IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジャイラス エーシーエムアイ インクの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-22
(45)【発行日】2024-05-30
(54)【発明の名称】超音波プローブ
(51)【国際特許分類】
   A61B 17/22 20060101AFI20240523BHJP
【FI】
A61B17/22 510
【請求項の数】 15
(21)【出願番号】P 2022519580
(86)(22)【出願日】2020-09-29
(65)【公表番号】
(43)【公表日】2022-11-22
(86)【国際出願番号】 US2020053325
(87)【国際公開番号】W WO2021067302
(87)【国際公開日】2021-04-08
【審査請求日】2022-04-27
(31)【優先権主張番号】62/907,971
(32)【優先日】2019-09-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500498763
【氏名又は名称】ジャイラス エーシーエムアイ インク ディー/ビー/エー オリンパス サージカル テクノロジーズ アメリカ
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】ベイカー チャールズ
(72)【発明者】
【氏名】マシオン ジェームズ
(72)【発明者】
【氏名】ラムサー デニス ジー
【審査官】豊田 直希
(56)【参考文献】
【文献】米国特許出願公開第2010/0087759(US,A1)
【文献】米国特許出願公開第2015/0088154(US,A1)
【文献】特表2016-529001(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 17/00-18/00
A61F 2/01
A61N 7/00
(57)【特許請求の範囲】
【請求項1】
音響トランスデューサを備える音響プローブを用いて結石塊を処置するための装置であって、
前記結石塊を標的とする前記音響プローブの音響共鳴周波数を生成するために、複数の周波数に対応する複数の駆動信号成分を提供するように構成される制御器回路と、
前記音響共鳴周波数を生成するために前記複数の駆動信号成分を前記音響トランスデューサに通信するように構成される出力インターフェースと、
前記音響トランスデューサから遠位に延びる導波路であって、前記複数の周波数に含まれる周波数に基づいて生成された前記音響共鳴周波数に基づく音響波形を伝播させるように構成されている導波路と、
前記音響トランスデューサの遠位のプローブ先端であって、前記結石塊を破砕するために、伝播された前記音響波形を使用して長手方向に変位可能であるプローブ先端と、
を備えることを特徴とする装置。
【請求項2】
請求項1に記載の装置であって、前記音響トランスデューサは、前記制御器回路から前記複数の駆動信号成分を受信するように、および前記複数の駆動信号成分を音響エネルギーに変換するように構成される1つ以上の圧電部材を備えることを特徴とする装置。
【請求項3】
音響プローブを用いて結石塊を処置するための装置であって、
音響トランスデューサを備える前記音響プローブと、
前記結石塊を標的とする前記音響プローブの音響共鳴周波数を生成するために、前記音響共鳴周波数に対応する周波数を含む複数の周波数に対応する複数の駆動信号成分を制御器回路から受信するように構成される入力インターフェースと、
前記音響トランスデューサから遠位に延びる導波路であって、前記音響共鳴周波数に基づく音響波形を伝播させるように構成されている導波路と、
前記音響トランスデューサの遠位のプローブ先端であって、前記結石塊を破砕するために、前記音響波形によって長手方向に変位可能であるプローブ先端と、
を備えることを特徴とする装置。
【請求項4】
請求項3に記載の装置であって、前記音響トランスデューサは、前記制御器回路から前記複数の駆動信号成分を受信し、前記複数の駆動信号成分を音響エネルギーに変換するように構成される1つ以上の圧電部材を備えることを特徴とする装置。
【請求項5】
音響トランスデューサを備える音響プローブを用いて標的を破砕するための装置の作動方法であって、
前記装置において、前記標的に対する前記音響プローブの音響共鳴周波数を生成するために、前記音響共鳴周波数に対応する周波数を含む複数の周波数に対応する複数の駆動信号成分を提供または受信するステップと、
前記装置において、前記音響共鳴周波数を生成するために前記複数の駆動信号成分を前記音響トランスデューサに通信するステップと、
前記装置において、前記複数の周波数に基づいて波形を生成するステップであって、前記複数の周波数のうちの少なくとも1つは前記音響プローブの共鳴のための基本周波数の高調波周波数を含む、ステップと、
を含むことを特徴とする装置の作動方法。
【請求項6】
請求項5に記載の装置の作動方法であって、前記複数の駆動信号成分は、前記複数の周波数に対応し、前記複数の駆動信号成分の重畳は、前記音響共鳴周波数を結果としてもたらすことを特徴とする装置の作動方法。
【請求項7】
請求項5または6に記載の装置の作動方法であって、前記複数の駆動信号成分は、前記複数の周波数に対応し、前記複数の周波数のうちの少なくとも1つは、前記音響共鳴周波数であることを特徴とする装置の作動方法。
【請求項8】
請求項5~7のいずれか1項に記載の装置の作動方法であって、前記複数の周波数は、前記音響共鳴周波数を含む周波数の掃引を含むことを特徴とする装置の作動方法。
【請求項9】
請求項5に記載の装置の作動方法であって、前記高調波周波数は、奇数調波を含むことを特徴とする装置の作動方法。
【請求項10】
請求項9に記載の装置の作動方法であって、前記高調波周波数は、第3の高調波周波数または第5の高調波周波数を含むことを特徴とする装置の作動方法。
【請求項11】
請求項5~10のいずれか1項に記載の装置の作動方法であって、前記複数の駆動信号成分は、方形波を近似する波を含むように結合することを特徴とする装置の作動方法。
【請求項12】
請求項5~11のいずれか1項に記載の装置の作動方法であって、前記複数の駆動信号成分のうちの少なくとも1つは、前記音響トランスデューサ内の圧電デバイスの形状変化における加速した移行時間を引き起こすことを特徴とする装置の作動方法。
【請求項13】
請求項5~12のいずれか1項に記載の装置の作動方法であって、前記装置において、前記複数の駆動信号成分の合計に基づいて波形を生成するステップをさらに含むことを特徴とする装置の作動方法。
【請求項14】
請求項5~13のいずれか1項に記載の装置の作動方法であって、前記装置において前記音響共鳴周波数に基づいて基本周波数を識別するステップ、および前記装置において前記基本周波数に基づいて前記複数の駆動信号成分を選択するステップを含むことを特徴とする装置の作動方法。
【請求項15】
請求項5~14のいずれか1項に記載の装置の作動方法であって、前記複数の駆動信号成分の各々は、前記複数の周波数のうちの異なる周波数に対応することを特徴とする装置の作動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、生理学的「結石」などの障害物を、砕石術を使用して破壊するための技術、および例示的な超音波プローブに関する。
【背景技術】
【0002】
関連出願の相互参照
