IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サウザン・ユニバーシティ・オブ・サイエンス・アンド・テクノロジーの特許一覧

特許7493795シクロメタル化ロジウム(III)錯体における配位子媒介ルミネッセンス増強、及び高効率有機発光デバイスへのその適用
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-24
(45)【発行日】2024-06-03
(54)【発明の名称】シクロメタル化ロジウム(III)錯体における配位子媒介ルミネッセンス増強、及び高効率有機発光デバイスへのその適用
(51)【国際特許分類】
   C07F 15/00 20060101AFI20240527BHJP
   C09K 11/06 20060101ALI20240527BHJP
【FI】
C07F15/00 B CSP
C09K11/06
C09K11/06 660
【請求項の数】 2
(21)【出願番号】P 2020515902
(86)(22)【出願日】2019-07-04
(65)【公表番号】
(43)【公表日】2022-01-12
(86)【国際出願番号】 CN2019094735
(87)【国際公開番号】W WO2021000330
(87)【国際公開日】2021-01-07
【審査請求日】2020-03-12
【審判番号】
【審判請求日】2022-12-01
(73)【特許権者】
【識別番号】520086999
【氏名又は名称】サウザン・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】キース・マン・チュン・ウォン
【合議体】
【審判長】瀬良 聡機
【審判官】冨永 保
【審判官】野田 定文
(56)【参考文献】
【文献】国際公開第2005/115061(WO,A1)
【文献】特開2004-319438(JP,A)
【文献】中国特許出願公開第108409793(CN,A)
【文献】中国特許出願公開第108409792(CN,A)
【文献】米国特許出願公開第2005/0019527(US,A1)
【文献】国際公開第2020/136496(WO,A1)
【文献】Journal of the SID、(2008)、16/6、pp.695-701
【文献】Inorg.Chem.、(2008)、47(8)、pp.3340-3348
(58)【調査した分野】(Int.Cl.,DB名)
C07D,C07F
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
式(a):
【化1】
(式中、Rは、CH 、CF 、及びC から選択される。)
を有する、発光性シクロメタル化ロジウム(III)錯体。
【請求項2】
OLEDにおける発光材料としての、請求項に記載の発光性シクロメタル化ロジウム(III)錯体の使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光センサーの分野に関する。より具体的には、塩素原子を受容体-供与体-受容体型小分子電子受容体の末端基に導入することによって形成された非フラーレン受容体、及びそれから誘導されるポリマーに関する。
【背景技術】
【0002】
ルテニウム(II)[1,2]、レニウム(I)[1,3]、オスミウム(II)[1,2,4]、イリジウム(III)[1,5-7]、及びロジウム(III)[1,8-10]を含む八面体d6遷移金属錯体の励起状態特性は、それらの魅力的な光物理的及び光化学的挙動により、大きな関心を集めている。過去20年間における、光機能性材料としての発光シクロメタル化イリジウム(III)系[5-7]の主要な役割の確立は、潜在的な生物学的及びエネルギー関連用途のために圧倒的に優位な特性に起因している[6,7]。Watts[5a、b]によって初めて報告されシクロメタル化イリジウム(III)錯体を有機発光デバイス(OLED)のリン光発光体として採用した、トンプソン、フォレスト、及び同僚[7a]の先駆的な研究以来、どこでもスマートフォン及びディスプレイにおける急速な採用によって実証されているとうり、有望な用途[7,11]が実現されてきた。
【0003】
