IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エリプス テクノロジーズ,インク.の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-24
(45)【発行日】2024-06-03
(54)【発明の名称】外部調節デバイス
(51)【国際特許分類】
   A61F 2/48 20060101AFI20240527BHJP
   A61F 2/44 20060101ALI20240527BHJP
【FI】
A61F2/48
A61F2/44
【請求項の数】 16
(21)【出願番号】P 2021546315
(86)(22)【出願日】2020-02-07
(65)【公表番号】
(43)【公表日】2022-03-24
(86)【国際出願番号】 US2020017338
(87)【国際公開番号】W WO2020163800
(87)【国際公開日】2020-08-13
【審査請求日】2023-02-06
(31)【優先権主張番号】62/802,961
(32)【優先日】2019-02-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】510116244
【氏名又は名称】ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】チェン,シャンバオ
(72)【発明者】
【氏名】ヴァン ズイデン,エヴァーレット
(72)【発明者】
【氏名】ビルガー,ルーク
【審査官】白土 博之
(56)【参考文献】
【文献】米国特許出願公開第2015/0272471(US,A1)
【文献】特表2011-502003(JP,A)
【文献】特表2017-518790(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61F 2/48
A61B 17/56
(57)【特許請求の範囲】
【請求項1】
インプラントを非侵襲的に調節するための外部調節デバイスであって、当該外部調節デバイスは、
コントローラ;
モータ;及び
前記モータに回転可能に結合された少なくとも1つの磁石;
を含み、
当該外部調節デバイスを調節可能なインプラントの近くに配置すると、前記少なくとも1つの磁石は、前記調節可能なインプラントの永久磁石と磁気的に結合し、前記モータの動作を介して前記永久磁石を回転させて前記調節可能なインプラントの寸法を調節するように構成され;且つ、
前記少なくとも1つの磁石が動くと、前記コントローラは、前記少なくとも1つの磁石と前記調節可能なインプラントの前記永久磁石との磁気結合状態を検出するように構成され;
前記コントローラは、前記モータの加速度を決定し、前記モータの加速度を用いて前記少なくとも1つの磁石と前記調節可能なインプラントの前記永久磁石とのストーリング状態を決定するように構成されている、外部調節デバイス。
【請求項2】
前記コントローラによって検出される前記磁気結合状態は、結合状態及び非結合状態のうちの一方である、請求項1に記載の外部調節デバイス。
【請求項3】
前記コントローラは、前記モータの回転速度を決定するように構成される、請求項1に記載の外部調節デバイス。
【請求項4】
前記少なくとも1つの磁石と前記調節可能なインプラントの前記永久磁石との結合状態を決定するのに、前記コントローラは、前記回転速度を使用する、請求項3に記載の外部調節デバイス。
【請求項5】
前記決定は、高速フーリエ変換(FFT)を使用して加速度アレイを変換することによって行われる、請求項に記載の外部調節デバイス。
【請求項6】
前記決定は、前記高速フーリエ変換(FFT)の第3高調波を観察することによって行われる、請求項に記載の外部調節デバイス。
【請求項7】
前記コントローラは、前記モータと無線で通信し、且つ前記モータを制御するように構成されている、請求項1に記載の外部調節デバイス。
【請求項8】
前記コントローラはスマートフォンを含む、請求項1に記載の外部調節デバイス。
【請求項9】
パワーストレージデバイスをさらに含む、請求項1に記載の外部調節デバイス。
【請求項10】
前記パワーストレージデバイスはバッテリである、請求項に記載の外部調節デバイス。
【請求項11】
メモリを含む、請求項1に記載の外部調節デバイス。
【請求項12】
情報をユーザに伝達するように構成されたディスプレイを含む、請求項1に記載の外部調節デバイス。
【請求項13】
前記ユーザに伝達される前記情報は、前記少なくとも1つの磁石と前記調節可能なインプラントの前記永久磁石との磁気結合状態を含む、請求項12に記載の外部調節デバイス。
【請求項14】
前記ユーザに伝達される前記情報は、前記調節可能なインプラントの寸法及び前記調節可能なインプラントにかかる力のうちの少なくとも1つの変化の量を含む、請求項12に記載の外部調節デバイス。
【請求項15】
前記ユーザに伝達される前記情報は、前記少なくとも1つの磁石及び前記調節可能なインプラントの前記永久磁石のうちの1つ又は複数の回転速度を含む、請求項12に記載の外部調節デバイス。
【請求項16】
前記コントローラは、前記モータを制御して、前記調節可能なインプラントの寸法が所定の限界を超えて変化するのを止するように構成される、請求項1に記載の外部調節デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
開示の分野
本開示は、一般に、医療デバイスの分野、より具体的には、調節可能なインプラントを調節するための外部調節デバイスに関する。
【背景技術】
【0002】
バックグラウンド
骨格系のさまざまな障害を治療するために、非侵襲的に調節可能なインプラントが提供されている。ただし、これらのデバイスから外部リモコンへのフィードバックは制限されている。調節可能なインプラントの調節指示は、多くの場合一方向であり、それぞれのリモコンは、調節可能なインプラントによって達成された実際の調節に関するフィードバックを受け取らない。そのため、ユーザは、期待される調節が実際に適用されているかどうかわからないことがよくある。
【発明の概要】
【発明が解決しようとする課題】
【0003】
概要
例示的な一実施形態では、インプラントを非侵襲的に調節するための外部調節デバイスは、回転磁場を生成するように構成された磁気要素;及び前記磁気要素を駆動して回転磁場を生成するように構成され、且つ調節可能なインプラントの永久磁石を回転させるように構成されたドライバ;を包含する。
【課題を解決するための手段】
【0004】
別の例示的な実施形態、インプラントを非侵襲的に調節するための外部調節デバイスでは、当該外部調節デバイスは、コントローラ;モータ;及び前記モータに回転可能に結合された少なくとも1つの磁石;を包含し、;ここで、当該外部調節デバイスを調節可能なインプラントの近くに配置すると、前記少なくとも1つの磁石は、前記調節可能なインプラントの永久磁石と磁気的に結合するように構成され;且つ、ここで、前記少なくとも1つの磁石が動くと、前記コントローラは、前記少なくとも1つの磁石と前記調節可能なインプラントの前記永久磁石との磁気結合状態を検出するように構成される。
【0005】
別の例示的な実施形態、インプラントを非侵襲的に調節するための外部調節デバイスでは、当該外部調節デバイスは、コントローラ;モータ;及び前記モータに回転可能に結合された少なくとも1つの磁石;を包含し、;ここで、当該外部調節デバイスを調節可能なインプラントの近くに配置すると、前記少なくとも1つの磁石は、前記調節可能なインプラントの永久磁石と磁気的に結合するように構成され;且つ、ここで、前記少なくとも1つの磁石が動くと、前記コントローラは、前記少なくとも1つの磁石と前記調節可能なインプラント内に配置された磁石との磁気結合状態を決定するように構成される。
【0006】
インプラントを調節するための1つの方法によれば、当該方法は、以下のステップ: 整可能なインプラントの近くに外部調節デバイスを位置決めするステップ;前記外部調節デバイスの少なくとも1つの磁石を前記調節可能なインプラントの永久磁石と結合するステップ;前記外部調節デバイスの前記少なくとも1つの磁石を回転させることによって変化する磁場を生成するステップ;前記外部調節デバイスの前記少なくとも1つの磁石の回転速度を監視して、前記調節可能なインプラントの前記永久磁石との前記少なくとも1つの磁石の磁気結合状態を決定するステップ;を含む。
【0007】
