IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クボタの特許一覧

特許7496752埋設管更新時期予測装置、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-30
(45)【発行日】2024-06-07
(54)【発明の名称】埋設管更新時期予測装置、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体
(51)【国際特許分類】
   G01N 17/00 20060101AFI20240531BHJP
【FI】
G01N17/00
【請求項の数】 20
(21)【出願番号】P 2020162867
(22)【出願日】2020-09-29
(65)【公開番号】P2021056224
(43)【公開日】2021-04-08
【審査請求日】2023-06-22
(31)【優先権主張番号】P 2019180547
(32)【優先日】2019-09-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001052
【氏名又は名称】株式会社クボタ
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】川勝 智
(72)【発明者】
【氏名】船橋 五郎
(72)【発明者】
【氏名】奥村 勇太
(72)【発明者】
【氏名】滝沢 智
【審査官】野田 華代
(56)【参考文献】
【文献】特開2020-51801(JP,A)
【文献】特開2007-107882(JP,A)
【文献】特開2016-114564(JP,A)
【文献】国際公開第2020/85327(WO,A1)
【文献】特開2009-97887(JP,A)
【文献】特開2004-184344(JP,A)
【文献】中国特許出願公開第109668820(CN,A)
【文献】川勝 智,鋳鉄製管の鉄部寿命予測プロセスの検討と腐食のラグタイムを考慮した高精度な予測式の作成,全国会議(水道研究発表会)講演集,日本,Vol.2019,Page.468-469
【文献】片野幸雄,埋設管の腐食環境の解析と腐食予測,Boshoku Gijutsu,1988年,37,pp.205-211
(58)【調査した分野】(Int.Cl.,DB名)
G01N 17/00-17/04
(57)【特許請求の範囲】
【請求項1】
埋設管の属性データを取得する埋設管属性データ取得部を備え、前記属性データは、前記埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含み、さらに、
前記第1環境因子用の腐食深さ経時変化予測モデルと、前記第1埋設期間と、前記許容腐食深さとから、前記埋設管の腐食深さが前記許容腐食深さに達する許容腐食深さ到達時期を算出して、前記許容腐食深さ到達時期を出力する管更新時期予測部を備え、
複数の参照管の参照データは、前記複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含み、
前記腐食深さ経時変化予測モデルは、前記第1環境因子における前記埋設管の腐食深さの経時変化を予測するモデルであって、前記第1環境因子と同じ前記第2環境因子を有する前記参照データと腐食のラグタイムとに基づいて生成されており、
前記腐食のラグタイムは、前記複数の参照管が埋設されてから前記複数の参照管が腐食し始めるまでの期間であり、前記第1環境因子と同じ前記第2環境因子を有する前記参照データから前記第2埋設期間及び前記参照腐食深さに応じて算出されている、埋設管更新時期予測装置。
【請求項2】
前記腐食深さ経時変化予測モデルは、以下の式(1)によって与えられ、
y=a(t-tLC) (ただし、0≦t<tLCでは、y=0) (1)
yは管の腐食深さを、aは係数を、tは前記管の埋設期間を、tLCは前記腐食のラグタイムの中央値を表し、
前記係数aは、前記複数の参照管の修正参照データを線形回帰することによって算出されており、
前記修正参照データは、前記複数の参照管の修正埋設期間と前記参照腐食深さとを含み、
前記修正埋設期間は、前記第2埋設期間から、前記第2埋設期間及び前記参照腐食深さに応じた前記腐食のラグタイムを差し引くことによって算出されており、
前記腐食のラグタイムの前記中央値は、前記腐食のラグタイムの累積相対度数が0.5となる腐食のラグタイムであり、
前記管更新時期予測部は、前記式(1)から前記腐食深さ経時変化予測モデルの前記管の腐食深さyが前記許容腐食深さに到達する前記管の埋設期間tを算出し、算出された前記管の埋設期間tから前記第1埋設期間を差し引くことによって前記許容腐食深さ到達時期を算出する、請求項1に記載の埋設管更新時期予測装置。