本出願は、2019年9月30日に出願された米国仮特許出願第62/907,971号の優先権の利益を主張するものであり、その内容は全体的に本願に引用して援用する。
【0003】
医療用内視鏡は、1800年代初頭に初めて開発され、身体の内側を検査するために使用されてきた。典型的な内視鏡は、光学または電子撮像システムを備える遠位端と、デバイスを操作するため、または画像を見るためなどの制御を伴う近位端とを有する。細長いシャフトが、近位端と遠位端とを接続する。内視鏡には、医師が、例えば、組織を切除するため、または物体を回収するために、1つ以上の作業チャネルに器具を通すことを可能にするものがある。
【0004】
過去数十年にわたって、内視鏡検査の分野において、および特に、胆管、尿路、腎臓、および胆嚢内の生理学的結石の破壊に関して、いくつかの進歩がなされている。これらの領域における生理学的結石は、管を閉塞して、患者にかなりの痛みを引き起こし得るため、破壊および/または除去される。超音波または他の音響砕石術、空気圧砕石術、電気油圧式砕石術(EHL)、および、例えば、緑色光、YAG、またはホルミウムレーザを使用した結石の破壊を含み得るレーザ砕石術を含む異なる技術が、結石を破壊するために開発されている。
【発明の概要】
【課題を解決するための手段】
【0005】
本開示は、数ある中でも、超音波プローブを使用した結石破砕および除去のためのデバイスおよび方法を提供する。処置中、駆動信号は、結石塊を処置するために混合され得る。超音波プローブは、標的とされる結石塊タイプまたはサイズに相関がある形態を有するプローブ先端を含み得る。超音波プローブは、プローブ性能を支援するために2つ以上の超音波ホーンを含み得る。
【0006】
結石処置の間、1つ以上の駆動信号が、プローブ内の超音波トランスデューサに伝送され得る。トランスデューサは、トランスデューサに伝送された駆動信号に基づいて、プローブのシャフト(例えば、導波路)を振動させ得る。場合によっては、駆動信号は、2つ以上の可変周波数で提供され得る。いくつかの可変周波数の使用は、標的とされる結石の共鳴周波数を見付けるように、いくつかの周波数の周りの掃引を可能にし、またその結石塊のより効率的な破壊を可能にし得る。
【0007】
超音波プローブは、標的とされる結石塊を処置するために設計された形態を有するプローブ先端を有し得る。例えば、プローブ先端は、より硬い結石塊の処置では、低減された面積およびより集中した角部を伴う先端を有し得る。対照的に、プローブ先端は、より柔らかい結石塊の処置では、より平坦であってもよい。
【0008】
2つ以上の超音波ホーンが、トランスデューサ内および導波路内など、超音波プローブ内で使用され得る。超音波ホーンは、プローブがより高い電圧または電力レベルに耐えることができることを可能にするために、波形内の1つ以上の応力ノードに対して置かれ得る。
【0009】
必ずしも縮尺通りに描写されているとは限らない図面において、同じ番号は、異なる視点における同様の構成要素を説明し得る。異なる接尾文字を有する同じ番号は、同様の構成要素の異なる実例を表し得る。図面は、概して、限定としてではなく、例として、本明細書において論じられる様々な例を例証する。
【図面の簡単な説明】
【0010】
図1】超音波プローブの特徴を組み込む例示的な装置の概略図である。
図2】例示的な超音波プローブの斜視図である。
図3図2の超音波プローブの例示的な遠位先端の拡大図である。
図4図2の例示的な超音波プローブの側面図である。
図5図4の超音波プローブの例示的な導波路の拡大図である。
図6図4の超音波プローブの例示的な遠位先端の拡大図である。
図7A】超音波プローブの例示的な遠位先端の概略図である。
図7B】超音波プローブの例示的な遠位先端の概略図である。
図8】例示的な遠位先端の側面図、および超音波プローブの関連波形を示す図である。
図9】例示的な遠位先端の側面図、および超音波プローブの関連波形を示す図である。
図10】超音波プローブにおけるノードおよび反ノード配置の例を描写するグラフである。
図11】超音波プローブにおけるノードおよび反ノード配置の例を描写するグラフである。
図12】超音波プローブにおける波形の例を描写するグラフである。
図13A】超音波プローブにおける波形の例を例証するグラフである。
図13B】超音波プローブにおける波形の例を例証するグラフである。
図13C】超音波プローブにおける波形の例を例証するグラフである。
図13D】超音波プローブにおける波形の例を例証するグラフである。
図13E】超音波プローブにおける波形の例を例証するグラフである。
図14】超音波プローブの例示的なプローブ先端の概略図である。
図15】超音波プローブの例示的なプローブ先端の概略図である。
図16】超音波プローブの例示的なプローブ先端の概略図である。
図17】超音波プローブの例示的なプローブ先端の概略図である。
図18】超音波プローブの例示的なプローブ先端の概略図である。
図19A】超音波プローブの例示的なプローブ先端の概略図である。
図19B】超音波プローブの例示的なプローブ先端の概略図である。
図19C】超音波プローブの例示的なプローブ先端の概略図である。
図19D】超音波プローブの例示的なプローブ先端の概略図である。
図19E】超音波プローブの例示的なプローブ先端の概略図である。
図19F】超音波プローブの例示的なプローブ先端の概略図である。
図19G】超音波プローブの例示的なプローブ先端の概略図である。
図19H】超音波プローブの例示的なプローブ先端の概略図である。
図19I】超音波プローブの例示的なプローブ先端の概略図である。
図19J】超音波プローブの例示的なプローブ先端の概略図である。
【発明を実施するための形態】
【0011】
本明細書に説明されるようなデバイスおよび技法は、腎盂尿管鏡またはトロカールとの使用のためなど、超音波プローブに関連して使用され得る。特徴は、結石除去など、より素早い標的除去を可能にする技術をもたらすために、超音波砕石器デバイスと共に使用され得る。結石についてのより速い塊除去速度の評価は、大きい力が必要とされることを示し得る。例えば、プローブ先端のより高い変位をもたらすより高い駆動電圧/電力レベルは、塊除去時間を加速させることにおいてより効果的である。しかしながら、より高い駆動電圧/電力レベルでの使用は、プローブをこのような強さで押すことによる応力が、プローブを数分あるいは数秒で破壊し得るということである。本明細書に説明されるような特徴により、より高い駆動電圧/電力レベルを使用するときのこのようなプローブ破壊の問題は、プローブの遠位端においてプローブ先端ホーンをプローブに提供することによって解決され得る。プローブ先端ホーンを提供することにより、プローブ破壊なしにより高い変位で(より高い駆動電圧/電力レベルの使用を伴って)プローブが動くことを可能にする。これは、正弦波形または略方形波形と共に使用され得る。
【0012】
図1および図2を参照すると、例示的なプローブ14との使用のためのシステム10の概略図が示されている。特徴は、図面に示される例に関して説明されるが、特徴は、例の多くの代替の形態で具現化され得るということを理解されたい。加えて、任意の好適なサイズ、形状、またはタイプの要素または材料が使用され得る。
【0013】