例示的な実施形態によれば、外部調節デバイスの特性プロファイルを取得するための方法は、以下のステップ: 前記外部調節デバイスの磁石を回転させるステップ;前記磁石の回転中に加速度アレイを測定するステップ;前記加速度アレイの加速度ピークステップ(m);前記加速度アレイを中央のピークにシフトするステップ;測定されたすべての加速度アレイを平均するステップ;平均化されたアレイを前記外部調節デバイスの特性プロファイルとして保存するステップ;を包含する。
【0008】
例示的な実施形態では、外部調節デバイスの磁石と調節可能なインプラントの永久磁石との結合状態を決定するための方法は、以下のステップ: 前記外部調節デバイスの磁石を回転させるステップ;前記磁石の回転中に加速度アレイを測定するステップ;前記加速度アレイの加速度ピークを決定するステップ;前記加速度アレイを中央のピークにシフトするステップ;測定されたすべての加速度アレイを平均するステップ;テストアレイを取得するために、前記外部調節デバイスの特性プロファイルから平均化されたアレイを差し引くステップ;及び前記テストアレイのピークツーピーク振幅をしきい値と比較するステップであり、ここで、前記テストアレイのピークツーピーク振幅が前記しきい値よりも大きい場合、結合状態が決定され;且つここで、前記テストアレイのピークツーピーク振幅が前記しきい値よりも小さい場合、非結合状態が決定される、ステップ;を包含する。
【0009】
例示的な実施形態では、外部調節デバイスを使用して調節可能なインプラントの永久磁石のストールド(stalled)状態を決定するための方法は、以下のステップ: 前記外部調節デバイスの磁石を回転させるステップ;前記磁石の回転中に加速度アレイを測定するステップ;前記加速度アレイの加速度ピークを決定するステップ;前記加速度アレイを中央のピークにシフトするステップ;測定されたすべての加速度アレイを平均するステップ;テストアレイを取得するために、前記外部調節デバイスの特性プロファイルから平均化されたアレイを差し引くステップ;前記テストアレイの高速フーリエ変換(FFT)分析を実行するステップ;及び前記FFTの第3高調波を観察するステップであり、ここで、第3高調波は、しきい値を表す及びしきい値を超える(present and above a threshold value)、のうちの1つ以上である場合、ストールド状態が決定され、且つここで、しきい値が欠落する及びしきい値を下回る(missing and below a threshold value)、のうちの1つ以上である場合、ストールド状態は検出されず、前記磁石が結合されるステップ;を包含する。
【0010】
図面の簡単な説明
これら及び他の特徴は、添付の図面を検討することにより、当業者によってさらに理解されるであろう。
【図面の簡単な説明】
【0011】
図1図1は脊柱側弯症の人の脊椎を示す。
図2図2は、脊柱側弯症の脊椎のコブ(Cobb)角を示す。
図3図3は、患者の脊椎に取り付けられた永久磁石を有する第1の例示的な調節可能なインプラントを示す。
図4図4は、患者の骨に取り付けられた永久磁石を有する第2の例示的な調節可能なインプラントを示す。
図5図5は、第1の実施形態による外部調節デバイスの斜視図を示す。
図6図6は、第1の実施形態による外部調節デバイスの側面図を示す。
図7図7は、第1の実施形態による外部調節デバイスの正面図を示す。
図8図8は、第1の実施形態による外部調節デバイスの底面図を示す。
図9図9は、第1の実施形態による外部調節デバイスの断面側面図を示す。
図10図10は、内部モータ速度センサを有するモータを包含する磁石ドライブシステムの断面図を示す。
図11A図11Aは、調節可能なインプラントの永久磁石に磁気的に結合された外部調節デバイスの磁石を示す。
図11B図11Bは、調節可能なインプラントの永久磁石に磁気的に結合された外部調節デバイスの磁石を示す。
図12図12は、モータ制御及びエンコーダ検出信号通信の概略図を示す。
図13図13は、モータの回転速度のプロットを示し、且つモータによって観測された角速度(RPM)の2つの最大値と2つの最小値を示す。
図14A図14Aは、時間(time)に対するモータの回転速度を追跡するグラフを示す。
図14B図14Bは、時間(time)に対する磁石の結合状態を追跡するグラフを示す。
図15A図15Aは、非同心の回転軸を有する時計回り方向に回転するように駆動される外部調節デバイスの磁石を示す。
図15B図15Bは、非同心回転軸を有する時計回り方向に回転するように駆動される外部調節デバイスの磁石を示す。
図16A図16Aは、外部調節デバイスの磁石の単一の回転について、ティックツーティック(tick to tick)プロットされた加速度のプロットを示している。
図16B図16Bは、磁石の複数の回転のプロットを示し、且つ回転から回転までの(from rotation to rotation)外部調節デバイス内の変動性を示す。
図17図17は、外部調節デバイスの特性プロファイルを取得するための方法のフローチャートを示す。
図18図18は、調節可能なインプラントの永久磁石を備えた外部調節デバイスの磁石の結合状態決定の方法のフローチャートを示す。
図19A図19Aは、90ティックとしてプロットされた、360度の回転中に磁石によって観察された加速度のプロットを示す。
図19B図19Bは、結合された波形を周波数領域に変換して、結合された状態とストール状態(stall condition)とを区別する高速フーリエ変換(FFT)分析を示す。
図19C図19Cは、失速した(stalled)波形を周波数領域に変換して、結合状態とストール状態とを区別する高速フーリエ変換(FFT)分析を示す。
図19D図19Dは、強く結合された状態に対応する波形を周波数領域に変換して、結合された状態とストール状態とを区別する高速フーリエ変換(FFT)分析を示す。
図19E図19Eは、弱く結合された状態に対応する波形を周波数領域に変換して、結合された状態とストール状態とを区別する高速フーリエ変換(FFT)分析を示す。
図19F図19Fは、ストールド状態(stalled condition)に対応する波形を周波数領域に変換して、結合状態とストール状態(stall condition)とを区別する高速フーリエ変換(FFT)分析を示している。
図20図20は、外部調節デバイスの磁石及び調節可能なインプラントの永久磁石について、ストールド状態(stalled state)を決定する方法のフローチャートを示す。
図21A図21Aは、第1の実施形態によるGUIのロック(LOCK)画面を示す。
図21B図21Bは、第1の実施形態によるGUIの患者概要(PATIENT SUMMARY)画面を示す。
図21C図21Cは、第1の実施形態によるGUIのセッション進行中(SESSION IN PROGRESS)画面を示す
図21D図21Dは、第1の実施形態によるGUIのRX選択(RX SELECTION)画面を示している。
【発明を実施するための形態】
【0012】
詳細な説明
限定ではなく説明の目的で、特定の好ましい実施形態の詳細及び説明は、当業者が本発明を作成及び使用することを可能にすることができるように、以下に提供される。これらの詳細及び説明は、特定の好ましい実施形態を代表するものにすぎず、明示的に説明されない無数の他の実施形態は、本明細書を徹底的に検討することにより、当技術分野の技術を有する者によって容易に理解される。したがって、本開示のレビューアは、特許請求の範囲によって本発明の範囲を解釈すべきであり、そのような範囲は、本明細書に記載及び図示された実施形態によって限定されないものとする。
【0013】
一般的な実施形態では、外部調節デバイスは、調節可能なインプラントと連絡している。外部調節デバイスは、調節可能なインプラントに関連するアクチュエータと通信するコントローラを包含し得る。外部調節デバイスはまた、調節可能なインプラントから、又は調節可能なインプラントについての情報を受信するように構成された少なくとも1つのセンサを包含し得る。外部調節はさらに電源(power source)が包含する。一態様によれば、外部調節デバイスは、ディスプレイを包含し得る。別の態様によれば、コントローラは、外部調節デバイスから取り外し可能であり得る。
【0014】
いくつかの実施形態では、外部調節デバイスは、回転磁場を生成するように構成された磁気要素、及び前記磁気要素を駆動して前記回転磁場を生成するように構成され、且つ調節可能なインプラントの永久磁石を回転させるように構成されたドライバを包含し得る。
【0015】
いくつかの実施形態では、前記磁気要素は磁石を包含し得、且つ、前記ドライバは、前記磁石を回転させるように構成され、且つ前記回転磁場を生成するように構成されたアクチュエータを包含し得る。
