IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

<>
  • 特許-電動車両 図1
  • 特許-電動車両 図2
  • 特許-電動車両 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-23
(45)【発行日】2024-05-31
(54)【発明の名称】電動車両
(51)【国際特許分類】
   B61C 9/38 20060101AFI20240524BHJP
   F16D 3/50 20060101ALI20240524BHJP
   F16D 3/58 20060101ALI20240524BHJP
   H02K 49/10 20060101ALI20240524BHJP
【FI】
B61C9/38 B
F16D3/50 A
F16D3/50 Z
F16D3/58 Z
H02K49/10 A
【請求項の数】 7
(21)【出願番号】P 2020005600
(22)【出願日】2020-01-17
(65)【公開番号】P2021112945
(43)【公開日】2021-08-05
【審査請求日】2022-09-16
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】松下 崇俊
(72)【発明者】
【氏名】三竹 雅也
(72)【発明者】
【氏名】大沼 均
(72)【発明者】
【氏名】八木田 寛之
(72)【発明者】
【氏名】林 健太郎
(72)【発明者】
【氏名】正田 功彦
【審査官】山本 賢明
(56)【参考文献】
【文献】特開2004-297868(JP,A)
【文献】特許第5204094(JP,B2)
【文献】米国特許出願公開第2011/0012458(US,A1)
【文献】米国特許出願公開第2015/0037180(US,A1)
【文献】米国特許出願公開第2016/0325762(US,A1)
【文献】米国特許第06868793(US,B2)
【文献】米国特許第09425655(US,B2)
【文献】米国特許出願公開第2017/0233925(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B61C 9/38
F16D 3/50
F16D 3/58
H02K 49/10
(57)【特許請求の範囲】
【請求項1】
車軸、及び前記車軸の両端部に連結された駆動輪を含む車軸体と、
前記車軸を回転させるための、ステータ、低速ロータおよび高速ロータを含んで構成された磁気ギアードモータと、
前記車軸体に支持される車両構造体と、
前記車両構造体と前記ステータとを連結し、前記磁気ギアードモータを前記車両構造体に支持させるモータ支持体と、
前記低速ロータの回転力を前記車軸に伝達可能なように前記低速ロータと前記車軸とを連結する弾性継手と、を備える電動車両であって、
前記低速ロータ、前記高速ロータおよび前記ステータは筒状の形状を有し、
前記低速ロータは、前記高速ロータと、前記高速ロータの外周側に配置される前記ステータとの間に配置されており、
前記高速ロータの内部には、前記車軸の一部が前記高速ロータの内周面に非接触で延在し、
前記高速ロータは、前記電動車両の走行時において前記車軸に接触することなく空転するように構成されている
電動車両。
【請求項2】
前記車軸の前記両端部の各々と前記車両構造体とをそれぞれ接続する接続体をさらに備え、
前記接続体は、
前記車軸の前記両端部をそれぞれ回転可能に支持する軸受と、
前記軸受と前記車両構造体との間に配置された弾性部材と、を有する請求項1に記載の電動車両。
【請求項3】
前記低速ロータに固定される第1外輪と、前記高速ロータに固定される第1内輪と、前記第1外輪と前記第1内輪との間に回転可能に保持される第1転動体と、を含む内径側軸受と、
前記ステータに固定される第2外輪と、前記低速ロータに固定される第2内輪と、前記第2外輪と前記第2内輪との間に回転可能に保持される第2転動体と、を含む外径側軸受と、をさらに備える請求項1又は2に記載の電動車両。
【請求項4】
前記弾性継手は、
前記車軸に取り付けられる車軸取付部と、
前記低速ロータに取り付けられるモータ取付部と、
前記車軸取付部と前記モータ取付部とを接続する弾性体と、を有する請求項1~のいずれか1項に記載の電動車両。
