IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッドの特許一覧

特許7495090複合発電システムおよび複合発電システムの駆動方法
<>
  • 特許-複合発電システムおよび複合発電システムの駆動方法 図1
  • 特許-複合発電システムおよび複合発電システムの駆動方法 図2
  • 特許-複合発電システムおよび複合発電システムの駆動方法 図3
  • 特許-複合発電システムおよび複合発電システムの駆動方法 図4
  • 特許-複合発電システムおよび複合発電システムの駆動方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-27
(45)【発行日】2024-06-04
(54)【発明の名称】複合発電システムおよび複合発電システムの駆動方法
(51)【国際特許分類】
   F01K 23/10 20060101AFI20240528BHJP
   F02C 6/00 20060101ALI20240528BHJP
   F23K 5/00 20060101ALN20240528BHJP
【FI】
F01K23/10 U
F02C6/00 E
F23K5/00 303
【請求項の数】 16
(21)【出願番号】P 2023020325
(22)【出願日】2023-02-13
(65)【公開番号】P2023118684
(43)【公開日】2023-08-25
【審査請求日】2023-02-13
(31)【優先権主張番号】10-2022-0019742
(32)【優先日】2022-02-15
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】507002918
【氏名又は名称】ドゥサン エナービリティー カンパニー リミテッド
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】キム、ビョン ヨン
(72)【発明者】
【氏名】カン、ミュン ソン
(72)【発明者】
【氏名】リー、チャン リム
(72)【発明者】
【氏名】チョ、ウン ソン
【審査官】松浦 久夫
(56)【参考文献】
【文献】特開2018-076794(JP,A)
【文献】特開2020-147481(JP,A)
【文献】特開2020-148183(JP,A)
【文献】特開2021-167263(JP,A)
【文献】国際公開第2017/187619(WO,A1)
【文献】特表2018-535355(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01K 23/10
F02C 6/00
C01B 3/04
(57)【特許請求の範囲】
【請求項1】
燃焼器で燃料を燃焼して回転力を発生させるガスタービンと、
前記ガスタービンから排出されるガスを用いて給水を加熱し、圧力レベルが互いに異なる高圧部、中圧部、低圧部を有する排熱回収ボイラと、
前記ガスタービンから排出されるガスを用いてアンモニアを分解するアンモニア分解装置と、
前記ガスタービンから排出された排ガスを前記排熱回収ボイラに伝達する第1排ガスラインと、
前記ガスタービンから排出された排ガスを前記アンモニア分解装置に供給する第2排ガスラインと、
前記アンモニア分解装置から排出された排ガスを前記排熱回収ボイラに伝達する第3排ガスラインと、
前記アンモニア分解装置と前記燃焼器とを連結して、アンモニアの分解で生成された分解ガスを前記燃焼器に伝達する分解ガス伝達管と、
を含む
複合発電システム。
【請求項2】
前記第1排ガスラインは、前記高圧部に連結されて、前記高圧部に排ガスを供給する
請求項1に記載の複合発電システム。
【請求項3】
前記第3排ガスラインは、前記低圧部に連結されて、前記低圧部に排ガスを供給する
請求項1または2に記載の複合発電システム。
【請求項4】
前記複合発電システムはスチームタービンをさらに含み、
前記低圧部は、凝縮水を加熱して前記給水とする凝縮水予熱器と、前記給水を加熱して蒸気に変換させる低圧蒸発器とを含み、
前記蒸気は前記スチームタービンに供給される、
請求項1または2に記載の複合発電システム。
【請求項5】
前記第3排ガスラインは、排ガスの流動方向を基準として前記凝縮水予熱器の上流側に設けられて、前記凝縮水予熱器に熱を伝達する
