(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-05-27
(45)【発行日】2024-06-04
(54)【発明の名称】余寿命推定方法及び余寿命推定装置
(51)【国際特許分類】
G01M 99/00 20110101AFI20240528BHJP
G01M 5/00 20060101ALI20240528BHJP
【FI】
G01M99/00 Z
G01M5/00
(21)【出願番号】P 2023190711
(22)【出願日】2023-11-08
【審査請求日】2024-02-27
【新規性喪失の例外の表示】特許法第30条第2項適用 インフロニア・ホールディングス株式会社が、国土交通省が主催する官民連携モデリング事業(令和5年4月21日オンライン開催)の予稿(公開日 令和5年3月17日)にて、永田 佳文、米田 大樹及び松林 卓が発明した余寿命推定方法について公開した。 インフロニア・ホールディングス株式会社及び前田建設工業株式会社が、インフラメンテナンス国民会議 近畿本部フォーラム2023にて、永田 佳文、米田 大樹及び松林 卓が発明した余寿命推定方法について公開した(公開日 令和5年5月18日、19日)。
【早期審査対象出願】
(73)【特許権者】
【識別番号】521454180
【氏名又は名称】インフロニア・ホールディングス株式会社
(73)【特許権者】
【識別番号】000201478
【氏名又は名称】前田建設工業株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】永田 佳文
(72)【発明者】
【氏名】米田 大樹
(72)【発明者】
【氏名】松林 卓
【審査官】山口 剛
(56)【参考文献】
【文献】特開2004-044116(JP,A)
【文献】国際公開第2018/159003(WO,A1)
【文献】中国特許出願公開第113204850(CN,A)
【文献】中国特許出願公開第105067436(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 99/00
G01M 5/00
E01D 22/00
(57)【特許請求の範囲】
【請求項1】
橋梁の余寿命を推定するための余寿命推定方法であって、
前記橋梁の使用経過年数に対する前記橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得する経年変化情報取得ステップと、
前記橋梁の前記動的たわみの実測値を取得する動的たわみ取得ステップと、
前記動的たわみの前記実測値から前記経年変化情報における前記使用経過年数の実年数を特定することで、前記橋梁の余寿命を算出する余寿命算出ステップと、を備え
、
前記橋梁の上部構造を構成する部材には、コンクリート材料が使用され、
前記経年変化情報の解析には、
前記コンクリート材料の劣化進行に関する有限要素解析モデルが少なくとも用いられる、
余寿命推定方法。
【請求項2】
橋梁の余寿命を推定するための余寿命推定方法であって、
前記橋梁の使用経過年数に対する前記橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得する経年変化情報取得ステップと、
前記橋梁の前記動的たわみの実測値を取得する動的たわみ取得ステップと、
前記動的たわみの前記実測値から前記経年変化情報における前記使用経過年数の実年数を特定することで、前記橋梁の余寿命を算出する余寿命算出ステップと、を備え、
前記経年変化情報の解析には、
前記橋梁の構造に関する有限要素解析モデルが少なくとも用いられる、
余寿命推定方法。
【請求項3】
前記動的たわみ取得ステップでは、それぞれ異なる時期に測定された複数の前記実測値を取得することが行われ、
前記余寿命算出ステップでは、前記動的たわみ取得ステップにおいて取得された前記複数の実測値及び前記実測値の測定時期から前記実年数を特定することが行われる、
請求項1
又は2に記載の余寿命推定方法。
【請求項4】
前記余寿命算出ステップは、
前記動的たわみ取得ステップにおいて取得された前記複数の実測値及び前記実測値の測定時期に基づいて、前記橋梁の使用経過年数と前記橋梁の動的たわみの経年変化との関係性を示す推定線を算出する推定線算出ステップと、
前記経年変化情報から得られる前記橋梁の使用経過年数に対する前記橋梁の前記動的たわみの経年変化を示す劣化曲線と前記推定線とをフィットさせるフィッティング操作に基づいて算出される前記劣化曲線上の算出位置を前記実年数として特定する実年数特定ステップと、を含む、
請求項
3に記載の余寿命推定方法。
【請求項5】
前記経年変化情報は、
前記動的たわみの繰り返し数に対する前記動的たわみの経年変化を示す第1の関係性情報と、
前記繰り返し数と前記橋梁の前記使用経過年数との関係性を示す第2の関係性情報と、を含み、
