(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-29
(45)【発行日】2024-06-06
(54)【発明の名称】作成支援装置およびプログラム
(51)【国際特許分類】
G06Q 50/18 20120101AFI20240530BHJP
【FI】
G06Q50/18 310
(21)【出願番号】P 2019219773
(22)【出願日】2019-12-04
【審査請求日】2022-12-02
(31)【優先権主張番号】P 2018227623
(32)【優先日】2018-12-04
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000155469
【氏名又は名称】株式会社野村総合研究所
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(74)【代理人】
【識別番号】100076428
【氏名又は名称】大塚 康徳
(74)【代理人】
【識別番号】100115071
【氏名又は名称】大塚 康弘
(74)【代理人】
【識別番号】100112508
【氏名又は名称】高柳 司郎
(74)【代理人】
【識別番号】100116894
【氏名又は名称】木村 秀二
(74)【代理人】
【識別番号】100130409
【氏名又は名称】下山 治
(74)【代理人】
【識別番号】100134175
【氏名又は名称】永川 行光
(74)【代理人】
【識別番号】100199277
【氏名又は名称】西守 有人
(72)【発明者】
【氏名】赤丸 孟史
(72)【発明者】
【氏名】外園 康智
(72)【発明者】
【氏名】須崎 正士
(72)【発明者】
【氏名】新井 克典
【審査官】橋沼 和樹
(56)【参考文献】
【文献】特開2002-207720(JP,A)
【文献】特開平03-204071(JP,A)
【文献】特開2004-118768(JP,A)
【文献】国際公開第2006/033210(WO,A1)
【文献】特開2016-164707(JP,A)
【文献】米国特許出願公開第2018/0232361(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
出願書類の作成を支援する作成支援装置であって、
メモリおよびプロセッサを備え、
前記プロセッサは、過去の出願に係る請求の範囲について
の解析に基づいて学習されたクレーム生成モデルを記憶する
記憶装置へアクセス可能であり、
前記プロセッサは、前記メモリに記憶されるプログラムを実行することにより、
課題、解決手段および要約のうちの少なくとも1つを含む技術文書を受け付ける受付手段と、
前記技術文書に基づいて、キーワードおよび技術分類を取得する取得手段と、
前記キーワードおよび前記技術分類に基づいて、前記技術文書と類似する過去の出願を
抽出する抽出手段と、
前記キーワード、前記技術分類、および前記類似する過去の出願の情報を前記記憶装置に記憶されている前記クレーム生成モデルに適用することにより、前記出願書類の請求の範
囲を生成する生成手段と、
として機能する、作成支援装置。
【請求項2】
前記技術文書は、発明提案書である、請求項1に記載の作成支援装置。
【請求項3】
前記抽出手段は、前記キーワードまたは前記技術分類がユーザにより修正された場合には、修正された前記キーワードまたは前記技術分類に基づいて、前記類似する過去の出願を抽出する、請求項1に記載の作成支援装置。
【請求項4】
前記生成手段は、前記キーワード、前記技術分類、または前記類似する過去の出願がユーザにより修正された場合には、修正された前記キーワード、前記技術分類、または前記類似する過去の出願の情報を前記クレーム生成モデルに適用する、請求項1に記載の作成支援装置。
【請求項5】
出願書類の作成を支援する作成支援装置のプロセッサにより実行されるプログラムであって、
前記プロセッサは、過去の出願に係る請求の範囲についての解析に基づいて学習されたクレーム生成モデルを記憶する記憶装置へアクセス可能であり、
前記プロセッサは、前記プログラムを実行することにより、
課題、解決手段および要約のうちの少なくとも1つを含む技術文書を受け付ける受付手段と、
前記技術文書に基づいて、キーワードおよび技術分類を取得する取得手段と、
前記キーワードおよび前記技術分類に基づいて、前記技術文書と類似する過去の出願を抽出する抽出手段と、
前記キーワード、前記技術分類、および前記類似する過去の出願の情報を前記記憶装置に記憶されている前記クレーム生成モデルに適用することにより、前記出願書類の請求の範囲を生成する生成手段と、
として機能する、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、出願書類の作成を支援する作成支援装置およびプログラムに関する。
【背景技術】
【0002】
特許出願は、国により多少の違いはあるが、基本的に明細書と特許請求の範囲と要約と図面とから構成される。これまで一般に、特許出願の特許請求の範囲(クレームとも称す)は弁理士により作成され、または企業の知的財産部の者により作成されてきた。
【0003】
近年、「人工知能(AI、Artificial Intelligence)」という言葉をよく目にするようになった(例えば、非特許文献1参照)。実際、AIは著しく進化しており、人間の脳のように、たくさんの画像や音声を認識して特定のパターンを見つけ出す認知機能を持つものも登場している。例えば、Google社はコンピュータに猫の画像を判別させることに成功した。このようにAIの性能が向上するにつれて、その適用範囲も広がってきている。
【先行技術文献】
【非特許文献】
【0004】
【文献】http://www.nri.com/jp/journal/2016/10/161031_4/、2018年4月10日検索
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来のクレーム作成手法では、クレーム作成のための知識や経験が担当者により異なるため、作成されるクレームの品質もまちまちとなることが多かった。また、手作業で作成するため、比較的時間がかかっていた。
【0006】
本発明はこうした課題に鑑みてなされたものであり、その目的は、クレーム作成の際の品質のばらつきを抑えることができる、またはクレームを含む特許出願原稿作成にかかる時間を低減できる技術の提供にある。
【課題を解決するための手段】
【0007】
本発明のある態様は、出願書類の作成を支援する作成支援装置に関する。この作成支援装置は、メモリおよびプロセッサを備え、前記プロセッサは、過去の出願に係る請求の範囲についての解析に基づいて学習されたクレーム生成モデルを記憶する記憶装置へアクセス可能であり、前記プロセッサは、前記メモリに記憶されるプログラムを実行することにより、課題、解決手段および要約のうちの少なくとも1つを含む技術文書を受け付ける受付手段と、前記技術文書に基づいて、キーワードおよび技術分類を取得する取得手段と、 前記キーワードおよび前記技術分類に基づいて、前記技術文書と類似する過去の出願を抽出する抽出手段と、前記キーワード、前記技術分類、および前記類似する過去の出願の情報を前記記憶装置に記憶されている前記クレーム生成モデルに適用することにより、前記出願書類の請求の範囲を生成する生成手段と、として機能する。
【0008】
なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を装置、方法、システム、コンピュータプログラム、コンピュータプログラムを格納した記録媒体などの間で相互に置換したものもまた、本発明の態様として有効である。
【発明の効果】
【0009】
本発明によれば、クレーム作成の際の品質のばらつきを抑えることができる、またはクレームを含む特許出願原稿作成にかかる時間を低減できる。
【図面の簡単な説明】
【0010】
【
図1】第1の実施の形態に係る作成サーバにより実現される画面の遷移を示す模式図である。
【
図2】第1の実施の形態に係るクレーム作成支援システムの構成を示す模式図である。
【
図3】
図2の作成サーバのハードウエア構成図である。
【
図4】
図2の作成サーバの機能および構成を示すブロック図である。
【
図5】
図4の特許情報保持部の一例を示すデータ構造図である。
【
図6】
図2の作成サーバにおける一連の処理の流れを示すフローチャートである。
【
図7】学習対象の文献のフリーキーワードと引用された文献のフリーキーワードとの関係の一例を示す模式図である。
【
図8】第1変形例に係るキーワード抽出処理の流れを示すフローチャートである。
【
図10】お手本出願を指定する場合のクレーム生成モデルを説明する模式図である。
【
図11】第2変形例に係る作成サーバにおけるクレーム生成の流れを示す模式図である。
【
図12】第2変形例に係る作成サーバにおけるAIモデルの学習を説明する模式図である。
【
図13a】第3変形例に係る作成サーバにおけるクレーム生成の流れを示す模式図である。
【
図13b】第3変形例に係る作成サーバにおけるクレーム生成の流れを示す模式図である。
【
図14】第4変形例に係る作成サーバにおけるクレーム生成の流れを示す模式図である。
【
図15】第4変形例に係る作成サーバにおけるAIモデルの学習を説明する模式図である。
【
図16】第2の実施の形態に係る作成支援サーバの機能および構成を示すブロック図である。
【
図17】
図16の作成支援サーバによってユーザ端末のディスプレイに表示される画面の遷移の概要を示す模式図である。
【
図21】入力支援機能を説明するための模式図である。
【
図22】新規特許請求の範囲作成画面の代表画面図である。
【
図23】自社案件検索一覧画面の代表画面図である。
【
図26】特許請求の範囲修正画面の代表画面図である。
【
図27】
図16の作成支援サーバにおける一連の処理の流れを示すフローチャートである。
【
図28】第5変形例に係る作成支援サーバが備える格成分テーブルの一例を示すデータ構造図である。
【
図29】例示的な格成分モデルを示す模式図である。
【
図30】プラスボタンをクリックした後の格成分モデルの要部を示す模式図である。
【
図31】プラスボタンをクリックした後の格成分モデルの要部を示す模式図である。
【
図32】
図29の格成分モデルを修正することによって得られた格成分モデルを示す模式図である。
【
図33】AIを活用した特許出願書類の作成プロセスにおける第3の実施の形態に係る特許出願書類自動生成処理の位置づけを示す模式図である。
【
図34】特許出願書類自動生成処理の入出力および生成処理ステップの概要を示す模式図である。
【
図35】
図22の類似度を算出するための評価システムのブロック図である。
【
図36】
図35の検索エンジンにおける一連の処理の流れを示すフローチャートである。
【
図37】クレーム生成の際にユーザによる選択を受け付ける場合のユーザインタフェースを示す模式図である。
【
図38】
図1で特許請求の範囲を自動的に生成するためのアルゴリズムの一例を示す模式図である。
【発明を実施するための形態】
【0011】
以下、各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面において説明上重要ではない部材の一部は省略して表示する。
【0012】
(第1の実施の形態)
図1は、第1の実施の形態に係る作成サーバにより実現される画面の遷移を示す模式図である。作成サーバはまずユーザの端末のディスプレイ100に、クレームを生成するための条件の入力を受け付ける生成条件入力画面102を表示させる。生成条件入力画面102は、キーワード入力領域104と、追加ボタン106と、イメージアップロード領域105と、クレーム数入力領域108と、課題入力領域110と、参考出願入力領域107と、オートボックス109と、分野入力領域112と、生成ボタン114と、を有する。
【0013】
作成サーバのユーザとしては、例えば企業の知的財産部の者が想定される。ユーザは、研究開発部門から提出された発明提案書などの技術文書を検討し、それに含まれる発明や技術的思想のエッセンス(または要諦、特徴、本質的部分)をキーワードとして抽出する。併せて可能であればユーザは発明や技術的思想に係る課題を抽出し、発明や技術的思想の属する技術分野を決定する。ユーザは、抽出したキーワードを生成条件入力画面102のキーワード入力領域104に入力する。ユーザは、追加ボタン106をクリック(押下)することで、キーワード入力領域104で入力できるキーワードを増やすことができる
。キーワード入力領域104の各キーワードには重要度103が関連付けて表示される。ユーザは、入力したキーワードの重要度103を「H」(高)、「M」(中)、「L」(低)のなかから選択する。他の実施の形態では重要度としてより多くのレベルが用いられてもよいし、連続的な値が用いられてもよい。
【0014】
ユーザは、キーワードに代えてまた加えて、発明提案書などの技術文書や、技術図面その他写真等の静止画や、動画等の各種ファイル(以下、文書等と称す)をアップロードすることができる。ユーザは、ユーザの端末内の文書等を参照することにより対象のファイルのパスをイメージアップロード領域105に入力する。または、ユーザは、対象のファイルのパスを直接イメージアップロード領域105に入力してもよい。あるいはまた、ユーザは、文書等の代わりに発明提案書などの技術文書の画像のファイルをアップロードしてもよい。