請求項4に記載の複合発電システム。
【請求項6】
前記第3排ガスラインは、排ガスの流動方向を基準として前記低圧蒸発器の上流側に設けられて、前記低圧蒸発器に熱を伝達する
請求項4に記載の複合発電システム。
【請求項7】
前記第2排ガスラインには、前記アンモニア分解装置に流入する排ガスと、前記アンモニア分解装置から排出される排ガスとを熱交換する熱交換器が設けられた
請求項1または2に記載の複合発電システム。
【請求項8】
前記熱交換器には、前記第2排ガスラインと前記第3排ガスラインとが連結された
請求項7に記載の複合発電システム。
【請求項9】
前記第3排ガスラインには、前記熱交換器を迂回するバイパスラインが連結された
請求項8に記載の複合発電システム。
【請求項10】
前記バイパスラインには、前記バイパスラインを介して移動する排ガスの流量を制御する制御バルブが設けられた
請求項9に記載の複合発電システム。
【請求項11】
ガスタービンと、スチームタービンと、排熱回収ボイラと、アンモニアを分解して前記ガスタービンの燃焼器に供給するアンモニア分解装置とを含む複合発電システムの駆動方法において、
前記ガスタービンで発生した排ガスを前記アンモニア分解装置および前記排熱回収ボイラに供給する排ガス供給ステップと、
前記ガスタービンから供給された排ガスの熱を用いてアンモニアを分解して分解ガスを生成するアンモニア分解ステップと、
前記アンモニア分解ステップで生成された分解ガスを前記燃焼器に供給する分解ガス供給ステップと、
前記燃焼器で分解ガスを燃焼して排ガスを発生させ、発電機を回転させる燃焼および発電ステップと、
を含み、
前記アンモニア分解ステップは、アンモニアの分解に使用された排ガスを前記排熱回収ボイラに伝達する
複合発電システムの駆動方法。
【請求項12】
前記アンモニア分解ステップは、アンモニアの分解に使用された排ガスを前記排熱回収ボイラの低圧部に伝達する
請求項11に記載の複合発電システムの駆動方法。
【請求項13】
前記ガスタービンから排出される排ガスは、給水を加熱するために用いられ、
前記低圧部は、凝縮水を加熱して前記給水とする凝縮水予熱器と、前記給水を加熱して蒸気に変換させる低圧蒸発器とを含み、
前記蒸気は前記スチームタービンに供給され、
前記アンモニア分解ステップは、排ガスの流動方向を基準として前記凝縮水予熱器の上流側に排ガスを伝達する
請求項12に記載の複合発電システムの駆動方法。
【請求項14】
前記ガスタービンから排出される排ガスは、給水を加熱するために用いられ、
前記低圧部は、凝縮水を加熱して前記給水とする凝縮水予熱器と、前記給水を加熱して蒸気に変換させる低圧蒸発器とを含み、
前記蒸気は前記スチームタービンに供給され、
前記アンモニア分解ステップは、排ガスの流動方向を基準として前記低圧蒸発器の上流側に排ガスを伝達する
請求項12または13に記載の複合発電システムの駆動方法。
【請求項15】
前記排ガス供給ステップは、前記ガスタービンから排出される排ガスと、アンモニア分解装置から排出される排ガスとを熱交換器で熱交換させた後に、前記ガスタービンから排出される排ガスは、前記アンモニア分解装置に伝達し、前記アンモニア分解装置から排出された排ガスは、前記排熱回収ボイラに伝達する
請求項14に記載の複合発電システムの駆動方法。
【請求項16】
前記排ガス供給ステップは、アンモニアの分解に使用された排ガスの一部は、前記熱交換器を経て前記排熱回収ボイラに移動させ、残りの排ガスは、バイパスラインを介して前記熱交換器を迂回して前記排熱回収ボイラに移動させる
請求項15に記載の複合発電システムの駆動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複合発電システムおよび複合発電システムの駆動方法に関する。より詳しくは、アンモニア分解装置を有する複合発電システムおよび複合発電システムの駆動方法に関する。
【背景技術】
【0002】
複合発電システムは、ガスタービンとスチームタービンとを高効率で組み合わせて構成して、ガスタービンから排熱回収ボイラ(HRSG)に高温排ガスを案内し、排ガスに保持された熱エネルギーによって蒸気を発生させる発電システムである。この蒸気はスチームタービンによって電力生産を可能にし、ガスタービンによって発生した電力と結合されて、ガスタービンによる独立した電力生産と比較する時、排ガスに保持された熱的エネルギーと同等の熱的効率を改善することができる。