【請求項5】
前記弾性体は、ゴム部材である請求項に記載の電動車両。
【請求項6】
前記弾性体は、バネ部材である請求項に記載の電動車両。
【請求項7】
前記電動車両は、鉄道車両であり、
前記車両構造体は、前記鉄道車両が有する台車であり、
前記磁気ギアードモータは、前記モータ支持体によって吊下げ支持される請求項1~のいずれか1項に記載の電動車両。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は電動車両に関する。
【背景技術】
【0002】
鉄道車両では、高効率、高速化、省保守などのために車両重量の軽量化とともに、室内空間確保及び機器積載スペース確保、あるいは低床化などのための駆動装置の省スペース化が求められている。これまでは、誘導モータから永久磁石モータへの置き換えや、IGBTインバータからSiCインバータへの置き換えにより、その小型化および軽量化が推進されている。例えば特許文献1では、車軸を駆動するためのモータは、そのハウジングを車軸に設置すると共に、弾性制御アームを介してシャーシビームに接続されることで、取り付けられている。
【0003】
他方、歯車装置の一種として磁束変調型(高調波型)の磁気歯車が知られている。この磁気歯車は、同心円状(同軸)に配置された内周側の磁石界磁および外周側の磁石界磁と、これら2つの磁石界磁の間にそれぞれ間隙(エアギャップ)を設けつつ配置され、周方向に交互に配列される複数の磁極片(ポールピース)および複数の非磁性体を有する磁極片装置とを備えている(特許文献2~3参照)。そして、上記の2つの磁石界磁の有する磁石の磁束が上記の各磁極片により変調されることで高調波磁束が生じ、この高調波磁束に上記の2つの磁石界磁がそれぞれ同期することで、磁束変調型磁気歯車は動作する。例えばこの磁束変調型磁気歯車とモータとを一体化した磁気ギアードモータでは、上記の外周側の磁石界磁を固定してステータとして機能させる共に、上記の内周側の磁石界磁を高速ロータ、上記の磁極片装置を低速ロータとして機能させる。そして、コイルの起磁力により高速ロータを回転させることで、減速比に従って低速ロータが回転する。
【先行技術文献】
【特許文献】
【0004】
【文献】US6868793B2
【文献】US9425655B2
【文献】特許第5286373号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
例えば鉄道車両はレール上を走行するが、レールに大きな荷重が作用するとその分だけ摩耗などのレールの損傷が生じ易くなる。一般に鉄道車両では、車軸および車輪を含む車軸体はバネなどを介して車体を支持する台車に接続されるが、レールの損傷を防ぐには、車軸体の重量が小さい方が望ましい。この点、例えば特許文献1のように車軸をモータで直接駆動することにより減速機が不要になるが、モータの重量が大きくなり易く、電動車両の軽量化という点では課題がある。そこで、本発明者らは、鉄道車両などの電動車両の駆動源として、永久磁石モータなどのモータよりも小型化、軽量化が可能な磁気ギアードモータを採用することを考えた。
【0006】
しかしながら、例えば特許文献1のようにモータのハウジングを軸受に設置するなど、モータを車軸に直接支持させるように構成すると、電動車両の静止時にけるモータの荷重(静荷重)は当然として、電動車両の走行に伴うモータの荷重(動荷重)の全てが車軸に作用する。このため、車輪(駆動輪)を介して車軸を支持するレールには、車軸に作用する動荷重の全てが直接作用するため、レールの損傷が生じ易くなる。この点、通常、電動車両は、バネなどを介して車軸と車体側とは接続されるが、本発明者らは、磁気ギアードモータを例えば鉄道車両の台車などの車両構造体に吊下げ支持することで、レール(路面)に対して作用する磁気ギアードモータの動荷重を低減することが可能であることを見出した。
【0007】
上述の事情に鑑みて、本発明の少なくとも一実施形態は、車軸体に作用する磁気ギアードモータの動荷重を低減可能な電動車両を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の少なくとも一実施形態に係る電動車両は、
車軸、及び前記車軸の両端部に連結された駆動輪を含む車軸体と、