【0015】
ユーザは、作成する特許請求の範囲のクレーム数を決めてクレーム数入力領域108に入力する。ユーザは、もし発明の課題や技術分野が決まっていれば、それぞれを課題入力領域110、分野入力領域112に入力する。課題入力領域110において、課題はフリーテキスト形式で入力されてもよい。ユーザは、お手本とするクレームを有する特許出願(以下、お手本出願という)が決まっていればその特許出願の番号を参考出願入力領域107に入力する。あるいはまた、お手本出願を自動で選択する場合は、オートボックス109にチェックを入れる。お手本出願を用いない場合は、参考出願入力領域107を空欄とし、オートボックス109のチェックを外す。分野入力領域112において、技術分野はIPC(International Patent Classification)、Fターム、FI、CPC等の分類により指定されてもよいし、テキストで指定されてもよい。
【0016】
ユーザが必要な情報を入力した後、生成ボタン114をクリックすると、作成サーバは入力された情報を取得する。作成サーバは、過去の特許出願の情報をAIに学習させることで生成、更新されるクレーム生成AIエンジンを実装している。作成サーバは、入力された情報をこのクレーム生成AIエンジンで処理することで、入力されたキーワードに対応する特許請求の範囲を自動的に生成する。作成サーバは、生成された特許請求の範囲を表示する生成結果表示画面116をディスプレイ100に表示させる。生成結果表示画面116には、生成された特許請求の範囲がテキストで表示されると共に、OKボタン118と、修正ボタン120と、が表示される。
【0017】
ユーザは、生成された特許請求の範囲に満足する場合、OKボタン118をクリックして処理を終了する。ユーザは、生成された特許請求の範囲の修正を望む場合、修正ボタン120をクリックする。作成サーバは、修正ボタン120がクリックされると、ユーザによる特許請求の範囲の修正を受け付けるための編集画面122をディスプレイ100に表示させる。
【0018】
編集画面122には、特許請求の範囲が編集可能な態様で表示されると共に、反映ボタン124が表示される。編集画面122でなされた特許請求の範囲への修正は、修正履歴が分かる形で表示される。ユーザが所望の修正を施した後、反映ボタン124をクリックすると、作成サーバは修正を反映した特許請求の範囲を表示する修正結果表示画面126をディスプレイ100に表示させる。併せて、作成サーバは修正前の特許請求の範囲および修正内容を取得し、取得された情報でクレーム生成AIエンジンを更新する。
【0019】
このように、作成サーバが提供するクレーム作成支援サービスによると、クレーム生成AIエンジンを用いるので、クレーム作成の際の属人的要素を低減または排除することができ、品質の均一化を図ることができる。また、クレーム作成にかかる時間を低減することができる。
【0020】
図2は、第1の実施の形態に係るクレーム作成支援システム2の構成を示す模式図である。クレーム作成支援システム2は、作成サーバ4と、ユーザ端末8と、を備える。作成サーバ4とユーザ端末8とはインターネットなどのネットワーク6を介して通信可能に接続されている。作成サーバ4は、過去の特許出願の情報を保持する特許情報保持部42を備え、また上述の通りクレーム作成AIエンジンを実装している。ユーザ端末8は、ユーザが用いる端末であり、例えばデスクトップPC、ラップトップPC、携帯端末などであってもよい。
【0021】
本実施の形態では、ユーザがユーザ端末8に情報を入力し、ユーザ端末8が該情報をネットワーク6を介して作成サーバ4に送信し、作成サーバ4が該情報を処理し、処理結果をネットワーク6を介してユーザ端末8に返し、ユーザ端末8が処理結果を表示する、いわゆるASP(Application Service Provider)を想定する。しかしながら、本実施の形態の技術的思想は、スタンドアローンの端末にクレーム作成AIエンジンを実装し、ユーザがその端末に情報を入力し、処理結果を得る場合など、ASP以外のシステムにも適用可能である。
【0022】
図3は、
図2の作成サーバ4のハードウエア構成図である。ユーザ端末8は
図3に記載のハードウエア構成と同様のハードウエア構成を有してもよい。作成サーバ4は、メモリ130と、プロセッサ132と、通信インタフェース134と、ディスプレイ136と、入力インタフェース138と、を含む。これらの要素はそれぞれバス140に接続され、バス140を介して互いに通信する。
【0023】
メモリ130は、データやプログラムを記憶するための記憶領域である。データやプログラムは、メモリ130に恒久的に記憶されてもよいし、一時的に記憶されてもよい。特にメモリ130は特許情報保持部42として割り当てられた領域を有する。プロセッサ132は、メモリ130に記憶されているプログラムを実行することにより、作成サーバ4における各種機能を実現する。通信インタフェース134は、作成サーバ4の外部との間でデータの送受信を行うためのインタフェースである。例えば、通信インタフェース134はネットワーク6にアクセスするためのインタフェースを含む。ディスプレイ136は、各種情報を表示するためのデバイスであり、例えば、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイなどである。入力インタフェース138は、ユーザからの入力を受け付けるためのデバイスである。入力インタフェース138は、例えば、マウスやキーボードやディスプレイ138上に設けられたタッチパネルを含む。
【0024】
図4は、
図2の作成サーバ4の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPUをはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解されるところである。
【0025】
作成サーバ4は、特許情報保持部42と、学習部402と、生成条件取得部404と、クレーム生成AIエンジン406と、結果出力部408と、修正受付部410と、を備える。
【0026】
図5は、特許情報保持部42の一例を示すデータ構造図である。特許情報保持部42は、過去の特許出願の情報を保持する。特許情報保持部42は、特許出願を特定する特許IDと、該特許出願の出願番号と、該特許出願に付された筆頭IPCと、該特許出願の特許強度値と、該特許出願に付された審査官フリーワードと、該特許出願に付されたフリーキーワードと、該特許出願の特許請求の範囲と、該特許出願の課題と、該特許出願の審査の際に引用された文献と、該特許出願の図面(不図示)と、該特許出願の文書等(不図示)と、を対応付けて保持する。特許出願の文書等は、自社の先願の発明提案書関連の文書など、入手可能な場合にのみ登録されてもよい。
【0027】
特許強度値は、特許出願の質を示す指標のひとつである。特許強度値は、例えばNRIサイバーパテント株式会社が提供するTS(Technology Size)値であってもよい。あるいはまた、他の指標が用いられてもよい。
【0028】
フリーキーワードは、対象の特許出願を人が読むことにより設定されるキーワードであり、特にその人が対象の特許出願のポイントとして抽出したキーワードであってもよい。フリーキーワードは、例えばNRIサイバーパテント株式会社が提供するPATOLISキーワードであってもよい。
【0029】
図4に戻り、学習部402は、特許情報保持部42を参照し、過去の特許出願から抽出された情報と該特許出願の特許請求の範囲とを機械的に学習することによりクレーム作成モデルを生成する。その際、学習部402は、特許情報保持部42に保持される過去の特許出願の情報うち、質に関する所定の基準を満たさない過去の特許出願の情報は参照しないようにしてもよい。
【0030】
学習部402は、特許情報保持部42に保持される特許出願のうち、特許強度値がしきい値以上となる特許出願を特定してもよい。言い換えると、学習部402は特許強度値がしきい値未満の特許出願を学習の対象から外してもよい。なお、本実施の形態では質に関する所定の基準としてしきい値との大小関係を用いるが、これに限られず、例えばしきい値の代わりに特許強度値の範囲が用いられてもよい。
【0031】
学習部402は、特定された特許出願のフリーキーワードと特許請求の範囲と課題と筆頭IPCと文書等と図面とを特許情報保持部42から取得し、取得した情報を機械的に学習することにより、クレーム作成モデルを生成する。学習部402におけるクレーム作成モデルの生成は、公知の機械学習、人工知能に関する技術を用いて実現されてもよい。課題の学習および筆頭IPCの学習はいずれもオプションであり、学習の対象とされなくてもよい。
【0032】
クレーム作成モデルは、キーワードまたは文書等を必須の入力、課題および技術分野をオプションの入力とし、処理の結果として特許請求の範囲を出力するモデルである。課題および技術分野はいずれも、出力結果の精度を高めるために用いられる。なお、各キーワードに対して指定される重要度をクレーム生成モデルの入力とする場合、学習部402は、フリーキーワードをその重要度と併せて学習する。フリーキーワードの重要度は、予め人が決めて特許情報保持部42に登録しておいてもよいし、後述のキーワード抽出モデルで実現されるように自動的に付与されてもよい。
【0033】
図10は、お手本出願を指定する場合のクレーム生成モデルを説明する模式図である。学習部402はまず特許情報保持部42に保持されている過去の特許出願の情報を、クレームの構造に応じて分割する。具体的には、学習部402は、クレームの構造をいくつかの種類(例えば、クレーム構造A、B、C)に分け、特許情報保持部42に保持される特許出願のクレームの構造がどの種類に属するか判定する。学習部402は、この構造の種類で特許情報保持部42に保持される特許出願をグループ分けする(例えば、クレーム構造:Aに属するグループ、クレーム構造:Bに属するグループ、クレーム構造:Cに属す
るグループ)。学習部402は、グループごと(すなわち、クレーム構造の種類ごと)にクレーム作成モデルを生成する。その結果、例えば、クレーム構造Aに対応するクレーム作成モデルA、クレーム構造Bに対応するクレーム作成モデルB、クレーム構造Cに対応するクレーム作成モデルC、が生成される。
【0034】
図4に戻り、学習部402は、上記のように生成されたクレーム作成モデルをクレーム生成AIエンジン406に設定する。学習部402で生成されるクレーム作成モデルの種類は、クレーム作成の条件としてどのような入力を想定するかに応じて決定されてもよいし、想定される入力のパターンに応じて複数種類のクレーム作成モデルを生成しておいてもよい。例えば、クレーム作成の条件としてキーワードを必須とし、課題をオプションとするのであれば、学習部402は、特定された特許出願のフリーキーワードと特許請求の範囲と課題とを特許情報保持部42から取得し、取得した情報を機械的に学習することに
より、クレーム作成モデルを生成する。あるいはまた、例えば、クレーム作成の条件としてキーワードを必須とし、重要度をオプションとするのであれば、学習部402は、特定された特許出願のフリーキーワードと特許請求の範囲とフリーキーワードごとの重要度とを特許情報保持部42から取得し、取得した情報を機械的に学習することにより、クレーム作成モデルを生成する。あるいはまた、例えば、クレーム作成の条件として文書等を必須とし、オプション情報は無しとするのであれば、学習部402は、特定された特許出願の特許請求の範囲と文書等と図面とを特許情報保持部42から取得し、取得した情報を機械的に学習することにより、クレーム作成モデルを生成する。あるいはまた、クレーム作成の条件としてお手本出願の指定を可能とするのであれば、
図10に示されるようにクレームの構造に応じて複数のクレーム作成モデルを用意する。
【0035】
生成条件取得部404は、生成条件入力画面102を表示するための画面情報を生成し、ネットワーク6を介してユーザ端末8に送信する。生成条件取得部404は、ユーザ端末8のディスプレイ100に表示された生成条件入力画面102に対してユーザが入力した情報を、ネットワーク6を介してユーザ端末8から受信する。ユーザが入力した情報は、キーワードの集合または文書等と、クレームの数と、を含み、オプションでキーワード毎の重要度と、課題と、お手本出願の出願番号と、技術分野と、を含む。
【0036】
オートボックス109がチェックされている場合、生成条件取得部404は、外部または内部の特許出願のデータベースに対して、受信したキーワードの集合をキーとした検索を行い、検索結果のうち最も一致スコアの高い出願をお手本出願に設定する。
【0037】
クレーム生成AIエンジン406は、学習部402により生成されたクレーム作成モデルに、生成条件取得部404がユーザ端末8から受け付けたキーワードの集合または文書等と、クレームの数と、を適用する。クレーム生成AIエンジン406は、生成条件取得部404がユーザ端末8からキーワードの重要度を受け付けていれば、それもクレーム作成モデルに適用する。クレーム生成AIエンジン406は、生成条件取得部404がユーザ端末8から課題を受け付けていれば、それもクレーム作成モデルに適用する。クレーム生成AIエンジン406は、生成条件取得部404がユーザ端末8から技術分野を受け付