【0003】
ガスタービンは、圧縮機で圧縮された圧縮空気と燃料とを混合して燃焼させ、燃焼で発生した高温のガスでタービンを回転させる動力機関である。ガスタービンは、発電機、航空機、船舶、列車などを駆動するのに用いられる。
【0004】
最近は、水素またはアンモニアを燃料として用いるガスタービンが開発されている。アンモニアを燃料として用いる複合発電システムは、アンモニアタンク内の液体アンモニアをガスタービンに投入可能な圧力にまで昇圧する加圧ポンプと、加圧ポンプで加圧された液体アンモニアを水素ガスと窒素ガスとに分解するアンモニア分解装置とを備える。アンモニア分解装置は、加圧ポンプで加圧された液体アンモニアをガスタービンからの排ガスと熱交換させて、この液体アンモニアを加熱して、水素ガスと窒素ガスとに分解する。アンモニア分解過程は吸熱反応であるので、アンモニア分解装置は、アンモニアを分解するために、バーナを有するが、バーナは燃料を燃焼して熱を発生させるので、燃料の燃焼過程で二酸化炭素と汚染物質が発生する問題がある。
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の技術的背景に基づき、本発明は、二酸化炭素の排出が減少し、熱効率が向上した複合発電システムおよび複合発電システムの駆動方法を提供する。
【課題を解決するための手段】
【0006】
本発明の一側面に係る複合発電システムは、燃焼器で燃料を燃焼して回転力を発生させるガスタービンと、前記ガスタービンから排出される燃焼ガスを用いて給水を加熱し、圧力レベルが互いに異なる高圧部、中圧部、低圧部を有する排熱回収ボイラと、前記ガスタービンから排出される燃焼ガスを用いてアンモニアを分解するアンモニア分解装置と、前記ガスタービンから排出された排ガスを前記排熱回収ボイラに伝達する第1排ガスラインと、前記ガスタービンから排出された排ガスを前記アンモニア分解装置に供給する第2排ガスラインと、前記アンモニア分解装置から排出された排ガスを前記排熱回収ボイラに伝達する第3排ガスラインと、前記アンモニア分解装置と前記燃焼器とを連結して、アンモニアの分解で生成された分解ガスを前記燃焼器に伝達する分解ガス伝達管とを含むことができる。
【0007】
本発明の一側面に係る前記第1排ガスラインは、前記高圧部に連結されて、前記高圧部に排ガスを供給することができる。
【0008】
本発明の一側面に係る前記第3排ガスラインは、前記低圧部に連結されて、前記低圧部に排ガスを供給することができる。
【0009】
本発明の一側面に係る前記低圧部は、凝縮水を加熱する凝縮水予熱器と、給水を加熱して蒸気に変換させる低圧蒸発器とを含むことができる。
【0010】
本発明の一側面に係る前記第3排ガスラインは、排ガスの流動方向を基準として前記凝縮水予熱器の上流側に設けられて、前記凝縮水予熱器に熱を伝達することができる。
【0011】
本発明の一側面に係る前記第3排ガスラインは、排ガスの流動方向を基準として前記低圧蒸発器の上流側に設けられて、前記低圧蒸発器に熱を伝達することができる。
【0012】
本発明の一側面に係る前記第2排ガスラインには、前記アンモニア分解装置に流入する排ガスと、前記アンモニア分解装置から排出される排ガスとを熱交換する熱交換器が設けられる。
【0013】
本発明の一側面に係る前記熱交換器には、前記第2排ガスラインと前記第3排ガスラインとが連結される。
【0014】
本発明の一側面に係る前記第3排ガスラインには、前記熱交換器を迂回するバイパスラインが連結される。
【0015】
本発明の一側面に係る前記バイパスラインには、前記バイパスラインを介して移動する排ガスの流量を制御する制御バルブが設けられる。
【0016】
本発明の他の側面に係る、ガスタービンと、スチームタービンと、排熱回収ボイラと、アンモニアを分解して前記ガスタービンの燃焼器に供給するアンモニア分解装置とを含む複合発電システムの駆動方法は、前記ガスタービンで発生した排ガスを前記アンモニア分解装置および前記排熱回収ボイラに供給する排ガス供給ステップと、前記ガスタービンから供給された排ガスの熱を用いてアンモニアを分解して分解ガスを生成するアンモニア分解ステップと、前記アンモニア分解ステップで生成された分解ガスを前記燃焼器に供給する分解ガス供給ステップと、前記燃焼器で分解ガスを燃焼して排ガスを発生させ、発電機を回転させる燃焼および発電ステップとを含み、前記アンモニア分解ステップは、アンモニアの分解に使用された排ガスを前記排熱回収ボイラに伝達することができる。