前記車軸を回転させるための、ステータ、低速ロータおよび高速ロータを含んで構成された磁気ギアードモータと、
前記車軸体に支持される車両構造体と、
前記車両構造体と前記ステータとを連結し、前記磁気ギアードモータを前記車両構造体に支持させるモータ支持体と、
前記低速ロータの回転力を前記車軸に伝達可能なように前記低速ロータと前記車軸とを連結する弾性継手と、を備える。
【発明の効果】
【0009】
本発明の少なくとも一実施形態によれば、車軸体に作用する磁気ギアードモータの動荷重を低減可能な電動車両が提供される。
【図面の簡単な説明】
【0010】
図1】本発明の一実施形態に係る電動車両の駆動装置を概略的に示す図である。
図2】本発明の一実施形態に係る電動車両における磁気ギアードモータの支持態様を説明するための図である。
図3】本発明の一実施形態に係る鉄道車両(電動車両)における磁気ギアードモータの支持態様を説明するための図である。
【発明を実施するための形態】
【0011】
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0012】
図1は、本発明の一実施形態に係る電動車両1の駆動装置を概略的に示す図である。図2は、本発明の一実施形態に係る磁気ギアードモータ3の径方向に沿った断面の模式図である。また、図3は、本発明の一実施形態に係る電動車両1における磁気ギアードモータ3の支持態様を説明するための図である。
【0013】
電動車両1は、例えば鉄道車両や新交通システムの車両、電気自動車など、電動モータ(駆動源)により走行可能な車両である。図1に示すように、電動車両1は、車幅方向に延材する車軸21およびこの車軸21の両端部にそれぞれ駆動輪22が連結された車軸体2と、上記の車軸21を回転させるための磁気ギアードモータ3と、この磁気ギアードモータ3に接続されたインバータと、を備える。そして、インバータによる制御の下で磁気ギアードモータ3が回転駆動されるのに伴って車軸21が回転駆動されることで、電動車両1は走行するように構成される。なお、電動車両1は、磁気ギアードモータによる回生ブレーキが可能に構成されても良く、回生ブレーキによる発電電力でバッテリ94を充電可能に構成されても良い。
【0014】
より詳細には、上記の磁気ギアードモータ3は、磁気歯車(磁束変調型磁気歯車)とモータとが一体化されており、ステータ31と、低速ロータ32と、高速ロータ33とを含んで構成される。詳述すると、図2に示すように、上記の磁気歯車は、各々が全体として円筒状(環状。以下同様)の形状を有する外径側磁石界磁(ステータ31)と、内径側磁石界磁(高速ロータ33)と、磁極片装置(低速ロータ32)とを有している。そして、外径側磁石界磁と内径側磁石界磁との間に磁極片装置が配置された際に、これらが同一の軸線l(同軸)上に、互いに径方向c(半径方向)に一定距離の間隔(エアギャップGa)(図3参照)を空けて配置された構造を有する。
【0015】
また、上記の外径側磁石界磁および内径側磁石界磁は、図2に示すように、磁気ギアードモータ3の径方向cに沿って切断した断面において円周上に間隔(等間隔)を置いて配置された複数のN極およびS極で構成される永久磁石などの磁極対(31m、33m)を有している。具体的には、外径側磁石界磁(ステータ31)は、複数の磁極対31mと、この複数の磁極対31mを支持することも担う固定子鉄心31sとを有している。そして、外径側磁石界磁の円筒状の内周面には、複数の磁極対31mが、磁極が径方向cを向く状態で、かつ周方向に沿ってN極とS極が交互に入れ替わるようにしてその全周に渡って設置される。同様に、上記の内径側磁石界磁(高速ロータ33)は、複数の磁極対33mと、この複数の磁極対33mを支持する支持部材33sとを有している。そして、内径側磁石界磁の円筒状の外周面には、複数の磁極対33mが、上記と同様に周方向aに沿ってその全周に渡って設置される。また、磁極片装置(低速ロータ32)は、周方向aの全周に渡って互いに間隔(等間隔)を置いて配置された複数の磁極片32p(ポールピース)を有する。
【0016】