重金属中心を有するリン光発光体は、OLEDの最も重要な構成要素であり、強力なスピン-軌道カップリング(SOC)を伴うアクセス可能な三重項励起状態の捕集から100%の内部量子効率を達成することができる[11]ため、その研究に急速な関心が寄せられている[11]。関連研究のほとんどは、イリジウム(III)錯体[7,11]及び白金(II)錯体[11,12]の使用に特に重点が置かれているところ、他の遷移金属の金属錯体の発光体としての使用は、OLED材料の多様性を提供するための比較的ニッチなトピックに留まってきた。最近、Che[16a、b]及びLi[16c]は、独立に、C-脱プロトン化ドナー原子を有する四座配位子(ligand)に配位された、様々なクラスのパラジウム(II)錯体を開発し、それらについても、OLED用途のために強力に発光することが実証された。強電界配位子だけでなく、4つの配位部位を有する剛直な足場(scaffold)を使用するこの戦略は、発光特性を高めるための非放射性不活性化経路に不利に働くと予想される。別の興味深いクラスは、白金(II)系と等電子及び等構造であるシクロメタル化金(III)錯体である。強いσ供与性配位子の選択により、金(III)錯体は、そのような金(III)錯体をベースとする高効率のOLEDの実施によって証明されたとおり、強い発光特性を示す[11,17]。Yam及び同僚は、最近、熱刺激遅延リン光(TSDP)というユニークな概念を開拓した。この概念によれば、三重項励起子は、スピン許容逆内部変換(RIC)を介して、より低い三重項状態からより高い三重項状態にアップコンバートされる。このアップコンバージョンプロセスにより、発光量子収率(Φlum)が20倍以上大幅に向上することがわかった[17e]。同様に、高いΦlumが、逆系間交差(RISC)から生じる、熱活性化遅延蛍光(TADF)又は金属支援遅延蛍光(MADF)のプロセスによっても得られ得る[18]。このような場合、最低一重項状態(S)及び最低三重項励起状態(T)、並びに空間的に十分に分離されたフロンティア軌道〔すなわち最高被占分子軌道(HOMO)及び最低空分子軌道(LUMO)〕が必要とされる。最近、高効率OLEDの製造のために、TADF/MADF光材料を使用することへの関心が急速に高まっている[15,16c、18]
【0004】
ロジウム(III)及びイリジウム(III)は、類似の合成方法論、構造的特徴、及びいくつかの物理的及び化学的性質を共有する白金族金属(PGM)ファミリーの非常に近い同族体であると考えられる[1,5-10]。これとは対照的に、ポリピリジル及びシクロメタル化ロジウム(III)系の発光研究は、それらのほとんどが低温でのみ発光するという事実に基づいて、あまり研究されていない[8c、9a-c、10]。発光ロジウム(III)系の、関連する光機能的応用も、非常にまれである[10c]。これは、主に、熱的にアクセス可能な非発光性d-d配位子場(LF)励起状態の存在によって、室温での発光が欠如することによる。LF状態が、温度依存性の発光寿命測定で明らかにされた、配位子中心(LC)特性及び/又は金属からリガンドへの電荷移動(MLCT)特性を有する発光励起状態のエネルギーに匹敵するエネルギーで存在すること[9d]を克服することは、難しいままである。配位子中心(LC)特性及び/又は金属からリガンドへの電荷移動(MLCT)特性を剛直な構造モチーフと共に有するシクロメタル化1,3-ビス(1-イソキノリル)ベンゼンピンサー配位子組み込むことによって、Williamsと同僚は最近、室温、溶液状態で、最高で10%までのΦlumを有する発光ロジウム(III)錯体を合成した[10e]
【先行技術文献】
【非特許文献】
【0005】
【文献】F. Barigelletti, D. Dandrini, M. Maestri, V. Balzani, A. von Zelewsky, L. Chassot, P. Jolliet, U. Baeder, Inorg. Chem. 1988, 27, 3644-3647([9d])
【文献】L. F. Gildea, A. S. Batsanov, J. A. G. Williams, Dalton Trans. 2013, 42, 10388-10393([10e])