前記余寿命推定方法は、
前記余寿命算出ステップの前に、前記動的たわみ取得ステップにおいて取得された前記複数の実測値及び前記実測値の測定時期、並びに前記第1の関係性情報に基づいて、前記第2の関係性情報を修正する修正ステップをさらに備える、
請求項
3に記載の余寿命推定方法。
【請求項6】
前記動的たわみ取得ステップでは、
前記橋梁を所定重量の車両が走行したときの活荷重による前記橋梁の支間中央部の動的たわみを取得することが行われる、
請求項1
又は2に記載の余寿命推定方法。
【請求項7】
橋梁の余寿命を推定するための余寿命推定装置であって、
前記橋梁の使用経過年数に対する前記橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得するように構成された経年変化情報取得部と、
前記橋梁の動的たわみの実測値を取得するように構成された動的たわみ取得部と、
前記動的たわみの前記実測値から前記経年変化情報における前記使用経過年数の実年数を特定することで、前記橋梁の余寿命を算出するように構成された余寿命算出部と、を備え
、
前記橋梁の上部構造を構成する部材には、コンクリート材料が使用され、
前記経年変化情報の解析には、
前記コンクリート材料の劣化進行に関する有限要素解析モデルが少なくとも用いられる、
余寿命推定装置。
【請求項8】
橋梁の余寿命を推定するための余寿命推定装置であって、
前記橋梁の使用経過年数に対する前記橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得するように構成された経年変化情報取得部と、
前記橋梁の動的たわみの実測値を取得するように構成された動的たわみ取得部と、
前記動的たわみの前記実測値から前記経年変化情報における前記使用経過年数の実年数を特定することで、前記橋梁の余寿命を算出するように構成された余寿命算出部と、を備え、
前記経年変化情報の解析には、
前記橋梁の構造に関する有限要素解析モデルが少なくとも用いられる、
余寿命推定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、橋梁の余寿命を推定するための余寿命推定方法及び余寿命推定装置に関する。
【背景技術】
【0002】
従来、目視点検結果等を用いた統計的手法により、橋梁の経過年数による健全度の進展を予測すること等が行われている。例えば、特許文献1には、橋梁のコンクリート床版の無次元剛性比を用いた健全度の評価方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来技術は、目視点検に基づいた健全度の進展の予測であるため、補修すべき時期の推定に活用することはできるが、橋梁の力学的な性能を保持できる期間としての余寿命を定量的に評価することはできない。このように橋梁の余寿命を定量的に評価できないため、健全度に基づいて補修を実施しても橋梁の余寿命が不明であると、橋梁全体の安全性が明確でないという問題がある。また、橋梁の余寿命を不当に短く見積もると、橋梁の補修や改築に過度なコストが生じる虞がある。
【0005】
上述の事情に鑑みて、本開示の少なくとも一実施形態は、車両通過に伴う経年劣化が進行する橋梁の余寿命を精度良く推定可能な余寿命推定方法及び余寿命推定装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の少なくとも一実施形態に係る余寿命推定方法は、
橋梁の余寿命を推定するための余寿命推定方法であって、
前記橋梁の使用経過年数に対する前記橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得する経年変化情報取得ステップと、
前記橋梁の動的たわみの実測値を取得する動的たわみ取得ステップと、
前記動的たわみの前記実測値から前記経年変化情報における前記使用経過年数の実年数を特定することで、前記橋梁の余寿命を算出する余寿命算出ステップと、を備える。
【0007】
本開示の少なくとも一実施形態に係る余寿命推定装置は、
橋梁の余寿命を推定するための余寿命推定装置であって、
前記橋梁の使用経過年数に対する前記橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得するように構成された経年変化情報取得部と、
前記橋梁の動的たわみの実測値を取得するように構成された動的たわみ取得部と、
前記動的たわみの前記実測値から前記経年変化情報における前記使用経過年数の実年数を特定することで、前記橋梁の余寿命を算出するように構成された余寿命算出部と、を備える。
【発明の効果】
【0008】
本開示の少なくとも一実施形態によれば、車両通過に伴う経年劣化が進行する橋梁の余寿命を精度良く推定可能な余寿命推定方法及び余寿命推定装置が提供される。
【図面の簡単な説明】
【0009】
【