そして、図2に示すように、外径側磁石界磁に複数のコイル(不図示)を磁束が径方向cを向くようにそれぞれ設置してステータ31(固定子)とし、このコイル(不図示)の起磁力により内径側磁石界磁(高速ロータ33)を回転させる。これによって、磁極片装置の磁極片32pの数に対する内径側磁石界磁の有する磁極対33mの極対数の比で定まる減速比に従って、磁極片装置(低速ロータ32)が回転するようになっている。
【0017】
図1図3に示す実施形態では、電動車両1は鉄道車両である。磁気ギアードモータ3とインバータ91とは電力線で接続されている。このインバータ91には、トランス92を介して架線93(送電線)に接続されており、電力が供給されるようになっている。また、インバータ91にはバッテリ94が接続されている。そして、回生ブレーキによる発電電力をバッテリ94に供給し、バッテリ94の充電が可能に構成されている。なお、鉄道車両では、回生ブレーキによる発電電力は、一般的に他の鉄道車両のために架線93を介して系統側に戻されるが、系統の状況によってはバッテリ94に直接充電されても良い。
【0018】
次に、上述した構成を備える鉄道車両(電動車両1)における磁気ギアードモータ3の支持態様について、図3を用いて説明する。
図3に示す電動車両1は鉄道車両である。このような鉄道車両は、一般に、台車4a(車両構造体4)を備えている。この台車4aは、車体(不図示)の荷重を支持する役割を有しており、その上部には、その内部に車室空間を形成している車体(不図示)が搭載される。
【0019】
また、台車4aは、接続体8により車軸21に接続されることで、レールRの継ぎ目やカーブの走行時など線路状況によって発生する鉄道車両の振動を吸収し、車体(不図示)を安定させる役割を有する。具体的には、図3に示す実施形態では、車軸21の両端部の各々と台車4aとがそれぞれ接続体8により接続されている。この接続体8は、車軸21の両端部21eをそれぞれ回転可能に支持する軸受81と、これらの軸受81と台車4a(車両構造体4)との間に配置された弾性部材82(図3ではコイルバネ)と、を有している。そして、この弾性部材82によって、レールR側からの衝撃や振動を吸収し、車体(不図示)を安定させるようになっている。
以下、上述したような鉄道車両を例に電動車両1を説明する。
【0020】
図3に示すように、電動車両1は、既に説明した車軸体2および磁気ギアードモータ3と、上記の車軸体2に支持される車両構造体4(図3では台車4a)と、上記の磁気ギアードモータ3と台車4aとを連結し、磁気ギアードモータ3を車両構造体4に支持(図3では下方に吊下げ支持)させるモータ支持体5と、上記の磁気ギアードモータ3の有する低速ロータ32の回転力を車軸21に伝達するための部材である弾性継手6と、を備える。
【0021】
上記の車両構造体4は、鉄道車両や新交通システムの車両の場合は台車4aであっても良い。電気自動車の場合は、例えば車両フレーム(シャーシ)であっても良い。また、車両構造体4は、図3に示すように軸受81を介して車軸21に支持されても良いし、車軸21にはなく、駆動輪22(車輪)に直接支持されるような態様で支持されても良い。
【0022】
また、上記の弾性継手6は、その全て(61、62、63)が例えばゴム部材などで形成された弾性体であっても良い。あるいは、弾性継手6は、その一部に弾性体63を有していても良く、例えば車軸21および低速ロータ32にそれぞれ取り付けられた部分が弾性体63を介して接続されていても良い。すなわち、図3に示すように、弾性継手6は、車軸21に取り付けられる車軸取付部61と、磁気ギアードモータ3(低速ロータ32)に取り付けられるモータ取付部62と、車軸取付部61とモータ取付部62とを接続する弾性体63と、を有する。この弾性体63は、ゴム部材でも良いし、板バネなどのバネ部材であっても良い。
【0023】
図3に示す実施形態では、車軸取付部61は車軸21に嵌合されており、モータ取付部62はボルト61bにより、磁気ギアードモータ3の低速ロータ32に取り付けられている。なお、弾性体63がバネ部材の場合には、バネ部材の一端が低速ロータ32の軸方向の端部に設けられたフランジ(不図示)と、バネ部材の他端が、車軸21に接合されている車軸取付部61と、各ボルト穴に挿通されたボルト(不図示)により各々締結されても良い。
【0024】
