルク容積の分析が可能になり、それにより、より正確で信頼できる結果が得られる。
【0148】
本開示全体を通して詳細に説明するように、液体のインテロゲーションの精度は、液体中の気泡の存在によって損なわれる可能性がある。この問題を軽減するために、流体チャンバ1030は、気泡の形成を防止するだけでなく、いくつかの実施形態では、流体チャンバ1030内に収容された液体中に形成される気泡を除去及び/または移動するように構成される。具体的には、図6A~6Fに関して前述したように、いくつかの実施形態では、流体チャンバ1030内に収容された液体から気泡を除去及び/または移動させるために、流体チャンバ1030の表面は傾斜点を含み、流体チャンバ1030は、傾斜点を含む表面が流体チャンバ1030の他の表面に対して重力の方向と反対の方向に位置するように配向されている。流体チャンバ1030のこの構成及び向きを用いて、浮力により、流体チャンバ1030内に収容された液体中に形成される気泡は、流体チャンバ1030内で傾斜点を含む表面に向かって上昇し、次に、傾斜面に沿って、重力の方向と反対の方向に、流体チャンバ1030の入口、出口、または突起の頂点のうちの1つに向かって移動することができ、ここで、気泡は流体チャンバ1030から逃げることができる、または、流体チャンバ1030の容積の中心から少なくとも移動させることができる。
【0149】
上記のように流体チャンバ1030が流体チャンバ1030内に収容された液体から気泡を除去及び/または移動するように構成及び配向されているこのような実施形態では、重力に直交するように、従って気泡の浮力の経路に直交するようにインテロゲーション経路1041を配置することにより、流体チャンバ1030内に収容された液体を気泡の干渉なしにインテロゲートすることができる。具体的には、流体チャンバ1030が上記のように流体チャンバ1030内に収容された液体から気泡を除去及び/または移動するように構成及び配向されている実施形態では、気泡は、浮力の経路を通って、流体チャンバ1030から逃げるか、または流体チャンバ1030のインテロゲーション経路1041から少なくとも除去される。流体チャンバ1030内に収容された液体を重力に直交、従って、気泡の浮力の経路に直交するインテロゲーション経路1041を介してインテロゲートすることにより、インテロゲーション経路1041は、流体チャンバ1030の液体中の気泡を回避する。結果として、気泡は液体のインテロゲーションを妨害せず、それによってインテロゲーションの精度を向上させる。
【0150】
いくつかの実施形態では、第1の表面1011及び第2の表面1021の一方の少なくとも一部は透明材料を含み、インテロゲーション経路1041は、インテロゲーション経路1041に沿って発光素子1040によって放出される光が透明材料を通過するように、透明材料を通って延びる。いくつかのさらなる実施形態では、光ガイド、光フィルタ、及びレンズのうちの1つまたは複数は、発光素子1040と流体チャンバ1030の間のインテロゲーション経路1041に沿って配置されてよく、インテロゲーション経路1041を介して流体チャンバ1030に向かって送られる光を修正するように使用されてよい。
【0151】
光がインテロゲーション経路1041に沿って流体チャンバ1030を通過した後、光は、流体チャンバ1030に収容された液体の光学特性及び/または光学特性の変化を検出するために使用されてよい。本明細書で使用される場合、光学特性は、サンプルを使用して行われるアッセイ反応の前、最中、または後に、そのサンプルによって発せられる、または、サンプルを通して送られる光等、放射線の波長及び/または周波数に起因する特性、例えば、色、吸光度、反射率、散乱、蛍光、リン光などの1つまたは複数の光学的に認識可能な特性を指す。これらの検出された光学特性を使用して、流体チャンバ1030内に収容された液体を特徴付けてよい、及び/または、流体チャンバ1030内に収容された液体を伴うアッセイを特徴付けてよい。
【0152】
図10に示される実施形態などの特定の実施形態では、光センサ1042は、インテロゲーション経路1041に沿って配置されて、光が流体チャンバ1030を通過した後に光を受け取り、続いて流体チャンバ1030内に収容された液体の1つまたは複数の光学特性を検出してよい。代替実施形態では、アセンブリ1000は、光センサ1042を含まなくてもよい。代替実施形態では、流体チャンバ1030を通過する光をユーザの目で直接、受け、その結果、ユーザが流体チャンバ1030内に収容された液体の1つまたは複数の光学特性を検出し、それらの検出された光学特性を使用して、流体チャンバ1030内に収容された液体を特徴付けてよい。
【0153】
結論
