(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-21
(45)【発行日】2024-05-29
(54)【発明の名称】演算装置の作動方法、及び、演算装置
(51)【国際特許分類】
A61B 10/00 20060101AFI20240522BHJP
A61B 5/11 20060101ALI20240522BHJP
A61B 5/18 20060101ALI20240522BHJP
【FI】
A61B10/00 W
A61B5/11 200
A61B5/18
(21)【出願番号】P 2020167162
(22)【出願日】2020-10-01
【審査請求日】2023-05-23
(73)【特許権者】
【識別番号】504143441
【氏名又は名称】国立大学法人 奈良先端科学技術大学院大学
(74)【代理人】
【識別番号】100111567
【氏名又は名称】坂本 寛
(72)【発明者】
【氏名】和田 隆広
(72)【発明者】
【氏名】佐藤 勇起
(72)【発明者】
【氏名】岡藤 勇希
【審査官】増渕 俊仁
(56)【参考文献】
【文献】特開2020-131882(JP,A)
【文献】特開2020-018770(JP,A)
【文献】特開2020-124370(JP,A)
【文献】特表2010-514498(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 9/00-10/06
A61B 5/06-5/22
A61B 5/00-5/01
A61B 3/00-3/18
B60W 10/00
B60W 30/00-60/00
(57)【特許請求の範囲】
【請求項1】
入力値から動揺病の推定値を算出する演算モデルを用いた演算
処理を実行する演算装置の作動方法において、
前記演算装置が実行する前記演算処理は、
第1の時点において人の身体に与えられた運動刺激を表す第1の身体運動値を取得し、
前記第1の時点において前記人の身体に与えられる運動刺激を表す身体運動値の予測値である第2の身体運動値を、前記第1の時点以前の時点に前記人の身体に与えられた運動刺激を表す身体運動値の履歴を用いて予測し、
前記第1の身体運動値と前記第2の身体運動値とに基づく値を前記入力値として前記演算モデルに入力し、前記人の前記第1の時点における前記動揺病の推定値を算出する、ことを含む
、
演算
装置の作動方法。
【請求項2】
前記第2の身体運動値を予測することは、前記身体運動値の履歴を解析することを含む
請求項1に記載の演算
装置の作動方法。
【請求項3】
前記第2の身体運動値を予測することにおいては、さらに、前記第1の時点に前記人の身体に与えられる前記運動刺激に影響を与える環境情報を用いる
請求項1に記載の演算
装置の作動方法。
【請求項4】
前記第1の身体運動値及び前記身体運動値の履歴は加速度を含み、
前記第2の身体運動値は、前記加速度の予測値を含む
請求項1~3のいずれか一項に記載の演算
装置の作動方法。
【請求項5】
前記入力値は、前記第1の身体運動値に前記加速度の予測値を用いて得られる値を含む
請求項4に記載の演算
装置の作動方法。
【請求項6】
前記第1の身体運動値及び前記身体運動値の履歴は角速度を含み、
前記第2の身体運動値は、前記角速度の予測値を含む
請求項1~3のいずれか一項に記載の演算
装置の作動方法。
【請求項7】
前記入力値は、前記第1の身体運動値に前記角速度の予測値を用いて得られる値を含む
請求項6に記載の演算
装置の作動方法。
【請求項8】
前記第2の身体運動値を予測することは、身体運動値の履歴から身体運動値を予測する予測アルゴリズムを用いることを含む
請求項1~7のいずれか一項に記載の演算
装置の作動方法。
【請求項9】
前記演算モデルは、感覚器での運動感覚量に対応した値と、中枢神経系に構築されている前記感覚器の内部モデルで推定された運動感覚量である運動推定量に対応した値と、の差に基づいて前記動揺病の推定値を算出する
請求項1~8のいずれか一項に記載の演算
装置の作動方法。
【請求項10】
前記入力値を前記演算モデルに入力することは、前記第2の身体運動値を、前記第2の身体運動値の予測の信頼度に応じて調整して入力することを含む
請求項1~9のいずれか一項に記載の演算装置の作動方法。
【請求項11】
前記第2の身体運動値を調整することは、前記信頼度が高いと前記演算モデルへの入力度合いを高くし、前記信頼度が低いと前記入力度合を低くすることを含む
請求項10に記載の演算
装置の作動方法。
【請求項12】
入力値から動揺病の推定値を算出する演算装置であって、
第1の時点において人の身体に与えられた運動刺激を表す第1の身体運動値を入力する入力部と、
前記人の前記動揺病の推定値を算出する演算部と、を備え、
前記演算部は、
前記第1の時点において前記人の身体に与えられる運動刺激を表す身体運動値の予測値である第2の身体運動値を、前記第1の時点以前の時点に前記人の身体に与えられた運動刺激を表す身体運動値の履歴を用いて予測し、