【0016】
いくつかの実施形態では、磁気要素は回転可能な磁石を包含する。磁気要素は、テーパードプロファイルを有する磁石駆動シャフトに固定されたテーパードプロファイルを有する中空の回転可能な磁石を包含し得る。中空の回転可能な磁石は、キャップによって磁石駆動シャフトに固定することができる。
【0017】
ドライバは、回転磁場を生成するために磁気要素を回転させるように構成されたモータを包含し得る。例えば、モータは電気モータであり得る。
【0018】
コントローラは、外部調節デバイスのハウジングに取り外し可能に取り付けられるように構成することができる。コントローラは、ハンドヘルド電子デバイスを包含し得る。例えば、コントローラはスマートフォンであり得る。
【0019】
外部調節デバイスは、パワーストレージデバイスを含み得る。例えば、充電式バッテリ及びコンデンサのうちの1つ又は複数。請求項1について、ドライバの回転速度及び磁気要素の回転速度のうちの1つ又は複数を監視するように構成された回転速度センサをさらに含む。
【0020】
いくつかの実施形態では、コントローラは、調節可能なインプラントの永久磁石の磁気結合状態及びストール状態(stall state)のうちの1つ又は複数を決定するように構成され得る。決定は、高速フーリエ変換(FFT)を使用して加速度アレイを変換すること、及び前記高速フーリエ変換(FFT)の第3高調波を観察することを包含し得る。
【0021】
当業者によって容易に理解される一般的な定義に加えて、本明細書で使用されるように、
高速フーリエ変換(FFT)は、シーケンスの離散フーリエ変換(DFT)又はその逆(IDFT)を計算するアルゴリズムと見なすことができる。フーリエ解析は、信号を元のドメイン(多くの場合時間又は空間)から周波数ドメインの表現に、又はその逆に変換する。
【0022】
図1は、脊柱側弯症の患者100の図を示している。患者100は、ヒト又はいずれの哺乳動物を包含し得る。脊椎曲線の凹状部分102は、患者100の左側104に見ることができ、そして、凸状部分106は、患者100の右側108に見ることができる。いくらかの患者では、凹状部分102は、患者100の右側108に現れ得るが、凸状部分106は、患者の左側104に見出され得る。さらに、図1に見られるように、背骨110のいくらかの回転が存在し、左肩112と右肩114との間に不均一性が見られる。
【0023】
図2は、脊柱側弯症の患者の脊椎110のコブ角116を示している。コブ角度を決定するために、線118及び120がそれぞれ椎骨122及び124から引かれる。交差する垂直線126及び128は、線118及び120から90°の角度130及び132を作成することによって描画される。垂線126と128の交差から生じる角度116は、コブ角度として定義される。完全に真っ直ぐな脊椎では、この角度は0°である。
【0024】
図3は、一実施形態による脊柱側弯症を治療するための調製可能なインプラント200を示している。調節可能なインプラント200は、その上端202及び下端204で患者の脊椎500に固定されている。脊椎500の図示の例は、典型的には脊柱側弯症の曲線、例えば、青年期の特発性脊柱側弯症の患者の曲線、を包含する特定の胸椎及び腰椎を包含する。T3からT12の胸椎、それぞれ503、504、505、506、507、508、509、510、511、512、及びL1からL3の椎骨513、514、515は、重度の脊柱側弯症状態ではなく、移植手順中に部分的又は完全に真っ直ぐにされた適度な曲線を表す、ごくわずかな残留曲線で図3に示されている。
【0025】
各椎骨は、そのサイズと形状が他の椎骨とは異なり、ここで、上部の椎骨は一般的に下部の椎骨よりも小さい。しかし、一般的に、椎骨は同様の構造を持っており、且つ、椎体516、棘突起518、520、椎弓板526、横突起521、522、及び椎弓根524を包含する。
【0026】
この実施形態では、調節可能なインプラント200は、結合された調節可能な部分208を介して(縦方向に)調節可能な伸延(distraction)ロッド206を包含する。伸延デバイスは、伸延ロッド206の上端202にあるクランプ600を介して脊椎500に固定されている。図3では、クランプ600は、T4椎骨504の横突起521の周りに固定されている。あるいは、クランプ600は、隣接する肋骨(図示せず)又は肋骨窩の周りに固定され得る。さらに別の代替案では、クランプは、層状及び椎弓根フックシステム、又は椎弓根スクリューシステムに置き換えることができる。例示的な椎弓根フックシステム又は椎弓根スクリューシステムは、米国特許出願第12/121,355号及び第12/250,442号、これらは、本明細書に完全に記載されているかのように参照により組み込まれる、に見出すことができる。
【0027】
図3に戻って参照すると、調節可能なインプラント200は、コネクティングロッド532及び2つのつま先クランプ538、540を含む椎弓根スクリューシステム531で脊椎500に固定されているように示されている。次に、コネクティングロッド532は、調節可能部分208とインターフェースする。調節可能なインプラント200の調節可能な部分208は、内部磁石の回転方向に応じて、調節可能な部分208を使用して伸延ロッド206を伸長又は収縮させる親ねじを駆動するように構成された永久磁石262を有する磁気アセンブリ210(破線で示されている)を包含する。例えば、伸延ロッド206の延長は、脊椎500に伸延力を与えるであろう。伸延ロッド206を引っ込めると、例えば、伸延力が高すぎると痛み又は合併症を引き起こす場合、脊椎500に対する伸延力が低下又は除去される。脊椎又は骨を、例えば脊椎の前部又は曲線の凸部で圧縮するためにデバイスを使用することが望ましい場合さえある。いくつかの実施形態では、調節可能なインプラントは、伸延デバイスを含み得る。伸延デバイスで使用するための様々な磁気アセンブリ210の例は、米国特許出願第12/121,355号及び第12/250,442号に見出すことができる。
【0028】
さらに図3を参照すると、固定ねじ(locking screw)534を緩めて、コネクティングロッド532の角度を所望の方向に調節することができ、次に、固定ねじ534を締めて、つま先クランプ538が、それ以上回転することなく、コネクティングロッド532を所定の位置にしっかりと保持することができる。第2のつま先クランプ540は、固定ねじ536を締めることによって、同じ方法で調整される。脊柱側弯症の脊椎も回転するため(AIS患者では通常、中央部分が右に回転する)、ここに提示された非融合の実施形態は、調節可能なインプラント200の中央部分に固定がないので、脊椎500の減捻(de-rotation)が自然に起こることを可能にする。
【0029】
この減捻をさらに容易にするために、調節可能なインプラント200は、その端部で自由回転を可能にし得る。例えば、調節可能部分208は、関節ジョイントを介してコネクティングロッド532に結合することができる。米国特許出願第12/121,355号及び第12/250,442号は、調整可能部分108をコネクティングロッド532などに結合するために利用され得る、様々な関節インターフェース及びジョイントを記載している。
【0030】
伸延ロッド206は、通常の矢状脊椎の典型的な形状で事前に湾曲している可能性があることに留意されたい。しかしながら、本明細書に記載の非融合実施形態では、調節可能なインプラント200は、脊椎と同一平面ではなく、むしろ皮下又は筋膜下のいずれかに配置され、したがって、背筋の下にはないため、曲線が標準的な脊柱側弯症固定(fusion)器具とわずかに異なる場合があることにも注意する必要がある。筋肉の下に配置されるように設計された調節可能なインプラント200の唯一の部分は、クランプ600及びクランプ600に直接隣接する伸延ロッド206の部分、椎弓根スクリューシステム531及びコネクティングロッド532である。したがって、図3は、調節可能なインプラント200に関連するハードウェアの大部分が筋肉の上に配置される実施形態を示している。しかしながら、代替の構成では、移植可能な実施形態全体の他のいずれの部分が、筋肉の下(すなわち、筋肉下)に配置され得ることを理解されたい。現在の融合手術と比較して、手術中に解剖する必要のある筋肉の量がはるかに少ないことを理解されたい。これにより、手順が大幅に短縮され、失血が大幅に減少し、回復が大幅に短縮され、入院時間が短縮され、感染のリスクが軽減される。さらに、要求の厳しいインプラント条件での耐久性を高めるために、コネクティングロッド532の「J」曲線、又はコネクティングロッド532で、いずれの最大応力点にオプションのフランジ又はリブを備えた他のいずれの曲線を作成することが望ましい場合がある。