【発明の概要】
【発明が解決しようとする課題】
【0006】
ロジウム(III)系の発光性能の欠点に取り組むために多大な努力が注がれて来たにもかかわらず、報告されたΦlumは、未だOLED用途のための要件を十分に満たすことができなかった。私たちの知る限り、ロジウム(III)系は、これまでのところ、OLEDの発光材料として利用されていないPGMファミリーの唯一のメンバーである。
【課題を解決するための手段】
【0007】
本発明者らは、OLED用途のための要件を十分に満たす、一連の強力に発光するシクロメタル化ロジウム(III)錯体を開発した。
【0008】
本発明は、式(a):
【化1】
(式中、Rは、置換又は非置換のC1-6アルキルである。)
を有する、高発光性シクロメタル化ロジウム(III)錯体を提供する。
【0009】
好ましい実施態様では、Rは、ハロゲンで置換されたC1-6アルキルである。
【0010】
より好ましい実施態様では、Rは、フッ素で置換されたC1-6アルキルである。
【0011】
最も好ましい実施態様では、Rは、CH、CF、及びCから選択される。
【0012】
本発明はさらに、OLEDにおける発光材料としての、本発明の高発光性シクロメタル化ロジウム(III)錯体の使用を提供する。
【図面の簡単な説明】
【0013】
図1図1は、(a)錯体1-3の分子構造、(b)錯体1のX線結晶構造を示す。溶媒分子及び水素原子は省略され、わかりやすくするためにΔ形のみが示されている。
図2図2は、(a)298Kのジクロロメタン溶液中の錯体1~3のUV-Vis吸収及び発光スペクトル、(b)固体状態の薄膜(MCP中2質量%)中の錯体1~3の、様々な励起波長での正規化PLスペクトル及びPLQYを示す。挿入図は、UV照射下での錯体3の薄膜PLの写真を示す。
図3図3は、錯体1~3のT状態のスピン密度(等値=0.002)のプロットを示す。
図4図4は、錯体3に基づく真空蒸着OLEDの特性を示す:(a)様々なドーパント濃度でのELスペクトル、(b)様々な正孔輸送層を用いたEQE、(c)5体積/体積%の錯体3で作成した真空蒸着OLEDの動作寿命。
【発明を実施するための形態】
【0014】
本発明の強力に発光するシクロメタル化ロジウム(III)錯体は、OLED用途向けの非常に高効率のロジウム(III)発光体の最初の例としてブレークスルーであることが実証された。低位の配位子内(IL:intra ligand)状態を持つ強力なσドナーシクロメタル化配位子を賢明に選択することにより、2つの戦略、すなわちd-d励起状態を上昇させる戦略と、低位の発光IL励起状態を導入する戦略とを統合することによって、ロジウム(III)系の発光特性が向上することが期待される。中性の形式電荷、高い熱安定性、及び固体薄膜における60%を超える優れた発光により、これらの錯体は、蒸着又は溶液処理技術によってデバイスを製造することを可能にする。特に、最適化されたOLEDにおいて、最高で12.2%までの魅力的な外部量子効率(EQE)と、100cd/mで3,000時間を超えるかなり半減期が、このロジウム(III)系によって達成された。
【0015】
低位のIL状態の導入、及びターゲット錯体1~3における中性の形式電荷の維持のために、2,3-ジフェニルキノキサリン(dpqx)のシクロメタル化配位子と、アニオン性アセチルアセトネート(acac)とをそれぞれ選択した。これらの合成及び特性評価(H、13C{H}NMR、HR-MS、及び元素分析)の実験詳細を、サポート情報において提供した。全ての錯体1~3が、高い分解温度を有し、熱的に安定していることがTGA実験で明らかになった。X線結晶構造は、ロジウム(III)金属を中心とする八面体形状を示し(図1b)、すべての結合長及び結合角(サポート情報を参照)は正常範囲内であった[10c、e]
【0016】