【0017】
本発明の他の側面に係る前記アンモニア分解ステップは、アンモニアの分解に使用された排ガスを前記排熱回収ボイラの低圧部に伝達することができる。
【0018】
本発明の他の側面に係る前記低圧部は、凝縮水を加熱する凝縮水予熱器と、給水を加熱して蒸気に変換させる低圧蒸発器とを含み、前記アンモニア分解ステップは、排ガスの流動方向を基準として前記凝縮水予熱器の上流側に排ガスを伝達することができる。
【0019】
本発明の他の側面に係る前記低圧部は、凝縮水を加熱する凝縮水予熱器と、給水を加熱して蒸気に変換させる低圧蒸発器とを含み、前記アンモニア分解ステップは、排ガスの流動方向を基準として前記低圧蒸発器の上流側に排ガスを伝達することができる。
【0020】
本発明の他の側面に係る前記排ガス供給ステップは、前記ガスタービンから排出される排ガスと、アンモニア分解装置から排出される排ガスとを熱交換器で熱交換させた後に、前記ガスタービンから排出される排ガスは、前記アンモニア分解装置に伝達し、前記アンモニア分解装置から排出された排ガスは、前記排熱回収ボイラに伝達することができる。
【0021】
本発明の他の側面に係る前記排ガス供給ステップは、アンモニアの分解に使用された排ガスの一部は、前記熱交換器を経て前記排熱回収ボイラに移動させ、残りの排ガスは、バイパスラインを介して前記熱交換器を迂回して前記排熱回収ボイラに移動させることができる。
【発明の効果】
【0022】
上記のように、本発明の一側面に係る複合発電システムは、ガスタービンから排出された排ガスの排熱を用いてアンモニアを分解し、アンモニアの分解で生成された分解ガスを燃焼器で燃焼し、アンモニアの分解に使用された排ガスを排熱回収ボイラに伝達するので、アンモニアの分解と燃焼過程で二酸化炭素の発生が最小化され、熱効率が向上できる。
【図面の簡単な説明】
【0023】
図1】本発明の第1実施形態に係る複合発電システムを示す構成図である。
図2】本発明の第1実施形態に係る排熱回収ボイラを示す構成図である。
図3】本発明の第1実施形態に係る複合発電システムの駆動方法を説明するためのフローチャートである。
図4】本発明の第2実施形態に係る排熱回収ボイラを示す構成図である。
図5】本発明の第3実施形態に係る複合発電システムを示す構成図である。
【発明を実施するための形態】
【0024】
本発明は多様な変換が加えられて様々な実施例を有することができるが、特定の実施例を例示して詳細な説明に詳しく説明する。しかし、これは本発明を特定の実施形態に対して限定しようとするものではなく、本発明の思想および技術範囲に含まれるあらゆる変換、均等物乃至代替物を含むことが理解されなければならない。
【0025】
本発明で使った用語は単に特定の実施例を説明するために使われたものであり、本発明を限定しようとする意図ではない。単数の表現は文脈上明らかに異なって意味しない限り、複数の表現を含む。本発明において、「含む」または「有する」などの用語は、明細書上に記載された特徴、数字、段階、動作、構成要素、部品またはこれらを組み合わせたものが存在することを指定しようとするものであって、1つまたはそれ以上の他の特徴や、数字、段階、動作、構成要素、部品またはこれらを組み合わせたものの存在または付加の可能性を予め排除しないことが理解されなければならない。
【0026】
以下、添付した図面を参照して、本発明の好ましい実施形態を詳しく説明する。この時、添付した図面において、同一の構成要素はできるだけ同一の符号で表していることに留意する。また、本発明の要旨をあいまいにしうる公知の機能および構成に関する詳細な説明は省略する。同様の理由から、添付図面において一部の構成要素は誇張または省略されるか、概略的に示された。
【0027】
以下、本発明の第1実施形態に係る複合発電システムについて説明する。
【0028】
図1は、本発明の第1実施形態に係る複合発電システムを示す構成図であり、図2は、本発明の第1実施形態に係る排熱回収ボイラを示す構成図である。
【0029】