図1】本開示の一実施形態に係る余寿命推定方法のフロー図である。
【
図2】本開示の一実施形態に係る余寿命推定装置を備える余寿命推定システムの概略図である。
【
図3】本開示の一実施形態に係る余寿命推定装置及び動的たわみ測定装置の概略図である。
【
図4】本開示の一実施形態に係る余寿命推定方法を説明するための説明図である。
【
図5】本開示の一実施形態に係る余寿命推定方法を説明するための説明図である。
【
図6】本開示の一実施形態に係る余寿命推定方法を説明するための説明図である。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
【0011】
(余寿命推定方法)
図1は、本開示の一実施形態に係る余寿命推定方法のフロー図である。
図2は、本開示の一実施形態に係る余寿命推定装置1を備える余寿命推定システム10の概略図である。余寿命推定装置1及び余寿命推定方法は、橋梁2の余寿命RLを推定するためのもの(装置、方法)である。幾つかの実施形態に係る余寿命推定方法は、
図1に示されるように、経年変化情報取得ステップS1と、動的たわみ取得ステップS2と、余寿命算出ステップS3と、を備える。
【0012】
(余寿命推定装置)
図3は、本開示の一実施形態に係る余寿命推定装置1及び動的たわみ測定装置3の概略図である。幾つかの実施形態では、余寿命推定方法は、余寿命推定装置1により行われる。余寿命推定装置1は、
図3に示されるように、経年変化情報取得部11と、動的たわみ取得部12と、余寿命算出部13と、を備える。
【0013】
図示される実施形態では、余寿命推定装置1は、橋梁2の余寿命RLを推定するための電子制御ユニット100を含む。余寿命推定装置1は、
図3に示されるように、入力装置101(入力インターフェース)、出力装置102(出力インターフェース)、記憶装置103(ROMやRAMといったメモリ、外部記憶装置など)、及び演算装置104(CPU)を含むマイクロコンピュータとして構成されていてもよい。電子制御ユニット100は、例えば上記メモリの主記憶装置にロードされたプログラムの命令に従ってCPUが動作(例えばデータの演算など)することで、余寿命推定装置1における各動作(例えば、経年変化情報取得部11、動的たわみ取得部12、余寿命算出部13、後述する修正部14等)を実現してもよい。
【0014】
図示される実施形態では、余寿命推定装置1は、動的たわみ測定装置3からの出力が、入力装置101を介して記憶装置103や演算装置104に入力されるようになっている。記憶装置103は、動的たわみ測定装置3からの出力を記憶するようになっている。演算装置104では、記憶装置103に記憶されている制御プログラムに従って、各種制御を実行するように構成されている。
【0015】
(橋梁)
橋梁2は、
図2に示されるように、車両4が通行可能な床面23を有する上部構造21と、上部構造21を支持する下部構造22と、を含む。図示される実施形態では、床面23は、橋梁2の長さ方向(
図2中左右方向)に沿って長手方向を有し、橋梁2の幅方向(
図2中紙面垂直方向)に沿って短手方向を有する。
【0016】
図示される実施形態では、上部構造21は、主桁24と、主桁24の上に敷設される床版25と、床版25の上に積層される舗装26と、を含む。主桁24は、橋梁2の長さ方向に沿って長手方向を有する。舗装26は、例えば、アスファルトにより構成され、上述した床面23をその表面(上面)に有する。
【0017】
図示される実施形態では、下部構造22は、上部構造21を構成する主桁24の長手方向の両端部の各々を、支承部を介してそれぞれ支持する一対の橋台27と、一対の橋台27の間に配置されて支承部を介して主桁24を支持する少なくとも1つ(図示例では、複数)の橋脚28と、を含む。複数の橋脚28は、橋台27や他の橋脚28とは橋梁2の長さ方向において間隔をあけて配置されている。なお、本開示の余寿命推定装置及び余寿命推定方法は、橋脚28を含まない橋梁2にも適用可能である。
【0018】
橋梁2の床面23を車両4が走行することにより、車両4の荷重(繰り返し荷重)が橋梁2の上部構造21に作用し、上部構造21には動的たわみが生じる。橋梁2の経年変化に伴い、上部構造21に生じる動的たわみが増大する傾向がある。
【0019】
(経年変化情報取得ステップ)
経年変化情報取得ステップS1では、経年変化情報Aを解析により取得することが行われる。経年変化情報Aは、橋梁2の使用経過年数Tに対する橋梁2の動的たわみDの経年変化を示す情報である。或る実施形態では、経年変化情報取得ステップS1は、経年変化情報取得部11により行われる。経年変化情報取得部11は、経年変化情報Aを解析により取得するように構成される。
【0020】
経年変化情報Aは、橋梁2の使用経過年数Tと、橋梁2の動的たわみDとの間の対応関係を示すものである。経年変化情報Aには、橋梁2の使用経過年数Tと動的たわみDとの対応関係を示すリストや表、マップ、関数、機械学習のモデルなどが含まれる。