錯体1~3の光物理データを測定し、データを表1にまとめた。298Kでの流体溶液中のUV-vis吸収スペクトル(図2a)は、335~410nmで強い高エネルギー吸収バンドを示し、420~530nmでより強度の低い低エネルギー吸収バンドを示す。高エネルギー吸収バンドは、関連するイリジウム(III)類似体で一般的に観察される高エネルギー吸収バンド[7d]であり、dpqx配位子のスピン許容一重項配位子内(IL)π-π遷移に帰属される。低エネルギー吸収バンドは、MLCTdπ(Rh)→π(dpqx)遷移に帰属され、フェニル部分からdpqx配位子上のキノキサリンユニットへの何らかのIL電荷移動遷移と混合されている。本質的に非発光性であるほとんどのロジウム(III)錯体とは異なり、本発明のシクロメタル化ロジウム(III)錯体が、ジクロロメタン溶液中298Kで598-612nmに最大ピークを有する、強いオレンジ-赤色のフォトルミネセンス(PL)を示すことは、注目に値する(図2a)。この発光は、大きなストークスシフト、及び比較的長い発光寿命(0.79~1.64μs)を考慮すると、三重項の系(parentage)に由来することが示唆される。対応する低エネルギー吸収バンドに類似した励起ピークに照らすと、このルミネセンスの起源は、配位子内電荷移動(ILCT)特性の何らかの混合を伴う、MLCTdπ(Rh)→π(dpqx)起源の三重項励起状態として合理的に帰属される。この励起状態の性質を調べるために、ジクロロメタン溶液中298Kでのナノ秒過渡吸収(TA)分光法により調べた。錯体1-3のTA差スペクトルから、シクロメタル化配位子のラジカルアニオン吸収に帰属される375nm及び415nmの2つの正の吸収バンドが観察される。TAスペクトルは、それぞれのPLと類似した寿命(0.9~1.7μ秒)を有する、550~775nmの範囲の追加の広い吸収バンドも示した。これらの吸収バンドは、暫定的に、ILCT特性がいくらか混合された、MLCTdπ(Rh)→π(dpqx)起源の三重項励起状態からの吸収として帰属される。
【0017】
【表1】
【0018】
図2bは、ドープされたN,N-ジカルバゾリル-3,5-ベンゼン(MCP)薄膜中の錯体1~3のPLスペクトルを示しており、このスペクトルにおいて、597~603nmにおける錯体1~3の強いオレンジ色の発光(ルミネッセンス)が観察されている(図2a)。高いドーピング濃度において分子間の三重項-三重項消滅及びπ-π相互作用を受けることになる通常の平面四角形金属錯体とは対照的に、錯体1~3においては、ドーピング濃度を2から10質量%へ高くしても、観測可能な発光の消光並びに発光のピークのシフトは認められなかった。0.44~0.65の著しく高いΦlumが、ドープした薄膜で得られていることは注目に値する(図2b)。やはり、我々の知る限りでは、これらは全ての報告されているロジウム(III)錯体のなかで最も高いΦlum値であり、八面体構造をもつ金属錯体において、より低い位置にあるIL状態(IL state)をもつ強いσ供与性シクロメタル化配位子を用いることによる、首尾よく達成できた発光の増強を実証している。錯体3の温度可変PL測定も、298Kから78Kにおいて薄膜中で実施した。冷却すると、振動構造の特徴がより明確になることを除いて、発光ピークは変化しないままである。さらに、寿命の延びとともに、発光強度が2倍より大きく増大することがわかる。この系における発光は、TADF又はMADFに由来しうるという主張があるかもしれない。計算による研究(下記参照)からの一重項状態と三重項状態の間の大きなエネルギー差ΔE(S1-T1)は、そのような遅延蛍光の発生はありそうもないことを示している。
【0019】
錯体1~3の電気化学的特性をサイクリックボルタンメトリーによって調べ、見積もったHOMO及びLUMOエネルギー準位とともに、その電位を表1にまとめる。カソードスキャンでは、2つの準可逆還元カップルが-1.28~-1.38V、及び-1.50~-1.67V(対SCE)に特徴的にみられ、これは、連続したdpqx配位子を中心とする還元に帰属される。約0.08Vの、最初の還元のアノードシフトは、錯体1及び3のものに対して、錯体2において観測され、これは-CF基をもつ、より電子が不足したヘキサフルオロアセチルアセトン(hfac)配位子の配位による間接的な影響によって生じている。アノードスキャンでは、+1.32から+1.63Vの最初の不可逆的なアノードピークは、ロジウム(III)金属中心及びdpqx配位子上に結びつけられたフェニル環の混合された金属/配位子を中心とする酸化に帰属される。同様に、錯体2におけるこの酸化に対するより大きな正のポテンシャルは、hfac配位子が付いたときの、ロジウム(III)金属中心の、より低い電子の豊かさによるものである。