【請求項3】
管更新判断基準記憶部から、前記許容腐食深さに対応する管更新判断内容を読み出して、前記管更新判断内容を含む前記埋設管の管更新判断結果を出力する管更新判断部をさらに備える、請求項1または請求項2に記載の埋設管更新時期予測装置。
【請求項4】
前記複数の参照管の前記第2環境因子毎に作成された複数の腐食深さ経時変化予測モデルから、前記第1環境因子用の前記腐食深さ経時変化予測モデルを選択する腐食深さ経時変化予測モデル選択部をさらに備える、請求項1から請求項3のいずれか一項に記載の埋設管更新時期予測装置。
【請求項5】
埋設管の属性データを取得する埋設管属性データ取得部を備え、前記属性データは、前記埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含み、さらに、
前記第1環境因子用の腐食深さ超過確率予測モデルと、前記第1埋設期間と、前記許容腐食深さとから、将来期間において前記埋設管の腐食深さが前記許容腐食深さを超過する確率である前記埋設管の腐食深さ超過確率を算出して、前記将来期間及び前記埋設管の腐食深さ超過確率を出力する腐食深さ超過確率予測部を備え、
複数の参照管の参照データは、前記複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含み、
前記腐食深さ超過確率予測モデルは、前記将来期間における前記埋設管の腐食深さ超過確率を予測するモデルであって、前記第1環境因子と同じ前記第2環境因子を有する前記参照データと腐食のラグタイムとに基づいて生成されており、
前記腐食のラグタイムは、前記複数の参照管が埋設されてから前記複数の参照管が腐食し始めるまでの期間であり、前記第1環境因子と同じ前記第2環境因子を有する前記参照データから前記第2埋設期間及び前記参照腐食深さに応じて算出されている、埋設管更新時期予測装置。
【請求項6】
前記腐食深さ超過確率予測モデルは、以下の式(2)によって与えられ、
R=100×exp(b+cx)/(1+exp(b+cx)) (2)
Rは前記埋設管の腐食深さ超過確率(%)を、b,cは係数を、xは前記埋設管の腐食深さを表し、
前記係数b,cは、前記第1環境因子と同じ前記第2環境因子と所定範囲の修正埋設期間とを有する前記複数の参照管の腐食深さ超過確率データを、前記式(2)で非線形回帰することによって算出されており、
前記複数の参照管の腐食深さ超過確率データは、前記複数の参照管の修正参照データから得られており、かつ、前記参照腐食深さと前記複数の参照管の腐食深さ超過確率とを含み、
前記複数の参照管の修正参照データは、前記複数の参照管の前記修正埋設期間と前記参照腐食深さとを含み、
前記修正埋設期間は、前記第2埋設期間から、前記第2埋設期間及び前記参照腐食深さに応じた前記腐食のラグタイムを差し引くことによって算出されており、
所定の腐食深さにおける前記複数の参照管の腐食深さ超過確率は、前記第1環境因子と同じ前記第2環境因子を有しかつ前記所定範囲の修正埋設期間内にある前記複数の参照管の修正参照データのうち、前記参照腐食深さが前記所定の腐食深さを超える前記複数の参照管の修正参照データの数の割合として算出されており、
前記腐食深さ超過確率予測部は、前記所定範囲の修正埋設期間に前記腐食のラグタイムの中央値を加え、前記第1埋設期間を差し引くことによって、前記将来期間を算出し、
前記腐食のラグタイムの前記中央値は、前記腐食のラグタイムの累積相対度数が0.5となる腐食のラグタイムである、請求項5に記載の埋設管更新時期予測装置。
【請求項7】
埋設管の属性データを取得する埋設管属性データ取得部を備え、前記属性データは、前記埋設管の第1環境因子と、前記埋設管の第1埋設期間と、前記埋設管の公称管厚または許容腐食深さとを含み、さらに、
前記第1環境因子用の腐食深さ超過確率予測モデルと、前記第1埋設期間と、前記公称管厚または前記許容腐食深さとから、ある時期における前記埋設管の腐食深さ超過確率を算出する腐食深さ超過確率予測部を備え、
前記ある時期における前記埋設管の腐食深さ超過確率は、前記ある時期において、前記埋設管の腐食深さが前記埋設管の前記公称管厚または前記許容腐食深さを超過する確率であり、
複数の参照管の参照データは、前記複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含み、
前記複数の参照管の修正参照データは、前記複数の参照管の修正埋設期間と前記参照腐食深さとを含み、前記修正埋設期間は、前記第2埋設期間から、前記第2埋設期間及び前記参照腐食深さに応じた腐食のラグタイムを差し引くことによって算出されており、前記腐食のラグタイムは、前記複数の参照管が埋設されてから前記複数の参照管が腐食し始めるまでの期間であり、