【0021】
図4~
図6は、本開示の一実施形態に係る余寿命推定方法を説明するための説明図である。
図4~
図6では、橋梁2の使用経過年数Tを横軸とし、橋梁2の動的たわみDを縦軸とするグラフが示されており、このグラフには、経年変化情報Aから得られる橋梁2の使用経過年数Tに対する橋梁2の動的たわみDの経年変化を示す劣化曲線Cが示されている。劣化曲線Cは、劣化曲線Cの終点である破壊点BPを含む。破壊点BPは、橋梁2が破壊される極限の点である。破壊点BPでは、橋梁2の動的たわみDが限界たわみ(限界値)LDになっており、橋梁2の動的たわみDが限界たわみLDに達したときには、橋梁2が破壊する蓋然性が高い。上述した経年変化情報Aは、破壊点BPを含む劣化曲線Cを取得可能な情報であってもよい。
【0022】
経年変化情報Aは、経年変化情報取得ステップS1よりも前に記憶装置103に記憶される。経年変化情報取得部11は、記憶装置103に記憶された経年変化情報Aを取得するようになっていてもよい。
【0023】
(動的たわみ取得ステップ)
動的たわみ取得ステップS2では、橋梁2の動的たわみDの実測値DMを取得することが行われる。或る実施形態では、動的たわみ取得ステップS2は、動的たわみ取得部12により行われる。動的たわみ取得部12は、橋梁2の動的たわみDの実測値DMを取得するように構成される。図示される実施形態では、余寿命推定システム10は、上述した余寿命推定装置1と、橋梁2の動的たわみDを測定するように構成された動的たわみ測定装置3と、を備える。
【0024】
図示される実施形態では、動的たわみ測定装置3は、
図2に示されるように、橋梁2の支間中央部29における床面23上に配置されている。動的たわみ測定装置3は、橋梁2の地覆等に配置されてもよい。橋梁2の支間中央部29は、橋梁2の長さ方向において隣接する二つの支承部間の長さである支間長SLの中央部である。上記二つの支承部の夫々は、橋台27又は橋脚28の何れかと主桁24との間に設けられる。動的たわみ測定装置3は、橋梁2の最大支間長を有する二つの支承部間の中央部における床面23上に配置されることが好ましい。なお、橋梁2に存在する複数の支間中央部29の夫々に動的たわみ測定装置3を配置し、複数の支間中央部29の夫々における動的たわみDを取得してもよい。
【0025】
図示される実施形態では、動的たわみ測定装置3は、
図2に示されるように、橋梁2を所定重量(所定の車両総重量)の車両4が走行したときの活荷重による橋梁2の支間中央部29の動的たわみD(の最大値)を取得することが行われる。上記所定重量の車両4は、車両総重量が所定の質量重量の車両を意味する。
【0026】
図示される実施形態では、動的たわみ測定装置3は、
図3に示されるように、橋梁2を所定重量の車両4が走行したときの加速度を測定するように構成された加速度センサ31と、加速度センサ31が測定した加速度の時系列データを2階積分することで、橋梁2を所定重量の車両4が走行したときの動的たわみDを算出するように構成された積分器32と、を含む。なお、動的たわみ測定装置3は、動的たわみDを取得できるようになっていればよく、加速度センサ31と積分器32とを含む構成に限定されない。
【0027】
余寿命推定装置1は、動的たわみ測定装置3に接続され、動的たわみ測定装置3から動的たわみDに関する情報が伝達可能に構成される。本開示における「伝達可能に構成される」とは、動的たわみDに関する情報の伝達が可能に構成されていればよく、例えば、ネットワーク回線を介した通信、又はSDカードなどの記憶媒体を介したデータ移動、の少なくとも一方が可能に構成されていてもよい。図示される実施形態では、余寿命推定装置1及び動的たわみ測定装置3の夫々は、情報伝達用のインターフェースを備える。余寿命推定装置1は、入力装置101に受信器101Aを含み、動的たわみ測定装置3は、受信器101Aに送信可能な送信器33を含む。余寿命推定装置1及び動的たわみ測定装置3は、LANやWANなどの通信ネットワークCNに接続され、動的たわみ測定装置3が測定した橋梁2の動的たわみDの実測値DMが、通信ネットワークCNを介して、余寿命推定装置1に送信されるようになっている。余寿命推定装置1に送信された橋梁2の動的たわみDの実測値DMは、実測値DMの測定時期と関連付けられて記憶装置103に記憶される。動的たわみ取得部12は、動的たわみ測定装置3から動的たわみDの実測値DMを取得してもよいし、記憶装置103に記憶された動的たわみDの実測値DMを取得してもよい。
【0028】
(余寿命算出ステップ)