【0031】
図4は、代替の実施形態による調整可能なインプラント200を示しており、これは、近位固定部材276及び遠位固定部材278によって近位部分258及び遠位部分260を有する骨256に取り付けられた骨成長装置を包含する。固定部材276、278は、ねじ、クランプ、さらには接着剤を包含する、デバイスを骨に取り付けることが知られているいずれの数の固定デバイス又は方法を使用して、動作することができる。骨折の場合、骨折部位274が示されているが、この骨折は、いくつかの用途において常に存在するとは限らないことに留意されたい。図4に見られるように、調節可能なインプラント200は、外部から加えられた磁場に応答してその軸を中心に回転するように構成された永久磁石262を包含する磁気アセンブリ210を包含する。永久磁石262の回転は、遊星歯車セット266の回転をもたらす。オプションのスリップクラッチ264は、永久磁石262と遊星歯車セット266との間に配置されるものとして示されているが、スリップクラッチ264は、駆動伝達に沿った他のいずれの位置に配置することができる。遊星歯車セット266を第1の方向(例えば、構成に応じて時計回り又は反時計回り)に回転させると、親ねじ268がめねじ270内で回転し、骨256の伸延(例えば、伸長)を引き起こす。骨成長伸延デバイス272は、単一の操作で埋め込まれ得る。その後の調整は非侵襲的に行われ、且つ必要に応じて、骨の成長を正確に制御するために頻繁に行うことができる。骨伸延の典型的な毎日の調節は1mmである。本明細書に記載の外部調節デバイス700などの調節デバイスを使用して、永久磁石262を回転させることができる。本明細書に記載のタイプの外部調節デバイス700を使用して、その磁気アセンブリ210への磁気結合によって、図3に示される調節可能なインプラント200を伸延及び収縮させることもできる。永久磁石262は、例えば、円筒形磁石を包含し得る。
【0032】
当業者が理解できるように、調節可能なインプラントの特定の例示された実施形態が本明細書に含まれているが、それは企図され、且つこの開示は、例えば、調節可能な髄内釘を包含する、外部調節デバイスによって調節されるように構成されたすべての既知の調節可能なインプラントを包含することを意図している。
【0033】
図5は、調節可能なインプラントを調節するための例示的な外部調節デバイス400の斜視図を示している。外部調節デバイス400は、ハンドル402及びディスプレイ403を有するハウジング401を包含し得る。いくつかの実施形態では、ディスプレイ403は、外部調節400のハウジング401と統合され得る。図示の実施形態では、外部調節デバイス400は、ディスプレイ403を有する取り外し可能なコントローラ410を受け入れるように構成され、ここで、ディスプレイ403は、取り外し可能なコントローラ410の不可欠な部分である。
【0034】
例示的な実施形態によれば、コントローラ410は、ハンドヘルド電子デバイスであり得る。ハンドヘルド電子デバイスは、例えば、スマートフォン、タブレット、及び他のいずれの既知のハンドヘルド電子デバイスであり得る。ハンドヘルド電子デバイスは、ディスプレイ及び/又は1つ又は複数の無線通信プロトコル(例えば、WiーFi又はBluetooth(登録商標))を包含し得、それらに操作可能に接続され得る。ディスプレイ403が、使用中にユーザと情報を通信し、ユーザから指示を受け取ることができるように、ハンドヘルド電子デバイスのディスプレイは、外部調節デバイス400の上面に隣接して配置することができる。
【0035】
例えば、いくつかの実施形態では、ディスプレイ403は、グラフィカルユーザインターフェース(GUI)をユーザに提示することができる。ディスプレイ403は、例えば、静電容量式タッチスクリーン技術を包含する、タッチスクリーン又はタッチスクリーン技術のうちの1つ又は複数を包含し得る。GUIは、治療レジメンに対応し得る調節指示をユーザに伝達して、治療レジメンに従って調節可能なインプラントを調節する際にユーザを案内することができる。さらに、GUIは、外部調節デバイス400を起動及び制御するように構成された1つ又は複数のタッチスクリーンデジタルボタンを包含し得る。
【0036】
図6は、第1の実施形態による外部調節デバイス400の側面図を示す。ハンドル403は、ハウジング401から上方に延在するように示されている。図7は、外部調節デバイス400の正面図を示しており、外部調節デバイス400は、電源入力422及びデータ接続ポート412を包含する。さらに、ハウジング140の底面は、患者の体に形成されるように、且つ調節可能なインプラントの磁石440と永久磁石262との間の距離(GAP)を最小化するように構成された湾曲を包含することが示されている。電源入力422は、AC電源を取り外し可能に受け取るように構成され得る。データ接続ポート412は、データ通信ケーブルを取り外し可能に受け取るように構成され得る。データ通信ケーブルは、コントローラ410ソフトウェアを更新する及びコントローラ410からデータをダウンロードするのうちの1つ又は複数に対して、外部調節デバイス400を三次デバイスに接続するように構成することができる。
【0037】
図8は、外部調節デバイス400の底面図を示し、ハウジング140の底面は、患者の体に形成されるように、磁石440と調節可能なインプラントの永久磁石262との間の距離(GAP)を最小化するように構成された湾曲を含むように示されている。
【0038】
図9は、第1の実施形態による外部調節デバイス400の断面側面図を示している。ハウジング401、コントローラ410、内部パワーストレージデバイス420、モータ430、及び少なくとも1つの磁石440を包含する含む外部調節デバイス400が示されている。
【0039】
内部パワーストレージデバイス420及びコントローラ440の無線通信機能は、外部調節デバイス400の無線操作を提供することができる。内部パワーストレージデバイス420は、動作中のパワーコード(power chord)の必要性を打ち消すことができる。コントローラ410は、かさばる外部制御モジュールの必要性を打ち消す低電圧制御システムを提供することができる。そして、無線通信機能、例えばRF、WiーFi Bluetooth(登録商標)のうちの1つ又は複数は、外部調節デバイス400及びコントローラ410をリモート操作することを可能にし得る。リモート操作は、同じ部屋にある1つ又は複数の3次デバイスによって、及びインターネットを介して、地球の反対側にある3次デバイスによって実現できる。
【0040】
いくつかの実施形態では、コントローラ410は、外部調整デバイス400のハウジング401内に配置された制御ボードであり得る。いくつかの実施形態では、コントローラ410は、外部調節デバイス400のハウジング401内に配置された制御ボードであり得る。ディスプレイ403は、例えば、LED、LDC、OLED、ならびにいずれの他の既知のディスプレイ及びタッチスクリーン技術を包含する、いずれのタイプのディスプレイ403を包含し得る。制御インターフェースボード411は、外部調節デバイス400と1つ又は複数の三次デバイスとの間の通信を可能にする、1つ又は複数の通信回路、例えば、1つ又は複数のWiーFi、セルラーネットワーク、又はBluetooth(登録商標)を包含するか、又はそれらと通信することができる。
【0041】
図9では、コントローラ410は、少なくとも1つの相互接続によってコントローラインターフェースボード411に操作可能に接続されて示されている。いくつかの実施形態では、この接続は、図示のように物理的接続を介して確立することができ、且ついくつかの実施形態では、無線接続、例えば、Bluetooth(登録商標)を介して確立することができる。制御インターフェースボード411は、パワーインターフェースボード421、パワーストレージデバイス420、及びアクチュエータ430のうちの1つ又は複数にさらに接続され得る。
【0042】
コントローラ410は、滅菌フィールドの外側からのユーザによる外部調節デバイス400のリモート操作を可能にする3次デバイスによってリモートアクセス可能及びリモート制御可能であり得る。
【0043】