前記第1の身体運動値と前記第2の身体運動値とに基づく値を前記入力値として、前記入力値から前記動揺病の推定値を算出する演算モデルに入力し、前記人の前記第1の時点における前記動揺病の推定値を算出する、ことを含む
演算装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、演算方法、及び、演算装置に関する。
【背景技術】
【0002】
動揺病は平衡失調に起因する疾病であり、車酔い、船酔いなどが含まれる。そのため、車両や船舶などの乗り物の快適性(乗り心地)を向上させるために、動揺病の発生や程度を抑えることは効果的である。
【0003】
この点について、本願発明者による特開2020-18770号公報(以下、特許文献1)は、前庭感覚(半規管、耳石)と視覚、及び、それらの統合過程を模した数理モデルから構築された、動揺病の原因といわれる「感覚矛盾説」に基づく数理モデルを開示している。この数理モデルを用いることで、動揺病の程度を算出し、乗り物の揺れの制御などを行うことが可能になる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【0005】
乗り物の快適性をより向上させるには、動揺病の程度を高精度に算出することが望まれる。そこで、発明者は、自身が先に見出した数理モデルに基づいて、より高精度で動揺病の程度を算出するよう開発を重ねた。
【0006】
ある実施の形態に従うと、演算方法は、入力値から動揺病の推定値を算出する演算モデルを用いた演算方法において、第1の時点において人の身体に与えられた運動刺激を表す第1の身体運動値を取得し、第1の時点において人の身体に与えられる運動刺激を表す身体運動値の予測値である第2の身体運動値を、第1の時点以前の時点に人の身体に与えられた運動刺激を表す身体運動値の履歴を用いて予測し、第1の身体運動値と第2の身体運動値とに基づく値を入力値として演算モデルに入力し、人の第1の時点における動揺病の推定値を算出する、ことを含む。
【0007】
他の実施の形態に従うと、演算装置は、入力値から動揺病の推定値を算出する演算装置であって、第1の時点において人の身体に与えられた運動刺激を表す第1の身体運動値を入力する入力部と、動揺病の推定値を算出する演算部と、を備え、演算部は、第1の時点において人の身体に与えられる運動刺激を表す身体運動値の予測値である第2の身体運動値を、第1の時点以前の時点に人の身体に与えられた運動刺激を表す身体運動値の履歴を用いて予測し、第1の身体運動値と第2の身体運動値とに基づく値を入力値として、入力値から動揺病の推定値を算出する演算モデルに入力し、人の第1の時点における動揺病の推定値を算出する、ことを含む。
【0008】
更なる詳細は、後述の実施形態として説明される。
【図面の簡単な説明】
【0009】
【
図1】
図1は、実施の形態に係る演算装置の装置構成の概略を示したブロック図である。
【
図2】
図2は、演算装置での演算処理の概要を表した図である。
【
図3】
図3は、演算装置の演算部の機能構成の一例を表したブロック図である。
【
図4】
図4は、
図3の各機能の詳細な処理の一例を表したブロック図である。
【
図5】
図5は、人に与えられた運動刺激の履歴の一例である。
【
図6】
図6は、
図5の運動刺激の履歴から得られた予測値の信頼度である。
【
図7】
図7は、人に与えられた運動刺激の履歴の一例である。
【
図8】
図8は、
図7の運動刺激の履歴から得られた予測値の信頼度である。
【
図9】
図9は、
図5の運動刺激の履歴から得られた予測値、及び
図6の信頼度を用いた、推定値である。
【
図10】
図10は、
図7の運動刺激の履歴から得られた予測値、及び
図8の信頼度を用いた、推定値である。
【発明を実施するための形態】
【0010】
<1.演算方法、及び、演算装置の概要>
【0011】
(1)実施の形態に係る演算方法は、入力値から動揺病の推定値を算出する演算モデルを用いた演算方法において、第1の時点において人の身体に与えられた運動刺激を表す第1の身体運動値を取得し、第1の時点において人の身体に与えられる運動刺激を表す身体運動値の予測値である第2の身体運動値を、第1の時点以前の時点に人の身体に与えられた運動刺激を表す身体運動値の履歴を用いて予測し、第1の身体運動値と第2の身体運動値とに基づく値を入力値として演算モデルに入力し、人の第1の時点における動揺病の推定値を算出すること、を含む。
【0012】
人の身体に与えられた運動刺激とは、例えば、頭部に与えられた運動刺激である。動揺病の推定値は、例えば、動揺病発症率(MSI:Motion Sickness Incidence)である。MSIは、物理刺激に対して嘔吐に至る人数の割合である。
【0013】
第1の時点は、例えば現時点である。この場合、第1の身体運動値は現時点で得られた身体運動値を指す。身体運動値の履歴は、第1の時点以前の時点に人の身体に与えられた運動刺激を表す、1又は複数の身体運動値である。第1の時点以前の時点の複数の身体運動値には第1の時点の身体運動値が含まれてもよい。第2の身体運動値は、過去の身体運動値から予測された現時点での身体運動値の予測値を指す。
