(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-23
(45)【発行日】2024-05-31
(54)【発明の名称】弾性波装置
(51)【国際特許分類】
H03H 9/25 20060101AFI20240524BHJP
【FI】
H03H9/25 C
(21)【出願番号】P 2019085000
(22)【出願日】2019-04-26
【審査請求日】2021-10-12
【審判番号】
【審判請求日】2023-09-01
(73)【特許権者】
【識別番号】000006633
【氏名又は名称】京セラ株式会社
(74)【代理人】
【識別番号】100135828
【氏名又は名称】飯島 康弘
(72)【発明者】
【氏名】岸野 哲也
【合議体】
【審判長】土居 仁士
【審判官】千葉 輝久
【審判官】丸山 高政
(56)【参考文献】
【文献】国際公開第2018/070369(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H03H3/08-3/10
H03H9/145-9/76
(57)【特許請求の範囲】
【請求項1】
Al-Cu合金によって構成されており、複数の電極指を備え、弾性表面波を励振するIDT電極と、
上面に前記IDT電極が位置している圧電結晶からなり、前記複数の電極指の繰り返し間隔で定義されるpの2倍で定義される波長λに対して1.0λを超え、1.6λ以下の厚みである、X伝搬回転Yカットのタンタル酸リチウム単結晶基板からなる圧電膜と、を備え、
前記IDT電極の厚みは9%以上12%以下であり、
前記圧電膜のカット角は46°以下であ
り、
前記圧電膜のカット角をY,前記圧電膜の厚みをX,前記IDT電極の厚みをZとしたときに、以下の式を満たす弾性波装置。
Y=AX
2
+BX+C±1
A=-4017.9Z
2
+1142.9Z-45.893
B=8625.0Z
2
-3065.0Z+116.75
C=5021.4Z
2
+503.57Z+27.891
【請求項2】
前記IDT電極の厚みは10%以上12%以下である、請求項1に記載の弾性波装置。
【請求項3】
前記圧電膜の下面の側に直接または間接的に接続された、横波音速が、前記圧電膜中を伝搬する横波音速よりも速い支持基板をさらに備える、請求項
1又は2に記載の弾性波装置。
【請求項4】
前記支持基板はSi基板である、請求項
3に記載の弾性波装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、弾性波装置に関する。
【背景技術】
【0002】
支持基板上に、高音速膜、低音速膜、LiTaO3膜、IDT電極をこの順に積層してなる弾性波装置が開示されている(特許文献1参照)。LiTaO3膜の膜厚としては、IDT電極の電極指の周期で決まる波長をλとしたときに、0.25λ等が開示されている。このような弾性波装置によれば、弾性波をLiTaO3膜に閉じ込めることができるので高いQ値を得ることができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
近年、移動体通信に用いられる携帯端末装置は高い通信品質を安定して実現するために、高い電気特性を備える弾性波装置を安定して供給することが求められている。
【0005】
本発明は、このような課題に鑑みなされたものであり、その目的は、生産性が高く、かつ電気特性の優れた弾性波装置を提供することにある。
【課題を解決するための手段】
【0006】
本開示の弾性波装置は、複数の電極指を備え、弾性表面波を励振するIDT電極と、上面に前記IDT電極が位置している圧電結晶からなり、前記複数の電極指の繰り返し間隔で定義されるpの2倍で定義される波長λに対して1.0λを超え、1.6λ以下の厚みである、X伝搬回転Yカットのタンタル酸リチウム単結晶基板からなる圧電膜と、を備える。そして、前記IDT電極の厚みは9%以上12%以下であり、前記圧電膜のカット角は46°以下である。
【発明の効果】
【0007】