余寿命算出ステップS3では、動的たわみ取得ステップS2において取得した動的たわみDの実測値DMから経年変化情報Aにおける使用経過年数の実年数を特定することで、橋梁2の余寿命RLを算出することが行われる。或る実施形態では、余寿命算出ステップS3は、余寿命算出部13により行われる。余寿命算出部13は、動的たわみ取得部12が取得した動的たわみDの実測値DMから、経年変化情報取得部11が取得した使用経過年数の実年数を特定することで、橋梁2の余寿命RLを算出するように構成される。
【0029】
図4のグラフには、動的たわみDの実測値DMがプロットされている。
図4に示されるように、動的たわみDの実測値DMのプロットPが、上述した劣化曲線Cから離隔している。余寿命算出部13は、動的たわみDの実測値DMのプロットPが劣化曲線C上に位置するように、プロットP又は劣化曲線Cの何れか一方(図示例では、プロットP)を、他方に向けて横軸(使用経過年数T)にスライドさせ、劣化曲線Cにおける動的たわみDが実測値DMと同値の位置である実測値対応位置CPと、実測値対応位置CPの経過年数と、を求める。実測値対応位置CPの経過年数を使用経過年数の実年数として特定する。
図4に示されるように、橋梁2の余寿命RLは、劣化曲線Cが実測値対応位置CPから破壊点BPに至るまでの期間であり、破壊点BPの経過年数から使用経過年数の実年数(実測値対応位置CPの経過年数)を差し引くことにより算出される。
【0030】
上記の構成(方法)によれば、経年変化情報Aにおける使用経過年数は、予め想定された年間に橋梁2を通過する車両4の台数に基づいて設定されるため、実年数との間に誤差が生じる可能性がある。動的たわみDの実測値DMから経年変化情報Aにおける使用経過年数の実年数を特定することで、車両通過に伴う経年劣化が進行する橋梁2の余寿命RLを精度良く算出(推定)できる。
【0031】
幾つかの実施形態では、上述した動的たわみ取得ステップS2において、それぞれ異なる時期に測定された複数の動的たわみDの実測値DMを取得することが行われる。上述した余寿命算出ステップS3では、動的たわみ取得ステップS2において取得された複数の実測値DM及びこれらの実測値DMの測定時期から、経年変化情報Aにおける使用経過年数の実年数を特定することが行われる。
図5のグラフには、複数の動的たわみDの実測値DMがプロットされている。
【0032】
或る実施形態では、動的たわみ取得ステップS2において取得された複数の実測値DMの夫々について、上述したように実測値対応位置CPや橋梁2の余寿命RLを求め、複数の橋梁2の余寿命の平均値を橋梁2の余寿命RLとして特定してもよい。
【0033】
上記の方法によれば、複数の動的たわみDの実測値DM及び測定時期を用いることで、単一の動的たわみDの実測値DM及び測定時期を用いる場合に比べて、経年変化情報Aにおける使用経過年数の実年数をより精度良く特定でき、橋梁2の余寿命RLを精度良く算出(推定)できる。
【0034】
幾つかの実施形態では、上述した動的たわみ取得ステップS2において、それぞれ異なる時期に測定された複数の動的たわみDの実測値DMを取得することが行われる。上述した余寿命算出ステップS3は、推定線算出ステップS31と、実年数特定ステップS32と、を含む。
【0035】
推定線算出ステップS31では、動的たわみ取得ステップS2において取得された複数の実測値DM及び実測値DMの測定時期に基づいて、橋梁2の使用経過年数と橋梁2の動的たわみDの経年変化との関係性を示す推定線ELを算出することが行われる。推定線ELは、
図5中点線で示されるような近似直線EL1であってもよいし、
図5中二点鎖線で示されるような近似曲線EL2であってもよい。
【0036】
実年数特定ステップS32では、経年変化情報Aから得られる橋梁2の使用経過年数に対する橋梁2の動的たわみDの経年変化を示す劣化曲線Cと推定線ELとをフィットさせるフィッティング操作に基づいて算出される劣化曲線C上の算出位置を実年数として特定することが行われる。
【0037】
余寿命算出部13は、推定線ELが劣化曲線Cに少なくとも一部が接するように、推定線EL又は劣化曲線Cの何れか一方を、他方に向けて横軸(使用経過年数T)にスライドさせ、推定線ELと劣化曲線Cの接点を上述した実測値対応位置CPとして特定する。実測値対応位置CPの経過年数を使用経過年数の実年数として特定する。
【0038】
上記の装置(方法)によれば、劣化曲線Cと推定線ELをフィットさせるフィッティング操作により、実測値DM及び実測値DMの測定時期から算出される推定線ELが、劣化曲線Cにおいて対応する部分を特定でき、劣化曲線C上の算出位置を実年数として特定できる。これにより、経年変化情報Aにおける使用経過年数の実年数をより精度良く特定でき、橋梁2の余寿命RLを精度良く算出(推定)できる。
【0039】
幾つかの実施形態では、上述した経年変化情報Aは、前記動的たわみDの繰り返し数Nに対する動的たわみDの経年変化を示す第1の関係性情報A1と、繰り返し数Nと橋梁2の使用経過年数Tとの関係性を示す第2の関係性情報A2と、を含む。上述した余寿命推定方法は、