【0014】
第1の身体運動値と第2の身体運動値とを用いて得られる入力値を演算モデルに入力することで、第1の時点での身体運動値(第1の身体運動値)に対して、第1の時点における身体運動値の予測値(第2の身体運動値)を考慮して動揺病の推定値が得られる。これにより、人の身体に与えられる運動が予測しやすい場合には酔いが少なく、予測しにくい場合には酔いやすいことを表した動揺病の推定値が得られる。
【0015】
(2)好ましくは、第2の身体運動値を予測することは、身体運動値の履歴を解析することを含む。これにより、第2の身体運動値を算出することができる。
【0016】
(3)好ましくは、第2の身体運動値を予測することにおいては、さらに、第1の時点に人の身体に与えられる運動刺激に影響を与える環境情報を用いる。これにより、第2の身体運動値を算出することができる。
【0017】
(4)好ましくは、第1の身体運動値及び身体運動値の履歴は加速度を含み、第2の身体運動値は、加速度の予測値を含む。これにより、加速度の予測値を算出することができる。
【0018】
(5)好ましくは、入力値は、第1の身体運動値に加速度の予測値を用いて得られる値を含む。第1の身体運動値に加速度の予測値を用いて得られる値は、一例として、第1の身体運動値と、信頼度を考慮した加速度の予測値とを含む。これにより、予測値を考慮して動揺病の推定値を算出することができる。
【0019】
(6)好ましくは、第1の身体運動値及び身体運動値の履歴は角速度を含み、第2の身体運動値は、角速度の予測値を含む。これにより、角速度の予測値を算出することができる。
【0020】
(7)好ましくは、入力値は、第1の身体運動値に角速度の予測値を用いて得られる値を含む。第1の身体運動値に加速度の予測値を用いて得られる値は、一例として、第1の身体運動値と、角速度の予測値とを含む。これにより、予測値を考慮して動揺病の推定値を算出することができる。
【0021】
(8)好ましくは、第2の身体運動値を予測することは、身体運動値の履歴から身体運動値を予測する予測アルゴリズムを用いることを含む。予測アルゴリズムは、例えば、ガウス過程回帰である。これにより、第2の身体運動値を算出することができる。
【0022】
(9)好ましくは、演算モデルは、感覚器での運動感覚量に対応した値と、中枢神経系に構築されている感覚器の内部モデルで推定された運動感覚量である運動推定量に対応した値と、の差に基づいて動揺病の推定値を算出する。これにより、高精度で動揺病の推定値を算出できる。
【0023】
(10)好ましくは、入力値を演算モデルに入力することは、第2の身体運動値を、第2の身体運動値の予測の信頼度に応じて調整して入力することを含む。これにより、動揺病の推定値に適切に第2の身体運動値を反映させることができる。
【0024】
(11)好ましくは、第2の身体運動値を調整することは、信頼度が高いと演算モデルへの入力度合いを高くし、信頼度が低いと入力度合を低くすることを含む。これにより、動揺病の推定値に適切に第2の身体運動値を反映させることができる。
【0025】
(12)実施の形態に係る演算装置は、入力値から動揺病の推定値を算出する演算装置であって、第1の時点において人の身体に与えられた運動刺激を表す第1の身体運動値を入力する入力部と、人の動揺病の推定値を算出する演算部と、を備え、演算部は、第1の時点において人の身体に与えられる運動刺激を表す身体運動値の予測値である第2の身体運動値を、第1の時点以前の時点に人の身体に与えられた運動刺激を表す身体運動値の履歴を用いて予測し、第1の身体運動値と第2の身体運動値とに基づく値を入力値として、入力値から動揺病の推定値を算出する演算モデルに入力し、人の第1の時点における動揺病の推定値を算出する、ことを含む。これにより、演算装置では、(1)~(11)に記載の演算方法にて動揺病の推定値を算出することができる。
【0026】
<2.演算方法、及び、演算装置の例>
【0027】
[第1の実施の形態]
【0028】
本実施の形態に係る演算装置は、動揺病の程度を算出する。動揺病の程度は、一例として動揺病の推定値などの指標値によって表される。本実施の形態に係る演算装置は動揺病の推定値を算出する。動揺病の推定値は、一例として、動揺病発症率(MSI:Motion Sickness Incidence)である。MSIは、物理刺激に対して嘔吐に至る人数の割合である。
【0029】
MSIは、例えば、車両などの乗り物の乗員の動揺病を防止、又は、程度を低減する制御に用いることができる。乗り物は、他の例として、船舶、電車、航空機、などである。動揺病が防止、又は、程度が軽減されることで、乗り物の快適性が向上する。そのため、より効果的に動揺病が防止、又は、程度が軽減されることが望ましい。そこで、一例として、乗り物の乗員を演算装置でMSIを算出するためのデータを測定する人とする。
【0030】
発明者は、乗員の身体に与えられる運動が予測しやすい場合には酔いが少なく、予測しにくい場合には酔いやすいことに着目した。そこで、本実施の形態に係る演算装置では、従来の数理モデルに、このような運動の予想のしやすさを加味してMSIを算出する。