上記構成によれば、生産性が高く、かつ、電気特性の優れた弾性波装置を提供することができる。
【図面の簡単な説明】
【0008】
【
図1】本開示にかかる弾性波装置の模式的な断面図である。
【
図3】バルク波スプリアスの発生周波数と圧電膜の厚みとの関係を示す線図である。
【
図4】Δfと圧電膜のカット角との関係を示す線図である。
【
図5】
図5(a)~
図5(c)は比較例および実施例に係る弾性波装置の周波数特性を示す線図である。
【
図6】
図5(a),
図5(b)はそれぞれ
図1に係る弾性波装置の変形例を示す断面図である。
【
図7】モード1-1のスプリアス強度が0となる条件を示す図である。
【発明を実施するための形態】
【0009】
以下、図面を参照しつつ、本開示の具体的な実施形態を説明することにより、本発明を明らかにする。
【0010】
図1は、本開示の実施形態に係る弾性波装置(以下、SAW装置という)1の模式的な断面図である。
【0011】
SAW装置1は、支持基板3と圧電膜7とIDT電極9とを備える。支持基板3と圧電膜7とIDT電極9と、はこの順に積層されている。
【0012】
支持基板3は、この例では、その上に積層される圧電膜7を支持するものであり、一定の強度を備えれば特に限定されない。例えば、圧電膜7に比べて線膨張係数の小さい材料で構成する場合には、温度変化による圧電膜7の変形を低減することで、温度変化による特性変化を低減することができる。また、圧電膜7中を伝搬する弾性波の横波音速に比べて支持基板3中を伝搬する弾性波の横波音速が早くなるように材料を選定した場合には、弾性波を圧電膜7に閉じ込めることができ、周波数特性の優れたSAW装置1を提供することができる。
【0013】
このような材料として、例えば、サファイア基板やSi基板等を例示できる。本実施形態においては支持基板3としてSi基板を用いた場合を例に説明する。
【0014】
圧電膜7は、第1面7aとこれに対向する第2面7bとを備える。便宜上、第2面7bから第1面7aに向かう方向を上方ということがある。このため、第1面7aを上面,第2面7bを下面と呼ぶこともある。
【0015】
支持基板3は圧電膜7の第2面7bに接合されている。圧電膜7と支持基板3とは、直接接合されていてもよいし、間に接着層,中間層等を介在させて接続してもよい。中間層としては、酸化ケイ素や酸化アルミニウム、窒化ケイ素、窒化アルミニウム等の絶縁材料を例示することができる。
【0016】
圧電膜7は、タンタル酸リチウム(LiTaO3;以下LTという)結晶からなる圧電性を有する単結晶の基板を用いることができる。LT結晶のカット角は46°以下としているが、詳しくは後述する。
【0017】
圧電膜7は、その厚みを後述のIDT電極9により規定される弾性波の波長λに対して1λを超え、かつ1.6λ以下としている。圧電膜7の厚みについては後述する。
【0018】
IDT電極9は、圧電膜7の第1面7aに位置する。IDT電極9は、導電性を有する材料を用いて形成されており、この例ではAlにCuを添加したAl-Cu合金で形成されている。IDT電極9は、他にもAl,Cu,Pt,Mo,Au等やその合金等種々の導電性材料を採用することができる。また、これら導電性材料からなる複数の層を積層させて構成してもよい。また。複数層の積層体からなる場合には、積層界面に例えばTi等からなる下地層を介在させてもよい。
【0019】
IDT電極9の膜厚は、詳しくは後述するが、波長λに対して8%を超え、かつ12%以下の厚みとしている。
【0020】
図2に、IDT電極9の形状を示す。
図2は、SAW装置1の上面図である。
図2に示すように、IDT電極9は、2つのバスバー91と、バスバー91のいずれかに接続される複数の長尺状の電極指92が複数一方向に配列されている。そして一方のバスバー91に接続される電極指92と他方のバスバー91に接続される電極指92とが交互に配置さ
れている。また、一方のバスバー91に接続される電極指92の先端に対向し、他方のバスバー91に接続されるダミー電極93を備えている。なお、図中において、一方のバスバー91に接続される構成と他方のバスバー91に接続される構成を区別するために、一方に斜線を付している。