図1に示されるように、修正ステップS4をさらに備える。なお、他の幾つかの実施形態では、余寿命推定方法は、修正ステップS4を備えていなくてもよい。
【0040】
(修正ステップ)
修正ステップS4は、余寿命算出ステップS3の前に行われる。修正ステップS4では、動的たわみ取得ステップS2において取得された複数の実測値DM及び実測値DMの測定時期、並びに第1の関係性情報A1に基づいて、第2の関係性情報A2を修正することが行われる。例えば、
図6に示されるように、劣化曲線Cと複数の実測値DMとの距離の和が小さく(例えば、最小に)なるように、繰り返し数Nと橋梁2の使用経過年数Tの変換比率を変更してもよい。
図6に示される修正劣化曲線MCは、繰り返し数Nと橋梁2の使用経過年数Tの変換比率を変更後の劣化曲線Cである。余寿命算出ステップS3では、修正ステップS4において修正された経年変化情報Aが用いられる。
【0041】
或る実施形態では、余寿命推定装置1は、動的たわみ取得部12において取得された複数の実測値DM及び実測値DMの測定時期、並びに第1の関係性情報A1に基づいて、第2の関係性情報A2を修正するように構成された修正部14をさらに備える。修正ステップS4は、修正部14により行われる。
【0042】
上記の装置(方法)によれば、修正ステップS4において、複数の実測値DM及び測定時期、並びに第1の関係性情報A1に基づいて、第2の関係性情報A2(繰り返し数と使用経過年数との関係性)を修正することで、第2の関係性情報A2における使用経過年数の実年数との誤差を低減できる。これにより、動的たわみDの実測値DMから経年変化情報Aにおける使用経過年数の実年数を精度良く特定できる。
【0043】
幾つかの実施形態では、上述した動的たわみ取得ステップS2において、橋梁2を所定重量の車両4が走行したときの活荷重による橋梁2の支間中央部29の動的たわみDを取得することが行われる。なお、上述した経年変化情報Aにおける橋梁2の動的たわみDも支間中央部29の動的たわみDであることが好ましい。
【0044】
上記の装置(方法)によれば、橋梁2の支間中央部29は、橋梁2の他の部分に比べて、動的たわみDが大きく挙動を把握し易いため、橋梁2の支間中央部29の動的たわみDの経年変化を用いて橋梁2の余寿命RLを推定することが好ましい。
【0045】
幾つかの実施形態では、上述した橋梁2の上部構造21を構成する部材には、コンクリート材料が使用される。上部構造21を構成する部材は、コンクリート材料だけでなく鋼材も使用されるようになっていてもよい。このような橋梁2の上部構造21にコンクリート材料が使用される場合において、上述した装置(方法)により、車両通過に伴う経年劣化が進行する橋梁2の余寿命RLを精度良く算出(推定)できる。
【0046】
幾つかの実施形態では、上述した経年変化情報Aの解析には、コンクリート材料の劣化進行に関する有限要素解析モデルM1が少なくとも用いられる。有限要素解析モデルM1は、橋梁2を構成するコンクリート材料の性状(寸法、形状、配合、打込み温度、養生条件及び環境条件等)を入力情報とし、状態方程式や質量・エネルギー保存則を支配方程式として、橋梁2を構成するコンクリート材料の熱力学的状態を出力する。有限要素解析モデルM1として、例えば、コンクリート材料の水和発熱モデル、空隙構造形成モデル及び水分保持移動モデルを少なくとも含む熱力学連成解析システム等が実用化されている。
【0047】
上記の装置(方法)によれば、経年変化情報Aの解析にコンクリート材料の劣化進行に関する有限要素解析モデルM1を用いることで、解析結果に橋梁2の微視的挙動、具体的にはコンクリート材料の劣化進行を反映できるので、経年変化情報Aの精度向上が図れる。
【0048】
なお、有限要素解析モデルM1は、上述した記憶装置103に記憶されていてもよいし、余寿命推定装置1以外の装置(例えば、データサーバ)に記憶されていてもよい。経年変化情報取得部11は、記憶装置103等に記憶された有限要素解析モデルM1を用いた解析により経年変化情報Aを取得するように構成されていてもよい。
【0049】
幾つかの実施形態では、上述した経年変化情報Aの解析には、橋梁2の構造に関する有限要素解析モデルM1が用いられる。有限要素解析モデルM1は、橋梁2を構成する鉄筋コンクリート構造の構成則も表現することができる。有限要素解析モデルM1は、橋梁を構成する各種部材の寸法、形状及び構造力学における力学的境界条件を入力情報とし、変形適合条件式や運動量保存則を支配方程式として、橋梁2の構造の力学的状態を出力する。
【0050】
上記の装置(方法)によれば、経年変化情報Aの解析に橋梁の構造に関する有限要素解析モデルM1を用いることで、解析結果に橋梁2の巨視的応答や損傷を反映できるので、経年変化情報Aの精度向上が図れる。
【0051】