前記腐食深さ超過確率予測モデルは、前記埋設管の腐食深さ超過確率を予測するモデルであって、前記第1環境因子と同じ前記第2環境因子を有する前記修正参照データを回帰する基本回帰線と、前記複数の参照管の腐食速度のばらつきと、前記腐食のラグタイムの分布とに基づいて生成されており、
前記腐食速度の前記ばらつきは、前記修正参照データにおける前記参照腐食深さのばらつきによる前記基本回帰線の分布で与えられ、
前記腐食のラグタイムの前記分布は、前記第2埋設期間に対する、前記第1環境因子と同じ前記第2環境因子を有する前記参照データのうち前記参照腐食深さが0mmより大きくなるデータ数の割合の変化の微分で与えられる、埋設管更新時期予測装置。
【請求項8】
漏水事故件数算出部、漏水事故確率算出部または漏水事故総件数算出部の少なくとも一つをさらに備え、
前記属性データは、前記埋設管の管路IDと管路長さとをさらに含み、
前記漏水事故件数算出部は、前記管路IDで特定される前記埋設管の腐食深さ超過確率と前記管路IDで特定される前記埋設管の前記管路長さとから、前記ある時期における漏水事故件数を前記管路ID毎に算出し、前記漏水事故件数は、前記ある時期において、単位時間当たりに、前記管路IDで特定される前記埋設管に漏水事故が発生する件数であり、
前記漏水事故確率算出部は、前記管路IDで特定される前記埋設管の腐食深さ超過確率と前記管路IDで特定される前記埋設管の前記管路長さとから、前記ある時期における漏水事故確率を前記管路ID毎に算出し、前記漏水事故確率は、前記ある時期において、単位時間かつ単位距離当たりに、前記管路IDで特定される前記埋設管に前記漏水事故が発生する件数であり、
前記漏水事故総件数算出部は、前記属性データに含まれる全ての前記管路IDについて、前記ある時期における前記漏水事故件数を足し合わせて、前記ある時期における漏水事故総件数を算出する、請求項7に記載の埋設管更新時期予測装置。
【請求項9】
前記複数の参照管の前記第2環境因子毎に作成された複数の腐食深さ超過確率予測モデルから、前記第1環境因子用の前記腐食深さ超過確率予測モデルを選択する腐食深さ超過確率予測モデル選択部をさらに備える、請求項5から請求項8のいずれか一項に記載の埋設管更新時期予測装置。
【請求項10】
埋設管属性データ取得部が埋設管の属性データを取得するステップを備え、前記属性データは、前記埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含み、さらに、
管更新時期予測部が、前記第1環境因子用の腐食深さ経時変化予測モデルと、前記第1埋設期間と、前記許容腐食深さとから、前記埋設管の腐食深さが前記許容腐食深さに達する許容腐食深さ到達時期を算出して、前記許容腐食深さ到達時期を出力するステップを備え、
複数の参照管の参照データは、前記複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含み、
前記腐食深さ経時変化予測モデルは、前記第1環境因子における前記埋設管の腐食深さの経時変化を予測するモデルであって、前記第1環境因子と同じ前記第2環境因子を有する前記参照データと腐食のラグタイムとに基づいて生成されており、
前記腐食のラグタイムは、前記複数の参照管が埋設されてから前記複数の参照管が腐食し始めるまでの期間であり、前記第1環境因子と同じ前記第2環境因子を有する前記参照データから前記第2埋設期間及び前記参照腐食深さに応じて算出されている、埋設管更新時期予測方法。
【請求項11】
前記腐食深さ経時変化予測モデルは、以下の式(3)によって与えられ、
y=a(t-tLC) (ただし、0≦t<tLCでは、y=0) (3)
yは管の腐食深さを、aは係数を、tは前記管の埋設期間を、tLCは前記腐食のラグタイムの中央値を表し、
前記係数aは、前記複数の参照管の修正参照データを線形回帰することによって算出されており、
前記修正参照データは、前記複数の参照管の修正埋設期間と前記参照腐食深さとを含み、
前記修正埋設期間は、前記第2埋設期間から、前記第2埋設期間及び前記参照腐食深さに応じた前記腐食のラグタイムを差し引くことによって算出されており、
前記腐食のラグタイムの前記中央値は、前記腐食のラグタイムの累積相対度数が0.5となる腐食のラグタイムであり、
前記許容腐食深さ到達時期を算出するステップでは、前記管更新時期予測部は、前記式(3)から前記腐食深さ経時変化予測モデルの前記管の腐食深さyが前記許容腐食深さに到達する前記管の埋設期間tを算出し、算出された前記管の埋設期間tから前記第1埋設期間を差し引くことによって前記許容腐食深さ到達時期を算出する、請求項10に記載の埋設管更新時期予測方法。