【0031】
図1を参照して、本実施の形態に係る演算装置1は、プロセッサ11と、記憶部12と、を有する一般的なコンピュータなどで構成される。プロセッサ11は、例えば、CPU(Central Processing Unit)である。
【0032】
演算装置1は、センサインタフェース(I/F)14を備える。センサI/F14は、第1のセンサSE1及び第2のセンサSE2それぞれと有線、又は、無線で接続されて、センサ信号の入力を受け付ける。センサI/F14は、入力されたセンサ信号をプロセッサ11に入力する。
【0033】
センサSE1は、前庭感覚器に対応したセンサである。センサSE1は、乗員の身体、例えば、頭部に与えられる運動刺激を検出し、運動刺激に対応した運動情報を出力する。センサSE1の出力信号I1は、運動情報を表す。以下、センサSE1からの出力を運動情報I1ともいう。
【0034】
運動情報I1は、頭部加速度及び頭部角度である。その他、頭部速度、又は、これらのうちの2以上の組み合わせ、などであってもよい。センサSE1は、例えば、乗員の頭部(例えば帽子)に取り付けられ、頭部加速度を計測する加速度センサ、及び、頭部角度を計測するジャイロセンサである。
【0035】
なお、運動情報I1は、乗員の頭部に与えられる運動刺激とみなされる運動に関する情報であってもよく、例えば、車両V自体の加速度及び角度であってもよい。車両Vの加速度及び角度が車両Vの乗員のそれと同じであると推定されるためである。この場合、第1のセンサSE1は車載の加速度センサ及びジャイロセンサである。
【0036】
センサSE1は、予め規定された間隔(例えば10msec間隔)でセンシングを実行し、運動情報I1を演算装置1に対して出力する。
【0037】
記憶部12は、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM、RAM(Random Access Memory)などを含む。記憶部12は、1又は複数のプログラムからなる演算プログラム121を記憶する。
【0038】
プロセッサ11は、センサ信号に応じて記憶部12に記憶された演算プログラム121を読み出し、演算処理111を実行する演算部110として機能する。演算プログラム121は、CD-ROMや(Compact Disc Read only memory)やDVD-ROM(Digital Versatile Disk ROM)などの記録媒体に記録した状態で譲渡することもできるし、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。演算プログラム121は、ウェブブラウザ上で動作するいわゆるウェブアプリケーションであってもよいし、プロセッサ11でのみ動作するいわゆる専用アプリケーションであってもよい。
【0039】
好ましくは、演算装置1は出力装置3に接続されている。出力装置3は、演算装置1での演算結果を出力可能な装置であって、例えば、ディスプレイである。プロセッサ11は、演算処理111の演算結果を出力装置3に渡し、出力させる。
【0040】
演算処理111は、演算モデルである数理モデルMを用いてMSIを算出する処理である。数理モデルMは、人の身体に与えられた運動刺激を表す身体運動値から人の動揺病の推定値としてMSIを算出する演算モデルである。
【0041】
数理モデルMは、感覚器での運動感覚量に対応した値と、中枢神経系に構築されている感覚器の内部モデルで推定された運動感覚量である運動推定量に対応した値と、の差に基づいてMSIを算出する。感覚器は、前庭感覚を含む。
【0042】
図2を参照して、演算処理111を実行する演算部110には、センサSE1にて第1の時点で得られた、人の運動刺激を表す身体運動値(第1の身体運動値)が入力される。ここでの運動刺激は、物理的な運動刺激を含み、身体運動値は、運動刺激に対応する運動情報I1を含む。
【0043】
演算処理111は感覚器処理(ステップS1)を含む。感覚器処理は、運動情報I1を用いて処理を行い、運動感覚量を示す運動感覚情報I3を出力することを含む。ここでの処理は、前庭感覚器の運動知覚の処理に対応した処理である。
【0044】
演算処理111は内部モデル処理(ステップS2)を含む。内部モデル処理は、運動情報I1を用いて処理を行い、推定された運動感覚量である運動推定量を示す運動推定情報I4を出力することを含む。ここでの処理は、前庭感覚器の内部モデルでの運動推定の処理に対応した処理である。
【0045】
演算処理111は誤差算出処理(ステップS3)を含む。誤差算出処理は、運動感覚情報I3として出力された運動感覚量と、運動推定情報I4として出力された運動推定量との誤差を算出することを含む。
【0046】
演算処理111は動揺病程度算出処理(ステップS4)を含む。動揺病程度算出処理は、誤差算出処理で算出された誤差からMSIを算出することを含む。動揺病程度算出処理で得られた演算結果は、出力装置3に渡される。これにより、出力装置3で演算結果としてMSIが出力される。