図1および図2を参照して説明すれば、本第1実施形態に係る複合発電システム101は、複数のタービンを含み、電力を生産する。複合発電システム101は、ガスタービン20と、発電機61、62と、排熱回収ボイラ140と、スチームタービン40と、アンモニア分解装置30と、第1排ガスライン26と、第2排ガスライン27と、第3排ガスライン28とを含むことができる。
【0030】
本実施形態に係るガスタービン20は、大気の空気を吸入して高圧に圧縮した後、定圧環境で燃料を燃焼して熱エネルギーを放出し、この高温の燃焼ガスを膨張させて運動エネルギーに変換させた後に、残留エネルギーを含む排ガスを大気中に放出することができる。
【0031】
ガスタービン20は、圧縮機21と、燃焼器23と、メインタービン25とを含むことができる。ガスタービン20の圧縮機21は、外部から空気を吸入して圧縮することができる。圧縮機21は、圧縮機ブレードによって圧縮された圧縮空気を燃焼器23に供給し、また、ガスタービン20で冷却が必要な高温領域に冷却用空気を供給することができる。この時、吸入された空気は圧縮機21で断熱圧縮過程を経るので、圧縮機21を通過した空気の圧力と温度は上昇する。
【0032】
圧縮機21は、遠心圧縮機(centrifugal compressors)や軸流圧縮機(axial compressor)で設計されるが、小型ガスタービンでは遠心圧縮機が適用されるのに対し、大型ガスタービン20は多段軸流圧縮機が適用される。
【0033】
一方、燃焼器23は、圧縮機21の出口から供給される圧縮空気を燃料と混合して、等圧燃焼させて、高いエネルギーの燃焼ガスを作ることができる。
【0034】
燃焼器23で生産された高温、高圧の排ガスは、メインタービン25に供給される。メインタービン25では、排ガスが断熱膨張しながらメインタービン25の回転軸に放射状に配置された複数のブレードに衝突、反動力を与えることにより、排ガスの熱エネルギーが回転軸の回転する機械的なエネルギーに変換される。メインタービン25から得た機械的エネルギーの一部は、圧縮機21で空気を圧縮するのに必要なエネルギーとして供給され、残りは、発電機61を駆動して電力を生産するなどの有効エネルギーとして活用される。
【0035】
メインタービン25から排出された排ガスは、排熱回収ボイラ140を介して冷却された後、浄化されて外部に排出される。排熱回収ボイラ140は、燃焼ガスを冷却するだけでなく、燃焼ガスの熱を用いて高温高圧の蒸気を生成してスチームタービン40に伝達する。
【0036】
排熱回収ボイラ140で生成された蒸気は、スチーム供給ライン46を介してスチームタービン40に伝達され、スチームタービン40で冷却された給水は、給水回収ライン47を介して排熱回収ボイラ140に伝達される。排熱回収ボイラ140には、排熱回収ボイラ140を介して排出される排ガスが移動する排出ライン72と、排ガスに含まれた汚染物質を除去する浄化装置71とが連結設置される。
【0037】
スチームタービン40は、排熱回収ボイラ140で生成された蒸気を用いてブレードを回転させ、回転エネルギーを発電機62に伝達する。スチームタービン40は、冷却された蒸気を再度排熱回収ボイラ140に供給する。本実施形態では、スチームタービン40とガスタービン20が互いに異なる発電機に連結されたものとして例示しているが、本発明がこれに限定されるものではなく、スチームタービン40とガスタービン20が1つの発電機に直列に連結されてもよい。
【0038】
給水回収ライン47には、蒸気を凝縮する凝縮器42と、凝縮水を排熱回収ボイラに供給する凝縮水ポンプ43とが設けられる。排熱回収ボイラ140の内部を移動する蒸気は、2段階または3段階の圧力を有することができるが、これによって、供給水は2または3以上の圧力レベルに加圧される。本実施形態では、排熱回収ボイラ140が3段階の圧力を有するものとして例示する。
【0039】
排熱回収ボイラ140は、相対的に低い圧力を有する低圧部BP1と、中間の圧力を有する中圧部BP2と、相対的に高い圧力を有する高圧部BP3とを含むことができる。高圧部BP3は、排ガスが流入する入り口側に隣接して配置されて、高温の排ガスによって加熱され、低圧部BP1は、排ガスが排出される出口側に隣接して配置されて、低温の排ガスによって加熱される。
【0040】