システム10は、コントローラ12および超音波プローブ14を含み得る。例において、システム10は、砕石術のためなど、医療システムである。コントローラ12は、少なくとも1つのプロセッサ16、およびソフトウェア20を伴う少なくとも1つのメモリ18を含み得る。例えば図2に示される超音波プローブ14は、トランスデューサ22、および導波路24としてのシャフトを含み得る。コントローラ12は、駆動信号をトランスデューサ22に送信するために、ドライバを含み得るか、またはドライバを制御し得る。トランスデューサ22は、図1に例証されるように、スタックなどの1つ以上の圧電部材23を含み得る。ここでは、圧電部材23は、トランスデューサを作動させるためにコントローラ12を介して駆動信号を受信するように構成され得る。導波路24は、トランスデューサ22によって移動または振動されるように構成され得る。
【0014】
図3は、プローブ14の遠位先端26を例証する。図3で例証されるように、導波路24の遠位先端26は、プローブ14が超音波を使用して標的30を破砕することを可能にするために、患者28内に挿入されて、結石などの標的30と接触状態にされ得る。この例では、プローブ14は、ユーザのためのハンドル区域32を含み得る。ハンドル区域32は、ユーザ制御34を含み得る。トランスデューサ22は、ハンドル区域32内に位置し得る。導波路24は、ハンドル区域32の遠位端から全体的な片持ち方式で前方に延び得る。
【0015】
図4図6は、プローブ14のさらなる図を示す。図4図6を参照すると、取り付け区域またはコネクタ36が、トランスデューサ22を有するトランスデューサ区域に導波路を接続するために、導波路24の近位端に提供される。トランスデューサ区域は、第1のホーン38を含み得る。第1のホーン38は、トランスデューサ22および導波路24の近位端の一部であり得る。導波路24は、プローブ先端区域40および遠位ホーン区域42を含み得る。このように、トランスデューサ22の一部として位置する第1のホーン38、およびプローブの遠位端または先端26に近接して位置する第2のホーン42という2つのホーンが提供される。場合によっては、3つ以上のホーンが提供され得る。加えて、別の代替例において、単一のホーン、ホーン42、のみが提供され得る。プローブ先端区域40は、第1のレベルの変位を有する区域を有するように構成され得、遠位ホーン区域42は、異なる第2のレベルの変位を有するように構成され得る。示される例では、第2のレベルの変位は、第1のレベルの変位よりも比較的に高い。プローブの遠位端26は、標的30との直接接触のために切断表面を形成する。導波路24はまた、遠位端26からハンドル区域32内への吸引のための通路または導管37を含み得る。例えば、最終応力ノードを超えるなどしてプローブの遠位端にホーンを提供することによって、プローブは、従来のプローブよりも高い遠位刃先26における変位を、プローブがより高い変位の際に壊れるリスクを低減して、提供し得る。
【0016】
図6に見られるように、プローブ先端ホーンは、プローブ先端区域40と遠位ホーン区域42との間の移行区間44を含み得る。移行区間44は、以下にさらに論じられるように、遠位の最終応力ノード46の後に位置し得る。移行区間44は、最終応力ノード46から遠位ホーン区域42における導波路24の第2の比較的より高い変位の場所までテーパ領域を提供し得る。
【0017】
図7Aおよび図7Bは、プローブ先端およびホーンの拡大図を例証する。図7Aおよび図7Bにおいて、導波路24は、全体的に不均一の壁厚を有する。図7Aは、プローブ先端区域40における導波路の断面を例証し、図7Bは、遠位ホーン区域42における導波路の断面である。見て分かるように、この例では、壁厚は、プローブ先端区域40に対して遠位ホーン区域42においてより小さい。故に、通路37は、プローブ先端区域40においてよりも、遠位ホーン区域42において大きくなり得る。移行区間44は、ホーンの機能性を形成するために、これら2つの区域の間にテーパを提供する。
【0018】
ホーン38、42(超音波ホーン)は、超音波トランスデューサからの変位の増加振幅を作成する手段である。これは、ホーンの先端に対してホーンの底部の断面積を変化させることによって行われる。ホーンの利得は、損失なしの場合、先端における表面積に対する底部における表面積の比率である。ホーン利得は、機械的な波の変位に当てはまる。ホーンの形状が、ホーンの利得を決定し得る。これは、変位ノードの効果が理由である。ホーンは、半波長を有する長い共鳴バーとして設計され得る。ホーンの形状を変化させることによって、ホーンに利得係数を付与して、振動の振幅を増大させることが可能である。例示的なホーンは、図8および図9に例証される。3つの共通ホーン設計は、図8に示されるように、ステップ、指数、およびカテノイダルである(Ultrasonic Welding.Handbook of Plastics Joining(第2版)。A Practical Guide.2009,Pages 15-35;https://www.sciencedirect.com/science/article/pii/897808l5515814500044)。カテノイダルホーンは、最も高い振幅利得および限られた応力を有する。さらなる振幅および応力曲線は、他の例について図9に示される(Power Ultrasonic Equipment - Practice and Application http://www.sonicsvstems.co.uk/page/power-ultrasonics-a-guide/39/)。
【0019】
図10において、シミュレートされた20kHz定常波についての導波路24の長さに沿った変位を例証する図表が示される。見て分かるように、(理想的には)変位なしの圧縮または引張を有するノード(圧縮ノードまたは定常ノートまたは応力ノードとも呼ばれる)が存在する。図10に示されるように、反ノード(変位ノードまたは延長ノードとも呼ばれる)が存在する。反ノードは、変位または延長を有するように構成される。定常ノードの場所は、故障が起こり得る応力の場所である。移行区間44は、最後の定常ノード46の後に位置する。
【0020】
この例では、例示的なプローブ先端ホーンは、3つの主要区域で構成され、そのうちの2つが図6に示される。第1の区域は、他の2つの主要区域の断面積よりも比較的大きい、図10に示されるすべての応力ノードにわたる断面積を提供するプローブ先端区域40である。プローブ先端区域40に沿った比較的大きい断面積が、このエリアを故障から守るのに役立ち得る。遠位ホーン42は、その長さにわたって平均して、プローブ先端区域40の断面積よりも薄い断面積を有する。この比較的より薄い断面積は、プローブ先端本体部を通過する同じ力に応答して大きい変位を呈するように構成され得る。遠位ホーン42とプローブ先端区域40との間の移行部44は、任意の減少数学関数で導出され得る2つの断面積の間のテーパを有するか、あるいは1つの内径から別の内径まで単一のステップを有する。2つの区域のテーパまたは重複は、ホーン42の開始部または底部における応力を減少させる。この例では、応力が、応力ノード46に隣接するエリアに依然として存在し、応力ノード46の中心だけに位置するわけではないことから、移行部44は、このエリアに漸進的変化または段階的移行を提供する。ホーン区域およびテーパの開始の位置は、プローブ先端区域40内の最終応力ノード46に、またはその近くにある。これにより、ピーク応力を有するエリアがそれらにわたって大きい断面壁面積を有することを可能にする。プローブ先端ホーンの長さは、基本周波数の約4分の1~2分の1波長である。最終変位ノードに対してホーンが長いほど、より全体的な変位が発生する(先端26で終了する)ことが可能になる。ホーン42の中心内の通路37は、除去されている結石または微粒子の断片を除去するために、吸引を提供する。ホーンの先端26は、切断表面である。本明細書に説明されるような特徴は、切断表面を提供すると共に、プローブの遠位端において吸引通路内への入口を有する中空である。標的材料30は、例えば、様々な硬度を有し得る結石であり得る。