【0047】
演算処理111は、さらに、運動予測処理(ステップS5)を含む。運動予測処理は、センサSE1が第1の身体運動値を得た第1の時点における身体運動値の予測値(第2の身体運動値)を算出し、運動予測値I5を出力することを含む。予測値は、第1の時点以前の複数の時点それぞれに人の身体に与えられた運動刺激(運動刺激の履歴)を表す複数の身体運動値を用いて算出される。内部モデル処理においては、運動予測値I5をさらに用いて処理を行う。
【0048】
好ましくは、運動予測処理は、さらに、予測値の信頼度を算出し、信頼度I6を出力することを含む。内部モデル処理においては、運動予測値I5に信頼度I6を考慮して用いてもよい。
【0049】
ここで、数理モデルMにて採用した、動揺病の程度の推定原理について説明する。感覚器の1つである前庭器において頭部運動が検知され、頭部運動に対応する信号(運動感覚信号)が生じる。また、中枢神経系に同様の過程を模擬した内部モデルが構築されていると考えられており、内部モデルでは、頭部運動の運動感覚量を示す信号(運動推定信号)が生成される。運動感覚信号と運動推定信号との間に誤差がある場合、つまり、感覚器で得られた運動感覚量と内部モデルで推定された運動感覚量との間に誤差がある場合、その誤差は感覚矛盾となる。感覚矛盾が動揺病を引き起こすとされている。
【0050】
さらに、演算処理111では、運動の予想のしやすさを加味するため、数理モデルMに入力する入力値として、第1の時点に得られた身体運動値(第1の身体運動値)と、第1の時点の身体運動値の予測値(第2の身体運動値)とを用いて得られる値を用いる。予測値は所定のゲインを乗じて用いられてもよい。所定のゲインは、一例として予測値の信頼度に基づくものであってもよい。以下の説明では、入力値は、身体運動値と、予測値を信頼度に応じて調整した値と、を含む。
【0051】
図3を用いて、数理モデルMに従って演算処理111を実行する演算装置1の演算部110の機能構成を説明する。
図3に示された各部は、プロセッサ11によって実現される。
【0052】
図3を参照して、演算部110は処理部101を含む。処理部101は、感覚器としての前庭感覚器での運動知覚の処理に対応した処理を実行する。処理部101には、第1の時点において得られた運動情報I1が入力される。運動情報I1は、頭部座標系から見た頭部の重力と慣性力との合力である頭部加速度と、頭部角速度と、を含む。
【0053】
処理部101での処理は、耳石器での運動知覚に対応した処理、及び、半規管での運動知覚に対応した処理を含む。処理部101は、運動情報I1が入力されると、前庭感覚器から出力される、運動感覚量を示す運動感覚信号に相当する運動感覚情報を出力する。
【0054】
演算部110は運動予測部120を含む。運動予測部120には、運動情報I1が入力される。運動予測部120は、運動情報I1が入力されると、運動予測処理を実行して、第1の時点における身体運動の予測値(第2の身体運動値)を出力する。好ましくは、さらに、予測値の信頼度を出力してもよい。身体運動の予測値及び予測値の信頼度は、
図2の運動予測値I5及び信頼度I6に相当する。
【0055】
演算部110は身体運動推定部103を含む。身体運動推定部103は、神経系において身体に与えられる刺激の遠心性コピーや体性感覚などに対応する情報(以下、コピー情報と略する)を生成する処理に対応した処理を実行する。詳しくは、身体運動推定部103には運動情報I1が入力される。また、身体運動推定部103には運動予測値I5及び信頼度I6も入力される。
【0056】
身体運動推定部103は、運動予測値I5に対してゲインKを乗じる。ゲインKは一例として、予め記憶されているものである。これにより、運動予測値I5が定数倍されて、後述する内部モデルに入力される。
【0057】
好ましくは、身体運動推定部103は、信頼度I6とゲインKとの関係を予め記憶しており、身体運動推定部103は、入力された信頼度I6に応じたゲインKを決定する。そして、運動予測値I5に対して、決定されたゲインKを乗じる。信頼度I6とゲインKとの関係は、信頼度をパラメータとした演算式であってもよい。ここでは、信頼度が高いほどゲインが大きくなる関係が記憶されている。
【0058】
身体運動推定部103は、運動情報I1に対して予め記憶しているゲインを乗じる。そして、身体運動推定部103は、運動情報I1から得られた値と運動予測値I5から得られた値とに基づく値をコピー情報とする。すなわち、身体運動推定部103は、運動予測値I5を信頼度I6で調整した情報を、上記のコピー情報とする。
【0059】
身体運動推定部103には、後述する適応処理部109から出力された情報が入力される。身体運動推定部103は、コピー情報、及び、適応処理部109から出力された情報を統合する統合処理を実行する。統合処理は、自身の身体運動を把握するために人が行っている様々な感覚情報を統合する感覚統合に対応した処理である。身体運動推定部103は、統合処理によって出力される情報を内部モデルに出力する。そのため、ゲインが大きいほど、運動予測値I5が内部モデルに入力される度合が大きくなり、ゲインが小さくほど、運動予測値I5が内部モデルに入力される度合が小さくなる。コピー情報は、誤差を含む運動情報I1に相当する。