けていれば、それもクレーム作成モデルに適用する。クレーム生成AIエンジン406は、生成条件取得部404がお手本出願を取得していれば、お手本出願のクレームの構造に対応するクレーム作成モデルを選択して用いる。クレーム生成AIエンジン406は、適用の結果クレーム作成モデルが出力する特許請求の範囲を取得する。
【0038】
結果出力部408は、クレーム生成AIエンジン406において得られた特許請求の範囲を、ユーザ端末8のユーザに提供する。結果出力部408は、得られた特許請求の範囲を含む生成結果表示画面116を表示するための画面情報を生成し、ネットワーク6を介してユーザ端末8に送信する。ユーザ端末8はその画面情報を受信し、受信した画面情報に基づいて生成結果表示画面116をディスプレイ100に表示させる。
【0039】
ユーザ端末8は、生成結果表示画面116の修正ボタン120がクリックされると、修正要求情報を生成し、ネットワーク6を介して作成サーバ4に送信する。修正受付部410は、ユーザ端末8から修正要求情報を受信すると、編集画面122を表示するための画面情報を生成し、ネットワーク6を介してユーザ端末8に送信する。ユーザ端末8は、その画面情報を受信し、受信した画面情報に基づいて編集画面122をディスプレイ100に表示させる。
【0040】
ユーザ端末8は、編集画面122の反映ボタン124がクリックされると、その時点の修正内容を含む修正完了情報を生成し、ネットワーク6を介して作成サーバ4に送信する。修正受付部410は、ユーザ端末8から修正完了情報を受信すると、修正結果表示画面126を表示するための画面情報を生成し、ネットワーク6を介してユーザ端末8に送信する。ユーザ端末8は、その画面情報を受信し、受信した画面情報に基づいて修正結果表示画面126をディスプレイ100に表示させる。
【0041】
修正受付部410は、修正完了情報を受信すると、修正の対象となった特許請求の範囲について、(1)ユーザにより入力されたキーワードの集合、(2)入力された課題(あれば)、(3)入力された技術分野(あれば)、(4)クレーム作成モデルにより生成されたままの(すなわち、修正前の)特許請求の範囲、および(5)修正後の特許請求の範囲、を学習部402に渡す。学習部402は、上記(1)~(5)の情報に基づいてクレーム作成モデルを更新する。
【0042】
以上の構成による作成サーバ4の動作を説明する。
図6は、
図2の作成サーバ4における一連の処理の流れを示すフローチャートである。
図6の例では、クレーム作成の条件としてキーワードとお手本出願とが与えられる場合を想定する。作成サーバ4は、ユーザ端末8のディスプレイ100に生成条件入力画面102を表示させる(S602)。作成サーバ4は、生成条件入力画面102を介してユーザから技術的思想に係るキーワードの集合およびお手本出願の出願番号を受け付ける(S604)。作成サーバ4は、お手本出願の出願番号を基にお手本出願のクレームを外部または内部の特許出願データベース(例えば、J-Platなど)から取得し、取得されたクレームの構造を特定する(S6051)。作成支援サーバ4は、特定された構造に対応するクレーム作成モデルを選択する(S6052)。作成サーバ4は、ステップS604で受け付けたキーワードの集合を入力として、ステップS6052で選択されたクレーム作成モデルを用いた、AIによるクレーム生成を実行する(S606)。作成サーバ4は、ユーザ端末8のディスプレイ100に生成結果表示画面116を表示させることで生成されたクレームを表示させる(S608)。ユーザによるクレームの修正がない場合(S610のNO)、処理は終了する。ユーザによるクレームの修正がある場合(S610のYES)、作成サーバ4は修正の内容を受け付ける(S612)。作成サーバ4は、ユーザ
端末8のディスプレイ100に修正結果表示画面126を表示させることで修正されたクレームを表示させる(S614)。作成サーバ4は、修正前のクレームおよび修正内容に基づき、クレーム生成AIエンジン406のクレーム作成モデルを更新する(S616)。
【0043】
上述の実施の形態において、保持部の例は、ハードディスクや半導体メモリである。また、本明細書の記載に基づき、各部を、図示しないCPUや、インストールされたアプリケーションプログラムのモジュールや、システムプログラムのモジュールや、ハードディスクから読み出したデータの内容を一時的に記憶する半導体メモリなどにより実現できることは本明細書に触れた当業者には理解される。
【0044】
本実施の形態に係る作成サーバ4によると、比較的質の高い過去の特許出願の情報を機械的に学習することにより、クレーム生成AIエンジンのクレーム作成モデルが生成される。このクレーム作成モデルに、ユーザが抽出したキーワードを適用することで特許請求の範囲が自動的に生成される。このように、従来、弁理士や企業の知的財産部に属人的に帰属していたクレーム作成の知識、経験をAIに移し、そのAIを用いてクレーム作成を行うことで、作成されるクレームの質を均一化し、かつ、クレーム作成にかかる時間を低減することができる。
【0045】
以上、第1の実施の形態に係るクレーム作成支援システム2の構成と動作について説明した。この実施の形態は例示であり、各構成要素や各処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解される。
【0046】
第1の実施の形態では、学習部402で学習させるキーワードとして特許情報保持部42のフリーキーワードを用いる場合を説明したが、これに限られない。例えば、審査官フリーワードが用いられてもよい。
【0047】
(第1変形例)
特許情報保持部42に保持される特許出願のうち、フリーキーワードがない特許出願については、フリーキーワードを設定するためにAIが用いられてもよい。第1変形例では、学習部402は、特許情報保持部42に保持される特許出願のうち、特許強度値がしきい値以上となる特許出願を特定する。学習部402は、特定された特許出願のフリーキーワードと特許請求の範囲と課題とに加えて、該特許出願の審査の際に引用された文献のフリーキーワードを機械的に学習することにより、キーワード抽出モデルを生成する。
【0048】
機械的な学習における、学習対象の特許出願のフリーキーワードと、引用された文献のフリーキーワードと、の関係を説明する。
図7は、学習対象の文献のフリーキーワードと引用された文献のフリーキーワードとの関係の一例を示す模式図である。
図7の例では、学習対象の文献750の審査時に、第1文献752と、第2文献754と、が引用された。この引用関係を示すために、特許情報保持部42において、学習対象の文献750の特許IDに対応する引用文献の欄に、第1文献752の公報の番号と、第2文献754の公報の番号と、が登録されている。学習部402は、その引用文献の欄を参照することで、学習対象の文献750の引用文献を特定する。
図7の例では、第1文献752のフリーキーワードは「AAA」、「BBB」の二つ、第2文献754のフリーキーワードは「AAA」、「CCC」、「DDD」の三つ、学習対象の文献750のフリーキーワードは「AAA」、「BBB」、「EEE」の三つである。これらのフリーキーワードはすべて特許情報保持部42に保持されており、学習部402により参照可能となっている。
【0049】
学習部402は、学習対象の文献750を機械的に学習する際、学習対象の文献750の引用文献である第1文献752および第2文献754のフリーキーワードを参照する。学習部402は、引用文献のフリーキーワードに基づいて、学習対象の文献750のフリーキーワードに重要度を設定する。特に学習部402は、引用文献のフリーキーワードとの被りが少ないほど重要度を高く設定する。例えば、学習対象の文献750のフリーキーワード「AAA」は、第1文献752および第2文献754の両方のフリーキーワードでもあるから、最も低い重要度が割り当てられる。学習対象の文献750のフリーキーワード「EEE」は、第1文献752、第2文献754のいずれのフリーキーワードでもないから、最も高い重要度が割り当てられる。学習対象の文献750のフリーキーワード「BBB」は、第1文献752のフリーキーワードではあるが第2文献754のフリーキーワードではないから、中間の重要度が割り当てられる。学習部402は、このように設定された重要度を含めて学習対象の文献750を学習し、キーワード抽出モデルを生成する。
【0050】
図8は、第1変形例に係るキーワード抽出処理の流れを示すフローチャートである。作成サーバ4は、特許情報保持部42に保持される特許出願のなかでフリーキーワードが付されていない特許出願をキーワード抽出の対象とする文献として受け付ける(S702)。作成サーバ4は、ステップS702で受け付けた対象文献の情報(本文テキスト等)を入力として、AIによる構成要素(キーワード)の抽出を実行する(S704)。特に、作成サーバ4は、学習部402により生成されたキーワード抽出モデルに、ステップS702で受け付けた対象文献の情報を適用し、該キーワード抽出モデルが出力するキーワードを取得する。作成サーバ4は、ユーザ端末8のディスプレイ100に、抽出されたキーワードを表示させる(S706)。ユーザによるキーワードの修正がない場合(S708のNO)、作成サーバ4は抽出されたキーワードを、対象文献に対応するフリーキーワードとして特許情報保持部42に登録し、処理を終了する。
【0051】
ユーザによるキーワードの修正がある場合(S708のYES)、作成サーバ4は修正の内容を受け付ける(S710)。作成サーバ4は、修正前のキーワードおよび修正内容に基づき、キーワード抽出モデルを更新する(S712)。作成サーバ4は修正されたキーワードを、対象文献に対応するフリーキーワードとして特許情報保持部42に登録し、処理を終了する。
【0052】
作成サーバ4は、ステップS706において、抽出されたキーワードを表示する抽出結果表示画面902をディスプレイ100に表示させる。
図9は、抽出結果表示画面902の代表画面図である。抽出結果表示画面902には、抽出されたキーワードが表示されると共に、OKボタン118と、修正ボタン120と、が表示される。抽出結果表示画面902に表示されるキーワードには、重要度「高」、「中」、「低」のランクが付されている。
【0053】
上記第1変形例では、フリーキーワードが付されていない特許出願について適切なキーワードを抽出して登録するためにキーワード抽出モデルを用いる場合について説明したが、これに限られない。例えば、作成サーバ4は、ユーザによってアップロードされた文献をキーワード抽出の対象とする文献として受け付けてもよい。この場合、ユーザは
図9に示される抽出結果表示画面902を見ることで、自分がアップロードした文献から抽出されたキーワードを、そのランクと共に確認することができる。
【0054】
上記第1変形例では、特許情報保持部42に保持される情報からキーワード抽出モデルを生成する場合について説明したが、これに限られず、例えば学術論文の情報から同様の学習手法によりキーワード抽出モデルを生成してもよい。特許文献と同様に、学術論文にも、課題と、人手で選ばれたキーワードと、特許請求の範囲に対応する要約と、論文間の引用・被引用関係と、が関連付けられている。
【0055】
(第2変形例)
第1の実施の形態ではユーザにキーワードまたは画像ファイルの入力を求める場合について説明したが、これに限られない。第2変形例に係る作成サーバ4は、ユーザから発明提案書などの技術文書そのものを取得し、キーワード抽出モデルと、技術分類付与モデルと、類似文献抽出モデルと、クレーム作成モデルと、を用いて必要な情報を自動的に取得し、クレームを生成する。なお、本変形例では技術分類付与モデルを使用する場合を説明するが、これに限られず、技術分類の代わりに、出願人や代理人など、母集団となる文献を限定できる情報であればいかなる情報が用いられてもよい。また、本変形例ではキーワ
ードを抽出して用いる場合を説明するが、これに限られず、キーワードの代わりに主語と動詞の組や主語と動詞を含む文を抽出して用いてもよい。
【0056】
図11は、第2変形例に係る作成サーバ4におけるクレーム生成の流れを示す模式図である。ユーザ302はユーザ端末8から作成サーバ4に発明提案書304をアップロードする。作成サーバ4は、受信した発明提案書304にキーワード自動抽出AIモデル306および技術分類自動付与AIモデル308を適用する。キーワード自動抽出AIモデル306はクレームに必要なキーワード310を、技術分類自動付与AIモデル308は技術分類を、それぞれ出力する。ユーザ302はユーザ端末8のディスプレイ100を介してキーワード310および技術分類312を確認し、必要であればユーザ端末8の入力手
段(マウス、キーボード、タッチパネルなど)を介して修正する。作成サーバ4はキーワード310に対する修正を受け付けて修正済みキーワード314を生成する。なお、この修正ステップは省略されてもよい。この際、作成サーバ4は各キーワードに対する重要度をユーザ302に指定させ、指定された重要度を取得してもよい。作成サーバ4は、修正前のキーワード310と修正済みキーワード314との組を、キーワード自動抽出AIモデル306の更新のために後述の学習フェーズに渡す。なお、作成サーバ4は、修正前のキーワード310のみ、または修正済みキーワード314のみを、キーワード自動抽出A