内部パワーストレージデバイス420を包含する外部調節デバイス400も示されている。パワーストレージデバイス420は、バッテリ、コンデンサ、及び当技術分野で知られ使用されている他のいずれのパワーストレージデバイスを包含することができる。パワーストレージデバイスは再充電可能であり得、外部調節デバイス400は、外部電源を使用してパワーストレージデバイス420を再充電するように構成された再充電回路を包含し得る。外部電源、例えばパワーサプライは、パワーサプライ入力を介してパワーストレージデバイスの再充電回路に動作可能に接続され得る。パワーストレージデバイス420、及び/又は再充電回路の少なくとも一部は、外部調節デバイス400の表面に隣接して配置され得、外部調節デバイス400へのパワーサプライ充電ケーブルの接続を可能にする。いくつかの実施形態では、再充電回路は、電力を無線で転送するための誘導を使用して、内部パワーストレージデバイス420の無線充電を可能にすることができる。いくつかの実施形態では、再充電回路は、分電盤421及びパワーストレージデバイス400のうちの1つ又は複数の一部であり、それらに接続され得る。
【0044】
図示の実施形態では、パワーストレージデバイス420はバッテリである。バッテリ420は、外部調節デバイス400の表面に隣接して、外部調節デバイス400のシャーシに取り付けられ、パワーサプライ入力422で外部調節デバイス400にパワーサプライを接続することを可能にする。バッテリ420は、モータ430とインターフェースして電力を通信するように構成されたパワーインターフェースボード421を包含する。パワーインターフェースボード421は、モータ430及び制御インターフェースボード411のうちの1つ又は複数に動作可能に結合され得る。パワーインターフェースボード421はまた、パワーサプライ入力422及びパワーストレージデバイス420のうちの1つ又は複数からの電気エネルギーをコントローラ410に伝達することができる。
【0045】
外部調節デバイス400のアクチュエータは、電子(electronic)モータ430を包含する。外部調節デバイス400のドライバは、電子モータ430に回転可能に結合された磁石440を包含する。モータ430は、コントローラ410、制御インターフェースボード411、パワーインターフェースボード421、及び内部パワーストレージデバイス420のうちの1つ又は複数に動作可能に接続され得る。図示の実施形態では、電子モータ430は、パワーストレージデバイスインターフェースボード421によって内部パワーストレージデバイス420に動作可能に接続されている。パワーインターフェースボード421は、パワーサプライ入力422及び内部パワーストレージデバイス420のうちの1つ又は複数から電子モータ430に電気エネルギーを通信するための電力分配回路を包含し得る。パワーインターフェースボード421はまた、制御インターフェースボード411に動作可能に接続されて、制御情報をコントローラ410からモータ430に中継することができる。いくつかの実施形態では、コントローラ410は、モータ430と直接通信することができ、いくつかの実施形態では、コントローラ410は、無線接続、例えば、Bluetooth(登録商標)接続を介して電子モータに接続され得る。
【0046】
モータ430は、磁石440を回転させることができるいずれのタイプのモータを包含し得る。モータ430は電気モータであり、回転速度センサ432を包含し得る。制御インターフェースボード411及びコントローラ410のうちの1つ又は複数に接続され、それらと通信している回転速度センサ432。いくつかの実施形態では、内部速度センサ432は、例えば、1つ又は複数のエンコーダ及び電子モータのデジタル出力を包含し得る。いくつかの実施形態では、モータ430は、回転速度データをコントローラ410に無線で通信するように構成される。
【0047】
図10は、第1の実施形態による、外部調節デバイス400のモータ430及び磁石440の拡大断面図を示している。磁石440は、1つ又は複数の結合部431によってモータ430に回転可能に結合されて示されている。図示の実施形態では、磁石440は、内面442を有し、テーパードプロファイルを有する内部空洞441を含む。テーパードプロファイルを有する磁石接触面434を包含する磁石駆動シャフト433が示されている。磁石駆動シャフト433のテーパードプロファイルは、磁石440の内面442のテーパードプロファイルと連絡するように構成される。これにより、磁石440を摩擦嵌合によって磁石駆動シャフト433に固定することが可能になり、磁石440は、キャップ435及び連絡するテーパードプロファイルによって磁石駆動シャフト433上に保持されるように構成されている。いくつかの実施形態では、磁石440は、接着剤材料を使用して磁石駆動シャフト433に取り付けられ得る。
【0048】
磁石440は、放射状に分極された円筒形磁石、永久磁石、電磁石、及び当技術分野で知られ使用されている他のいずれの磁気要素を包含するいずれの磁気要素を含み得る。磁石440は、調節可能なインプラントの永久磁石262と磁気的に結合するように、並びに永久磁石262を回転させるように、及び調節可能なインプラント200を調節するように構成される。磁石440が回転すると、回転磁場が生成され、調節可能なインプラント200の磁気的に結合された永久磁石262に力を加え、それによって永久磁石262の回転とそれに続く調節可能なインプラント200の調節を誘発する。
【0049】
いくつかの実施形態では、外部調節デバイス400は、磁石440の回転速度を監視するように構成された1つ又は複数のセンサを包含する。いくつかの実施形態では、センサは、磁気センサ、例えば、ハウジング140、プレート、及びシャーシのうちの1つ又は複数に配置されたホール効果センサを包含し、且つ磁石440に隣接して配置することができる。いくつかの実施形態では、センサは、光センサを包含する。磁石は、光センサと連動して機能する1つ又は複数の円形光学エンコーダストリップを包含し得る。米国特許出願第14/932,904号は、非侵襲的に調整可能なインプラントによって生成される力を非侵襲的に検出するための様々なシステム及び方法を記載している。その全内容は、参照により本明細書に組み込まれる。
【0050】
図示の実施形態では、外部調節デバイス400は、モータ角速度(V)の変化を検出するように構成された1つ又は複数の回転速度センサ432を有するモータ430を包含し、そしてそれにより、以下に記載されるように、調節可能なインプラント200の永久磁石262の回転を非侵襲的に検出する。モータ430は、ERC磁石の近くに配置された、又は磁石440に磁気的に結合されたインプラント又は鉄材料がない場合に、モータ回転及び対応する磁石440の回転中のモータ角速度(V)のわずかな変動を可能にするトルク特性を有する。
【0051】
永久磁石262を有する調節可能なインプラント200が回転磁石440に近接しており、及び例えば、磁石440に磁気的に結合されている場合、両方の磁石の磁極は、モータ430に1回転あたり2回変化する負荷を引き起こす。これにより、磁石440は角速度を増加又は減少させ、その変動は回転速度センサ432によって検出可能である。
【0052】
図11Aでは、外部調節デバイス400の磁石440が、第1の時計回り方向に回転していることが示されている。ここで、インプラントの永久磁石262は、磁石440に磁気的に結合され、第2の反時計回り方向に回転していることが示されている。当業者が理解し得るように、モータ430が磁石440の回転を駆動するとき、磁石440及び永久磁石262のそれぞれの極は互いに引き付け合い、極が互いに向けられるときに回転を駆動するためにモータ430に低減された負荷をかける。比較すると、図11Bでは、モータ430が磁石440の回転を駆動し続けるので、磁石440及び永久磁石Mのそれぞれの極は、依然として互いに引き付け合い、極が互いに離れるように向けられるときに、モータ430に増加した負荷をかけて回転を駆動する。負荷のこれらの変化は、モータ430の回転速度センサ432によって検出され得る角速度の観察可能な変化をもたらす。
【0053】
回転速度センサ432は、磁石440の角速度に対応するモータ430の角速度を測定し、且つ角速度をコントローラ410に伝達する。いくつかの実施形態では、角速度は、モータ430から得られる直交エンコーダ信号によって検出され得る。エンコーダは、磁石440の回転のステップの「ティック(tick)」を表す電子パルス又は信号を提供する。この実施形態では、例えば、エンコーダは、磁石440の1回転あたり90「ティック」を送信するか、又は完全な360度の回転の4度のそれぞれに対して1つを送信することができる。1回転ごとに使用される「ティック」の数は、選択したいずれの数にすることができ、特定の測定に必要な解像度の量に依存する場合がある。コントローラ410及び制御インターフェースボード411のうちの1つ又は複数は、モータ430に制御回路ならびにエンコーダ信号の検出回路を提供することができ、且つ内部速度センサ432を包含することができる。