【0021】
このようなIDT電極9に高周波信号が印加されると、電極指92の中心間間隔pを半波長とする定在波が励振される。言い換えると、2pで表わされる波長λの弾性波が励振される。
【0022】
なお、IDT電極9の電極指92の配列方向の両側には反射器11が位置している。これにより、IDT電極9と反射器11とで1ポート型の共振子として機能する。なお、本開示のSAW素子1はこのようなIDT電極9を含めばよく、その数、配置等については特に限定されない。例えば、このような共振子を複数含むラダー型フィルタや、縦結合型フィルタ等を構成することもできる。
【0023】
本開示のSAW装置1によれば、上述の構成において、圧電膜7の厚み、カット角、およびIDT電極9の膜厚と、を特定の関係とすることで、生産性が高く、かつ電気特性の優れたものとなる。以下、そのメカ二ズムについて詳述する。
【0024】
特許文献1に記載された弾性波装置は、厚みがλ未満(0.25λ)等の極めて薄い圧電膜を用いている。これにより、弾性波を圧電膜の内部に閉じ込めることができるとともに、バルク波によるスプリアスが共振周波数近傍に現れることもないため、高い電気特性を実現できる。
【0025】
その一方で、圧電膜の厚みが極めて薄いことから、精密な加工が要求され生産性が低下する虞があった。さらに、圧電膜の厚みが薄いほどに、圧電膜の厚み変動に伴う周波数特性変動が大きくなり、安定した特性を維持することが困難だった。また、IDT電極9で励振された弾性波が支持基板3側にも分布するようになり、支持基板そのものや圧電膜と支持基板の界面の影響を受け、損失が大きくなったり、共振子としての特性が劣化したりする恐れがあった。
【0026】
これに対して、本開示のSAW装置1によれば、圧電膜7の厚みを、弾性波の閉じ込め効果が期待できる2λ未満とし、かつ、波長λを超える値とすることで、加工性を向上させるとともに、厚み変動に伴う特性変動の感度を下げることができる。すなわち、弾性波の閉じ込め効果に起因する高い電気特性と、圧電膜7の厚みを厚くすることによる高い生産性とを両立させることができる。
【0027】
ただし、圧電膜7の厚みが1λを超える場合には、バルク波に起因するスプリアスの影響が大きくなる。
図3に圧電膜の厚みを変えたときのバルク波スプリアスの周波数の変化の様子を示す。
図3において横軸はλで規格化した圧電膜の厚みを示し、縦軸は周波数を示している。
図3から、バルク波スプリアスのモード,次数が異なる種々のスプリアスが生じており、各スプリアスは圧電膜の厚みが薄くなるに従い高周波数側にシフトする様子が確認できる。そして、これら無数のスプリアスのうち、最も低い周波数に発生するバルク波スプリアスは、モード1の1次のものであり、以下モード1-1ということがある。なお、他のモード,次数のスプリアスについても同様の法則で表示する。そして、モード1-1の次に低い周波数に位置するバルク波スプリアスはモード2-1である。
【0028】
ここで、圧電膜の厚みがが1λ以下の場合には、共振周波数、反共振周波数近傍にバルク波スプリアスは発生しないが、厚みが1λを超えるとモード1-1,2-1のバルク波スプリアスが共振特性に影響を与える虞があることが分かる。
【0029】
そこで、本開示のSAW装置1によれば、モード1-1とモード2-1とのスプリアスの影響をなくすために以下の通りとした。なお、圧電膜7の厚みが1.6λを超える場合にはモード1-2のスプリアスが発生する。このため、圧電膜7の厚みを1.6λ以下とした。
【0030】
まず、スプリアスの発生周波数はピッチp(もしくは波長λ)によって決まるため、IDT電極9の膜厚を厚くすることで、スプリアスの周波数は維持しつつ、共振周波数を低周波数側にシフトさせることができる。これにより、共振周波数に対するモード2-1のスプリアス周波数を(モード2-1の相対周波数)を高めて、モード2-1の影響を低減させる。言い換えると、モード2-1のスプリアスの周波数を共振周波数から離れる側にシフトさせることができる。