Iモデル306の更新のために後述の学習フェーズに渡してもよい。作成サーバ4は技術分類312に対する修正を受け付けて修正済み技術分類316を生成する。この際、作成サーバ4は各技術分類に対する重要度をユーザ302に指定させ、指定された重要度を取得してもよい。作成サーバ4は、修正前の技術分類312と修正済み技術分類316との組を、技術分類自動付与AIモデル308の更新のために後述の学習フェーズに渡す。
【0057】
作成サーバ4は、修正済みキーワード314および修正済み技術分類316に類似文献自動抽出AIモデル318を適用する。類似文献自動抽出AIモデル318は類似文献320を出力する。ユーザ302はユーザ端末8のディスプレイ100を介して類似文献320を確認し、必要であればユーザ端末8の入力手段を介して修正する。なお、この類似文献を確認・修正するステップは省略されてもよい。作成サーバ4は類似文献320に対する修正を受け付けて修正済み類似文献322を生成する。作成サーバ4は、修正前の類似文献320と修正済み類似文献322との組を、類似文献自動抽出AIモデル318の更新のために後述の学習フェーズに渡す。なお、作成サーバ4は、修正前の類似文献320のみ、または修正済み類似文献322のみを、類似文献自動抽出AIモデル318の更新のために後述の学習フェーズに渡してもよい。
【0058】
作成サーバ4は、修正済みキーワード314、修正済み技術分類316および修正済み類似文献322にクレーム自動生成AIモデル324を適用する。なお、作成サーバ4は、修正前のキーワードや修正前の技術分類や修正前の類似文献にクレーム自動生成AIモデル324を適用してもよい。クレーム自動生成AIモデル324はクレーム326を出力する。ユーザ302はユーザ端末8のディスプレイ100を介してクレーム326を確認し、必要であればユーザ端末8の入力手段を介して修正する。なお、このクレームを修正するステップは省略されてもよい。作成サーバ4はクレーム326に対する修正を受け付けて修正済みクレーム328を生成する。作成サーバ4は、修正前のクレーム326と修正済みクレーム328との組を、クレーム自動生成AIモデル324の更新のために後述の学習フェーズに渡す。
【0059】
図12は、第2変形例に係る作成サーバ4におけるAIモデルの学習を説明する模式図である。作成サーバ4は、キーワード自動抽出学習AI330と、技術分類自動付与学習AI332と、類似文献自動抽出学習AI334と、クレーム自動生成学習AI336と、を備える。
【0060】
キーワード自動抽出学習AI330は、特許情報保持部42を参照し、過去の特許出願の(1)課題、(2)要約、(3)審査過程で引用された文献の要約およびキーワード、(4)クレーム(独立項)を入力として取得し、当該過去の特許出願の(5)キーワード、(6)審査官キーワードを出力として取得する。なお、キーワード自動抽出学習AI330は、過去の特許出願の(1)課題、(2)要約、(3)審査過程で引用された文献の要約およびキーワード、(4)クレーム(独立項)のうちの一部または全部を入力として取得してもよい。その際、(2)要約および(3)審査過程で引用された文献の要約およびキーワードは外部の商用データベースなどから取得されてもよい。また、キーワード自動抽出学習AI330は、過去の特許出願の(5)キーワードまたは(6)審査官キーワードのいずれかを出力として取得してもよい。その際、(5)キーワードは外部の商用データベースなどから取得されてもよい。キーワード自動抽出学習AI330は、
図11の生成フェーズから渡される修正前のキーワード310と修正済みキーワード314との組を取得する。キーワード自動抽出学習AI330は取得した情報を基に学習を行い、キーワード自動抽出AIモデル306を生成する。
【0061】
技術分類自動付与学習AI332は、特許情報保持部42を参照し、過去の特許出願の(1)課題、(2)解決手段、(3)要約を入力として取得し、当該過去の特許出願の(4)付与済み技術分類を出力として取得する。なお、技術分類自動付与学習AI332は、過去の特許出願の(1)課題、(2)解決手段、(3)要約のうちの一部または全部を入力として取得してもよい。技術分類自動付与学習AI332は、
図11の生成フェーズから渡される修正前の技術分類312と修正済み技術分類316との組を取得する。技術分類自動付与学習AI332は取得した情報を基に学習を行い、技術分類自動付与AIモ
デル308を生成する。
【0062】
類似文献自動抽出学習AI334は、特許情報保持部42を参照し、過去の特許出願の(1)全文、(2)技術分類、(3)キーワード、(4)審査官キーワードを入力として取得し、当該過去の特許出願の(5)審査官に引用された文献を出力として取得する。類似文献自動抽出学習AI334は、
図11の生成フェーズから渡される修正前の類似文献320と修正済み類似文献322との組を取得する。類似文献自動抽出学習AI334は取得した情報を基に学習を行い、類似文献自動抽出AIモデル318を生成する。あるいはまた、上記の構成の代わりに、クレームまたはクレームの一部を入力として、
ELASTICSEARCH(https://www.elastic.co/jp/products/elasticsearch)など、周知の検索エンジン技術を用いて、類似するクレームまたはクレームの一部を出力するよう類似文献自動抽出学習AIを構成してもよい。
【0063】
クレーム自動生成学習AI336は、特許情報保持部42を参照し、過去の特許出願の(1)キーワード、(2)審査官キーワード、(3)技術分類、(4)審査官に引用された文献、(5)課題、(6)解決手段を入力として取得し、当該過去の特許出願の(7)クレーム(独立項)を出力として取得する。なお、クレーム自動生成学習AI336は、過去の特許出願の(1)キーワード、(2)審査官キーワード、(3)技術分類、(4)審査官に引用された文献、(5)課題、(6)解決手段のうちの一部または全部を入力と
して取得してもよい。また、クレーム自動生成学習AI336は、(1)キーワードの代わりに、主語と動詞の組や、主語と動詞を含む文を取得してもよい。クレーム自動生成学習AI336は、
図11の生成フェーズから渡される修正前のクレーム326と修正済みクレーム328との組を取得する。クレーム自動生成学習AI336は取得した情報を基に学習を行い、クレーム自動生成AIモデル324を生成する。
【0064】
(第3変形例)
図13a、
図13bは、第3変形例に係る作成サーバ4におけるクレーム生成の流れを示す模式図である。ユーザ302はユーザ端末8から作成サーバ4に発明提案書304および先行特許公報338をアップロードしてもよい。併せてユーザ302は、ユーザ端末8を介してクレーム要素(主体)を入力する。作成サーバ4は、ユーザ端末8のディスプレイ100に作成表340を表示させる。作成サーバ4は、まず入力されたクレーム要素をそのまま作成表340に設定する。作成サーバ4は、設定されたクレーム要素のそれぞれについて、動詞の候補を自動的に補充する。
【0065】
ユーザ302はユーザ端末8のディスプレイ100に表示される作成表340を見ることで動詞の候補を確認してもよい。ユーザ302は、必要であればユーザ端末8の入力手段を介して修正してもよい。作成サーバ4は動詞に対する修正を受け付けた(修正はオプション)後、動詞のそれぞれについて、格成分の候補を自動的に補充する。ユーザ302はユーザ端末8のディスプレイ100に表示される作成表340を見ることで格成分の候補を確認してもよい。ユーザ302は、必要であればユーザ端末8の入力手段を介して修正してもよい。ユーザ302は区分を併せて入力してもよい。
【0066】
作成サーバ4は、格成分に対する修正を反映した後、入力された区分をそのまま設定する。ユーザ302が作成表340を見て最終確認を行ってもよい。ユーザ302がクレーム生成の指示を出すと、作成サーバ4は格成分の単語を自動でつなぎ合わせることで格成分テーブルを生成する。作成サーバ4は、生成された格成分テーブルから、クレームと、格成分モデル(第2の実施の形態で後述)と、を生成する。ユーザ302は生成されたクレームおよび格成分モデルを確認し、必要に応じて修正する。
【0067】
(第4変形例)
図14は、第4変形例に係る作成サーバ4におけるクレーム生成の流れを示す模式図である。ユーザ302はユーザ端末8から作成サーバ4に発明提案書304をアップロードする。発明提案書304は発明の課題および特徴を含む。併せてユーザ302は、ユーザ端末8を介して、基本特許となる類似文献342の番号と、その他の類似公開公報である類似文献344の番号と、を入力する。
【0068】
作成サーバ4は、基本特許となる類似文献342の格成分分析を行う(2-1)。作成サーバ4は、発明提案書304から抽出された発明の特徴の記載内容から、クレームに記載する「動詞が係り受けする主体」、「動詞」、「格成分」(以下、格情報という)に編集する(2-2)。作成サーバ4は、(2-2)で編集された格情報と、類似公開公報である類似文献344の詳細な説明部分とを比較し、格情報を再編集する(2-3)。この際、作成サーバ4は、類似度が低くなるように再編集する。
【0069】
作成サーバ4は、(2-1)で得られる格情報および(2-3)で得られる格情報から発明提案書304に係る発明の格情報を生成する(2-4)。作成サーバ4は、この生成の際、(1)外的付加、(2)内的付加、(3)置換の三つのパターンに応じる。作成サーバ4は、(2-4)で生成された発明の格情報から、クレームと、格成分モデル(概要版、詳細版、第2の実施の形態で後述)と、を生成する(3)。ユーザ302は生成されたクレームおよび格成分モデルを確認し、必要に応じて修正・評価する(4)。
【0070】
図15は、第4変形例に係る作成サーバ4におけるAIモデルの学習を説明する模式図である。第4変形例に係る作成サーバ4で用いられるクレーム作成モデルは、クレームの生成時、発明提案書304から抽出される課題および発明の特徴と、基本特許となる類似文献342の課題およびクレームと、その他の類似公開公報である類似文献344の課題、クレームおよび詳細な説明と、を入力とし、クレームを出力とする。学習フェーズにおいては、過去の特許出願から抽出される課題および発明の特徴と、該特許出願の審査過程で引用された主引例の課題およびクレームと、副引例の課題、クレームおよび詳細な説明と、を入力とし、該特許出願のクレームを出力とする学習により、クレーム作成モデルが生成される。
【0071】
(第2の実施の形態)
第1の実施の形態では、いったんユーザから最初の情報(発明提案書、キーワード等)を取得すると、基本的にユーザの介入無しで自動的にクレームを生成する場合を説明した。第2の実施の形態では、ユーザによるクレームの生成を支援する場合を説明する。第2の実施の形態に係る作成支援サーバは、自動生成キーワードまたは手動で類似先願を見つけ(自動生成キーワードの場合はそのキーワードをキーにして特許検索し、結果のうち一致度の最も高いものを選択、等)、見つけた先願のクレームを図形表示し、ユーザに図形を操作させ、変更後の図形を文章に戻すことで、ユーザによる新たなクレームの作成を支援する。なお、別の実施の形態では、発明提案書から、自身でクレーム設計のために、最初から図形を作成させてもよい。
【0072】
第2の実施の形態に係る作成支援サーバ14を備えるクレーム作成支援システムの構成は、
図1に記載の構成に準じる。
図16は、第2の実施の形態に係る作成支援サーバ14の機能および構成を示すブロック図である。ここに示す各ブロックは、ハードウエア的には、コンピュータのCPUをはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろなかたちで実現できることは、本明細書に触れた当業者には理解されるところである。
【0073】
作成支援サーバ14は、ユーザから受け付けた発明提案書からキーワードを自動生成し、自動生成したキーワードをキーとして特許文献を検索し、検索の結果のうち最も一致スコアの高い特許文献を先行文献として特定し、特定された先行文献のクレームをベースとする新クレーム作成用のUIをユーザ端末8のディスプレイ100に表示させ、該UIにおいてクレームの要素に対する変更を受け付け、変更を反映した新たなクレームを文章化することにより生成する。作成支援サーバ14は、特許情報保持部42と、案件情報保持部16と、キーワード生成部420と、先行文献取得部422と、表示制御部424と、入力受付部426と、クレーム生成部428と、を備える。案件情報保持部16は、作成支援サーバ14を用いて生成される案件の情報を保持する。なお、先行文献を用いることなく、ディスプレイ100に対して、ユーザが図形を新規に入力してもよい。
【0074】
ユーザはクレーム作成の対象とする発明提案書を、ユーザ端末8から作成支援サーバ14へアップロードする。キーワード生成部420は、アップロードされた発明提案書を取得し、上記第1変形例や第2変形例に係るキーワード抽出モデルに、取得された発明提案書に記載の発明の課題や特徴を適用することにより、キーワードを生成する。
【0075】
先行文献取得部422は、キーワード生成部420によって生成されたキーワードをキーとして外部または内部の特許文献のデータベースを検索する。先行文献取得部422は、検索結果のうち一致スコアの最も高い特許文献を先行文献として取得する。あるいはまた、先行文献取得部422は一致スコアが高い複数の特許文献を先行文献として特定してもよい。あるいはまた、先行文献取得部422は、ユーザから直接、先行文献の指定を(例えば、出願番号や公開番号、特許番号等により)受け付けてもよい。