【0021】
導波路24は、トランスデューサ22との接続のための付着点36を有し得る。導波路24は、ばねおよび自由質量のための付着点(図示せず)を有し得る。しかしながら、導波路24は、ばねなしで機能し得る。プローブ先端区域40は、ホーン42よりも何倍も長い長さを有し、デバイスを通って患者の体内へのプローブ先端区域の低応力エリアの通過/位置付けを可能にする。これは、この長さにわたって2つ以上の応力ノードをカバーし得る。
【0022】
プローブ先端区域40の断面積(図7Aを参照)のホーン区域42の断面積(図7Bを参照)に対する比率は、比較的より大きくてもよい。これにより、プローブ先端本体部の残部に対してホーン42内で大きい変位が発生することが可能になる。ホーン42の断面は、プローブ先端本体部の残部に対して、外径、内径、または外径および内径の組み合わせのいずれかにおいて減少され得る。ホーン42は、プローブ先端区域40と同じ内径または同じ外径を有する必要はない。プローブ先端26の相対的な機械的変位利得は、Gain:APT/AHとして、そのプローブ先端(APT)の断面積のホーン(AH)に対する比率によって得られる。プローブ先端区域40における断面積が大きいほど、それをより強くし、それを応力ノードにおける損傷から保護する一方、ホーン区域42における断面が薄いほど、それが遠位先端26においてより大きい変位を有することを可能にする。図4図7に示される例では、最終応力ノードを越えてプローブの遠位端にホーンを提供することによって、プローブは、プローブが増大した変位に基づいて壊れるリスクの低減を伴って、遠位刃先26において増大した変位を提供することができる。さもなければ、プローブは、第2のホーンが最後の応力ノードの前に位置した場合、壊れる可能性が高い。
【0023】
上に記されるように、本明細書に説明されるような特徴は、例えば、正弦波形または略方形波形と共に使用され得る。図11も参照すると、方形波を近似する波によって駆動されているときの、プローブ先端にわたるシミュレートされた変位が示され、20kHzの基本周波数、第3の高調波(60kHz)、および第5の高調波(100kHz)を示す。ノード(静的ノード)および反ノード(変位ノード)が示される。図11において、第5の高調波のためのノードは示されず、第5の高調波の変位波形のみが示されるということに留意されたい。図12は、10kHzの基本周波数、第3の高調波(30kHz)、および第5の高調波(50kHz)についての同様の図表を示す。これは、高調波がより高い衝撃反復を有することを可能にしながら変位ノードの長さを増加させるために異なる周波数でトランスデューサを駆動させるための交互の高調波駆動の機会が存在することを示す。基本波長の倍数での高調波エネルギーの使用は、基本波長(波数)の倍数としての高調波エネルギーを有するトランスデューサの先端における変位の重畳を可能にする。
【0024】
超音波トランスデューサは、圧電効果を通じて電気エネルギーを機械的な波へ変換する。故に、この例におけるトランスデューサは、圧電部材を備える。圧電効果は、トランスデューサ上の電圧に応答したトランスデューサの機械的長さの増加を伴う伝達機序である。トランスデューサの長さの変化は、限定されるものではないが、電圧レベルおよび信号がトランスデューサに印加される周波数を含む多くの変数に比例する。
【0025】
トランスデューサに印加される電気的周波数が、機械的な波が結晶を横断して戻ってくる時間に等しいとき、最適エネルギー変換が、共鳴に起因して発生し得、任意の他の周波数における機械的変位よりも何倍も大きい機械的変位をもたらし得る。
【0026】
図13Aを参照すると、波100は、方形波を表し、波102は、第1の基本正弦波であり、波104は、第1の高調波であり、波106は、第2の高調波である。この様式では、機械的な高調波を作成するための信号は、圧電結晶を励起するために使用されている同じ電波に含まれる。1つの例において、入力信号は、複数の正弦波形の総和であり、各正弦波形は異なる周波数のものである。各正弦波形の周波数は、特定の正弦波周波数(例えば、その高調波)に関連し得る。別の例において、入力信号は、圧電スタックの基本周波数に関連した1つ以上の周波数にある波を含み得る。入力は、処理中に周波数が変化する信号を含み得る。入力は、方形波を近似する信号を含み得る。方形波は、基本波、第1の高調波、第2の高調波、第3の高調波、・・・第nの高調波の正弦波の無限和に過ぎない。無限和または完全な正方形形状を達成することはできなくてもよい(デジタル信号における図13B内の正方形形状の縁近くの隆起110を参照)が、信号は、方形波を概ね近似し得る。図13C図13Eは、明白性のため、図13Bの個々の波102、104、108を別々に示す。
【0027】
図13Aの入力波形に応答して、トランスデューサの機械的状態は、弾道様の衝撃sに近づき得る。システムは、標的を破壊することに使用するため、共鳴周波数を含む複数の周波数を導波路内に入力し得る。複数の周波数は、任意の波形で提供され得る。近似方形波の使用は、一例に過ぎない。可変周波数または複数の周波数を有する任意の好適な波形が使用され得、それらの周波数うちの1つが標的内で共鳴を誘起する。複数の周波数の使用は、標的の共鳴周波数を励起して自己共鳴を可能にする可能性が高い。方形波(または方形波を近似する波)の使用はまた、トランスデューサ(圧電ドライバ)内のより速い移行を伴って、変位の従来の加速に対する導波路内の変位の増大した加速、および変位の従来の速度に対する導波路内の変位の増大した速度をもたらし得る。
【0028】
複数の周波数(基本波および/または1つ以上の高調波)を伴う駆動システムの使用は、より多くの全体的エネルギーおよび電力が、トランスデューサ内に入ること、ならびに故に、プローブ先端においてより多くのエネルギーを作成することを可能にする。説明されているシステムは、主要標的本体部から除去された、石の部分などの標的の部分を除去するために吸引が可能である。本システムは、基本周波数から動作すると説明されるが、電気的超音波ドライバは、基本周波数が元々は高調波であったもの、あるいは副高調波になるように変更され得、新たな範囲の周波数組み合わせが使用されることを可能にする。そのため、例えば、一次システムが20kHzで動作するように設計される場合、基本周波数は、新たな位置において第3の高調波により60kHzまたは10kHzへ変えられ得る。
【0029】
図13Bは、異なる移行時間を有する、基本周波数、第5の高調波、および(第101の高調波からの)近似された方形波の移行を示し、近似された方形波はほぼ瞬時である。塊除去は、単位時間当たりより速い変位移行時間により改善されると考えられる。さらに予期されるのは、より高い変位出力であるが、これは図には示されない。
【0030】