【0054】
図12は、角速度及びリモート磁石回転検出のためのモータ430制御信号及びエンコーダ413検出信号の図を示す。制御インターフェースボード411を包含し得るメインボードは、モータ430に命令を伝達し得る。エンコーダ432は、磁石440の回転のステップの「ティック」を表すパルスを返すことができる。n度ごとの「ティック」を表す返されたエンコーダ信号を使用して、角速度は、次の式を使用してrpmで計算できる。
【数1】
【0055】
ここで、tは1分間の秒数(60秒/分)に等しく、Rは、1回転あたりのティック数(この実施形態では90ティック/回転)に等しく、且つ、Tは、観測されたティック間の秒単位の時間(time)である。この等式を使用して、検出されたすべてのティックのティック間の時間差を使用して、計算された角速度を取得できる。
【0056】
図13は、永久磁石262に結合された磁石440を用いた1回転に対する磁石440の角速度の測定されたグラフを示している。上で議論したように、磁石の回転中の磁極に沿った負荷の変化に対応する、2つの観測された最大ピークと2つの観測された最小ピークがあることに注意されたい。
【0057】
モータ430の回転速度又は角速度が平均値にどれだけ緊密に拘束されているかを監視することにより、外部調節デバイス400の磁石440が調節可能なインプラント200の磁石262に磁気的に結合されているかどうかのバイナリ観察を得ることができる。
【0058】
磁石440は、調整可能なインプラント200の永久磁石262に結合され、且つ調節するとき、図14Aは、経時的にプロットされたモータ430の回転速度を測定するグラフを示す。
【0059】
第1に、磁気的に結合されていない状態では、モータ430の速度は、平均値にしっかりと拘束されたままである。磁気的に結合されていない状態では、外部調節デバイス400の磁石440は、モータ430によって供給されるトルクに応答して自由に回転し、且つ調節可能なインプラント200の結合された永久磁石262からの追加の影響を受けない。
【0060】
磁気結合状態では、調節可能なインプラント200の結合された永久磁石262からの追加の影響の結果として、モータ430の速度においてより大きな変動が観察される。
【0061】
したがって、外部調節デバイス400の磁石440の回転速度を測定することにより、図14Bに示されるように、磁石440が、調節可能なインプラントの永久磁石262と磁気的に結合された状態であるか、又は結合されていない状態であるかを決定することができる。この決定は、コントローラ410に伝達され、その後、ユーザに表示され得る。磁石440が治療中に調節可能なインプラント200の永久磁石262に結合されているという安心感を非侵襲的に前記ユーザに提供する。
【0062】
磁石440の回転速度を測定することにより、磁気結合状態;永久磁石262のストーリング;相対的なGAP推定;及び相対的な力の推定;のうちの1つ又は複数を検出することができる。
【0063】
GAPは、外部調節デバイス400の磁石440から調節可能なインプラント200の永久磁石262までの距離である。GAPは、調節可能なインプラント200の永久磁石262と磁気的に結合された状態にある外部調節デバイス400の磁石440の回転速度を測定することによって推定することができる。特定のユニットのGAPリファレンスは、最初に、例えば製造中に校正することができる。リファレンスを得るために、磁石の回転速度を既知のGAP距離で測定することができる。回転速度波形の振幅は、磁石440と永久磁石262との間の距離(GAP)の変化に応答して、それに比例して変化する。速度グラフの観測された振幅は、相対距離に比例して変化し、コントローラ410がGAP距離を推定することを可能にする。
【0064】
調節可能なインプラントによって加えられる力は、外部調節デバイス400の少なくとも1つの磁石440の回転速度を経時的に観察することによって推定することもできる。少なくとも1つの磁石440の回転速度を測定すること、及び同時にGAPを推定することによって、調節可能なインプラント200の永久磁石262に加えられる力の推定を推定することができる。
【0065】
いくつかの実施形態では、調節可能なインプラント200は、調節可能なインプラント200の永久磁石262によって送達される力の量を変更するように構成された1つ又は複数の遊星歯車セットを有し得る。特性は、外部調節デバイス400及びコントローラ410のうちの1つ又は複数にプログラムされ得るか、又は調節可能なインプラント200によってそれに伝達され得る。当業者が理解し得るように、この通信は、例えば、調節可能なインプラントのRFIDタグ、無線周波数通信、超音波通信、WiーFi接続、及び当技術分野で知られている他のいずれのタイプの通信を使用して達成することができる。
【0066】
ストーリング(Stalling)は、外部調節デバイス400の磁石440の回転に応答して、調節可能なインプラント200の永久磁石262が回転しないことである。調節可能なインプラント200の永久磁石262のストール状態を検出するために、磁石440の角速度の測定のより高い分解能が必要である。
【0067】
いくつかの実施形態では、これは、磁石の加速度(ΔV)を計算することによって達成することができる。例えば、最初のティックの角速度から最後のティックの角速度を引くと、瞬間加速度は、現在のティックに対して決定される場合がある。この減算プロセスは、磁石440の全回転を通して起こり得る。磁石の速度勾配が変化する可能性があるため、加速度ΔVが変化する可能性がある。これにより、回転中の速度の変化に関連する2つの最大ピーク並びに2つの最小ピークが提供される。磁石440の角速度が最大又は最小のピークにあるとき、速度勾配がゼロであるため、加速度は(軸で)ゼロになる。
【0068】
加速度を監視するためのセンシングの解像度が高いため、外部調節デバイス400内には、磁石440のすぐ近くにインプラントがなくても、磁石440の加速度を変化させる可能性のある変数が存在する。
【0069】
例えば、外部調節デバイス400が調節可能なインプラントの永久磁石262から切り離されているとき、外力は、図15A及び図15Bに示されるように、その回転軸Rに対する磁石440の回転における同心性の欠如によって引き起こされ得る。
【0070】
図15Aは、示されているように時計回り方向に回転するように駆動されている、外部調節デバイス400の磁石440を示している。当業者が理解し得るように、磁石440は、第1の軸Rの周りを回転するように構成される。第1の軸Rは、磁石440の質量の中心と同心ではないことに留意されたい。したがって、各回転で、重力は、各回転に増加した力を追加し、これは、結合された永久磁石262と同様に見える場合があり、これらの負荷の変化により、モータ430の内部速度センサ432によって検出することができる速度及び加速度の観察可能な変化がもたらされる。
【0071】
図15Aでは、モータ430が磁石440の回転を駆動し続けると、非同心回転軸は、重力から観察される大きなトルクをもたらし、回転を駆動するために最初にモータ430に減少した負荷をかける。図15Bに示されるように、磁石440がそのフル回転の底に達した後、モータ430は、回転を駆動し続けるためにモータ430への増加した負荷のために増加した負荷を見るであろう。
【0072】
磁石の回転中に磁石を加速及び減速させる可能性のある他の変数は、軸内の摩擦点、モーター機構内の摩擦点、回転中に互いに引き付け合い且つ反発する2つ以上の磁極を備えた2つ以上の磁石を有する外部調節デバイス、外部調節デバイス400の内部及び隣接して配置された他の鉄金属、を包含する。
【0073】
図16Aは、外部調節デバイス400の磁石440の単一の回転についてティックツーティックで取られた加速度のプロットを示している。図16Bは、磁石440の複数の回転のプロットを示し、且つ回転から回転への外部調節デバイス内の変動性を図示している。加速度の振幅の変動に注意されたい。位相シフトが発生する場合もある。
【0074】