【0020】
これらのロジウム(III)錯体の電子構造並びに吸収及び発光の起源の性質についてより深い洞察を得るために、密度汎関数理論(DFT)及び時間依存性DFT(TDDFT)計算を、錯体1~3について行っている。467、455、及び466nmにおいてそれぞれ計算された錯体1~3のS0→S1遷移は、HOMO→LUMO励起に対応する。HOMOは、ロジウム(III)金属中心に連結された、dpqx配位子のフェニル環上に局在するπ軌道であり、dπ(Rh)軌道と混合している。LUMOは主に、dpqx配位子のキノキサリンユニット上のπ軌道である。したがって、S0→S1遷移は、dpqx配位子のキノキサリンユニットへのフェニル部分からのILCT[π→π]遷移の混合を伴うMLCT[dπ(Rh)→π(dpqx)]遷移として帰属することができ、これは、低エネルギー吸収バンドの実験によるエネルギーの傾向及びそれらのスペクトルの帰属と合致している。
【0021】
発光状態の性質を調べるために、錯体1~3の最低三重項励起状態(T)に対するジオメトリの最適化を、非制限法(UPBE0-D3/CPCM)を用いて行っている。図3に示すように、スピン密度は、金属中心、dpqx配位子のキノキサリンユニット、及びそのdpqx配位子に連結されたフェニル環上に局在しており、これは、MLCT[dπ(Rh)→π(dpqx)]/ILCT[π→π]特性の発光状態の帰属を裏付けている。錯体1~3の計算された発光エネルギーは一般的に過大に見積もられるが、それでもなお、傾向は対応する実験結果(すなわち、錯体1≒3>錯体2であること)とよく一致している。錯体1~3の、幾何学的構造が最適化されたSと、T状態との間のエネルギー差は、0.20~0.38eVの範囲であり、これはTADFが起こる比較的低い可能性を示している。
【0022】
これらのロジウム(III)錯体のエレクトロルミネッセンス(EL)特性を調べるために、錯体1~3に基づく溶液加工によるOLEDを調製した。全てのデバイスは、振電構造のELスペクトルを示し、隣接するキャリア輸送材料又はホスト材料からの望ましくない発光のない、固体状態の薄膜中のそれらのPLスペクトルとほとんど同じである。対応するPL研究と同様に、ドーパント濃度を2から10質量%に増やすと、全てのデバイスについて、CIEのx及びy値に±0.01の小さな変化のみが観察される。注目すべきことに、8質量%の錯体2を用いて作られた、最適化されたデバイスでは、9.4cd・A-1の高い最大電流効率と、6.4%のEQEとの満足のいく性能が達成されている。
【0023】
固体状態の薄膜中で最高のΦlumと、最も高い分解温度とをもつ錯体3を用いて、真空蒸着によるOLEDも製造し、そこでは錯体3は様々な濃度(すなわち、x=2、5、8、11、及び14体積/体積%)でMCP中にドープした。対応する溶液加工OLEDとほぼ同じELスペクトルを特徴とする(図4a)。5体積/体積%ドープしたデバイスで、9.9cd・A-1の高い最大電流効率と7.0%のEQEが達成された。効率を改善するために、TCTA、m-CBP、及びBebqを含めたさまざまなホスト材料を用いた。注目すべきことに、mCBPをホストとして使用した場合に、デバイスの効率は11.9cd・A-1及び8.1%に改善された。正孔注入MoOxを除くか又はより低い正孔移動度を有する正孔輸送材料(HTM)(すなわち、α-NPD又はTCTA)を使用することにより、さらに高くすることができる。明らかに、電流効率及びEQEは、それぞれ最大約17.5cd・A-1及び最大約12.2%まで大幅に向上しうる(図4b)。TCTAは優れた電子阻止材料であるが、HTM/発光層の界面に薄いTCTA層(すなわち5nm)の挿入することにより、励起子形成及び発光のために、電子を発光層内に効果的に蓄積することができる。低下した正孔輸送は、発光層内での正孔及び電子の流れのより良いバランスをもたらし、それによって向上したデバイス効率をもたし得る。錯体3に基づいた真空蒸着によるデバイスの作動安定性も調べた。特に、真空蒸着によるデバイスは、20mA・cm-2の一定の駆動電流密度において加速試験により測定した。