幾つかの実施形態では、橋梁2の余寿命RLが所定期間よりも短くなったときに橋梁2の補修を行い、橋梁2の補修後に上述した動的たわみ取得ステップS2及び余寿命算出ステップS3を再度行い、補修後の橋梁2の余寿命RLを算出(推定)してもよい。なお、橋梁2の余寿命RLが所定期間よりも短くならないように橋梁2の補修を行うようにしてもよい。
【0052】
本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0053】
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0054】
上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
【0055】
1)本開示の少なくとも一実施形態に係る余寿命推定方法は、
橋梁(2)の余寿命(RL)を推定するための余寿命推定方法であって、
前記橋梁(2)の使用経過年数(T)に対する前記橋梁(2)の動的たわみ(D)の経年変化を示す経年変化情報(A)を解析により取得する経年変化情報取得ステップ(S1)と、
前記橋梁(2)の前記動的たわみ(D)の実測値(DM)を取得する動的たわみ取得ステップ(S2)と、
前記動的たわみ(D)の前記実測値(DM)から前記経年変化情報(A)における前記使用経過年数の実年数を特定することで、前記橋梁(2)の余寿命(RL)を算出する余寿命算出ステップ(S3)と、を備える。
【0056】
上記1)の方法によれば、経年変化情報(A)における使用経過年数は、予め想定された年間に橋梁(2)を通過する車両(4)の台数に基づいて設定されるため、実年数との間に誤差が生じる可能性がある。動的たわみ(D)の実測値(DM)から経年変化情報(A)における使用経過年数の実年数を特定することで、車両通過に伴う経年劣化が進行する橋梁(2)の余寿命(RL)を精度良く算出(推定)できる。
【0057】
2)幾つかの実施形態では、上記1)に記載の余寿命推定方法であって、
前記動的たわみ取得ステップ(S2)では、それぞれ異なる時期に測定された複数の前記実測値(DM)を取得することが行われ、
前記余寿命算出ステップ(S3)では、前記動的たわみ取得ステップ(S2)において取得された前記複数の実測値(DM)及び前記実測値(DM)の測定時期から前記実年数を特定することが行われる。
【0058】
上記2)の方法によれば、複数の動的たわみ(D)の実測値(DM)及び測定時期を用いることで、単一の動的たわみ(D)の実測値(DM)及び測定時期を用いる場合に比べて、経年変化情報(A)における使用経過年数の実年数をより精度良く特定でき、橋梁(2)の余寿命(RL)を精度良く算出(推定)できる。
【0059】
3)幾つかの実施形態では、上記2)に記載の余寿命推定方法であって、
前記余寿命算出ステップ(S3)は、
前記動的たわみ取得ステップ(S2)において取得された前記複数の実測値(DM)及び前記実測値(DM)の測定時期に基づいて、前記橋梁の使用経過年数と前記橋梁の動的たわみの経年変化との関係性を示す推定線(EL)を算出する推定線算出ステップ(S31)と、
前記経年変化情報(A)から得られる前記橋梁の使用経過年数に対する前記橋梁の前記動的たわみの経年変化を示す劣化曲線(C)と前記推定線(EL)とをフィットさせるフィッティング操作に基づいて算出される前記劣化曲線(C)上の算出位置を前記実年数として特定する実年数特定ステップ(S32)と、を含む。
【0060】
上記3)の方法によれば、劣化曲線(C)と推定線(EL)をフィットさせるフィッティング操作により、実測値(DM)及び実測値(DM)の測定時期から算出される推定線(EL)が、劣化曲線(C)において対応する部分を特定でき、劣化曲線(C)上の算出位置を実年数として特定できる。これにより、経年変化情報(A)における使用経過年数の実年数をより精度良く特定でき、橋梁(2)の余寿命(RL)を精度良く算出(推定)できる。
【0061】
4)幾つかの実施形態では、上記2)又は3)に記載の余寿命推定方法であって、
前記経年変化情報(A)は、
前記動的たわみの繰り返し数に対する前記動的たわみの経年変化を示す第1の関係性情報(A1)と、
前記繰り返し数と前記橋梁の前記使用経過年数との関係性を示す第2の関係性情報(A2)と、を含み、
前記余寿命推定方法は、
前記余寿命算出ステップ(S3)の前に、前記動的たわみ取得ステップにおいて取得された前記複数の実測値(DM)及び前記実測値(DM)の測定時期、並びに前記第1の関係性情報(A1)に基づいて、前記第2の関係性情報(A2)を修正する修正ステップ(S4)をさらに備える。
【0062】
上記4)の方法によれば、修正ステップ(S4)において、複数の実測値(DM)及び測定時期、並びに第1の関係性情報(A1)に基づいて、第2の関係性情報(A2、繰り返し数と使用経過年数との関係性)を修正することで、第2の関係性情報(A2)における使用経過年数の実年数との誤差を低減できる。これにより、動的たわみ(D)の実測値(DM)から経年変化情報(A)における使用経過年数の実年数を精度良く特定できる。