【0031】
次に、モード1-1について検討する。SV波であるモード1のスプリアスの強度は、IDT電極9からのバルク波放射と相関がある。すなわち、圧電膜7を構成するLT結晶のカット角や、圧電膜7の厚み、IDT電極9の厚み等により、スプリアスの強度を変化させることができる。ここで、IDT電極9の厚みを厚くすることで、モード2-1を共振周波数から離すことはできたが、同時にモード1-1の相対周波数も変化し、スプリアス強度が大きくなることが推定される。そこで、モード1-1に対しては、バルク波が放射されないように(スプリアスの強度を低くするように)、圧電膜7の厚みとカット角とを調整する。
【0032】
具体的には、圧電膜7の厚みを調整して共振周波数とモード1-1の周波数を決定し、その周波数におけるスプリアス強度が小さくなるような圧電膜7のカット角とIDT電極9の膜厚との組み合わせを設定する。
【0033】
以上より、周波数特性に大きく影響するバルク波スプリアスをモード1-1のみとするとともに、そのモード1-1のバルク波スプリアスの強度を小さくすることで、圧電膜7の厚みが1λを超えている場合であっても、バルク波スプリアスの影響を抑制することができるものとなる。
【0034】
表1に、圧電膜7の厚みが1λ~1.6λのときのモード1-1のスプリアス発生周波数と、このスプリアス発生周波数におけるモード1-1のスプリアス強度が0となるIDT電極9の厚みおよびLT結晶のカット角との組み合わせをシミュレーションした結果を
図7に示す。図中において「無放射」とは、スプリアス強度が0となること示すものとする。
【0035】
図7からも明らかなように、モード1-1のスプリアス強度を0とするには、圧電膜5の厚みが一定の場合にはIDT電極9の膜厚が大きくなるほどLT結晶のカット角を大きくする必要がある。また、IDT電極9の厚みが一定の場合には圧電膜7の厚みが厚くなるほどLT結晶のカット角を小さくする必要があった。
【0036】
ここで、
図4に、IDT電極9の膜厚を4%(λ比)~12%まで変更させたときの、LT結晶のカット角と、共振周波数と反共振周波数との差分(以下、Δfという)との関係を示す。
図4において、横軸はLT結晶のカット角を示し、縦軸はΔfを示す。
【0037】
図4からも明らかなように、カット角が大きくなるに従い、Δfは小さくなる。さらに、IDT電極9の膜厚が8%~10%のときにΔfが最も大きくなり、膜厚がそれより小さくなる、もしくは大きくなるとΔfが小さくなることが分かる。
【0038】
圧電膜7としてLT結晶を用いることから、Δfは75MHz以上確保してもよい。この場合には、IDT電極9の膜厚としては8%以上12%とし、LT結晶のカット角としては46°以下としてもよい。ただし、IDT電極9の厚みは、モード2-1の相対周波数調整のため厚くしていることから、9%以上、より好ましくは10%以上としてもよい。
【0039】
なお、通常のIDT電極9の厚みは、その弾性波発生効率等を考慮して約8%とすることが多い。このことは、
図4において、IDT電極9の厚みを8%としたときに最もΔf等の電気特性が優れていることからも明らかである。
【0040】
このような、Δfを維持するための制限を考慮にいれると、モード1-1のスプリアス強度を0に近付けるには、圧電膜7の厚みは1.2λ~1.6λ、カット角は46°以下、IDT電極9の厚みは9%以上12%以下を同時に満たすことが必要である。
【0041】
なお、
図7に示すモード1-1のスプリアス強度を0とするためのLT結晶のカット角Yは、圧電膜7の厚みをX,IDT電極9の膜厚をZとしたときに、以下の式で表される。
Y=AX
2+BX+C
ただし、A=-4017.9Z
2+1142.9Z-45.893、B=8625.0Z
2-3065.0Z+116.75、C=5021.4Z
2+503.57Z+27.891である。
【0042】
以上より、カット角はY±1°,IDT電極9の膜厚はZ±0.01(すなわち±1%)とすることで、モード1-1のスプリアス強度を0に近付けることができる。