【0076】
表示制御部424は、先行文献取得部422によって特定された先行文献の請求の範囲に含まれるクレームを、ユーザ端末8のディスプレイ100にネットワーク6を介して図形表示させる。
入力受付部426は、ネットワーク6を介して、表示された図形に対する変更を受け付ける。なお、入力受付部426は新規で図形の入力を受け付けてもよい。
クレーム生成部428は、変更された図形に基づいて新たなクレームをテキスト形式で生成する。
【0077】
以下、表示制御部424、入力受付部426、クレーム生成部428の機能を画面の遷移を参照してより詳細に説明する。表示制御部424は、後述の各画面をユーザ端末8のディスプレイ100に、ネットワーク6を介して表示させる。入力受付部426は、後述の修正内容やユーザからの指示を、ユーザ端末8からネットワーク6を介して受け付ける。クレーム生成部428は、後述の特許請求の範囲の生成指示を受け付けると、修正後の図形に基づきクレームをテキスト形式で生成する。
【0078】
図17は、
図16の作成支援サーバ14によってユーザ端末8のディスプレイ100に表示される画面の遷移の概要を示す模式図である。ユーザが作成支援サーバ14にアクセスすると、まずログイン画面502が表示される。ユーザがログイン画面502にIDおよびパスワードなどの認証情報を入力すると、作成支援サーバ14はユーザ認証を行う。ユーザ認証に成功すると、ディスプレイ100に表示される画面は、ログイン画面502から自己案件一覧画面504に遷移する。ログイン画面502は公知のユーザ認証技術を用いて実現されてもよい。
【0079】
ユーザが自己案件一覧画面504において新規作成を指示すると画面は案件新規作成画面506に遷移し、案件検索を指示すると画面は自社案件検索一覧画面508に遷移し、案件番号リンクを指定すると画面は対応する案件の案件詳細画面512に遷移する。ユーザが案件新規作成画面506において必要な情報を入力して特許請求の範囲生成を指示すると画面は新規特許請求の範囲作成画面510に遷移する。新規特許請求の範囲作成画面510において登録が指示されると、画面は案件詳細画面512に遷移する。
【0080】
ユーザが自社案件検索一覧画面508において案件番号リンクを指定すると画面は対応する案件の案件詳細画面512に遷移し、IPC分野一覧リンクを指定すると画面はIPC分野一覧画面514に遷移する。IPC分野一覧画面514としては、例えばNRIサイバーパテント株式会社が提供するNRIサイバーパテントデスク2のIPC分野一覧の画面が採用されてもよい。
【0081】
ユーザが案件詳細画面512において案件を修正すると画面は案件修正画面516に遷移し、案件コピーを指定すると画面は案件新規作成画面506に遷移する。ユーザが案件修正画面516において特許請求の範囲を修正すると画面は特許請求の範囲修正画面518に遷移する。特許請求の範囲修正画面518において修正の反映が指示されると、画面は案件詳細画面512に遷移する。
【0082】
図18は、自己案件一覧画面504の代表画面図である。ユーザは自己案件一覧画面504の検索キー入力領域520に情報を入力し、検索ボタン522をクリックする。入力受付部426は検索キー入力領域520に入力された情報を取得し、取得された情報をキーとして案件情報保持部16を検索し、ログインしたユーザが属する企業の案件のうちキーに合致する案件を検索結果として生成する。表示制御部424は、自己案件一覧画面504の自己案件一覧表示領域524に、入力受付部426が取得した検索結果を表示する。
【0083】
ユーザが自己案件一覧表示領域524に表示された案件の案件番号リンク526をクリックすると、画面はクリックされた案件番号リンク526に対応する案件の案件詳細画面512へ遷移する。ユーザが案件検索ボタン528をクリックすると、画面は自社案件検索一覧画面508へ遷移する。ユーザが新規作成ボタン530をクリックすると、画面は案件新規作成画面506へ遷移する。
【0084】
図19は、案件新規作成画面506の代表画面図である。案件新規作成画面506は、自動的に付与される案件番号を表示する案件番号表示領域532と、発明の名称入力領域534と、先行文献入力領域536と、提案書アップロードボタン538と、要素モデル編集領域540と、モデルボタン542と、関係性表現生成ボタン544と、特許請求の範囲編集領域546と、特許請求の範囲生成ボタン548と、を有する。
【0085】
ユーザは、発明の名称入力領域534に発明の名称を入力する。ユーザは、先行文献入力領域536にクレーム生成の基とする先行文献の番号(出願番号、公開番号、特許番号等)を入力する。あるいはまた、先行文献の自動的な選択を望む場合、ユーザは提案書アップロードボタン538をクリックすることでファイルをアップロードするためのダイアログ(不図示)を表示させ、そのダイアログで発明提案書のファイルを指定する。ユーザ端末8は指定された発明提案書のファイルを作成支援サーバ14に送信する。作成支援サーバ14は、発明提案書のファイルを受信し、上述の通りキーワード作成、特許文献検索、先行文献特定を行う。表示制御部424は、特定された先行文献の番号を先行文献入力領域536に表示させる。
【0086】
ユーザがモデルボタン542をクリックするとモデル図が出力される。ユーザが要素モデル自動生成ボタン541をクリックすると、入力受付部426は、先行文献入力領域536に入力されている先行文献の番号をキーとして外部または内部の特許文献のデータベースから先行文献を取得する。表示制御部424は、要素モデル編集領域540において、フローチャートモデルに基づき先行文献のクレームを図形表示させる。
【0087】
要素モデル編集領域540に表示されるフローチャートモデルは、クレームの全体像を、インプット→処理(構成要件)→アウトプットで表現したものであり、インプット/アウトプット要素550と、構成要件552と、その他要件554と、を含む。ユーザは、要素モデル編集領域540に表示されているフローチャートモデルの要素に対して選択、移動、削除、追加等を行うことにより、新たな所望のモデルを生成する。
【0088】
図20は、構成要件モデル画面556の代表画面図である。ユーザが要素モデル編集領域540に表示される構成要件552をクリックすると、表示制御部424はクリックされた構成要件552に対応する構成要件モデル画面556を別画面のポップアップでディスプレイ100に表示させる。ユーザは構成要件モデル画面556において各構成要件を定義することができる。構成要件モデル画面556は、図解編集領域558と、構成要件詳細表示領域560と、生成テキスト表示領域562と、OKボタン564と、を有する。
【0089】
図解編集領域558は、構成要件を処理とデータとに分けて図により表示する。処理の流れは実線で、データ間の関係性は破線で、それぞれ記載される。構成要件詳細表示領域560には、図解編集領域558に表示される図に対応するデータが表示されている。構成要件詳細表示領域560は、構成要件を「主体」、「データ」、「処理」、「部品」に分解した結果を表示する。ユーザが、図解編集領域558の要素に対して所望の編集を行うと、編集の結果が構成要件詳細表示領域560に反映される。このとき、「関連性」、「処理内容」については、確率言語モデル(Long Short-Term Memory, LSTM)を用いて、自動で推定し、自動補完を行う。その後、ユーザが手で修正することも可能である。このときその他の項目についても確率言語モデルを用いて候補を提示する。部品について、クレーム特有の言葉は、辞書として用意しておいてもよい。生成テキスト表示領域562は、構成要件詳細表示領域560に表示されるデータを用いて自動生成されたクレーム文言(構成要件に対応する文章)を表示する。OKボタン564がクリックされると画面は案件新規作成画面506に戻る。
【0090】
図19に戻り、ユーザが要素モデル編集領域540において所望の編集を行い、関係性表現生成ボタン544をクリックすると、行われた編集が特許請求の範囲編集領域546に反映される。具体的には、入力受付部426は要素モデル編集領域540に表示されているフローチャートモデルの要素に対する変更を受け付ける。クレーム生成部428は、変更されたフローチャートモデルに基づいて新たなクレームの骨格(固定部)を生成する。表示制御部424は、案件新規作成画面506の特許請求の範囲編集領域546に、生成された固定部を表示する。クレーム生成部428は、過去の出現頻度情報から各固定部に対応する入力部の想定候補を補完する。ここで、確率言語モデルが用いられてもよい。ユーザは、特許請求の範囲編集領域546に表示される固定部および入力部を確認し、入力部に修正が必要な場合は入力支援機能を用いて修正する。
【0091】
図21は、入力支援機能を説明するための模式図である。ユーザが特許請求の範囲編集領域546に表示される入力部のうちのひとつのセル566をクリックすると、過去の学習データから選択された複数のオートコンプリート候補568が表示される。ユーザが複数のオートコンプリート候補568のうちのひとつを選択すると、選択されたオートコンプリート候補568に対応するさらなる複数のオートコンプリート候補570が表示される。このように、連続でオートコンプリート候補を提案することで、入力を簡単化することができ、かつ、生成されるクレームを標準化することができる。
【0092】
図19に戻り、ユーザが特許請求の範囲生成ボタン548をクリックすると、クレーム生成部428は特許請求の範囲編集領域546で編集された情報に基づいて新たなクレームを生成する。このクレームは、特許請求の範囲編集領域546で編集が行われない場合は、要素モデル編集領域540で編集されたフローチャートから生成されるクレームと同じである。表示制御部424は生成された新たなクレームを含む新規特許請求の範囲作成画面510をディスプレイ100に表示させる。
【0093】
図22は、新規特許請求の範囲作成画面510の代表画面図である。新規特許請求の範囲作成画面510は、比較領域572と、可能性表示領域574と、戻るボタン576と、登録ボタン578と、を有する。比較領域572は、生成されたクレームと先行文献とを構成要件単位で比較した結果を表示する。比較領域572には、構成要件ごとに、クレームと各先行文献との類似度および類似箇所が表示される。可能性表示領域574は、特許を取得できる可能性を数値で表示する。ユーザが戻るボタン576をクリックすると画面は案件新規作成画面506に戻る。ユーザが登録ボタン578をクリックすると、入力受付部426は案件番号と発明の名称と先行文献と生成されたクレームとを対応付けて案件情報保持部16に登録する。併せて表示制御部424は、登録した内容を示す案件詳細画面512をディスプレイ100に表示させる。
【0094】
図23は、自社案件検索一覧画面508の代表画面図である。ユーザは自社案件検索一覧画面508の検索キー入力領域580に情報を入力し、検索ボタン582をクリックする。入力受付部426は検索キー入力領域580に入力された情報を取得し、取得された情報をキーとして案件情報保持部16を検索し、検索結果を生成する。表示制御部424は、自社案件検索一覧画面508の検索結果一覧表示領域586に、入力受付部426が生成した検索結果を表示する。ユーザがIPC一覧ボタン584をクリックすると、画面はIPC分野一覧画面514に遷移する。
【0095】
ユーザが検索結果一覧表示領域586に表示された案件の案件番号リンク588をクリックすると、画面はクリックされた案件番号リンク588に対応する案件の案件詳細画面512へ遷移する。
【0096】
図24は、案件詳細画面512の代表画面図である。表示制御部424は案件情報保持部16を参照して案件詳細画面512を生成し、ディスプレイ100に表示させる。案件詳細画面512は、案件番号を表示する案件番号表示領域590と、発明の名称を表示する発明の名称表示領域592と、先行文献の番号を表示する先行文献表示領域594と、クレームのフローチャートモデルを表示する要素モデル表示領域596と、クレームの固定部および入力部を表示する特許請求の範囲表示領域598と、案件コピーボタン802と、案件修正ボタン804と、を有する。ユーザが案件コピーボタン802をクリックす
ると、画面は、案件詳細画面512に表示される案件をコピーした案件新規作成画面506に遷移する。ユーザが案件修正ボタン804をクリックすると、画面は、案件詳細画面512に表示される案件の修正を受け付ける案件修正画面516に遷移する。
【0097】
図25は、案件修正画面516の代表画面図である。案件修正画面516の構成および修正処理の流れは、
図19を参照して説明した案件新規作成画面506の構成および作成処理の流れと同様である。
図25の例では、ユーザは要素モデル編集領域806において破線の円で囲った部分を修正し、関係性表現生成ボタン808をクリックする。すると、特許請求の範囲編集領域810の情報が更新されるので、ユーザは入力支援機能を用いながら必要に応じて特許請求の範囲編集領域810の入力部を調整する。調整後、ユーザが特許請求の範囲生成ボタン812をクリックすると、クレーム生成部428は特許請求の範囲編集領域810で編集された情報に基づいてクレームを修正する。表示制御部424は修正されたクレームを含む特許請求の範囲修正画面518をディスプレイ100に表示させる。