そして、電動車両1において、磁気ギアードモータ3は、低速ロータ32が弾性継手6によって車軸21に連結されることで、低速ロータ32の回転に伴って車軸21が回転するようになっている。また、高速ロータ33の内部には、車軸21の一部が高速ロータ33の内周面に対して間隙Gbを空けて延在することで、停車時において車軸21の一部が非接触で延在している。つまり、筒状の形状を有する高速ロータ33の内部には車軸21が貫通した状態で配置されつつ、高速ロータ33は、電動車両1の走行時において車軸21に接触することなく、空転するように構成されている。この状態でステータ31がモータ支持体5に連結されることで、磁気ギアードモータ3の荷重の大部分(全て)が台車4aによって支持されている。
【0025】
すなわち、図3に示す実施形態では、磁気ギアードモータ3は、台車4aの下方に支持されており、モータ支持体5によって台車4aに剛に吊下げ支持されている。これによって、磁気ギアードモータ3の荷重が、車軸21に直接作用することなく、台車4aを介して間接的に作用するようになっている。つまり、磁気ギアードモータ3の荷重は、台車4aおよび接続体8を介して車軸体2に作用し、低速ロータ32を介して車軸21に直接作用しないようになっている。
【0026】
上述したように構成することで、電動車両1の静止時の荷重(以下、静荷重)は、当然として車軸体2に作用するが、電動車両1の走行に伴う磁気ギアードモータ3の荷重(以下、動荷重)は、車軸体2に直接作用せず、車両構造体4および接続体8を介して間接的に車軸体2に作用する。これによって、車軸体2に作用する磁気ギアードモータ3の動荷重を接続体8により吸収することができ、車軸体2が磁気ギアードモータ3を直接支持する場合よりも、その動荷重を小さくすることができる。よって、例えば電動車両1が鉄道車両である場合には駆動輪22(車輪)が設置されるレールRの摩耗や損傷を抑制することができ、レールRの寿命の延長を図ることが可能となる。
【0027】
また、仮に、弾性継手6ではなく、車軸21と低速ロータ32とが剛に結合されていると、次のような不都合が生じてしまう。具体的には、車軸21と低速ロータ32とが剛に結合されている場合において、図3のように低速ロータ32が軸受(後述する外径側軸受7b)などでステータ31側と剛に支持されている場合には、上述した接続体8の弾性部材82による効果が得られず、磁気ギアードモータ3の静荷重および動荷重が車軸21にかかってしまう。この際、低速ロータ32と車軸21との接続部の剛性が低ければ、上述した接続体8の弾性部材82があることによって、磁気ギアードモータ3内での低速ロータ32の傾きも発生してしまう。よって、弾性継手6により車軸21と低速ロータ32とを接続することで、上記二つの動きを抑制することが可能となる。
【0028】
また、図3に示す実施形態では、電動車両1は、各々が転がり軸受けである内径側軸受7aおよび外径側軸受7bをさらに備えている。内径側軸受7aは、低速ロータ32に固定される第1外輪と、高速ロータ33に固定される第1内輪と、これら第1外輪と第1内輪との間に回転可能に保持される第1転動体と、を含んで構成されている。また、外径側軸受7bは、ステータ31(フレーム部分)に固定される第2外輪と、低速ロータ32に固定される第2内輪と、これら第2外輪と第2内輪との間に回転可能に保持される第2転動体と、を含んで構成されている。
【0029】
つまり、外径側軸受7bによって、ステータ31と低速ロータ32とが相対的な回転が可能に連結されることで、低速ロータ32がステータ31により支持さている。また、内径側軸受7aによって、低速ロータ32が相対的な回転が可能に連結されることで、高速ロータ33が低速ロータ32により支持さている。これによって、磁気ギアードモータ3を車両構造体4により適切に支持させることが可能となる。
【0030】
上記の構成によれば、電動車両1において磁気ギアードモータ3は、車両構造体4(鉄道車両の台車や、電気自動車の車両フレームなど)に例えば吊下げ支持されるなど車両構造体4に支持されると共に、その低速ロータ32(出力軸)と車軸体2とが弾性継手6を介して連結される。このように、電動車両1の駆動源を磁気ギアードモータ3にすると共に、磁気ギアードモータ3を車両構造体4により支持させることで、電動車両1の走行時に作用する磁気ギアードモータ3の動荷重を低減しつつ、電動車両1の小型化、軽量化を実現することができる。
【0031】