【0043】
以下、実施例として、実際の共振子の周波数特性をシミュレーションした結果を
図5に示す。
図5(a)は比較例に係るSAW装置の共振子特性を示し、
図5(b)は実施例1に係るSAW装置の共振子特性を示し、
図5(c)は実施例2に係るSAW装置の共振子特性を示す。
【0044】
比較例,実施例1、実施例2の圧電膜7のカット角、厚み、IDT電極9の厚みは順に以下の通りである。
比較例1:42°,1.5λ,8%
実施例1:46°,1.2λ,10%
実施例2:46°,1.5λ,12%
図5において、横軸は周波数,縦軸はインピーダンスの絶対値を示す。
図5から明らかなように、モード1-1のスプリアスは共振周波数に近付けることでスプリアスの強度を小さくしており、モード2-1のスプリアスは高周波数側にシフトさせることで、反共振周波数近傍およびその高周波数側においても広い周波数範囲でスプリアスが存在しない領域を確保できていることが分かる。なお、共振子にはIDT電極の反射帯域の高周波側の端部(バンドエッジ)ではSH波のスプリアスが発生する(
図5では「バンドエッジ」と記載)。電極厚みが厚い場合、このバンドエッジの周波数が共振周波数に対して高周波側にシフトする。そのため、SAWとSH波の結合が弱くなり、スプリアスが小さくなる。本開示のSAW装置では電極厚みが一般よりも厚めに設定されるため、バンドエッジのスプリアスが小さくなるという効果もある。
【0045】
なお、実施例1に係るSAW装置において、IDT電極9の厚みを固定し、圧電膜7の厚みを1.2λ~1.6λに、カット角を37°~46°まで変化させた結果、いずれの場合も比較例に比べモード1-1の影響を抑制し、モード2-1のスプリアスを高周波数側にシフトさせることができることを確認した。中でも、LT結晶のカット角を38°、
圧電膜7の厚みを1.6λ,IDT電極9の厚みを10%としたときに、帯域内の位相特性を安定させることができることを確認した。
【0046】
同様に、実施例2に係るSAW装置において、IDT電極9の厚みを固定し、圧電膜7の厚みを1.5λ,1.6λに、カット角を44°~46°まで変化させた結果、いずれの場合も比較例に比べモード1-1の影響を抑制し、モード2-1のスプリアスを高周波数側にシフトさせることができることを確認した。中でも、LT結晶のカット角を44°、圧電膜7の厚みを1.6λ,IDT電極9の厚みを12%としたときに、帯域内の位相特性を安定させることができることを確認した。
【0047】
(他の例)
上述の例では、支持基板3と圧電膜7とが積層された構成としたがその構成に限定されない。例えば、
図6(a)に示すように両者の間に絶縁部5を備えた構成であってもよい。
【0048】
この場合には、絶縁部5は、例えば、酸化ケイ素、窒素ケイ素、酸化アルミニウム等の絶縁性を有する材料からなり、その結晶性は特に限定されない。絶縁部5を設けることにより、不要の電位が形成されたり不要の容量が形成されたりすることを低減することができるので、SAW装置1の電気特性を向上させることができる。
【0049】
特に、本例のように、支持基板3として半導体材料であるSi基板を用いる場合には、圧電膜7と支持基板3との間に絶縁部5を設けることにより、支持基板3の影響を低減すことができる。なお、絶縁性を確保しつつ、かつ、支持基板3の高音速材料の特性を活かすためには、絶縁部3の厚みは、0.01p以上2p以下としてもよい。特に0.1p~0.4pとした場合には支持基板3(この場合はSi)の導電率の影響を避けることができる。
【0050】
また、
図6(b)に示ように、圧電膜7の直下に支持基板3が存在しない構成であってもよい。
図6(b)において、支持基板3には凹部が形成されており、その凹部をふさぐように圧電膜7が配置されている。
【0051】
特に図示しないが、
図6(a)において、絶縁部5が複数の異なる層を積層した構成としてもよい。
【符号の説明】
【0052】
1:SAW装置
3:支持基板
7:圧電膜
9:IDT電極