別の特徴は、基本周波数の偶数次高調波でトランスデューサを駆動することである。そのため、例えば、基本周波数が20kHzであるシステムの場合、トランスデューサは、40kHzで駆動され得る。別の例は、トランスデューサが10kHz、または基本周波数の他の倍数(例えば、30kHZなどで)駆動されることである。図14も参照すると、遠位先端26が、標的30の表面31に当たって示される。この例では、遠位先端26は、概ね平坦である。図15は、表面31に対する先端接触圧力を例証する図表を示す。図16および図17も参照すると、例えば図18に示されるシャフトの遠位先端など、導波路124を形成するシャフトの異なる遠位先端126に関して同様の図表が示される。遠位先端126は、シャフトの最前面を形成する。この例では、先端126は、先端126の最前縁内への凹部128を備える。凹部128は、略くさびまたは三角形形状を有するが、他の形状が提供されてもよい。図17内のより大きい矢印は、より大きい圧力を例証する。図17に見られるように、表面31に対する先端接触圧力を例証する図表は、増大した圧力のエリア130を示す。同じ力が印加されると仮定して、凹部128を理由とする前縁における減少した面積は、接触圧力の増加を引き起こす。これらのエリア130は、遠位先端の概ね平坦な前縁との凹部128の角部または交差点131にある。角部は、略くさび形状を有するが、湾曲した半径を伴う。故に、各凹部128は、最前縁が概ね平坦な最前面126と非ゼロ角度を形成した状態で、131において最前縁において終端する。この例では、凹部128は、互いに対して直径方向に向かい合って位置する。
【0031】
図19A図19Gも参照すると、例えば、図19Aに示されるように1つのみの凹部を有する、図19Bに示されるように楕円または非円形形状を有する、図19Cに示されるように3つ以上の凹部128を有し、直径方向に向かい合っていない、図19Dに示されるように追加の歯140を有する、図19Eに示されるように正方形または矩形形状を有する、図19Fに示されるように三角形形状を有する、および図19Gに示されるように多角形形状を有するなど、シャフトの遠位先端における他の形状が提供されてもよい。図19H図19Jも参照すると、例えば、図19Hに示されるような比較的鋭角を有するV字形状、図19Iに示されるような円形形状、および図19Jに示されるような矩形または正方形形状など、凹部128の他の形状が提供されてもよい。これらは、例に過ぎず、限定と見なされるべきではない。
【0032】
本明細書に説明されるような特徴により、超音波砕石術プローブは、例えば結石などの標的に対する集中した先端接触圧力を有するように提供され得る。先端接触圧力のこのような集中は、例えば、特に硬い結石量のための、標的の崩壊を支援する。図18に示される例は、平坦な表面最前端として2つの概ね半円形状、および2つの三角形形状の凹部を有するが、矩形、非平坦、突出歯、2つよりも多いまたは少ない凹部などを含む、他の形状が提供されてもよい。図18に示される例では、角部は、鋭角を有さない。角部は、応力緩和として作用し、先端への損傷を防ぐために、半径を伴って湾曲する。互いに真向いの2つの三角形形状の凹部を形成することもまた、製造中に同時に凹部を作製するのが容易である。図14に示されるものなどの形状は、比較的柔らかい硬度を有する結石を破壊するのに良好である。しかしながら、比較的硬い硬度を有する結石を破壊するためには、歯などの突出の方が良い。図18に示される形状を用いて、ハイブリッド設計が、より柔らかい標的に対して最もよく働く実質的に湾曲した平坦な表面132(ほぼ半円形)を伴って提供され、ハイブリッド形状は、より硬い標的に対してより良好に働く角部134も備える。故に、図18に示される先端126は、従来の平坦形状よりも速い塊除去速度で、硬い標的および柔らかい標的の両方に対して使用され得る。この形状はまた、患者のために外傷のない最前縁を提供する。
【0033】
トランスデューサと、超音波を方向付けるための導波路を形成するように構成されるシャフトとを備える超音波プローブについての例が提供され得、シャフトの近位端は、トランスデューサに動作可能に接続され、シャフトの遠位端は、超音波を標的の方へ方向付けるように構成され、シャフトは、遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端は、概ね平坦な形状を有する最前面を備え、シャフトの遠位端は、第1の凹部をさらに備え、第1の凹部は、少なくとも1つの最前縁において終端し、少なくとも1つの最前縁が概ね平坦な最前面と非ゼロ角度を形成する。
【0034】
シャフトの遠位端は、導管への入口に隣接して概ね平坦な最前面内への第2の凹部をさらに備え得、第2の凹部は、第2の少なくとも1つの最前縁において終端し、第2の少なくとも1つの最前縁が概ね平坦な最前面と非ゼロ角度を形成する。第2の凹部は、第1の凹部に対して直径方向に向かい合って位置し得る。概ね平坦な最前面は、円形形状を有し得る。概ね平坦な最前面は、非円形である略環形状を有し得る。概ね平坦な最前面は、第1の凹部と第2の凹部との間に少なくとも2つの歯を形成し得る。概ね平坦な最前面は、シャフト遠位端の前端に沿って表面の大部分を形成し得る。シャフトの遠位端は、シャフトの遠位端の前端に歯を形成し得る。概ね平坦な最前面は、概ね矩形の形状を有し得る。概ね平坦な最前面は、実質的に半円形である一部分を有し得る。第2の凹部は、第1の凹部に対して直径方向に向かい合っていない場所に位置し得る。第1の凹部は、実質的に三角形の形状を有し得る。第1の凹部は、実質的に矩形の形状を有し得る。第1の凹部は、実質的に円形の形状を有し得る。角部は、第1の凹部が少なくとも1つの最前縁において終端する場所に提供され得、角部は、約100~160度の角度を有する角度付きの角部を含む。
【0035】
例示的な方法は、超音波を方向付けるための導波路を形成するように構成されるシャフトを提供することであって、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端が、概ね平坦な形状を有する最前面を備える、提供することと、概ね平坦な最前面内へ第1の凹部を形成することであって、第1の凹部が、少なくとも1つの最前縁において終端し、第1の凹部の最前縁が、概ね平坦な最前面と非ゼロ角度を形成する、形成することと、シャフトの近位端をトランスデューサに接続することであって、シャフトの遠位端が、概ね平坦な最前面、および第1の凹部が少なくとも1つの最前縁において終端する1つ以上の場所の両方において、解剖学的標的に接触するように構成される、接続することと、を含み得る。
【0036】
例示的な方法は、超音波プローブを患者の体内に挿入することであって、超音波プローブが、超音波を方向付けるための導波路を形成するように構成されるシャフトを備え、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備える、挿入することと、超音波プローブの遠位端を解剖学的標的に当てて置くことであって、シャフトの遠位端が、概ね平坦な形状を有する最前面を備え、シャフトの遠位端が、概ね平坦な最前面内への第1の凹部をさらに備え、第1の凹部が、少なくとも1つの最前縁において終端し、第1の凹部の少なくとも1つの最前縁が、概ね平坦な最前面と非ゼロ角度を形成する、置くことと、超音波プローブの遠位端を解剖学的標的に当てて振動させるためにシャフトを振動させることであって、シャフトの遠位端が、概ね平坦な最前面、および第1の凹部が少なくとも1つの最前縁において終端する1つ以上の場所の両方において、解剖学的標的の少なくとも一部分を破壊するためにシャフトの振動中に解剖学的標的に接触する、振動させることとを含み得る。
【0037】