【0098】
図26は、特許請求の範囲修正画面518の代表画面図である。特許請求の範囲修正画面518の構成は、
図22を参照して説明した新規特許請求の範囲作成画面510の構成と同様である。ユーザが戻るボタン814をクリックすると画面は案件修正画面516に戻る。ユーザが登録ボタン816をクリックすると、入力受付部426は案件番号と発明の名称と先行文献と修正されたクレームとを対応付けて案件情報保持部16に登録する。併せて表示制御部424は、修正内容が反映された案件詳細画面512をディスプレイ100に表示させる。
【0099】
以上の構成による作成支援サーバ14の動作を説明する。
図27は、
図16の作成支援サーバ14における一連の処理の流れを示すフローチャートである。作成支援サーバ14は、ユーザのユーザ端末8からネットワーク6を介して発明提案書を受け付ける(S650)。作成支援サーバ14は、受け付けた発明提案書にキーワード抽出モデルを適用することで、キーワードを生成する(S652)。作成支援サーバ14は、生成されたキーワードに基づいて特許文献を検索する(S654)。作成支援サーバ14は、検索結果から先行文献を特定する(S656)。なお、ステップS650、S652、S654に加えてまたはその代わりに、ステップS656で、作成支援サーバ14はユーザ端末8から先行文献の番号を受信してもよい。作成支援サーバ14は、特定された先行文献のクレームを、ユーザ端末8のディスプレイ100に図形表示する(S658)。なお、ユーザに新規に一から図形を描かせてもよい。作成支援サーバ14は、表示された図形に対してユーザが行った変更を受け付ける(S660)。作成支援サーバ14は、変更された図形に基づく新たなクレームを生成する(S662)。
【0100】
上述の実施の形態において、保持部の例は、ハードディスクや半導体メモリである。また、本明細書の記載に基づき、各部を、図示しないCPUや、インストールされたアプリケーションプログラムのモジュールや、システムプログラムのモジュールや、ハードディスクから読み出したデータの内容を一時的に記憶する半導体メモリなどにより実現できることは本明細書に触れた当業者には理解される。
【0101】
本実施の形態に係る作成支援サーバ14によると、ユーザはフローチャートモデルなどの図形を操作することで、所望のクレームを生成することができる。したがって、文章を直接操作するよりも直感的な操作が可能となり、ユーザ利便性が向上する。
【0102】
また、本実施の形態に係る作成支援サーバ14では、特定された先行文献のクレームを修正するまたは変更する形で新たなクレームを生成する。したがって、一からクレームを生成する場合と比べてクレーム生成にかかる時間を短縮することができる。また、クレームの品質の均一化を図ることができる。
【0103】
以上、第2の実施の形態に係るクレーム作成支援システムの構成と動作について説明した。この実施の形態は例示であり、各構成要素や各処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解される。
【0104】
(第5変形例)
第2の実施の形態では図形表示としてフローチャートモデルを採用する場合を説明したが、これに限られない。例えば、図形表示として格成分モデルを採用してもよい。
図28は、第5変形例に係る作成支援サーバ14が備える格成分テーブル818の一例を示すデータ構造図である。格成分テーブル818は、先行文献のクレームを格成分分析することで、または、新たなクレームを格成分分析することで、生成される。格成分分析は、例えば特開2015-072573号公報に記載される技術を用いて実現されてもよい。
【0105】
作成支援サーバ14は、格成分テーブル818に登録されている単語を以下の三種類に分類する。
(1)クレームを構成する上で必要な単語
先行文献のクレームに登場し、かつ、先行文献のキーワードであるかそれに含まれ、かつ、先行文献の審査過程で引用された文献のキーワードに登場する。
(2)クレームを特徴付ける単語
先行文献のクレームに登場し、かつ、先行文献のキーワードであるかそれに含まれ、かつ、先行文献の審査過程で引用された文献のキーワードに登場しない。
(3)その他
【0106】
図29は、例示的な格成分モデル820を示す模式図である。表示制御部424は格成分テーブル818を参照して格成分モデル820を生成し、ユーザ端末8のディスプレイ100に表示させる。
図19の案件新規作成画面506の要素モデル編集領域540の代わりに格成分モデル820が表示されてもよい。格成分モデル820において、主体は下向き矢印を伴う矩形で表示される。例えば主体「移動体」は矩形822で表示される。動詞は下向き矢印を受ける楕円で表示される。例えば動詞「有する」は楕円824で表示される。格成分は左向き矢印を伴う矩形で表示される。例えば格成分「画像処理装置を」は矩形826で表示される。
【0107】
格成分モデル820において、単語が属する種類に応じて単語の表示色が異なる。例えば、単語「移動体」は「(1)クレームを構成する上で必要な単語」に属するので青色で表示され、単語「搭乗席」は「(2)クレームを特徴付ける単語」に属するので赤色で表示され、単語「有する」は「(3)その他」に属するので黒色で表示される。
【0108】
図29に示される格成分モデル820の状態は、最もコンパクトな状態または最も折り畳まれた状態である。ユーザはプラスボタン828をクリックすることで、折り畳まれて見えなくなっている部分を表示させることができる。
【0109】
図30は、プラスボタン828をクリックした後の格成分モデル820の要部を示す模式図である。プラスボタンがクリックされると、対応する要素について隠されていた下位の階層やつながりが表示される。「つながり」とは、クレームで「前記」と表現されている部分のつながりを破線で表現したものである。
図30の例では、格成分「画像処理装置を」に対応する矩形832には、
図29の格成分モデル820では隠されていた下位の階層が表示される。特に、矩形832の内部で、主体「画像取得装置」は矩形834で表示され、動詞「取得する」は楕円836で表示され、格成分「搭乗者の体験に応じた体験画像を」は矩形838で表示される。
【0110】
図29のプラスボタン828は
図30ではマイナスボタン830で置き換えられ、ユーザがマイナスボタン830をクリックすると表示は
図29の格成分モデル820の状態に戻る。ユーザが、単語「搭乗者」に関連付けて表示されるプラスボタン840をクリックすると、単語「搭乗者」に関するより下位の階層やつながりが表示される。
【0111】
図31は、プラスボタン840をクリックした後の格成分モデル820の要部を示す模式図である。単語「搭乗者」に関連付けられたプラスボタン840のクリックにより、クレームで「前記」されている複数の単語「搭乗者」の間が破線842でつながれる。
図30のプラスボタン840は
図30ではマイナスボタン844で置き換えられ、ユーザがマイナスボタン844をクリックすると表示は
図30の格成分モデル820の状態に戻る。
【0112】
図19の案件新規作成画面506の要素モデル編集領域540と同様に、格成分モデル820は表示される要素に対する編集を受け付け可能に構成される。特にユーザは格成分モデル820に対して以下の三つの編集を行うことができる。
(1)要素の文言の修正
(2)格成分の削除
(3)格成分の追加
【0113】
図32は、
図29の格成分モデル820を修正することによって得られた格成分モデル850を示す模式図である。ユーザは、
図29の格成分モデル820に表示されている格成分「把持対象のステレオ画像を撮像するよう」の矩形846に対して、単語「ステレオ画像」を単語「取手部分」に修正する。またユーザは、
図29の格成分モデル820に表示されている格成分「撮像範囲が重複するように」の矩形848を削除する。その結果、
図30に示される格成分モデル850において、格成分「把持対象のステレオ画像を撮像するよう」の矩形846は格成分「把持対象の取手部分を撮像するように」の矩形852
に置き換えられ、格成分「撮像範囲が重複するように」の矩形848は表示されなくなる。
【0114】
作成支援サーバ14は、修正された格成分モデル850に従って、再度、格成分テーブル818を更新し、クレーム(文章)を生成する。なお、図形と生成された特許請求の範囲との、どちらからでも、文言の修正を可能とし、常に同期をとるようにする。
【0115】
第1の実施の形態および関連する変形例に係る技術的思想は以下の項目により表されてもよい。
(項目1)
情報を受け付ける受付手段と、
過去の出願から抽出された情報と該出願の請求の範囲とを機械的に学習することにより生成されたモデルに、受け付けた情報を適用する適用手段と、
適用の結果得られた請求の範囲を提供する提供手段と、を備える作成装置。
(項目2)
提供された前記請求の範囲に対する修正を受け付ける修正手段をさらに備え、
前記提供手段は、受け付けた修正が反映された請求の範囲を提供する項目1に記載の作成装置。
(項目3)
受け付けた修正に基づいて前記モデルを更新する更新手段をさらに備える項目2に記載の作成装置。
(項目4)
前記受付手段は、課題を受け付け、
前記モデルは、過去の出願から抽出された情報と該出願の課題と該出願の請求の範囲とを機械的に学習することにより生成され、
前記適用手段は、前記モデルに、受け付けた情報と課題とを適用する項目1から3のいずれか一項に記載の作成装置。
(項目5)
過去の出願の情報を保持する保持手段と、
前記保持手段を参照することで前記モデルを生成する学習手段と、をさらに備える項目1から4のいずれか一項に記載の作成装置。
(項目6)
前記学習手段は、前記保持手段に保持される過去の出願の情報うち、質に関する所定の基準を満たさない過去の出願の情報は参照しない項目5に記載の作成装置。
(項目7)
情報はキーワードまたは画像である項目1から6のいずれか一項に記載の作成装置。
(項目8)
情報を受け付けることと、
過去の出願から抽出された情報と該出願の請求の範囲とを機械的に学習することにより生成されたモデルに、受け付けた情報を適用することと、
適用の結果得られた請求の範囲を提供することと、を含む作成方法。
(項目9)
情報を受け付ける機能と、
過去の出願から抽出された情報と該出願の請求の範囲とを機械的に学習することにより生成されたモデルに、受け付けた情報を適用することで得られた請求の範囲を、提供する機能と、をコンピュータに実現させるためのコンピュータプログラム。
【0116】
第2の実施の形態および関連する変形例に係る技術的思想は以下の項目により表されてもよい。
(項目10)
過去の出願の請求の範囲に含まれる請求項をディスプレイに図形表示させる表示制御手段と、
表示された図形に対する変更を受け付ける受付手段と、
変更された図形に基づいて新たな請求項をテキスト形式で生成する生成手段と、を備える作成支援装置。
(項目11)
前記表示制御手段は、フローチャートモデルに基づき請求項を図形表示させ、
前記受付手段は、フローチャートの要素に対する変更を受け付ける項目10に記載の作成支援装置。
(項目12)
前記表示制御手段は、格成分モデルに基づき請求項を図形表示させ、
前記受付手段は、格成分に対する変更を受け付ける項目10に記載の作成支援装置。
(項目13)
技術文献の情報を受け付ける手段と、
過去の出願から抽出されたキーワードと該出願の課題と該出願の請求の範囲とを機械的に学習することにより生成されたモデルに、受け付けた前記技術文献の情報を適用する適用手段と、
適用の結果得られたキーワードを用いて、前記過去の出願を特定する特定手段と、をさらに備える項目10から12のいずれか一項に記載の作成支援装置。
(項目14)
過去の出願の請求の範囲に含まれる請求項をディスプレイに図形表示させることと、
表示された図形に対する変更を受け付けることと、
変更された図形に基づいて新たな請求項をテキスト形式で生成することと、を含む作成支援方法。
(項目15)
過去の出願の請求の範囲に含まれる請求項をディスプレイに図形表示させる機能と、
表示された図形に対する変更を受け付ける機能と、
変更された図形に基づいて新たな請求項をテキスト形式で生成する機能と、をコンピュータに実現させるためのコンピュータプログラム。
【0117】
(第3の実施の形態)
第1の実施の形態では、いったんユーザから最初の情報(発明提案書、キーワード等)を取得すると、基本的にユーザの介入無しで自動的にクレームを生成する場合を説明した。第3の実施の形態では、自動的に出願原稿を生成する場合を説明する。
【0118】
図33は、AIを活用した特許出願書類の作成プロセスにおける第3の実施の形態に係る特許出願書類自動生成処理の位置づけを示す模式図である。特許出願書類自動生成処理はクレームを生成するが、生成したクレームは、後続のプロセスで修正される。そのため、生成するクレームを、一組の名詞および/または動詞によって修飾された名詞からなる構成要件N(N=1,2,...n)(たとえば、「ステレオ画像を撮像する把持対象用カメラ」)と主題から構成し(以下、「クレームの骨子」という場合がある)、複雑な係り受け関係などを持たせないことによって、後続のプロセスで修正しやすいようにしても良い。
【0119】