加速/減速のプロファイルと特性は、ユニットごとに(from unit to unit)外部調節デバイスごとにユニークである場合がある。この理由は、製造方法、磁石ごとの同心度の変化に対する個々の適合性、及び上記の他の要因を包含する場合がある。
【0075】
例えば、完全に同心の磁石、摩擦のない駆動機構、動作中、外部調節デバイスの内部及び周囲に鉄金属がないことは、磁石440の駆動回転全体にわたって一定のゼロの理想的な加速/減速プロファイルを提供し得る。したがって、検出された加速/減速のいずれの変化も、調節可能なインプラント200の永久磁石262に関連し、ストール検出に必要な改善された検出性能ならびに深い感知範囲(大きなGAPにわたる測定)を可能にする。
【0076】
外部調節デバイス400に固有の望ましくない加速/減速特性を軽減する方法は提供され、且つ以下のステップ: 磁石440がインプラントの永久磁石から切り離されていることを確実にするステップ、外部調節デバイスの磁石が回転している間に加速/減速プロファイルを記録することにより、特性プロファイルを取得するステップ、を包含する。外部調節デバイスの固有の特性プロファイルが決定されると、それはメモリに保存される。
【0077】
特性評価プロファイルの波形は、外部調整デバイス間で(device to device)、また回転間で(rotation to rotation)異なるためである。いくつかのプロファイルサンプルは、回転ごとに90要素アレイにキャプチャされる場合がある。特性評価プロファイルアレイは、キャプチャされたすべての回転プロファイルアレイの各要素を平均することによって作成される。平均化する前に、各回転アレイの加速度ピークが検出される。各回転アレイから検出された各加速度ピークは、中心にシフトされる(要素45)。これにより、いずれの位相シフトがフィルタリングされる。すべてのアレイの各要素の平均が決定され、且つ外部調節デバイス400の特性プロファイルが保存される。
【0078】
図17は、外部調節デバイス400の特性評価プロファイルを取得するための方法の例示的なフローチャートを示している。当該方法は、以下のステップ:
外部調節デバイス400の近くにインプラント及び鉄材料がないことを確認するステップ、
外部調節デバイス400の磁石440を回転させるステップ、
磁石440の回転中に加速度アレイを測定するステップ、
加速度アレイの加速度ピークを決定するステップ、
加速度アレイを中央のピークにシフトするステップ、
キャプチャされたすべての加速度アレイを平均するステップ、及び
平均化されたアレイを外部調節デバイス400の特性プロファイルとして保存するステップ、
を包含する。いくつかの実施形態では、反時計回りの特性プロファイルが得られる。いくつかの実施形態では、時計回りの特性回転プロファイルが得られる。いくつかの実施形態では、両方のプロファイルを取得することができ、且つ一緒に平均化することができる。
【0079】
外部調節デバイス400は、保存された特性プロファイルを参照として使用して、使用中に観察された継承(inherit)及び場合によっては望ましくない磁石の加速/減速をフィルタリングする。外部調節デバイス400の磁石440が回転している間、アレイは、所定の回転数の間キャプチャされる。特性プロファイルを取得するステップと同様に、各アレイ加速度ピーク要素が検出され、アレイの中心にシフトされる。所定の数の回転アレイ内の各要素の平均が平均化され、平均回転アレイ波形がキャプチャされ、保存される。
【0080】
次に、平均化された回転アレイ波形を特性評価プロファイルと比較することができる。平均化された回転アレイから特性プロファイルを差し引くことにより、テストアレイを取得できる。
【0081】
外部調節デバイス400が、外部調節デバイス400の磁石440の近くにインプラントなしで切り離されている場合、平均回転アレイ波形は、特性評価プロファイルのようになる。これらのアレイを減算すると、すべての要素でテストアレイがゼロに近くなる。テストアレイは、小さいピーク振幅についてレビューされ、且つ所定のしきい値と比較される。テストアレイの波形のピークツーピーク振幅がしきい値を下回っている場合、外部調節デバイス400は、その使用中に非結合状態を検出した。
【0082】
外部調節デバイス400の磁石440が、磁石440に近接して調節可能なインプラント200の永久磁石262と結合されている場合、キャプチャされたアレイでは、測定可能な加速と減速が観察される。キャプチャされた結合アレイの波形振幅は、上記と同様に永久磁石262の近接によって引き起こされる磁石440のより大きな加速/減速のために、非結合アレイよりも著しく大きい。これらのより高い振幅の加速/減速アレイは、平均化され、より低い振幅の特性プロファイルから差し引かれ得る。これら2つのアレイを差し引くと、高振幅のテストアレイが生成される。このテストアレイは、非結合状態の検出に使用されるのと同じ所定のしきい値と比較される。テストアレイの波形のピークツーピーク振幅がしきい値よりも高い場合、外部調節デバイス400は、その使用中に結合状態を検出した。
【0083】
図18は、以下のステップ:
前記外部調節デバイスの磁石を回転させるステップ;
前記磁石の回転中に加速度アレイを測定するステップ;
前記加速度アレイの加速度ピークを決定するステップ;
前記加速度アレイを中央のピークにシフトするステップ;
キャプチャされたすべての加速度アレイを平均するステップ;
テストアレイを取得するために、前記外部調節デバイスの特性プロファイルから平均化されたアレイを差し引くステップ;及び
前記テストアレイのピークツーピーク振幅をしきい値と比較するステップであり、ここで、前記テストアレイのピークツーピーク振幅が前記しきい値よりも大きい場合、結合状態が決定され、且つここで、前記テストアレイのピークツーピーク振幅が前記しきい値よりも小さい場合、非結合状態が決定される、ステップ;
を包含する、調節可能なインプラント200の永久磁石262を備えた外部調節デバイス400の磁石440の結合状態決定の方法の例示的なフローチャートを示している。
【0084】
いくつかの実施形態では、検出された状態は、コントローラ410に伝達され得る。いくつかの実施形態では、検出された状態は、ディスプレイ403によってユーザに表示され得る。いくつかの実施形態では、検出された状態は、モータ430に伝達され得る。いくつかの実施形態では、検出された状態は、3次デバイスに伝達され得る。
【0085】
ストーリングを検出することは、外部調節デバイス400の磁石440の角速度の検出のより高い解像度を必要とする。これは、磁石440の加速度(ΔV)を計算することによって達成することができる。前に検出されたティックの前の速度(ΔV)から現在検出されたティックの角速度を差し引くことにより、現在のティックの瞬間加速度を決定することができる。この減算プロセスは、回転全体、例えば、360度の回転すべてに対応する90ティックすべて、で発生する。外部調節デバイス400の磁石440の速度勾配が変化するので、ΔVは変化する。これにより、回転速度の変化に関連する2つの最大ピーク並びに2つの最小ピークが提供される。磁石440の角速度が最大又は最小のピークにあるとき、速度勾配がゼロであるため、加速度は(軸で)ゼロになる。
【0086】
図19Aは、360度の回転中に磁石440によって観察された加速度の波形を示している。360度の回転は90ティックに分割され、各ティックで瞬間加速度(ΔV)が観測される。このプロットは、ストールド回転A、結合された回転B、結合されていない回転C、及び結合されていない平均Dを包含する4つのアレイを包含する。
【0087】
いくつかの実施形態では、外部調節デバイスは、加速度アレイの高速フーリエ変換(FFT)の第3高調波を分析して、ストールド状態を決定することができる。図19Bでは、高速フーリエ変換(FFT)が、結合された回転Bアレイを周波数領域に転送して、第3の高調波を分析することによって結合された状態とストール状態とを区別することが示されている。図19Cでは、高速フーリエ変換(FFT)は、ストールド回転Aアレイを周波数領域に転送して、第3高調波を分析することによって結合状態とストール状態を区別する方法を示している。図19Bと比較すると、ストールド状態では、波形の高速フーリエ変換(FFT)の第3高調波の大幅な振幅の増加が観察されることに注意されたい。FFTの第3高調波は、結合条件Eでは欠落しており、ストール条件Fでは存在する。
【0088】