【請求項12】
管更新判断部が、管更新判断基準記憶部から、前記許容腐食深さに対応する管更新判断内容を読み出して、前記管更新判断内容を含む前記埋設管の管更新判断結果を出力するステップをさらに備える、請求項10または請求項11に記載の埋設管更新時期予測方法。
【請求項13】
腐食深さ経時変化予測モデル選択部が、前記複数の参照管の前記第2環境因子毎に作成された複数の腐食深さ経時変化予測モデルから、前記第1環境因子用の前記腐食深さ経時変化予測モデルを選択するステップをさらに備える、請求項10から請求項12のいずれか一項に記載の埋設管更新時期予測方法。
【請求項14】
埋設管属性データ取得部が埋設管の属性データを取得するステップを備え、前記属性データは、前記埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含み、さらに、
腐食深さ超過確率予測部が、前記第1環境因子用の腐食深さ超過確率予測モデルと、前記第1埋設期間と、前記許容腐食深さとから、将来期間において前記埋設管の腐食深さが前記許容腐食深さを超過する確率である前記埋設管の腐食深さ超過確率を算出して、前記将来期間及び前記埋設管の腐食深さ超過確率を出力するステップを備え、
複数の参照管の参照データは、前記複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含み、
前記腐食深さ超過確率予測モデルは、前記将来期間における前記埋設管の腐食深さ超過確率を予測するモデルであって、前記第1環境因子と同じ前記第2環境因子を有する前記参照データと腐食のラグタイムとに基づいて生成されており、
前記腐食のラグタイムは、前記複数の参照管が埋設されてから前記複数の参照管が腐食し始めるまでの期間であり、前記第1環境因子と同じ前記第2環境因子を有する前記参照データから前記第2埋設期間及び前記参照腐食深さに応じて算出されている、埋設管更新時期予測方法。
【請求項15】
前記腐食深さ超過確率予測モデルは、以下の式(4)によって与えられ、
R=100×exp(b+cx)/(1+exp(b+cx)) (4)
Rは前記埋設管の腐食深さ超過確率(%)を、b,cは係数を、xは前記埋設管の腐食深さを表し、
前記係数b,cは、前記第1環境因子と同じ前記第2環境因子と所定範囲の修正埋設期間とを有する前記複数の参照管の腐食深さ超過確率データを、前記式(4)で非線形回帰することによって算出されており、
前記複数の参照管の腐食深さ超過確率データは、前記複数の参照管の修正参照データから得られており、かつ、前記参照腐食深さと前記複数の参照管の腐食深さ超過確率とを含み、
前記複数の参照管の修正参照データは、前記複数の参照管の前記修正埋設期間と前記参照腐食深さとを含み、
前記修正埋設期間は、前記第2埋設期間から、前記第2埋設期間及び前記参照腐食深さに応じた前記腐食のラグタイムを差し引くことによって算出されており、
所定の腐食深さにおける前記複数の参照管の腐食深さ超過確率は、前記第1環境因子と同じ前記第2環境因子を有しかつ前記所定範囲の修正埋設期間内にある前記複数の参照管の修正参照データのうち、前記参照腐食深さが前記所定の腐食深さを超える前記複数の参照管の修正参照データの数の割合として算出されており、
前記将来期間を出力するステップでは、前記腐食深さ超過確率予測部は、前記所定範囲の修正埋設期間に前記腐食のラグタイムの中央値を加え、前記第1埋設期間を差し引くことによって、前記将来期間を算出しており、
前記腐食のラグタイムの前記中央値は、前記腐食のラグタイムの累積相対度数が0.5となる腐食のラグタイムである、請求項14に記載の埋設管更新時期予測方法。
【請求項16】
埋設管属性データ取得部が埋設管の属性データを取得するステップを備え、前記属性データは、前記埋設管の第1環境因子と、前記埋設管の第1埋設期間と、前記埋設管の公称管厚または許容腐食深さとを含み、さらに、
腐食深さ超過確率予測部が、前記第1環境因子用の腐食深さ超過確率予測モデルと、前記第1埋設期間と、前記公称管厚または前記許容腐食深さとから、ある時期における前記埋設管の腐食深さ超過確率を算出するステップを備え、
前記ある時期における前記埋設管の腐食深さ超過確率は、前記ある時期において、前記埋設管の腐食深さが前記埋設管の前記公称管厚または前記許容腐食深さを超過する確率であり、
複数の参照管の参照データは、前記複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含み、