例示的な方法は、解剖学的標的内に共鳴を誘起し、以て解剖学的標的を崩壊させるために提供され得、本方法は、超音波プローブのトランスデューサを駆動するために駆動信号を伝送することと、トランスデューサに伝送された駆動信号に基づいて超音波プローブの導波路を振動させることとを含み、駆動信号は、複数の周波数を含み、複数の周波数のうちの少なくとも1つは、解剖学的標的内に共鳴を誘起し、以て解剖学的標的を崩壊させるように、解剖学的標的の共鳴周波数である。
【0038】
駆動信号は、可変周波数のものであり得る。トランスデューサは、圧電デバイスを含み得、駆動信号の伝送は、圧電デバイスの共鳴のための基本周波数に関連した高調波周波数を伝送することを含む。駆動信号駆動信号の伝送は、方形波を近似する波を含み得、複数の周波数駆動信号が、圧電デバイスの形状変化における加速した移行時間を引き起こす。超音波導波路は、解剖学的標的に接触して解剖学的標的内に共鳴を引き起こす遠位端を含み得る。
【0039】
トランスデューサと超音波を方向付けるための導波路とを備える超音波プローブであって、導波路が、解剖学的標的に接触するように構成される遠位端を備える、超音波プローブと、トランスデューサを駆動するために駆動信号を伝送するように構成されるドライバであって、駆動信号が、複数の周波数を含み、複数の周波数のうちの少なくとも1つが、解剖学的標的内に共鳴を誘起し、以て解剖学的標的を崩壊させるように、解剖学的標的の共鳴周波数である、ドライバと、を備える装置を用いた例が提供され得る。
【0040】
機械により読むことができ、動作を実施するために機械により実行可能な命令のプログラムを有形に具現化する非一時的なプログラム記憶デバイスを用いた例が提供され得、動作は、超音波プローブのトランスデューサを駆動するために駆動信号を伝送することを含み、トランスデューサは、トランスデューサに伝送された駆動信号に基づいて超音波プローブの導波路を振動させるように構成され、駆動信号の伝送は、複数の周波数で駆動信号を伝送することを含み、複数の周波数のうちの少なくとも1つは、解剖学的標的内に共鳴を誘起し、以て解剖学的標的を崩壊させるように、解剖学的標的の共鳴周波数である。
【0041】
トランスデューサと超音波を方向付けるための導波路を形成するように構成されるシャフトとを備える超音波プローブを用いた例が提供され得、シャフトの近位端は、トランスデューサに接触するように構成され、シャフトの遠位端は、解剖学的標的に接触するように構成され、シャフトは、遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端は、超音波ホーンを形成するように構成される。
【0042】
解剖学的標的は、結石であり得、シャフトの遠位端は、結石に接触するように構成される。トランスデューサは、近位端から遠位端までシャフトの長さに沿って超音波を生成するように構成され得、超音波ホーンは、超音波から形成されるシャフト内の最後の定常応力ノードの場所の後に位置する。トランスデューサは、近位端から遠位端までシャフトの長さに沿って超音波を生成するように構成され得、超音波ホーンは、超音波から形成されるシャフト内の定常応力ノードの場所から離間して位置する。超音波プローブは、トランスデューサに近接して位置する第2の超音波ホーンをさらに備え得る。シャフトは、超音波ホーンのところで、超音波ホーンの長さに沿って均一の外径を有し得る。シャフトは、超音波ホーンのところで、超音波ホーンの長さに沿って均一の内径を有し得る。シャフトは、超音波ホーンのところで、超音波ホーンの長さに沿って変化する壁厚を有し得る。超音波ホーンは、カテノイダル形状を有し得る。超音波ホーンのところでのシャフトの断面積は、シャフトの別の場所でのシャフトの断面積よりも小さくてもよい。シャフトは、超音波ホーンとシャフトの残部との間の移行区間にテーパ領域を含み得る。
【0043】
超音波を方向付けるための導波路を形成するように構成されるシャフトを提供することであって、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端が、超音波ホーンを形成するように構成される、提供することと、シャフトの近位端をトランスデューサに接続することとを含む、例示的な方法が提供され得る。
【0044】
超音波プローブを患者の体内に挿入することであって、超音波プローブが、超音波を方向付けるための導波路を形成するように構成されるシャフトを備え、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端が、超音波ホーンを形成するように構成される、挿入することと、超音波プローブの遠位端を患者の内側の解剖学的標的に当てて置くことと、超音波プローブの遠位端を解剖学的標的に当てて振動させるために、トランスデューサによってシャフトを振動させることであって、シャフトの遠位端における超音波ホーンが、解剖学的標的におけるシャフトの遠位端の変位を増加させる、振動させることと、を含む、例示的な方法が提供され得る。シャフトの遠位端における超音波ホーンは、トランスデューサからの超音波から形成されるシャフト内の定常応力ノードの場所から離間して位置し得る。
【0045】
トランスデューサと超音波導波路を形成するように構成されるシャフトとを備える超音波プローブを用いた例が提供され得、シャフトの近位端は、トランスデューサに接続され、シャフトの遠位端は、結石に接触するように構成され、シャフトは、遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端は、実質的に平坦な形状を有する最前面を備え、シャフトの遠位端は、結石への入口に隣接して実質的に平坦な最前面内への第1の凹部をさらに備え、第1の凹部は、実質的に平坦な最前面との第1の凹部の交差点に2つの角部を形成する。
【0046】
シャフトの遠位端は、導管への入口に隣接して実質的に平坦な最前面内への第2の凹部をさらに備え得、第2の凹部は、実質的に平坦な最前面との第2の凹部の交差点に2つの角部を形成する。第2の凹部は、第1の凹部に対して直径方向に向かい合って位置し得る。第1の凹部は、実質的に三角形の形状を有し得る。角部は、約100~160度の角度を有する角度付けされた角部であり得る。
【0047】
超音波導波路を形成するように構成されるシャフトを提供することであって、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端が、実質的に平坦な形状を有する最前面を備える、提供することと、結石への入口に隣接して実質的に平坦な最前面内へ第1の凹部を形成することであって、第1の凹部が、実質的に平坦な最前面との第1の凹部の交差点において2つの角部を形成する、形成することと、シャフトの近位端をトランスデューサに接続することであって、シャフトの遠位端が、実質的に平坦な最前面、および第1の凹部との交差点における2つの交差点の両方において、結石に接触するように構成される、接続することとを含む、例示的な方法が提供され得る。
【0048】
超音波プローブを患者の体内に挿入することであって、超音波プローブが、超音波導波路を形成するように構成されるシャフトを備え、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備える、挿入することと、超音波プローブの遠位端を患者の内側の結石に当てて置くことであって、シャフトの遠位端が、実質的に平坦な形状を有する最前面を備え、シャフトの遠位端が、結石への入口に隣接して実質的に平坦な最前面内への第1の凹部をさらに備え、第1の凹部が、実質的に平坦な最前面との第1の凹部との交差点において2つの角部を形成する、置くことと、超音波プローブの遠位端を結石に当てて振動させるためにシャフトを振動させることであって、シャフトの遠位端が、実質的に平坦な最前面、および第1の凹部との交差点における2つの角部の両方において、結石の少なくとも一部分を破壊するためにシャフトの振動中に結石に接触する、振動させることとを含む、例示的な方法が提供され得る。