驚くべきことに、このデバイスは、1,084cd・m-2の初期輝度において約52.7時間の作動半減期(すなわち、輝度が初期値の50%に低下するのに必要な時間)を示す(図c)。これは、1,000cd・m-2において約946時間、100cd・m-2において3,000時間以上に相当する。高いEQE値と満足のできる作動安定性は、有望なリン光ドーパントとして機能するこのようなシクロメタル化ロジウム(III)錯体の能力を明確に示しており、さらに重要なことには、この研究は、OLEDにおけるロジウム(III)錯体の応用研究の最初の成功実例を示している。
【0024】
まとめると、我々は、新しいクラスの高発光性のロジウム(III)錯体を開発し、その錯体では、最も低いd-d状態による発光消光の問題を、より低い準位の配位子内(intraligand、IL)状態を有する強いσ供与性シクロメタル化配位子の組み込みによって克服している。これらの錯体は高い熱安定性と、薄膜中で最高0.65にも達する優れたΦlumとを示し、このことはそれらの錯体自体をOLED中の有望な発光材料として提示している。特に、それぞれ6.4%及び12.2%の魅力的なEQE、並びに3,000時間を超えるかなり立派な作動半減期を備えた、これらのロジウム(III)錯体に基づいた効率的な溶液加工によるOLED及び真空蒸着によるOLEDが実現されている。この研究は、OLEDにおけるロジウム(III)錯体の応用研究を初めて示し、OLED材料の開発を多様化し、蛍光体(phosphor)として利用されるロジウム金属を用いてPGMのギャップを埋めるための新しい道を開く。自動車用の触媒によるコンバーター中での排気ガス中の窒素酸化物低減のための触媒におけるロジウムの主な用途とは別に、OLEDにおけるロジウムの別の潜在的な用途のブレークスルーが実証されている。発光色を調整し、EL性能をさらに向上させるために、シクロメタル化配位子並びに補助配位子の修飾が進行中である。
【0025】
まとめると、本発明者らは、最も低いd-d状態からの発光消光の問題が、より低い準位にある配位子内(intraligand, IL)状態を有する強いσ供与性シクロメタル化配位子の組み込みによって克服されている、新しいクラスの高発光性ロジウム(III)錯体を開発した。これらの錯体は、高い熱安定性及び薄膜中で最高0.65の高さに達する優れたΦlumを示し、それら自体をOLED中の有望な発光材料として示している。特に、それぞれ6.4%及び12.2%の魅力的なEQE、並びに3,000時間を超えるかなり立派な作動半減期を備えた、これらのロジウム(III)錯体に基づいた効率的な溶液加工によるOLED及び真空蒸着によるOLEDが実現されている。この研究は、OLEDにおけるロジウム(III)錯体の応用研究を初めて示し、OLED材料の開発を多様化し、蛍光体として利用されるロジウム金属でPGMのギャップを埋めるための新しい道を開く。自動車用の触媒によるコンバーター中での排気ガス中の窒素酸化物低減のための触媒におけるロジウムの主な用途とは別に、OLEDにおけるロジウムの別の潜在的な用途のブレークスルーが実証されている。発光色を調整し、EL性能をさらに向上させるために、シクロメタル化配位子並びに補助配位子の修飾が進行中である。
【0026】
[謝辞]
K.M.C.W.は、「Young Thousand Talents Program」賞及びthe Southern University of Science and Technologyによって運営されているスタートアップ基金を承認している。このプロジェクトは、National Natural Science Foundation of China(助成金番号21771099)及びShenzhen Technology and Innovation Committee(助成金番号JCYJ20170307110203786及びJCYJ20170817110721105)によっても支援されている。エレクトロルミネッセンス測定のための機器の使用と有益な議論について、Vivian Wing-Wah教授に感謝いたします。
【0027】
(参考文献)
図1(a)】
図1(b)】
図2(a)】
図2(b)】
図3
図4