【0060】
なお、信頼度を用いた調整方法は、信頼度が高いほど入力される度合が大きくなり、信頼度が低いほど入力される度合が小さくなるような調整方法であれば他のどのような方法であってもよい。
【0061】
演算部110は内部モデルでの運動推定の処理に対応した処理を実行する前庭感覚器モデル107を含む。前庭感覚器モデル107には、身体運動推定部103から出力された情報が入力される。身体運動推定部103から情報が入力されることで、前庭感覚器モデル107は、
図2の運動推定情報I4に相当する情報を出力する。
【0062】
詳しくは、前庭感覚器モデル107は、身体運動推定部103から入力された情報を用いて内部モデルの前庭感覚器モデルでの運動推定の処理に対応した処理を実行する。前庭感覚器モデル107は、この処理によって運動感覚量を推定し、推定された運動感覚量である運動推定量を示す運動推定情報を出力する。
【0063】
演算部110は比較部108を含む。比較部108は加算器である。比較部108には、処理部101から出力された運動感覚情報、及び、前庭感覚器モデル107から出力された運動推定情報が入力される。
【0064】
比較部108は、運動感覚情報と運動推定情報とを用いて比較処理を実行する。これにより、比較部108は、処理部101で得られた運動感覚量と前庭感覚器モデル107で推定された運動感覚量(運動推定量)とを比較し、それらの差分(誤差)を算出する。算出された誤差は、感覚矛盾情報として出力される。
【0065】
演算部110は適応処理部109を含む。適応処理部109には、比較部108から出力された感覚矛盾情報が入力される。適応処理部109は、入力された感覚矛盾情報を蓄積し、内部モデルでの処理に適応させるための適応処理を施した情報を出力する。
【0066】
演算部110は感覚矛盾処理部125を含む。感覚矛盾処理部125には、比較部108から出力された感覚矛盾情報が入力される。感覚矛盾処理部125は、感覚矛盾情報を用いて動揺病の程度を示す指標値を算出するための演算式を予め記憶している。感覚矛盾処理部125は、記憶している演算式に比較部108から入力された感覚矛盾情報を代入することによってMSIを算出する。
【0067】
図4を参照して、数理モデルMに従って演算処理111を実行する演算部110には、センサSE1からの運動情報I1として、頭部にかかる重力加速度gと慣性加速度aとの和である頭部加速度f(f=g+a)と、頭部角速度ωと、慣性加速度aと、の第1の時点におけるセンシング結果が入力される。
【0068】
処理部101は、処理部OTO、及び、処理部SCCを含む。処理部OTOには頭部加速度fが入力される。処理部OTOは、耳石器での運動知覚の処理に対応した処理を実行する。処理部SCCには頭部角速度ωが入力される。処理部SCCは、半規管での運動知覚の処理に対応した処理を実行する。
【0069】
処理部OTO及び処理部SCCの伝達特性は、いずれも頭部固定座標系で記述された式で表される。処理部OTOの伝達特性は単位行列で表される。処理部SCCの伝達特性は図中の式(1)で表される。なお、式(1)中のτa、τdは時定数である。
【0070】
処理部OTOからは信号f’が出力される。処理部SCCからは頭部角速度ωの感覚量ω’が出力される。信号f’及び信号ω’に対してローパスフィルタLPを適用することで、重力方向速度の感覚量vsが算出される。感覚量vsを用いて慣性加速度aの感覚量asが算出される。ローパスフィルタLPの特性は図中の式(2)で表される。なお、式(2)中のτは時定数である。感覚量as、感覚量ωs、及び、感覚量vsは、運動感覚情報に相当する。
【0071】
前庭感覚器モデル107は、耳石器の内部モデルに相当する処理部<OTO>と、半規管の内部モデルに相当する処理部<SCC>と、を含む。表記「<>」で挟まれた符号は、内部モデルに相当する処理を行う処理部を指している。以降の説明でも同様である。
【0072】
処理部<OTO>の伝達特性は単位行列で表される。処理部<SCC>の伝達特性は図中の式(3)で表される。処理部<OTO>及び処理部<SCC>それぞれから出力される信号に対してローパスフィルタ<LP>を適用することで、慣性加速度aの推定量as^、頭部角速度ωの推定量ωs^、及び、重力方向速度の推定量vs^が得られる。ローパスフィルタ<LP>の特性もまた、図中の式(2)で表される。処理部<OTO>及び処理部<SCC>それぞれから出力される信号は、運動推定情報に相当する。
【0073】
比較部108は、処理部OTO及び処理部SCCそれぞれから出力された感覚量as、感覚量vs、及び、感覚量ωsと、処理部<OTO>及び処理部<SCC>それぞれから出力された推定量as^、推定量ωs^、及び、推定量vs^との誤差Δa、Δv、Δωを算出し、それぞれを示す信号を出力する。比較部108からの出力信号は、感覚矛盾情報に相当する。