【0049】
超音波プローブのトランスデューサに駆動信号を伝送することと、トランスデューサに伝送された駆動信号に基づいて超音波プローブの超音波導波路を振動させることとを含む、例示的な方法が提供され得、駆動信号は、超音波導波路が超音波導波路に接触する結石の共鳴周波数を励起する可能性の増大を伴って、トランスデューサに超音波導波路を振動させるために、複数の周波数を含む。
【0050】
駆動信号駆動信号の伝送は、方形波を近似する波を含み得る。駆動信号の伝送は、周波数掃引を含み得る。トランスデューサは、圧電デバイスを含み得、駆動信号の伝送は、圧電デバイスの共鳴のための基本周波数に関連した高調波周波数を伝送することを含み得る。複数の周波数駆動信号は、圧電デバイスの形状変化における加速した移行時間を引き起こし得る。超音波導波路は、結石に接触して結石内に共鳴を引き起こす遠位端を含み得る。
【0051】
トランスデューサおよび超音波導波路を備える超音波プローブであって、超音波導波路は、結石に接触するように構成される遠位端を備える、超音波プローブと、トランスデューサに駆動信号を伝送するように構成されるドライバであって、駆動信号は、超音波導波路が超音波導波路に接触する結石の共鳴周波数を励起する可能性の増大を伴って、トランスデューサに超音波導波路を振動させるために、複数の周波数を含む、ドライバとを備える、装置を用いた例が提供され得る。
【0052】
機械により読むことができ、動作を実施するために機械により実行可能な命令のプログラムを有形に具現化する非一時的なプログラム記憶デバイスを用いた例が提供され得、動作は、超音波プローブのトランスデューサに駆動信号を伝送することを含み、トランスデューサは、トランスデューサに伝送された駆動信号に基づいて超音波導波路を振動させるように構成され、駆動信号の伝送は、超音波導波路が超音波導波路に接触する結石の共鳴周波数を励起する可能性の増大を伴って、トランスデューサに超音波導波路を振動させるために、複数の周波数で駆動信号を伝送することを含む。
【0053】
トランスデューサと超音波導波路を形成するように構成されるシャフトとを備える超音波プローブを用いた例が提供され得、シャフトの近位端は、トランスデューサに接続され、シャフトの遠位端は、結石に接触するように構成され、シャフトは、遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端は、超音波ホーンを備える。
【0054】
トランスデューサは、近位端から遠位端までシャフトの長さに沿って超音波を生成するように構成され得、超音波ホーンは、超音波から形成されるシャフト内の最後の定常応力ノードの場所の後に位置し得る。トランスデューサは、近位端から遠位端までシャフトの長さに沿って超音波を生成するように構成され得、超音波ホーンは、超音波から形成されるシャフト内の定常応力ノードの場所から離間して位置し得る。超音波プローブは、トランスデューサに近接して位置する第2の超音波ホーンをさらに備え得る。シャフトは、超音波ホーンのところで、超音波ホーンの長さに沿って均一の外径を有し得る。シャフトは、超音波ホーンのところで、超音波ホーンの長さに沿って均一の内径を有し得る。シャフトは、超音波ホーンのところで、超音波ホーンの長さに沿って変化する壁厚を有し得る。超音波ホーンは、カテノイダル形状を有し得る。超音波ホーンのところでのシャフトの断面積は、シャフトの別の場所でのシャフトの断面積よりも小さくてもよい。シャフトは、超音波ホーンとシャフトの残部との間の移行区間にテーパ領域を含み得る。
【0055】
超音波導波路を形成するように構成されるシャフトを提供することであって、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端が、超音波ホーンを備える、提供することと、シャフトの近位端をトランスデューサに接続することとを含む、例示的な方法が提供され得る。
【0056】
超音波プローブを患者の体内に挿入することであって、超音波プローブが、超音波導波路を形成するように構成されるシャフトを備え、シャフトが、近位端、遠位端、および遠位端と近位端との間でシャフトを通る導管を備え、シャフトの遠位端が、超音波ホーンを備える、挿入することと、超音波プローブの遠位端を患者の内側の結石に当てて置くことと、超音波プローブの遠位端を結石に当てて振動させるために、トランスデューサによってシャフトを振動させることであって、シャフトの遠位端における超音波ホーンが、結石におけるシャフトの遠位端の変位を増加させる、振動させることと、を含む、例示的な方法が提供され得る。シャフトの遠位端における超音波ホーンは、トランスデューサからの超音波から形成されるシャフト内の定常応力ノードの場所から離間して位置し得る。
【0057】
上の説明は単に例証であるということを理解されたい。様々な代替形態および修正形態が、当業者により考案され得る。例えば、様々な従属クレームに列挙される特徴は、任意の好適な組み合わせで互いと組み合わされてもよい。加えて、上に説明される異なる例からの特徴は、新規の例へと選択的に組み合わされてもよい。したがって、本説明は、添付の特許請求の範囲に入るすべてのそのような代替形態、修正形態、および変異形を包含することが意図される。
【0058】
様々な注記および実施例
これらの非限定的な例の各々は、自立し得るか、または他の例のうちの1つ以上との様々な並び替えもしくは組み合わせで、組み合わされ得る。
【0059】
実施例1は、音響トランスデューサを備える音響プローブを用いて結石塊を処置するための装置を含み得る。本装置は、結石塊を標的とする音響プローブの音響共鳴周波数を生成するために、複数の周波数に対応する複数の駆動信号成分を提供するように構成される制御器回路と、標的とされる音響共鳴周波数を生成するために複数の駆動信号成分を音響トランスデューサに通信するように構成される出力インターフェースと含み得る。
【0060】
実施例2は、実施例1を含み得、音響トランスデューサは、制御器回路から複数の駆動信号成分を受信するように、および複数の駆動信号成分を音響エネルギーに変換するように構成される1つ以上の圧電部材を備える。
【0061】
実施例3は、実施例1~2のいずれかを含み得、音響トランスデューサから遠位に延びる導波路をさらに備え、導波路が、標的とされる音響共鳴周波数に基づいて波形を伝播させるように構成される。
【0062】
実施例4は、実施例1~3のいずれかを含み得、音響トランスデューサの遠位のプローブ先端をさらに備え、プローブ先端が、結石塊を破砕するために、伝播された波形を使用して長手方向に変位可能である。
【0063】
実施例5は、音響プローブを用いて結石塊を処置するための装置を含み得る。本装置は、音響トランスデューサを備える音響プローブと、結石塊を標的とする音響プローブの音響共鳴周波数を生成するに、複数の周波数に対応する複数の駆動信号成分を制御器回路から受信するように構成される入力インターフェースとを含み得る。
【0064】
実施例6は、実施例5を含み得、音響トランスデューサは、制御器回路から複数の駆動信号成分を受信し、複数の駆動信号成分を音響エネルギーに変換するように構成される1つ以上の圧電部材を備える。
【0065】