また、磁気ギアードモータ3の低速ロータ32と車軸体2の車軸21とが弾性継手6を介して連結されることで、低速ロータ32によって車軸21が回転される。これによって、例えば走行状況によって磁気ギアードモータ3に対して車軸21が傾くような場合にも、適切に動力を伝達しつつ、そのような傾きを弾性継手6で吸収することができる。また、低速ロータ32が、周囲の高速ロータ33およびステータ31に対して傾くのを抑制することで、磁気ギアードモータ3を保護することもできる。
【0032】
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
上述した実施形態では、磁気ギアードモータ3は車両構造体4に吊下げ支持されているが、この実施形態に本発明は限定されず、例えば車両構造体の上部に設置されるなど、吊下げ以外の方法により支持されても良い。
(付記)
【0033】
(1)本発明の少なくとも一実施形態に係る電動車両(1)は、
車軸(21)、及び前記車軸(21)の両端部(21e)に連結された駆動輪(22)を含む車軸体(2)と、
前記車軸(21)を回転させるための、ステータ(31)、低速ロータ(32)および高速ロータ(33)を含んで構成された磁気ギアードモータ(3)と、
前記車軸体(2)に支持される車両構造体(4)と、
前記車両構造体(4)と前記ステータ(31)とを連結し、前記磁気ギアードモータ(3)を前記車両構造体(4)に支持させるモータ支持体(5)と、
前記低速ロータ(32)の回転力を前記車軸(21)に伝達可能なように前記低速ロータ(32)と前記車軸(21)とを連結する弾性継手(6)と、を備える。
【0034】
上記(1)の構成によれば、例えば鉄道車両や新交通システムの車両、電気自動車などとなる電動車両(1)において磁気ギアードモータ(3)は、車両構造体(4)(鉄道車両の台車(4a)や、電気自動車の車両フレームなど)に例えば吊下げ支持されるなど車両構造体(4)に支持されると共に、その低速ロータ(32)(出力軸)と車軸体(2)とが弾性継手(6)を介して連結される。このように、電動車両(1)の駆動源を磁気ギアードモータ(3)にすると共に、磁気ギアードモータ(3)を車両構造体(4)により支持させることで、電動車両(1)の走行時に車軸体(2)に作用する磁気ギアードモータ(3)の動荷重を低減しつつ、電動車両(1)の小型化、軽量化を実現することができる。
【0035】
また、磁気ギアードモータ(3)の低速ロータ(32)と車軸体(2)の車軸(21)とが弾性継手(6)を介して連結されることで、低速ロータ(32)によって車軸(21)が回転される。これによって、例えば走行状況によって磁気ギアードモータ(3)に対して車軸(21)が傾くような場合にも、適切に動力を伝達しつつ、そのような傾きを弾性継手(6)で吸収することができる。また、磁気ギアードモータ(3)では、筒状の低速ロータ(32)が、外周側のステータ(31)と内周側の高速ロータ(33)とによってそれぞれエアギャップ(Ga)を設けつつ挟まれたような同軸構造を有しているが、低速ロータ(32)が、周囲の高速ロータ(33)およびステータ(31)に対して傾くのを抑制することで、磁気ギアードモータ(3)を保護することもできる。
【0036】
(2)幾つかの実施形態では、上記(1)の構成において、
前記車軸(21)の前記両端部(21e)の各々と前記車両構造体(4)とをそれぞれ接続する接続体(8)をさらに備え、
前記接続体(8)は、
前記車軸(21)の前記両端部(21e)をそれぞれ回転可能に支持する軸受(81)と、
前記軸受(81)と前記車両構造体(4)との間に配置された弾性部材(82)と、を有する。
【0037】
上記(2)の構成によれば、磁気ギアードモータ(3)の荷重は、車両構造体(4)および接続体(8)を介して車軸体(2)に作用する。これによって、車軸体(2)に作用する磁気ギアードモータ(3)の動荷重を接続体(8)により吸収することができ、車軸体(2)が磁気ギアードモータ(3)を直接支持する場合よりも、その動荷重を小さくすることができる。よって、例えば電動車両(1)が鉄道車両である場合には駆動輪(22)(車輪)が設置されるレール(R)の摩耗や損傷を抑制することができ、レール(R)の寿命の延長を図ることができる。
【0038】