【0063】
5)幾つかの実施形態では、上記1)から4)までの何れかに記載の余寿命推定方法であって、
前記動的たわみ取得ステップ(S2)では、
前記橋梁を所定重量の車両が走行したときの活荷重による前記橋梁の支間中央部の動的たわみを取得することが行われる。
【0064】
上記5)の方法によれば、橋梁の支間中央部は、橋梁の他の部分に比べて、動的たわみが大きく挙動を把握し易いため、橋梁の支間中央部の動的たわみ(D)の経年変化を用いて橋梁(2)の余寿命(RL)を推定することが好ましい。
【0065】
6)幾つかの実施形態では、上記1)から5)までの何れかに記載の余寿命推定方法であって、
前記橋梁の上部構造を構成する部材には、コンクリート材料が使用される。
【0066】
上記6)の方法によれば、橋梁の上部構造にコンクリート材料が使用される場合において、車両通過に伴う経年劣化が進行する橋梁(2)の余寿命(RL)を精度良く算出(推定)できる。
【0067】
7)幾つかの実施形態では、上記6)に記載の余寿命推定方法であって、
前記経年変化情報(A)の解析には、
前記コンクリート材料の劣化進行に関する有限要素解析モデルが少なくとも用いられる。
【0068】
上記7)の方法によれば、経年変化情報(A)の解析にコンクリート材料の劣化進行に関する有限要素解析モデルを用いることで、解析結果に橋梁(2)の微視的挙動、具体的にはコンクリート材料の劣化進行を反映できるので、経年変化情報(A)の精度向上が図れる。
【0069】
8)幾つかの実施形態では、上記1)から7)までの何れかに記載の余寿命推定方法であって、
前記経年変化情報(A)の解析には、
前記橋梁の構造に関する有限要素解析モデルが少なくとも用いられる。
【0070】
上記8)の方法によれば、経年変化情報(A)の解析に橋梁の構造に関する有限要素解析モデルを用いることで、解析結果に橋梁(2)の巨視的応答や損傷を反映できるので、経年変化情報(A)の精度向上が図れる。
【0071】
9)本開示の少なくとも一実施形態に係る余寿命推定装置(1)は、
橋梁(2)の余寿命(RL)を推定するための余寿命推定装置(1)であって、
前記橋梁(2)の使用経過年数(T)に対する前記橋梁(2)の動的たわみ(D)の経年変化を示す経年変化情報(A)を解析により取得するように構成された経年変化情報取得部(11)と、
前記橋梁(2)の前記動的たわみ(D)の実測値(DM)を取得するように構成された動的たわみ取得部(12)と、
前記動的たわみ(D)の前記実測値(DM)から前記経年変化情報(A)における前記使用経過年数の実年数を特定することで、前記橋梁(2)の余寿命(RL)を算出するように構成された余寿命算出部(13)と、を備える。
【0072】
上記9)の構造によれば、経年変化情報(A)における使用経過年数は、予め想定された年間に橋梁(2)を通過する車両(4)の台数に基づいて設定されるため、実年数との間に誤差が生じる可能性がある。動的たわみ(D)の実測値(DM)から経年変化情報(A)における使用経過年数の実年数を特定することで、車両通過に伴う経年劣化が進行する橋梁(2)の余寿命(RL)を精度良く算出(推定)できる。
【符号の説明】
【0073】
1 余寿命推定装置
2 橋梁
3 動的たわみ測定装置
4 車両
10 余寿命推定システム
11 経年変化情報取得部
12 動的たわみ取得部
13 余寿命算出部
14 修正部
21 上部構造
22 下部構造
23 橋面
24 主桁
25 床版
26 舗装
27 橋台
28 橋脚
29 支間中央部
31 加速度センサ
32 積分器
33 送信器
100 電子制御ユニット
101 入力装置
101A 受信器
102 出力装置
103 記憶装置
104 演算装置
A 経年変化情報
BP 破壊点
C 劣化曲線
CN 通信ネットワーク
CP 実測値対応位置
D 動的たわみ
DM 実測値
EL 推定線
EL1 近似直線
EL2 近似曲線
MC 修正劣化曲線
N 繰り返し数
P プロット
RL 余寿命
S1 経年変化情報取得ステップ
S2 動的たわみ取得ステップ
S3 余寿命算出ステップ
S31 推定線算出ステップ
S32 実年数特定ステップ
S4 修正ステップ
T 使用経過年数
【要約】
【課題】 車両通過に伴う経年劣化が進行する橋梁の余寿命を精度良く推定可能な余寿命推定方法及び余寿命推定装置を提供する。
【解決手段】 橋梁の余寿命を推定するための余寿命推定方法は、橋梁の使用経過年数に対する橋梁の動的たわみの経年変化を示す経年変化情報を解析により取得する経年変化情報取得ステップと、橋梁の動的たわみの実測値を取得する動的たわみ取得ステップと、動的たわみの実測値から経年変化情報における使用経過年数の実年数を特定することで、橋梁の余寿命を算出する余寿命算出ステップと、を備える。
【選択図】
図4