前記複数の参照管の修正参照データは、前記複数の参照管の修正埋設期間と前記参照腐食深さとを含み、前記修正埋設期間は、前記第2埋設期間から、前記第2埋設期間及び前記参照腐食深さに応じた腐食のラグタイムを差し引くことによって算出されており、前記腐食のラグタイムは、前記複数の参照管が埋設されてから前記複数の参照管が腐食し始めるまでの期間であり、
前記腐食深さ超過確率予測モデルは、前記埋設管の腐食深さ超過確率を予測するモデルであって、前記第1環境因子と同じ前記第2環境因子を有する前記修正参照データを回帰する基本回帰線と、前記複数の参照管の腐食速度のばらつきと、前記腐食のラグタイムの分布とに基づいて生成されており、
前記腐食速度の前記ばらつきは、前記修正参照データにおける前記参照腐食深さのばらつきによる前記基本回帰線の分布で与えられ、
前記腐食のラグタイムの前記分布は、前記第2埋設期間に対する、前記第1環境因子と同じ前記第2環境因子を有する前記参照データのうち前記参照腐食深さが0mmより大きくなるデータ数の割合の変化の微分で与えられる、埋設管更新時期予測方法。
【請求項17】
漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つを算出するステップをさらに備え、
前記属性データは、前記埋設管の管路IDと管路長さとをさらに含み、
前記漏水事故件数は、前記ある時期において、単位時間当たりに、前記管路IDで特定される前記埋設管に漏水事故が発生する件数であって、前記管路IDで特定される前記埋設管の腐食深さ超過確率と前記管路IDで特定される前記埋設管の前記管路長さとから前記管路ID毎に算出され、
前記漏水事故確率は、前記ある時期において、単位時間かつ単位距離当たりに、前記管路IDで特定される前記埋設管に前記漏水事故が発生する件数であって、前記管路IDで特定される前記埋設管の腐食深さ超過確率と前記管路IDで特定される前記埋設管の前記管路長さとから前記管路ID毎に算出され、
前記漏水事故総件数は、前記属性データに含まれる全ての前記管路IDについて、前記ある時期における前記漏水事故件数を足し合わせて算出される、請求項16に記載の埋設管更新時期予測方法。
【請求項18】
腐食深さ超過確率予測モデル選択部が、前記複数の参照管の前記第2環境因子毎に作成された複数の腐食深さ超過確率予測モデルから、前記第1環境因子用の前記腐食深さ超過確率予測モデルを選択するステップをさらに備える、請求項14から請求項17のいずれか一項に記載の埋設管更新時期予測方法。
【請求項19】
請求項10から請求項18のいずれか一項に記載の前記埋設管更新時期予測方法の各ステップをプロセッサに実行させるプログラム。
【請求項20】
請求項19に記載の前記プログラムを記録したコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、埋設管更新時期予測装置、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体に関する。
【背景技術】
【0002】
水道管のような管が、土中に埋設されている。管は、例えば、鋳鉄管またはダクタイル管である。管を長期間使用している間に、管は腐食する。特開2007-107882号公報(特許文献1)は、管腐食予測方法を開示している。具体的には、複数の場所で管を試掘して、各場所における管の腐食深さと管の埋設期間とを含む管の調査データを得る。管の腐食深さが、y=kTm(y:管の腐食深さ、T:管の埋設期間、k:管の埋設地質に基づく定数、m:定数)という管腐食予測式に従うと仮定し、この管の調査データに基づいて、定数kと定数aとを決定する。こうして得られる管腐食予測式に基づいて、管の腐食深さを予測していた。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2007-107882号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1の管腐食予測方法は、管の腐食深さの調査データのばらつきが大きく、埋設管の更新時期を正確に予測するには不十分であった。本発明は、上記の課題を鑑みてなされたものであり、その目的は、埋設管の更新時期をより正確に予測することを可能にする、埋設管更新時期予測装置、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体を提供することである。
【課題を解決するための手段】
【0005】