【0074】
適応処理部109は、比較部108からの出力信号に示される誤差Δa、Δv、Δωをそれぞれ積分し、それぞれにゲインKac、Kωc、Kvcを乗じて得られた処理後の誤差Δa’、Δv’、Δω’を身体運動推定部103に入力する。
【0075】
運動予測部120には、頭部加速度fが入力される。運動予測部120は、第1の時点における運動刺激を予測する処理を実行する。運動刺激を予測する処理は後述する。一例として、運動予測部120は、運動刺激のうちの慣性加速度aを予測する。この場合、運動予測部120は、その処理によって、予測された慣性加速度である予測慣性加速度a’を出力する。さらに、運動予測部120は、予測慣性加速度a’の信頼度を算出し、信頼度を示す信号dを出力する。
【0076】
身体運動推定部103には、予測慣性加速度a’及び信号dが入力される。また、身体運動推定部103には、頭部角速度ωが入力される。身体運動推定部103は、信号dに基づいてゲインKaを決定する。身体運動推定部103は、頭部角速度ωに、予め記憶しているゲインKωを乗じて頭部角速度ω~を得る。身体運動推定部103は、予測慣性加速度a’に決定されたゲインKaを乗じて慣性加速度a~を得る。頭部角速度ω~及び慣性加速度a~は、コピー情報に相当する。
【0077】
身体運動推定部103の実行する統合処理は、一例として、加算処理である。そのため、身体運動推定部103は、加算器64,66,67をさらに含む。加算器64は、慣性加速度a~と誤差Δa’とを加算し、加算器66に渡す。加算器66は、慣性加速度a~と誤差Δa’との加算結果、及び、誤差Δv’を加算して得られた結果を示す信号を処理部<OTO>に入力する。加算器67は、頭部角速度ω~と誤差Δω’とを加算した結果を処理部<SCC>に入力する。
【0078】
感覚矛盾処理部125には、比較部108から出力された誤差Δvが入力される。誤差Δvは、主観的重力方向誤差(Subjective Vertical Conflict)とも呼ばれる。感覚矛盾処理部125は、誤差Δvに2次のHill関数及び2次遅れ伝達関数を適用する処理を実行する。この処理によって、MSIが出力される。
【0079】
なお、この例では、数理モデルMが、前庭感覚器で表された、1つの感覚器を用いるものとしている。他の例として、数理モデルMは、さらに他の感覚器も用いてもよい。すなわち、前庭感覚器に加えて他の感覚器についても運動感覚量を算出させ、その誤差に対応した値も用いてMSIを算出させてもよい。人には前庭感覚器のみならず複数種類の感覚器が存在し、人は、神経系において様々な感覚情報を統合して自身の身体運動を把握していると考えられるためである。他の感覚器は、例えば、視覚器である。視覚器では、視覚刺激に対する視覚器での運動感覚量に対応する信号(視覚感覚信号)が生じる。この場合、内部モデルには視覚器などの他の感覚器に対応した内部モデルも含まれると考えられる。このようにすることで、より高精度にMSIが算出されると考えられる。
【0080】
運動予測部120での運動刺激を予測し、予測値の信頼度を算出する処理について説明する。一例として、運動予測部120での処理は、人の運動刺激の履歴の解析を含む。以前の時点において人に与えられる運動刺激を指し、1又は複数の身体運動値である。複数の身体運動値は、第1の時点の身体運動値を含んでもよい。
【0081】
運動予測部120は、一例として、身体運動値の履歴から運動刺激の予測値が得られる予測アルゴリズムを予め記憶している。好ましくは、予測値の信頼度が得られる予測アルゴリズムもさらに記憶している。予測値及びその信頼度が得られる予測アルゴリズムは、一例としてガウス過程回帰である。
【0082】
例えば、
図5に示されたような運動刺激の履歴が入力されたとする。
図5は、人の身体に与えられる慣性加速度の時間変化を表している。
図5の履歴では、慣性加速度の時間変化がパターン化され、一定周期で同じ変化が繰り返されている。
【0083】
この場合、ガウス過程回帰モデルによって
図6の信頼度が得られる。
図6を参照して、慣性加速度の履歴の1周期目のうちは信頼度が低いものの、2周期目以降は周期的な慣性加速度の時間変化であることから、そのパターンに基づいた予測値の信頼度が高くなっていることがわかる。この場合、身体運動推定部103の決定する、予測値に乗じるためのゲインは大きくなる。
【0084】
他の例として、
図7に示された運動刺激の履歴が入力されたとする。
図7も、人の身体に与えられる慣性加速度の時間変化を表している。
図7の履歴では、慣性加速度の時間変化は周期的に加速度の変化が生じてはいるものの、パターン化されていない。
【0085】
この場合、ガウス過程回帰モデルによって
図8の信頼度が得られる。
図8を参照して、この場合、全体に信頼度が一定せず、
図6の信頼度と比較して低いことがわかる。この場合、身体運動推定部103の決定する、予測値に乗じるためのゲインは、
図5の場合よりも小さくなる。
【0086】
図5及び