特許出願書類自動生成処理を実現するシステムは、発明提案書アップロード機能と、類義語抽出機能と、特許請求の範囲生成機能と、願書・明細書・図面・要約書生成機能と、特許出願書類初版出力機能と、を有し、発明提案書から特許請求の範囲をクレームの骨子とする特許出願書類の初版を出力する。インプットとしての発明提案書は電子データ化される。特許出願書類自動生成処理を実現するシステムは上記のメインの機能に加えて、公知のテキストマイニング技術の解析ロジックを用いて構成される特許情報解析機能と、外部から取得されてもよい特許情報DBと、を有する。
なお、発明提案書は電子データに限らず、音声などをデジタル化したデータであれば任意の形式のデータであってもよい。例えば、OCRなどで読み取ったデータや、脳波から読み取ったデータなども含む。また、発明提案書に限らず、設計書や仕様書、議事録など他のデータをインプットとしてもよい。
【0120】
特許出願書類自動生成処理を実現するシステムの要件は以下の通りである。
本システムの目的:
特許出願書類初版自動生成サービスを実現する。
業務要件:
(1)早期に特許出願日を確保し、後願排除のために公開すること。
(2)外注コストを削減すること。
現新業務フロー:
[現業務フロー]特許出願書類を特許事務所に外注化し、発明提案書受領日からN営業(Nは自然数)日後に出願する。
[新業務フロー]特許出願書類初版をシステムにて内製化し、発明提案書受領日からM(<N、Mは自然数)営業日後に出願する。
業務要件:
(1)発明提案書から、極力人手を介さずに、特許出願書類初版を取得できること。
(2)特許出願書類初版をそのまま出願した場合、国内特許出願日を認定できること。
(3)特許出願書類初版をそのまま出願した場合、方式審査にて補正命令を受けないこと。
(4)特許出願書類初版に、発明提案書の内容が全て反映されていること。
(5)特許出願書類初版をそのまま出願公開した場合、出願公開の体をなしていること。
(6)特許出願書類初版自動生成システム利用コストが、現状の外注コストよりも下がること。
システム化要件:
発明提案書を本システムにアップロードすることで、業務要件を満たす特許出願書類初版を自動で取得できること。
システム化の前提条件:
特許出願書類初版は、「願書、明細書、特許請求の範囲(クレームの骨子)、図面、要約書」とする。
【0121】
システム要件として、本発明による得られる効果が挙げられている。効果の例として、本発明によって特許出願書類の初版が自動生成され、また自動生成されることに伴って、早期に特許出願日を確保することができることが挙げられる。
【0122】
図34は、特許出願書類自動生成処理の入出力および生成処理ステップの概要を示す模式図である。特許出願書類自動生成処理は、「発明提案書」をアップロードすることで、類似公開公報を使って「特許出願書類初版」を自動生成する。具体的には、まず、「発明提案書」をアップロードし、利用可能な類似公開公報を抽出する。次に、ユーザが、画面上で利用したい類似文献を選択し、「選択」ボタンを押下し、選択結果確認画面にて、「クレームの骨子生成」「願書生成」「要約書生成」ボタンを押下する。その後、特許出願書類初版(特許請求の範囲、明細書、図面、願書、要約書)」を出力する。なお、「クレームの骨子生成」「願書生成」「要約書生成」ボタンはそれぞれに対応する機能をひとつにまとめて「特許出願書類初版生成」ボタンにしても良い。また、類似文献として抽出したもののうち、類似度等が最も高いものなどを自動選択することで、類似文献の画面表示やユーザによる画面上での選択操作などを省略して、特許出願書類初版を出力しても良い。
【0123】
特許出願書類自動生成処理の各ステップの詳細は以下の通りである。
No.1
機能名:発明提案書アップロード機能
入力画面:アップロード画面
アクション:アップロード
利用データ:発明提案書
処理:発明内容抽出処理
出力画面/出力書類:アップロード結果確認画面
No.2
機能名:類義語抽出機能
入力画面:アップロード結果確認画面
アクション:抽出
利用データ:・No.1の処理結果、類義語辞書
処理:類義語抽出処理
出力画面/出力書類:類義語抽出結果確認画面
No.3
機能名:特許請求の範囲生成機能
入力画面:類義語抽出結果確認画面
アクション:選択・抽出
利用データ:No.1の処理結果、No.2の処理結果、自社類似出願書類等
処理:特許請求の範囲候補抽出処理
出力画面/出力書類:特許請求の範囲候補抽出結果確認画面
No.4
機能名:(なし)
入力画面:特許請求の範囲候補抽出結果確認画面
アクション:選択・生成
利用データ:選択された特許請求の範囲候補、No.1の処理結果、類義語辞書
処理:特許請求の範囲生成処理
出力画面/出力書類:特許請求の範囲生成結果確認画面
No.5
機能名:願書・明細書・図面・特許請求の範囲・要約書生成機能
入力画面:特許請求の範囲生成結果確認画面
アクション:生成
利用データ:No.1の処理結果、自社類似出願書類等、No.4の処理結果、出願人・発明者情報、類義語辞書
処理:願書・明細書・図面・要約書生成処理
出力画面/出力書類:願書・明細書・図面・要約書生成確認画面
No.6
機能名:特許出願書類初版出力機能
入力画面:願書・明細書・図面・要約書生成確認画面
アクション:出力
利用データ:No.5の処理結果
処理:日本国特許庁フォーマットへの変換処理
出力画面/出力書類:特許出願書類初版
なお、アクションについて、「抽出」「選択」「生成」「出力」アクションを初期設定情報にもとづき、省略することで、完全自動生成も可能である。
【0124】
発明提案書アップロード機能は、ユーザがアップロード画面から発明提案書をアップロードすると、発明内容抽出処理を実行し、アップロード結果確認画面を出力する。アップロード結果確認画面を表示せず、システムの記憶領域に類義語抽出結果を保持しても良い。アップロード確認画面で、後述する自社類似出願書類および/または自社類似特許公開公報(以下、「自社類似出願書類等」という)を指定または選択しても良い。
【0125】
類義語抽出機能は、アップロード結果確認画面に表示された(または、システムの記憶領域に保持された)発明提案書の内容と類義語辞書を利用して類義語抽出処理を実行し、類義語抽出結果確認画面を出力する。類義語抽出結果確認画面は表示せず、システムの記憶領域に類義語抽出結果を保持しても良い。類義語抽出機能を備えない構成を採用しても良い。
【0126】
特許請求の範囲生成機能は、ユーザが類義語抽出結果確認画面(またはアップロード結果確認画面)から自社類似出願書類等を指定もしくは選択すると、発明提案書の内容と、抽出した類義語および/または自社類似出願書類等を利用して、特許請求の範囲候補抽出処理を実行し、類似する自社および/または他社の特許文献に基づく特許請求の範囲候補抽出結果確認画面を出力する。抽出した類義語を利用しない構成を採用しても良い。類似する自社および/または他社の特許文献は、ELASTICSEARCHのDocument Like This機能など、周知の検索エンジン技術を用いて、発明提案書および/または自社類似出願書類等と類似する明細書の段落や検索キーワードが一致した箇所の前後数行などを含む特許文献を検索して、類似度が高い所定の件数のものとしても良い。自社類似出願書類等の指定もしくは選択は省略しても良い。また、特許請求の範囲候補抽出結果確認画面には、自社および/または他社の特許文献のクレームを構文解析などしてクレームの骨子を抽出・記憶しておき、それを利用して類似する自社および/または他社の特許文献のクレームの骨子を出力するとともに、Document Like This機能で類似すると判断された明細書の段落や検索キーワードが一致した箇所の前後数行などを出力しても良い。
【0127】
特許請求の範囲候補抽出結果確認画面では、ユーザが画面に表示された中から特許請求の範囲を選択し、選択した特許請求の範囲を利用して特許請求の範囲生成処理を実行して、特許請求の範囲生成結果確認画面を出力する。特許請求の範囲候補抽出結果確認画面において、クレームの骨子とともにDocument Like This機能で類似すると判断された明細書の段落や検索キーワードが一致した箇所の前後数行などを出力することで、ユーザが特許請求の範囲を解釈しやすくなるため、適切な特許請求の範囲を選択し易くなる効果を見込むことができる。
【0128】
願書・明細書・特許請求の範囲・図面・要約書生成機能は、特許請求の範囲生成結果確認画面で選択された特許請求の範囲であるクレームの骨子と、発明提案書の内容と、出願人・発明者情報とを利用して、願書・明細書・特許請求の範囲・図面・要約書生成処理を実行し、願書・明細書・特許請求の範囲・図面・要約書生成確認画面を出力する。願書・明細書・特許請求の範囲・図面・要約書を画面に出力せずに、後述する特許庁フォーマットへの変換処理を実行し、特許庁フォーマットに変換した特許出願書類初版を生成しても良い。
【0129】
特許出願書類初版出力機能は、願書・明細書・特許請求の範囲・図面・要約書生成確認画面からユーザが特許庁フォーマットへの変換処理の実行を指示することによって、特許出願書類初版を出力する。
【0130】
特許出願書類自動生成処理に入力する発明提案書と、特許出願書類自動生成処理が出力する特許出願書類初版の対応関係は以下の通りである。
【0131】
出願書類名:願書
出願書類主要記載項目名:整理番号
発明提案書記載項目名:(なし)
利用データ:未定
生成処理:未定
出願書類主要記載項目名:提出日
発明提案書記載項目名:(なし)
利用データ:(なし)
生成処理:書類を出力した際の業務日付を自動設定する。
出願書類主要記載項目名:国際特許分類
発明提案書記載項目名:国際特許分類
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「国際特許分類」を設定する。(2)発明提案書に記載がない場合、 自社類似公開公報に記載されている「国際特許分類」を設定する。
出願書類主要記載項目名:発明者の住所又は居所
発明提案書記載項目名:(なし)
利用データ:企業DB
生成処理:企業DBにある「発明者の住所又は居所」を設定する。
出願書類主要記載項目名:発明者の氏名
発明提案書記載項目名:発明者の氏名
利用データ:発明提案書、発明者DB
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「発明者の氏名」を設定する。(2)発明提案書に記載がない場合、本システム用に発明者DBを構築し、その発明者DBの「発明者の氏名」を設定する。
出願書類主要記載項目名:識別番号
発明提案書記載項目名:(なし)
利用データ:(なし)
生成処理:出願人により指定された「識別番号」を設定する。
出願書類主要記載項目名:特許出願人の氏名又は名称
発明提案書記載項目名:(なし)
利用データ:企業DB
生成処理:企業DBにある「特許出願人の氏名又は名称」を設定する。
出願書類主要記載項目名:特許出願人の代表者
発明提案書記載項目名:(なし)
利用データ:企業DB
生成処理:企業DBにある「代表者」を設定する。
出願書類主要記載項目名:予納台帳番号
発明提案書記載項目名:(なし)
利用データ:未定
生成処理:未定
【0132】
出願書類名:明細書
出願書類主要記載項目名:発明の名称
発明提案書記載項目名:発明の名称
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「発明の名称」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の請求項1から、構文解析にもとづき、特許出願書類初版用の請求項1の骨子を抽出し、請求項1を生成する。その請求項1の「末尾名詞」を設定する。
出願書類主要記載項目名:技術分野
発明提案書記載項目名:技術分野
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「技術分野」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の請求項1から、構文解析にもとづき、特許出願書類初版用の請求項1の骨子を抽出し、請求項1を生成する。その請求項1の「主題または末尾名詞」から、下記のとおり作成する。「本発明は、「主題または末尾名詞」に関する。」
出願書類主要記載項目名:背景技術
発明提案書記載項目名:背景技術
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「背景技術」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の「要約書」の[課題]、[解決手段]を設定する。
出願書類主要記載項目名:先行技術文献(特許文献)
発明提案書記載項目名:先行技術文献
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「先行技術文献」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の「公開公報番号」を設定する。
出願書類主要記載項目名:発明が解決しようとする課題
発明提案書記載項目名:課題
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「課題」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の請求項1から、構文解析にもとづき、特許出願書類初版用の請求項1の骨子を抽出し、請求項1を生成する。その請求項1の「主題または末尾名詞」から、下記のとおり作成する。「「主題or末尾名詞」を提供する必要がある。」