排熱回収ボイラ140の内部には、凝縮水予熱器141、低圧蒸発器142、中圧節炭器143、中圧蒸発器144、高圧節炭器145、高圧蒸発器146が設けられる。また、蒸発器の上流側にはそれぞれ過熱器(図示せず)が追加的に設けられる。排熱回収ボイラ140から排出された燃焼ガスは、スタックを経て排出される。
【0041】
低圧部BP1は、凝縮水予熱器141と、低圧蒸発器142と、低圧ドラム147とを含む。凝縮水貯留所122に貯留された凝縮水は、凝縮水ポンプ123によって凝縮水予熱器141に伝達され、凝縮水予熱器141は、燃焼ガスとの熱交換により凝縮水を加熱する。凝縮水予熱器141で加熱された給水は、脱気器175に伝達されて凝縮水から気体が除去される。
【0042】
脱気器175から低圧ドラム147に給水が供給され、低圧蒸発器142は、低圧ドラム147に連結されて、低圧ドラム147に貯留された給水を加熱して蒸気に変換した後に、低圧ドラム147で気水分離後、過熱器に供給される。
【0043】
一方、中圧部BP2は、中圧節炭器143と、中圧蒸発器144と、中圧ドラム148とを含む。脱気器175の給水は、中圧ポンプ172によって中圧節炭器143に供給され、中圧節炭器143は、燃焼ガスとの熱交換により給水を加熱する。中圧節炭器143で加熱された給水は、中圧ドラム148に供給され、中圧蒸発器144は、中圧ドラム148に連結されて、中圧ドラム148に貯留された給水を加熱して蒸気に変換した後に、中圧ドラム148で気水分離後、過熱器に供給される。
【0044】
高圧部BP3は、高圧節炭器145と、高圧蒸発器146と、高圧ドラム149とを含む。脱気器175の給水は、高圧ポンプ173によって高圧節炭器145に供給され、高圧節炭器145は、燃焼ガスとの熱交換により給水を加熱する。高圧節炭器145で加熱された給水は、高圧ドラム149に供給され、高圧蒸発器146は、高圧ドラム149に連結されて、高圧ドラム149に貯留された給水を加熱して蒸気に変換した後に、高圧ドラム149で気水分離後、過熱器に供給される。
【0045】
低圧ドラム147、中圧ドラム148、高圧ドラム149に貯留されたスチームは、過熱器で加熱された後に、それぞれの低圧、中圧、および高圧スチームタービンに供給される。
【0046】
アンモニア分解装置30は、液状のアンモニアまたは気体状のアンモニアを熱分解して水素と窒素を生成する。アンモニア分解装置30は、ルテニウム、ニッケルなどの金属を含む触媒を用いてアンモニアを分解する。アンモニア貯留部31は、アンモニア伝達管33を介在させてアンモニア分解装置30に連結されて、アンモニア分解装置30にアンモニアを供給する。
【0047】
分解ガス伝達管34は、アンモニア分解装置30と燃焼器23とを連結して、アンモニアの分解で生成された分解ガスを燃焼器23に伝達する。分解ガスは、水素、窒素、未反応アンモニアを含むことができる。これによって、アンモニアの分解で生成された分解ガスが燃焼器23で燃焼されて排ガスが生成される。分解ガス伝達管34には、分解ガスの圧縮のためのポンプが設けられる。
【0048】
第1排ガスライン26は、ガスタービン20から排出された排ガスを排熱回収ボイラ140に伝達する。第1排ガスライン26は、排熱回収ボイラ140の高圧部BP3に排ガスを供給することができる。
【0049】
第2排ガスライン27は、ガスタービン20から排出された排ガスの一部を分岐してアンモニア分解装置30に供給する。第2排ガスライン27は、第1排ガスライン26に連結設置されて、第1排ガスライン26から排ガスを分岐してアンモニア分解装置30に供給することができる。
【0050】
本実施形態のように、第2排ガスライン27を介してアンモニア分解装置30に高温の排ガスが供給されると、別のバーナを有しなくてもアンモニアの分解に必要な十分な熱源を供給することができる。これによって、バーナの使用による大気汚染物質の排出が減少できる。
【0051】
第3排ガスライン28は、アンモニア分解装置30から排出された排ガスを排熱回収ボイラ140に伝達する。第3排ガスライン28は、アンモニア分解装置30で使用された後に排出される排ガスを排熱回収ボイラ140の低圧部BP1に伝達することができる。第3排ガスライン28は、凝縮水予熱器141の上流側(排ガスの流動方向を基準とする)に設けられて、凝縮水予熱器141に熱を伝達することができる。これによって、アンモニア分解装置30から排出された排ガスの熱源を回収して使用するので、熱効率が向上できる。