図7の運動刺激の履歴を用いて、同じ運動刺激に対するMSIを算出すると、それぞれ、
図9、
図10の結果が得られた。すなわち、
図5の運動刺激の履歴はパターン化されているため
図6のように信頼度が高い。その結果、決定されるゲインが大きくなる。つまり、推定値の内部モデルに入力される度合が高くなる。この場合、
図9に示されたように、MSIの大きさは全体的に0.6以下の低さであり、時間経過に沿った傾きも緩やかとなる。
【0087】
一方、
図7の運動刺激の履歴の場合、パターン化されたものでないために
図8のように信頼度が低い。その結果、決定されるゲインが小さくなる。つまり、推定値の内部モデルに入力される度合が低くなる。この場合、
図10に示されたように、MSIの大きさは
図0のMSIと比較して全体的に高く、時間経過に沿った傾きも大きくなる。
【0088】
図9及び
図10の計算結果より、運動予測部120で予測値とその信頼度とを算出し、身体運動推定部103が信頼度に応じて上記のように予測値を用いることで、演算処理111の演算処理によって、身体に与えられる運動が予測しやすい場合には酔いが少なく、予測しにくい場合には酔いやすいことを表すMSIが得られることが分かった。
【0089】
[第2の実施の形態]
【0090】
運動予測部120における予測値を算出する処理では、さらに、第1の時点において運動刺激に影響を与える環境情報を用いてもよい。また、予測値の信頼度を算出する処理も同様に、第1の時点において運動刺激に影響を与える環境情報を用いてもよい。
【0091】
第1の時点において運動刺激に影響を与える環境情報は、例えば、第1の時点に得られた交通状況画像や、交通情報や、地図情報や、走行計画などである。これら情報は、第1の時点において乗員や乗り物に取り付けられたセンサから得られたり、図示しない通信装置を用いてサーバなどの他の装置から取得したりされる。
【0092】
具体的に、交通状況画像の場合、演算装置1は、
図1に示されたように、交通状況画像を得るためのセンサSE2にさらに接続されている。センサSE2は、一例としてカメラであって、例えば、乗員の頭部(例えば帽子)や車両などの乗り物の前方に取り付けられ、乗員の顔の向く方向を撮影する。センサSE2は、所定のタイミングで撮影を行い、画像情報I2を演算装置に対して出力する。
【0093】
画像情報I2は、
図2に示されたように、感覚器処理(ステップS1)及び運動予測処理(ステップS5)で用いられる。この場合、画像情報I2は、運動情報I1とともに処理部101、身体運動推定部103、及び、運動予測部120に入力される。
【0094】
この場合、運動予測部120は、画像情報I2で表される画像に対して画像解析処理を実行する。ここでは、一例として、運動予測部120は、進行方向を抽出してもよい。例えば、運動予測部120は、センターラインを抽出することで、カーブの有無や大きさを識別する。これにより、乗員の身体に与えられる運動刺激を予測可能になる。
【0095】
例えば、右にカーブしていることが識別された場合、運動予測部120は、乗員の身体に与えられる慣性加速度の向きを左向きと決定する。また、運動予測部120は、識別されたカーブの曲率が小さいほど乗員の身体に与えられる慣性加速度の大きさを大きくするよう、曲率に応じて慣性加速度の大きさを決定する。このようにすることでも、運動予測部120は運動刺激を予測することができる。
【0096】
なお、以上の説明では、運動予測部120で予測する運動刺激を表す身体運動値を慣性加速度としているが、慣性加速度に替えて、又は加えて、他の指標であってもよい。他の指標は、例えば、頭部加速度や角速度である。この場合も、上記と同様にして運動刺激を予測することができる。また、さらに、信頼度を算出することができる。
【0097】
<3.付記>
本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。
【符号の説明】
【0098】
1 :演算装置
3 :出力装置
11 :プロセッサ
12 :記憶部
14 :センサI/F
64 :加算器
66 :加算器
67 :加算器
101 :処理部
103 :身体運動推定部
107 :前庭感覚器モデル
108 :比較部
109 :適応処理部
110 :演算部
111 :演算処理
120 :運動予測部
121 :演算プログラム
125 :感覚矛盾処理部
I1 :運動情報
I2 :画像情報
I3 :運動感覚情報
I4 :運動推定情報
I5 :運動予測値
I6 :信頼度
K :ゲイン
Ka :ゲイン
Kac :ゲイン
Kvc :ゲイン
Kω :ゲイン
Kωc :ゲイン
LP :ローパスフィルタ
M :数理モデル
OTO :処理部
SCC :処理部
SE1 :センサ
SE2 :センサ
a :慣性加速度
a’ :予測慣性加速度
as :感覚量
as^ :推定量
d :信号
f :頭部加速度
f’ :信号
g :重力加速度
vs :感覚量
vs^ :推定量
Δa :誤差
Δa’ :誤差
Δv :誤差
Δv’ :誤差
Δω’ :誤差
ω :頭部角速度
ω’ :感覚量
ωs :感覚量
ωs^ :推定量