本開示を読むと、当業者は、本明細書において開示される原理を用いたさらに追加的な代替の構造的及び機能的設計を認識するであろう。よって、特定の実施形態及び適用を図示及び記載したが、開示された実施形態は本明細書に開示される正確な構造及び構成要素に制限されないことは理解されたい。当業者に明白な様々な修正、変更及び変形は、添付の特許請求の範囲に定義される趣旨及び範囲を逸脱することなく、本明細書において開示される方法及びアセンブリの配置、動作及び詳細に対して行われてよい。
【0154】
本明細書で用いられる場合、「一実施形態(one embodiment)」または「ある実施形態(an embodiment)」へのあらゆる言及は、その実施形態と関係して記載される特定の要素、特徴、構造、または特性が、少なくとも1つの実施形態に含まれることを意味する。本明細書の様々な箇所において出現する「一実施形態では」という語句は、必ずしも全て同一の実施形態を指してはいない。
【0155】
いくつかの実施形態は、「結合される」及び「接続される」という表現、並びにこれらの派生語を用いて記載することができる。例えば、いくつかの実施形態は、2つ以上の要素が物理的または電気的に直接接触していることを示す「結合される」という用語を用いて、記載することができる。ただし、「結合」という用語は、2つ以上の要素が互いに直接、接触状態にはないが、互いに協働または相互作用することも意味することができる。本実施形態は、明示的に別段の記載がなければ、この文脈に限定されない。
【0156】
本明細書で使用される、「含む(comprises)」、「含む(comprising)」、「含む(includes)」、「含む(including)」、「有する(has)」、「有する(having)」、またはこれらの任意の他の変形は、非排他的に含むことを意図している。例えば、要素のリストを含むプロセス、方法、品目、またはアセンブリは、必ずしもこれらの要素のみに限定されず、このようなプロセス、方法、品目、またはアセンブリに明示的に列挙されない、または固有でない他の要素を含み得る。さらに、明示的に別段の記載のない限り、「または(or)」は、包含的な「または」を指し、排他的な「または」ではない。例えば、条件AまたはBは、Aが真(または存在する)でありBが偽(または存在しない)である、Aが偽(または存在しない)でありBが真(または存在する)である、並びに、A及びBの両方が真(または存在する)のうちのいずれの1つによって満たされる。
【0157】
さらに、「1つの(a)」または「1つの(an)」の使用は、本明細書に記載の実施形態の要素及び構成要素を記載するために採用される。これは単に便宜上、及び本発明の大まかな要旨を付与するために行われるものである。この記載は、1つまたは少なくとも1つを含むように読み取られるべきであり、単数は、そうでないと意味されていることが明白でない限り、複数を含む。
【0158】
本明細書の一部分は、情報に対する操作のアルゴリズム及び記号表現の観点から、本発明の実施形態を記載している。これらのアルゴリズムの記載及び表現は、データ処理技術の当業者によって一般的に使用されて、当業者に自らの仕事の実体を効果的に伝える。これらの操作は、機能的、計算的、または論理的に記載されているが、コンピュータプログラムまたは同等の電気回路、マイクロコードなどによって実装されると理解される。さらに、一般性を失うことなく、これらの操作の構成をモジュールと呼ぶことが時には、好都合であることが分かった。記載した操作及びそれらに関連するモジュールは、ソフトウェア、ファームウェア、ハードウェア、またはそれらの任意の組み合わせで具現化することができる。
【0159】
本明細書に記載のステップ、操作、またはプロセスのいずれも、単独で、または他の装置と組み合わせて、1つまたは複数のハードウェアまたはソフトウェアモジュールを使用して実行または実施することができる。一実施形態では、ソフトウェアモジュールは、コンピュータプログラムコードを含むコンピュータ可読非一時的媒体を含むコンピュータプログラム製品で実装され、コンピュータプログラムコードは、記載したステップ、操作、またはプロセスのいずれかまたは全てを実行するためにコンピュータプロセッサによって実行することができる。
【0160】
本発明の実施形態はまた、本明細書に記載のコンピューティングプロセスによって生成される製品に関するものであってよい。このような製品は、コンピューティングプロセスから生じる情報を含むことができ、ここで、情報は、非一時的で有形のコンピュータ可読記憶媒体に記憶され、コンピュータプログラム製品または本明細書に記載の他のデータの組み合わせの任意の実施形態を含むことができる。
【0161】
図面参照番号リスト
図1
図2
図3
図4A
図4B
図4C
図4D
図4E
図4F
図5
図6
図7
図8
図9
図10