(3)幾つかの実施形態では、上記(1)~(2)の構成において、
前記低速ロータ(32)、前記高速ロータ(33)および前記ステータ(31)は筒状の形状を有し、
前記低速ロータ(32)は、前記高速ロータ(33)と、前記高速ロータ(33)の外周側に配置される前記ステータ(31)との間に配置されており、
前記高速ロータ(33)の内部には、前記車軸(21)の一部が前記高速ロータ(33)の内周面に非接触で延在する。
【0039】
上記(3)の構成によれば、筒状の形状を有する高速ロータ(33)の内部には車軸(21)が貫通した状態で配置されつつ、車軸(21)の一部が高速ロータ(33)の内周面に対して間隙(Gb)を空けて延在するように構成される。これによって、磁気ギアードモータ(3)の荷重が、車軸体(2)に直接作用するのではなく、車両構造体(4)を介して作用するようにより適切に支持させることができ、電動車両(1)の走行時に車軸体(2)に作用する磁気ギアードモータ(3)の動荷重を低減することができる。
【0040】
(4)幾つかの実施形態では、上記(1)~(3)の構成において、
前記低速ロータ(32)に固定される第1外輪と、前記高速ロータ(33)に固定される第1内輪と、前記第1外輪と前記第1内輪との間に回転可能に保持される第1転動体と、を含む内径側軸受(7a)と、
前記ステータ(31)に固定される第2外輪と、前記低速ロータ(32)に固定される第2内輪と、前記第2外輪と前記第2内輪との間に回転可能に保持される第2転動体と、を含む外径側軸受(7b)と、をさらに備える。
【0041】
上記(4)の構成によれば、高速ロータ(33)および低速ロータ(32)は、2つの軸受(81)を介して、ステータ(31)に連結されている。これによって、磁気ギアードモータ(3)を車両構造体(4)により適切に支持させることができる。
【0042】
(5)幾つかの実施形態では、上記(1)~(4)の構成において、
前記弾性継手(6)は、
前記車軸(21)に取り付けられる車軸取付部(61)と、
前記低速ロータ(32)に取り付けられるモータ取付部(62)と、
前記車軸取付部(61)と前記モータ取付部(62)とを接続する弾性体(63)と、を有する。
上記(5)の構成によれば、弾性継手(6)により、低速ロータ(32)の回転を車軸(21)に適切に伝達しつつ、車軸(21)と低速ロータ(32)とを適切に連結することができる。
【0043】
(6)幾つかの実施形態では、上記(5)の構成において、
前記弾性体(63)は、ゴム部材である。
上記(6)の構成によれば、ゴム部材によって、磁気ギアードモータ(3)に対する車軸(21)の傾きを適切に吸収することができる。
【0044】
(7)幾つかの実施形態では、上記(5)の構成において、
前記弾性体(63)は、バネ部材である。
上記(7)の構成によれば、板バネなどのバネ部材によって、磁気ギアードモータ(3)に対する車軸(21)の傾きを適切に吸収することができる。
【0045】
(8)幾つかの実施形態では、上記(1)~(7)の構成において、
前記電動車両(1)は、鉄道車両であり、
前記車両構造体(4)は、前記鉄道車両が有する台車(4a)であり、
前記磁気ギアードモータ(3)は、前記モータ支持体(5)によって吊下げ支持される。
上記(8)の構成によれば、電動車両(1)は、磁気ギアードモータ(3)を駆動源とする鉄道車両であり、磁気ギアードモータ(3)は鉄道車両の台車(4a)に吊下げ支持される。これによって、上記(1)~(7)と同様の効果を奏する。
【符号の説明】
【0046】
1 電動車両
2 車軸体
21 車軸
21e 端部
22 駆動輪
3 磁気ギアードモータ
31 ステータ
31m 磁極対(ステータ)
31s 固定子鉄心(ステータ)
32 低速ロータ
32p 磁極片
33 高速ロータ
33m 磁極対(高速ロータ)
33s 支持部材(高速ロータ)
4 車両構造体
4a 台車
5 モータ支持体
6 弾性継手
61 車軸取付部
61b ボルト
62 モータ取付部
63 弾性体
7a 内径側軸受
7b 外径側軸受
8 接続体
81 軸受
82 弾性部材
91 インバータ
92 トランス
93 架線
94 バッテリ
Ga エアギャップ
Gb 間隙(車軸および高速ロータ間)
a 周方向
c 径方向
l 軸線
R レール
図1
図2
図3