【0052】
上記のように、本実施形態によれば、アンモニアの分解によって生成された分解ガスを燃焼器23で燃焼するので、燃焼時に二酸化炭素が発生しない。また、アンモニアの分解がガスタービン20から排出された排ガスの熱源によって行われ、アンモニア分解装置30から排出された排ガスが排熱回収ボイラ140に伝達されるので、熱効率が向上できる。
【0053】
以下、本発明の第1実施形態に係る複合発電システムの駆動方法について説明する。
【0054】
図3は、本発明の第1実施形態に係る複合発電システムの駆動方法を説明するためのフローチャートである。
【0055】
図1および図3を参照して説明すれば、本第1実施形態に係る複合発電システムの駆動方法は、排ガス供給ステップS101と、アンモニア分解ステップS102と、分解ガス供給ステップS103と、燃焼および発電ステップS104とを含むことができる。
【0056】
排ガス供給ステップS101は、ガスタービン20で発生した排ガスをアンモニア分解装置30および排熱回収ボイラ140に供給する。排ガス供給ステップS101では、ガスタービン20の燃焼器23でアンモニアなどの燃料の燃焼で排ガスが生成され、排ガスは、メインタービン25を経て排熱回収ボイラ140およびアンモニア分解装置30に供給される。
【0057】
アンモニア分解ステップS102は、ガスタービンから供給された排ガスの熱を用いて、アンモニアを水素、窒素などに分解して分解ガスを生成する。分解ガスは、水素、窒素、未反応アンモニアを含むことができる。アンモニア分解ステップは、ルテニウムなどの触媒を用いてアンモニアを分解することができる。
【0058】
アンモニア分解ステップS102は、アンモニアの分解に使用された排ガスを排熱回収ボイラ140の低圧部BP1に伝達する。アンモニア分解ステップS102で使用された排ガスは、排熱回収ボイラ140の凝縮水予熱器141の上流側に排ガスを供給して凝縮水予熱器141に熱を伝達することができる。
【0059】
分解ガス供給ステップS103は、アンモニア分解ステップS102で生成された分解ガスを燃焼器23に供給する。分解ガス供給ステップS103は、分解ガスを圧縮して燃焼器に供給することができる。
【0060】
燃焼および発電ステップS104は、燃焼器で分解ガスを燃焼して排ガスを発生させ、高圧の排ガスがメインタービン25に供給されて、メインタービン25の回転力で発電機61が駆動される。また、燃焼および発電ステップS104では、排熱回収ボイラ140で生成された高圧の蒸気が蒸気タービン40に供給されて、蒸気タービン40が発電機62を回転させることもできる。
【0061】
以下、本発明の第2実施形態に係る複合発電システムについて説明する。
【0062】
図4は、本発明の第2実施形態に係る排熱回収ボイラを示す構成図である。
【0063】
図4を参照して説明すれば、本発明の第2実施形態に係る複合発電システムは、第3排ガスライン28と排熱回収ボイラ140との連結関係を除けば、上記の第1実施形態に係る複合発電システムと同一の構造からなるので、同一の構成に関する重複説明は省略する。
【0064】
図4を参照して説明すれば、第3排ガスライン28は、アンモニア分解装置30と排熱回収ボイラ140とを連結し、アンモニア分解装置30から排出された排ガスを排熱回収ボイラ140に伝達する。第3排ガスライン28は、アンモニア分解装置30で使用された後に排出される排ガスを排熱回収ボイラ140の低圧部BP1に伝達することができる。第3排ガスライン28は、低圧蒸発器142の上流側(排ガスの流動方向を基準とする)に設けられて、低圧蒸発器142に熱を伝達することができる。これによって、アンモニア分解装置30から排出された排ガスの熱源を回収して使用するので、熱効率が向上できる。
【0065】
以下、本第2実施形態に係る複合発電システムの駆動方法について説明する。
【0066】
本第2実施形態に係る複合発電システムの駆動方法は、排ガス供給ステップと、アンモニア分解ステップと、分解ガス供給ステップと、燃焼および発電ステップとを含むことができる。
【0067】
本発明の第2実施形態に係る複合発電システムの駆動方法は、アンモニア分解ステップを除けば、上記の第1実施形態に係る複合発電システムの駆動方法と同一の構造からなるので、同一の構成に関する重複説明は省略する。
【0068】