出願書類主要記載項目名:課題を解決するための手段
発明提案書記載項目名:解決手段
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「解決手段」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の請求項1から、構文解析にもとづき、特許出願書類初版用の請求項1の骨子を抽出し、請求項1を生成する。その請求項1を設定する。
出願書類主要記載項目名:発明の効果
発明提案書記載項目名:効果
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「効果」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の請求項1から、構文解析にもとづき、特許出願書類初版用の請求項1の骨子を抽出し、請求項1を生成する。その請求項1の「主題または末尾名詞」から、下記のとおり作成する。「「主題または末尾名詞」を提供することができる。」
出願書類主要記載項目名:図面の簡単な説明
発明提案書記載項目名:図面の説明
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「図面の説明」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、図面の類似度が高い公開公報の「図面の簡単な説明」を設定する。必要に応じて、発明提案書の記載内容に変換する。
出願書類主要記載項目名:発明を実施するための形態
発明提案書記載項目名:実施例
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「実施例」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が高い公開公報の「発明を実施するための形態」を抽出する。その後、発明提案書の記載内容で、それを変換し、生成する。
出願書類主要記載項目名:符号の説明
発明提案書記載項目名:符号の説明
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「図面」内の「符号の説明」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、図面の類似度が高い公開公報の「符号の説明」を設定する。必要に応じて、発明提案書の記載内容に変換する。
【0133】
出願書類名:特許請求の範囲
出願書類主要記載項目名:請求項1~N
発明提案書記載項目名:解決手段
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「解決手段」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が一番高い公開公報の請求項1から、構文解析にもとづき、特許出願書類初版用の請求項1の骨子を抽出し、請求項1を生成する。その請求項1を設定する。なお、「特許請求の範囲候補抽出結果確認画面」にて選択した数分の請求項を生成する。
【0134】
出願書類名:要約書
出願書類主要記載項目名:課題
発明提案書記載項目名:(なし)
利用データ:生成した明細書
生成処理:生成した明細書の「発明が解決しようとする課題」を設定する。
出願書類主要記載項目名:解決手段
発明提案書記載項目名:(なし)
利用データ:生成した明細書
生成処理:生成した明細書のうち、請求項1に該当する「課題を解決するための手段」を設定する。
出願書類主要記載項目名:選択図
発明提案書記載項目名:(なし)
利用データ:生成した明細書
生成処理:生成した図面のうち、「
図1」を設定する。
【0135】
出願書類名:図面
出願書類主要記載項目名:図面
発明提案書記載項目名:図面
利用データ:発明提案書、自社類似公開公報
生成処理:(1)発明提案書に記載がある場合、発明提案書に記載されている「図面」を設定する。(2)発明提案書に記載がない場合、自社類似公開公報のうち、類似度が高い公開公報の図面を抽出し、設定する。
【0136】
図35は、
図22の類似度を算出するための評価システム1004のブロック図である。評価システム1004は、既存の特許文献の情報を取得し、段落単位でベクトル化してDB化する。評価システム1004は、評価対象の請求項を取得するとそれを構成要件に分け、構成要件ごとにベクトル化する。評価システム1004は、構成要件のベクトルと段落のベクトルとのコサイン類似度を算出する。評価システム1004は、トータルでのコサイン類似度が最も高い特許文献を、評価対象の請求項の主引例(または、最も近い文献(Closest Prior Art))として出力する。
【0137】
評価システム1004は、ベクトル化部1006と、ベクトル化特許DB1008と、検索エンジン1010と、を備える。ベクトル化部1006は、既存の特許文献(先行特許文献とも称す)の情報を蓄積している外部の特許DB1002から、既存の特許文献の情報を取得する。ベクトル化部1006は、取得した特許文献を段落単位に分割する。ベクトル化部1006は、分割の結果得られる各段落を公知の文書ベクトル化手法(例えば、word2vecなど)を用いてベクトル化する。ベクトル化部1006は、段落のベクトル表現をベクトル化特許DB1008に登録する。ベクトル化部1006は、以上のベクトル化処理を全ての既存の特許文献に対して行うことでベクトル化特許DB1008を構築する。
【0138】
図36は、
図35の検索エンジン1010における一連の処理の流れを示すフローチャートである。検索エンジン1010は、評価対象の請求項を取得する(S2002)。検索エンジン1010は、ステップS2002で取得した請求項を構成要件に分解する(S2004)。合わせて検索エンジン1010は、各構成要件を上記と同じ文書ベクトル化手法を用いてベクトル化する。
【0139】
検索エンジン1010は、ベクトル化特許DB1008に登録されている先行特許文献のうち、まだ選ばれていない先行特許文献をひとつ選択する(S2006)。検索エンジン1010は、ステップS2004でベクトル化された構成要件のうち、まだ選ばれていない構成要件をひとつ選択する(S2008)。検索エンジン1010は、ステップS2008で選択された構成要件とのコサイン類似度が最も高い段落を特定する(S2010)。ステップS2010における処理では、構成要件のベクトル表現と、段落のベクトル表現と、からコサイン類似度が算出される。
【0140】
検索エンジン1010は、まだ選択されていない構成要件が残っている場合(S2012のN)、処理をステップS2008に戻す。全ての構成要件が選択済みである場合(S2012のY)、検索エンジン1010は、ステップS2006で選択された先行特許文献とステップS2002で取得された請求項との合計類似度を算出する(S2014)。例えば、合計類似度は、ステップS2002で取得された請求項の各構成要件についてステップS2010で算出された最高のコサイン類似度の合計である。具体例として、請求項が構成要件A、B、Cからなるとする。構成要件Aとのコサイン類似度が最も高い先行特許文献Xの段落が[0022]であってそのコサイン類似度が0.8、構成要件Bとのコサイン類似度が最も高い先行特許文献Xの段落が[0041]であってそのコサイン類似度が0.7、構成要件Cとのコサイン類似度が最も高い先行特許文献Xの段落が[0002]であってそのコサイン類似度が0.6、であるとする。この場合、合計類似度は、0.8+0.7+0.6=2.1と算出される。
【0141】
検索エンジン1010は、まだ選択されていない先行特許文献が残っている場合(S2016のN)、処理をステップS2006に戻す。全ての先行特許文献が選択済みである場合(S2016のY)、検索エンジン1010は、ステップS2002で取得された請求項に対する合計類似度が最も高い先行特許文献を主引例(D1)として特定する(S2018)。具体例として、請求項Yに対する先行特許文献Z1の合計類似度が2.5、請求項Yに対する先行特許文献Z2の合計類似度が2.1、請求項Yに対する先行特許文献Z3の合計類似度が3.0である場合、先行特許文献Z3を請求項Yに対する主引例として特定する。
【0142】
検索エンジン1010は、ステップS2018で特定された主引例に対する、ステップS2002で取得された請求項の各構成要件のコサイン類似度としきい値とを比較する(S2020)。構成要件のなかにコサイン類似度がしきい値未満のものがある場合、検索エンジン1010は、主引例(
図36のステップS2022では「D1」と表記)に対するコサイン類似度がしきい値未満の構成要件について、コサイン類似度が最も高くなる他の先行特許文献を副引例として特定する(S2022)。全ての構成要件のコサイン類似度がしきい値以上であれば、検索エンジン1010は、合計類似度が高い順に副引例を特定する(S2024)。検索エンジン1010は、特定された主引例および副引例をユーザに表示する(S2026)。
【0143】
ステップS2020、S2022、S2024の具体例として、以下の状況を想定する。
請求項Yは構成要件A、B、Cからなる。
構成要件Aと先行特許文献Kとのコサイン類似度の最高値は0.8。
構成要件Bと先行特許文献Kとのコサイン類似度の最高値は0.5。
構成要件Cと先行特許文献Kとのコサイン類似度の最高値は0.8。
構成要件Aと先行特許文献Lとのコサイン類似度の最高値は0.2。
構成要件Bと先行特許文献Lとのコサイン類似度の最高値は0.9。
構成要件Cと先行特許文献Lとのコサイン類似度の最高値は0.3。
構成要件Aと先行特許文献Mとのコサイン類似度の最高値は0.7。
構成要件Bと先行特許文献Mとのコサイン類似度の最高値は0.6。
構成要件Cと先行特許文献Mとのコサイン類似度の最高値は0.6。
【0144】
合計類似度の比較から、請求項Yについては先行特許文献Kが主引例として選ばれる。コサイン類似度のしきい値が0.6である場合、ステップS2020において先行特許文献Kに対する構成要件Bのコサイン類似度がしきい値未満であると判定される。ステップS2022において、そのように判定された構成要件Bと先行特許文献L、Mとのコサイン類似度が参照される。その結果、合計類似度では先行特許文献Mに劣るものの、構成要件Bとのコサイン類似度が最も高い先行特許文献Lが副引例として選択される。コサイン類似度のしきい値が0.4である場合、ステップS2024において先行特許文献Mが副引例として選択される。
【0145】
なお、ステップS2022の処理において、課題や効果との関連を考慮してもよい。
【0146】
図1の例では、作成サーバは、ユーザによって入力された情報をクレーム生成AIエンジンで処理することで、入力されたキーワードに対応する特許請求の範囲を自動的に生成する場合を説明した。
図37は、クレーム生成の際にユーザによる選択を受け付ける場合のユーザインタフェースを示す模式図である。この場合、システムは、ユーザによる「搭乗者」という用語の選択に応じて、次の語の候補(「は」、「が」、「の」)を提示する。この候補の選択は、ユーザによって入力された用語(「搭乗者」)に加えて、その前に選択された用語(「自動車の」)を考慮して行われる。提示された候補のなかからユーザがひとつ(例えば「の」)を選択すると、システムは、ユーザにより選択された用語(例えば、「の」)をそれまで選択されていた用語(例えば、「自動車の搭乗者」)と併せて考慮して、次の語の候補(「体験」、「顔」、「座席」)を提示する。次の語の候補を選択するアルゴリズムは、例えばLSTM(Long Short Term Memory)ネットワークなどの公知の技術を用いて構成されてもよい。このように、
図37の例では、インタラクティブなクレーム生成が可能となる。
なお、クレームを対象に、新規性や進歩性を求めるだけではなく、発明の概要を対象に求めてもよい。
【0147】
なお、
図37の例ではクレームを文言単位でインタラクティブに生成する場合を説明したが、これに限られず、同様の技術を用いて例えば明細書を段落単位でインタラクティブに生成することもできる。
【0148】
図38は、
図1で特許請求の範囲を自動的に生成するためのアルゴリズムの一例を示す模式図である。「A」という用語に続く用語の候補が「B1」、「B2」、「B3」と三つあり、それぞれと「A」とのマッチ度が85%、60%、40%である場合、システムは自動的に「A」-「B1」というつながりを選択する。「B1」という用語に続く用語の候補が「C1」、「C2」、「C3」と三つある場合、システムは、「A」-「B1」-「C1」のつながりにおけるマッチ度を算出する。ここで算出されるマッチ度は「B1」-「C1」のつながりにおけるマッチ度とは異なりうる。同様に、システムは、「A」-「B1」-「C2」のつながりにおけるマッチ度および「A」-「B1」-「C3」のつながりにおけるマッチ度を算出する。システムは、そのように算出されたマッチ度が最も高い「A」-「B1」-「C1」というつながりを自動的に選択する。
【符号の説明】
【0149】
2 クレーム作成支援システム、 4 作成サーバ、 6 ネットワーク、 8 ユーザ端末。