ストーリングは、調節可能なインプラント200の失速した(stalled)永久磁石262によって、外部調節デバイス400の磁石の回転に加えられる大量の抵抗のために、磁石440の加速度及び回転速度の大きな変動を引き起こし得る。さらに、磁石440の回転は、永久磁石262の磁場のために磁石440によって観察される追加の力の結果として、同心性が低く、平均値にあまり緊密に拘束されない可能性がある。
【0089】
高速フーリエ変換(FFT)を実行すること、及び周波数領域で角速度のプロットを見ることにより、不要な干渉や誤ったストーリング信号を観察できる。例えば、磁石440が、調節可能なインプラント200の内部永久磁石262に結合されて回転し、鉄金属の異物片が導入され、システムの近くに配置される場合、調節可能なインプラント200の内部永久磁石262が実際には磁石440と共に回転しているとしても、システムは騙されてストールを検出する可能性がある。周波数領域では、異物の金属片は、FFTプロットに追加の周波数信号を導入するが、これはフィルタで除外して無視できる。誤ったストーリング検出を防止すること。
【0090】
高速フーリエ変換(FFT)の間にはいくつかの相違点がある。しかしながら、この手法は、ストールを区別する、同様に、磁石440の近くの外側の鉄金属を区別するために他のコンポーネントを追加するために使用できる。これは、インプラントの状態を検出するためのセンシング性能を混乱させる可能性がある。
【0091】
いくつかの実施形態では、外部調節デバイス400は、高速フーリエ変換(FFT)を分析すること、及び第1の周波数成分及び第2の周波数成分のそれぞれの振幅の比をとることによって、ストール状態を識別し得る。検出のしきい値は、比率に関連付けられた値である。永久インプラント262が磁石440に近接することによって引き起こされるFFTの振幅変動がある。結合状態では、第1の周波数成分と第2の周波数成分の観測された比率がしきい値を上回っている。ストールド状態では、第1の周波数成分と第2の周波数成分の観測された比率がしきい値を下回っている。
【0092】
例えば、図19Dには、例えば、磁石440が小さなGAPで永久磁石262に結合されて回転する、強く結合された状態に対応する高速フーリエ変換(FFT)が示されている。ここでは、0.18に等しい約2Hzの第2高調波を観測し、0.025に等しい約4Hzの第4高調波で除算する。比率をとると、7.2の値が得られる。
【0093】
図19Eでは、弱く結合された条件、例えば、磁石440が、大きなGAPを備えた永久磁石262に結合され、回転している場合、に対応する高速フーリエ変換(FFT)が示されている。ここでは、0.48に等しい約2Hzの第2高調波を観測し、0.004に等しい約4Hzの第4高調波で除算する。比率を取ると、12の値が得られる。
【0094】
ここで、図19Fには、ストールド状態、例えば、磁石440が永久磁石262に結合されておらず、回転していない場合、に対応する高速フーリエ変換(FFT)が示されている。ここでは、0.04に等しい約2Hzの第2高調波を観測し、0.016に等しい約4Hzの第4高調波で除算する。比率をとると、2.5の値が得られる。
【0095】
したがって、比率比較のしきい値は、これらのグラフに基づいて7.2と2.5との間である必要がある。データによると、複数のインプラント構成の場合、比率比較のしきい値は約6.5である。ここで、6.5未満の比率値はストール状態を示す。ここで、当技術分野の当業者が理解できるように、本明細書に示され、説明されるこれら及び他の計算は、1つ又は複数のコントローラ及び外部調節デバイスによって取得することができる。計算は、使用中に実行され、結果と表示がユーザに提供される。さらに、特定のしきい値はユニットごとにユニークである場合がある。
【0096】
図20は、外部調節デバイスを使用して調節可能なインプラントの永久磁石のストールド(stalled)状態を決定するための方法であって、以下のステップ: 前記外部調節デバイスの磁石を回転させるステップ;前記磁石の回転中に加速度アレイを測定するステップ;前記加速度アレイの加速度ピークを決定するステップ;前記加速度アレイを中央のピークにシフトするステップ;キャプチャされたすべての加速度アレイを平均するステップ;テストアレイを取得するために、前記外部調節デバイスの特性プロファイルから平均化されたアレイを差し引くステップ;前記テストアレイに対して高速フーリエ変換(FFT)分析を実行するステップ;及び
第3高調波を観察するステップであり、ここで、第3高調波は、しきい値を表す(present)及びしきい値を超える(above)、のうちの1つ以上である場合、ストールド状態が決定され、且つここで、しきい値が欠落する(missing)及びしきい値を下回る(below)、のうちの1つ以上である場合、ストールド状態は検出されず、前記磁石が結合されるステップ;
を包含する、方法の例示的なフローチャートを示している。
【0097】
図21AからDは、外部調節デバイス400のグラフィカルユーザインターフェース(GUI)の実施形態を示している。GUIは、外部調節デバイス400のディスプレイ403に表示され得る。外部調節デバイス400の動作中、GUIは、ユーザが外部調節デバイス400に命令を入力すること、外部調節デバイス400からデータを受信すること、又はそうでなければ外部調節デバイス400を操作することを可能にする。
【0098】
図21Aは、外部調整装置400が非アクティブであるときに表示され得るロック画面901を示している。いくつかの実施形態では、外部調節デバイス400は、ユーザがパスワードを入力するまで表示されたロック画面901でデバイスをロックするようにプログラムされ得る。いくつかの実施形態では、外部調節デバイス400は、外部調節デバイス400が、それが調節可能なインプラントに近接していることを感知するまでロックされたままであるように構成される。
【0099】
図21Bは、個々の患者調節情報を伝達する患者概要(PATIENT SUMMARY)画面902を示している。患者概要画面902は、患者の1つ又は複数の長骨の毎日の伸延量情報、及び総伸延目標を表示して示されている。
【0100】
図21Cは、外部調節デバイスの操作中にユーザを案内するのに役立つセッション進行中(SESSION IN PROGRESS)画面903を示している。セッション進行中画面は、伸延情報を伝達し、調節可能なインプラントの過剰調節を防ぐのに役立つ。GUIは、進行状況測定、セッション命令、結合状態表示、及びストールド状態表示のうちの1つ又は複数をユーザに伝達することができる。
【0101】
図21Dは、ユーザが複数の治療オプションのうちの1つを選択することを可能にするRX選択(RX SELECTION)画面904を示している。いくつかの実施形態では、無線通信コンポーネントは、クラウドベースのデータ取得及びストレージを提供する。上で論じたように、外部調節デバイス400は、無線接続機能、例えば、wifi接続を包含し得る。wifi接続とネットワーク機能により、第2のユーザは外部調節デバイスにリモートアクセスして、ファームウェアのアップロード、調節データのダウンロード、治療オプションのアップロード、又はデバイスのリモート操作を行うことができる。
【0102】
当業者が理解できるように、方法のこれらの例示的な実施形態は、網羅的であることを意図していない。個々の方法のブロックは、様々な実施形態間で置換及び交換可能であり得る。これらの書類全体に開示されている追加のステップ及び機能に対応する様々な実施形態に、追加のブロックを追加及び置換することができる。
【0103】
ここで、特定の特徴及び実施形態が、当業者がクレームされた発明を作成及び使用することを可能にするために説明されてきたが、開示された主題に到達するために、いくつかの変形、変更、又は置換を達成できることを理解されたい。この説明のいかなる内容も、以下の添付の特許請求の範囲に記載されている本発明の精神及び範囲を制限するものとして解釈されるべきではない。
【先行技術文献】
【特許文献】
【0104】
【文献】米国特許出願第12/121,355号
【文献】米国特許出願第12/250,442号
【文献】米国特許出願第14/932,904号
【符号の説明】
【0105】
400 外部調節デバイス
401 ハウジング
402 ハンドル
403 ディスプレイ
410 コントローラ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11A
図11B
図12
図13
図14A
図14B
図15A
図15B
図16A
図16B
図17
図18
図19A
図19B
図19C
図19D
図19E
図19F
図20
図21A
図21B
図21C
図21D