アンモニア分解ステップは、アンモニアの分解に使用された排ガスを排熱回収ボイラ140の低圧部BP1に伝達する。アンモニア分解ステップで使用された排ガスは、排熱回収ボイラの低圧蒸発器142の上流側に排ガスを供給して低圧蒸発器142に熱を伝達することができる。
【0069】
図5は、本発明の第3実施形態に係る複合発電システムを示す構成図である。
【0070】
図5を参照して説明すれば、本実施形態に係る複合発電システム103は、熱交換器35を除けば、上記の第1実施形態に係る複合発電システムと同一の構造からなるので、同一の構成に関する重複説明は省略する。
【0071】
本実施形態に係る複合発電システム103は、第2排ガスライン27に設けられた熱交換器35をさらに含むことができる。熱交換器35は、アンモニア分解装置30に流入する排ガスと、アンモニアの分解に使用された後に排出される排ガスとを熱交換する。このために、熱交換器35には、第2排ガスライン27と第3排ガスライン28とが連結設置される。
【0072】
ガスタービン20から排出された排ガスの温度が過度に高い場合には、アンモニア分解装置30から排出される排ガスで温度を下げた後に、アンモニア分解装置30に移動させることができ、熱交換器35で加熱された排ガスを排熱回収ボイラ140に供給することができる。
【0073】
第3排ガスライン28には、熱交換器35を迂回するバイパスライン39が連結され、バイパスライン39には、バイパスライン39に沿って移動する排ガスの流量を調整する制御バルブ38が設けられる。
【0074】
バイパスライン39が設けられると、一部の排ガスのみ熱交換器35を通過し、残りの排ガスは、バイパスライン39を介して迂回して排熱回収ボイラ140に移動することができる。バイパスライン39を介して移動する排ガスの流量制御によりアンモニア分解装置30に流入する排ガスの温度が制御できる。
【0075】
以下、本第3実施形態に係る複合発電システムの駆動方法について説明する。
【0076】
本第3実施形態に係る複合発電システムの駆動方法は、排ガス供給ステップと、アンモニア分解ステップと、分解ガス供給ステップと、燃焼および発電ステップとを含むことができる。
【0077】
本発明の第3実施形態に係る複合発電システムの駆動方法は、排ガス供給ステップを除けば、上記の第1実施形態に係る複合発電システムの駆動方法と同一の構造からなるので、同一の構成に関する重複説明は省略する。
【0078】
排ガス供給ステップは、アンモニアの分解に使用された排ガスを排熱回収ボイラ140の低圧部に伝達する。また、排ガス供給ステップは、ガスタービン20から排出される排ガスと、アンモニア分解装置30から排出される排ガスとを熱交換させた後に、ガスタービン20から排出される排ガスは、アンモニア分解装置30に伝達し、アンモニア分解装置30から排出された排ガスは、排熱回収ボイラ140に伝達する。
【0079】
また、排ガス供給ステップは、アンモニアの分解に使用された排ガスの一部は、熱交換器35を経て排熱回収ボイラ140に移動させ、残りの排ガスは、バイパスライン39を介して熱交換器35を迂回して排熱回収ボイラ140に移動させることができる。
【0080】
以上、本発明の一実施例について説明したが、当該技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された本発明の思想を逸脱しない範囲内で、構成要素の付加、変更、削除または追加などによって本発明を多様に修正および変更可能であり、これも本発明の権利範囲内に含まれる。
【符号の説明】
【0081】
101、103:複合発電システム
20:ガスタービン
21:圧縮機
23:燃焼器
25:メインタービン
40:スチームタービン
26:第1排ガスライン
27:第2排ガスライン
28:第3排ガスライン
30:アンモニア分解装置
31:アンモニア貯留部
33:アンモニア伝達管
35:熱交換器
38:制御バルブ
39:バイパスライン
61、62:発電機
140:排熱回収ボイラ
141:凝縮水予熱器
142:低圧蒸発器
143:中圧節炭器
144:中圧蒸発器
145:高圧節炭器
146:高圧蒸発器
147:低圧ドラム
148:中圧ドラム
149:高圧ドラム
172:中圧ポンプ
173:高圧ポンプ
175:脱気器
176:高圧バルブ
図1
図2
図3
図4
図5