実施例7は、実施例5~6のいずれかを含み得、音響トランスデューサから遠位に延びる導波路をさらに備え、導波路が、標的とされる音響共鳴周波数に基づいて波形を伝播させるように構成される。
【0066】
実施例8は、実施例5~7のいずれかを含み得、音響トランスデューサの遠位のプローブ先端をさらに備え、プローブ先端が、結石塊を破砕するために、波形によって長手方向に変位可能である。
【0067】
実施例9は、音響トランスデューサを備える音響プローブを用いて結石塊を破砕する方法を含み得る。本方法は、結石塊を標的とする音響プローブの音響共鳴周波数を生成するために、複数の周波数に対応する複数の駆動信号成分を提供することと、標的とされる音響共鳴周波数を生成するために複数の駆動信号成分を音響トランスデューサに通信することとを含み得る。
【0068】
実施例10は、実施例9を含み得、複数の駆動信号成分は、複数の周波数に対応し、複数の駆動信号成分の重畳は、標的とされる音響共鳴周波数を結果としてもたらす。
【0069】
実施例11は、実施例9~10のいずれかを含み得、複数の駆動信号成分は、複数の周波数に対応し、複数の駆動信号成分のうちの少なくとも1つは、標的とされる音響共鳴周波数である。
【0070】
実施例12は、実施例9~11のいずれかを含み得、複数の周波数は、音響共鳴周波数を含む周波数の掃引を含む。
【0071】
実施例13は、実施例9~12のいずれかを含み得、複数の周波数のうちの少なくとも1つは、音響プローブの共鳴のための基本周波数の高調波周波数を含む。
【0072】
実施例14は、実施例9~13のいずれかを含み得、高調波周波数は、奇数調波を含む。
【0073】
実施例15は、実施例9~14のいずれかを含み得、高調波周波数は、第3の高調波周波数または第5の高調波周波数を含む。
【0074】
実施例16は、実施例9~15のいずれかを含み得、複数の駆動信号成分は、方形波を近似する波を含むように結合する。
【0075】
実施例17は、実施例9~16のいずれかを含み得、複数の駆動信号成分のうちの少なくとも1つは、音響トランスデューサ内の圧電デバイスの形状変化における加速した移行時間を引き起こす。
【0076】
実施例18は、実施例9~17のいずれかを含み得、複数の駆動信号成分の合計に基づいて波形を生成することをさらに含む。
【0077】
実施例19は、実施例9~18のいずれかを含み得、結石塊の音響共鳴周波数に基づいて基本周波数を識別することと、基本周波数に基づいて複数の駆動信号成分を選択することとを含む。
【0078】
実施例20は、実施例9~19のいずれかを含み得、複数の駆動信号成分の各々は、複数の周波数のうちの異なる周波数に対応する。
【0079】
これらの非限定的な例の各々は、自立し得るか、または他の例のうちの1つ以上との様々な並び替えもしくは組み合わせで、組み合わされ得る。
【0080】
上の詳細な説明は、詳細な説明の一部を形成する添付の図面への参照を含む。図面は、例として、本デバイスまたは技法が実践され得る特定の例を示す。これらの例は、本明細書では「実施例」とも称される。そのような実施例は、示されるまたは説明されるものに加えて要素を含み得る。しかしながら、本発明は、示されるまたは説明される要素のみが提供される例も企図する。さらには、本発明者らは、特定の例(またはそれらの1つ以上の態様)、または本明細書に示されるまたは説明される他の例(またはそれらの1つ以上の態様)のいずれかに関して、示されるまたは説明される要素(またはそれらの1つ以上の態様)の任意の組み合わせまたは並び替えを使用する例も企図する。
【0081】
本文書と引用して援用される他の文書との間に矛盾した用法がある場合、本文書内の用法が支配する。
【0082】
本文書において、用語「a(1つの)」または「an(1つの)」は、特許文書内で見られるように、任意の他の場合または「少なくとも1つ」もしくは「1つ以上」の使用とは無関係に、1つまたは2つ以上を含むために使用される。本文書において、用語「または」は、別のことが示されない限り、非排他性を指すために、または、「AまたはB」が、「BではなくA」、「AではなくB」、および「AおよびB」を含むように使用される。本文書において、用語「含む(including)」および「in which」は、それぞれの用語「含む/備える(comprising)」および「wherein」の通俗的英語の均等物として使用される。また、以下のクレームにおいて、用語「含む(including)」および「含む/備える(comprising)」は、無制限であり、すなわち、クレーム内のそのような用語の後に列挙されるものに加えて要素を含むシステム、デバイス、物品、組成物、製剤、またはプロセスは、依然としてそのクレームの範囲内に入ると見なされる。さらには、以下のクレームにおいて、用語「第1の」、「第2の」、および「第3の」などは、単にラベルとして使用され、それらの対象物に数字的な要件を付与することは意図されない。
【0083】
本明細書に説明される方法例は、少なくとも部分的に機械またはコンピュータ実施され得る。いくつかの例は、上の例に説明されるように方法を実施するように電子デバイスを構成する命令を用いて符号化されるコンピュータ可読媒体または機械可読媒体を含み得る。そのような方法の実装は、マイクロコード、アセンブリ言語コード、高次言語コード、または同様のものなど、コードを含み得る。そのようなコードは、様々な方法を実施するためのコンピュータ可読命令を含み得る。コードは、コンピュータプログラム製品の部分を形成し得る。さらに、例において、コードは、実行中または他のときなどに、1つ以上の揮発性、非一時的、または不揮発性の有形コンピュータ可読媒体に有形に記憶され得る。これらの有形コンピュータ可読媒体の例としては、限定されるものではないが、ハードディスク、リムーバブル磁気ディスク、リムーバブル光学ディスク(例えば、コンパクトディスクおよびデジタルビデオディスク)、磁気カセット、メモリカードまたはスティック、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、および同様のものを挙げることができる。
【0084】
上の説明は、例証であり、限定ではないことが意図される。例えば、上に説明された例(またはそれらの1つ以上の態様)は、互いと組み合わせて使用され得る。他の例が、例えば上の説明を再考する際に当業者によって、使用され得る。要約書は、読者が技術的開示の本質を素早く確認することを可能にするために提供される。要約書は、それがクレームの範囲または意味を解釈または制限するために使用されないという理解を伴って提出されるものである。また、上記の発明を実施する形態において、様々な特徴は、本開示を合理化するためにまとめられている場合がある。以下のクレームは、これにより、例または実施形態として、発明を実施するための形態に組み込まれ、各クレームは、別個の実施形態として自立しており、またそのような実施形態が、様々な組み合わせおよび並び替えで組み合わされ得ることが企図される。本デバイスまたは技法の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲の権利が及ぶ均等物の全範囲と共に、決定されるべきである。
図1
図2
図3
図4
図5
図6
図7A
図7B
図8
図9
図10
図11
図12
図13A
図13B
図13C
図13D
図13E
図14
図15
図16
図17
図18
図19A
図19B
図19C
図19D
図19E
図19F
図19G
図19H
図19I
図19J