本発明の埋設管更新時期予測装置は、埋設管属性データ取得部と、管更新時期予測部とを備える。埋設管属性データ取得部は、埋設管の属性データを取得する。属性データは、埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含む。管更新時期予測部は、第1環境因子用の腐食深さ経時変化予測モデルと、第1埋設期間と、許容腐食深さとから、埋設管の腐食深さが許容腐食深さに達する許容腐食深さ到達時期を算出する。管更新時期予測部は、許容腐食深さ到達時期を出力する。複数の参照管の参照データは、複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含む。腐食深さ経時変化予測モデルは、第1環境因子における埋設管の腐食深さの経時変化を予測するモデルである。腐食深さ経時変化予測モデルは、第1環境因子と同じ第2環境因子を有する参照データと腐食のラグタイムとに基づいて生成されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムは、第1環境因子と同じ第2環境因子を有する参照データから第2埋設期間及び参照腐食深さに応じて算出されている。
【0006】
本発明の埋設管更新時期予測装置は、埋設管属性データ取得部と、腐食深さ超過確率予測部とを備える。埋設管属性データ取得部は、埋設管の属性データを取得する。属性データは、埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含む。腐食深さ超過確率予測部は、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間と、許容腐食深さとから、将来期間において埋設管の腐食深さが許容腐食深さを超過する確率である埋設管の腐食深さ超過確率を算出する。腐食深さ超過確率予測部は、将来期間及び埋設管の腐食深さ超過確率を出力する。複数の参照管の参照データは、複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含む。腐食深さ超過確率予測モデルは、将来期間における埋設管の腐食深さ超過確率を予測するモデルである。腐食深さ超過確率予測モデルは、第1環境因子と同じ第2環境因子を有する参照データと腐食のラグタイムとに基づいて生成されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムは、第1環境因子と同じ第2環境因子を有する参照データから第2埋設期間及び参照腐食深さに応じて算出されている。
【0007】
本発明の埋設管更新時期予測装置は、埋設管属性データ取得部と、腐食深さ超過確率予測部を備える。埋設管属性データ取得部は、埋設管の属性データを取得する。埋設管の属性データは、埋設管の第1環境因子と、埋設管の第1埋設期間と、埋設管の公称管厚または許容腐食深さとを含む。腐食深さ超過確率予測部は、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間と、公称管厚または許容腐食深さとから、ある時期における埋設管の腐食深さ超過確率を算出する。ある時期における埋設管の腐食深さ超過確率は、ある時期において、埋設管の腐食深さが埋設管の公称管厚または許容腐食深さを超過する確率である。複数の参照管の参照データは、複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含む。複数の参照管の修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間から、第2埋設期間及び参照腐食深さに応じた腐食のラグタイムを差し引くことによって算出されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食深さ超過確率予測モデルは、埋設管の腐食深さ超過確率を予測するモデルであって、第1環境因子と同じ第2環境因子を有する修正参照データを回帰する基本回帰線と、複数の参照管の腐食速度のばらつきと、腐食のラグタイムの分布とに基づいて生成されている。腐食速度のばらつきは、修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布で与えられる。腐食のラグタイムの分布は、第2埋設期間に対する、第1環境因子と同じ第2環境因子を有する参照データのうち参照腐食深さが0mmより大きくなるデータ数の割合の変化の微分で与えられる。
【0008】
本発明の埋設管更新時期予測方法は、埋設管属性データ取得部が埋設管の属性データを取得するステップを備える。属性データは、埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含む。本発明の埋設管更新時期予測方法は、管更新時期予測部が、第1環境因子用の腐食深さ経時変化予測モデルと、第1埋設期間と、許容腐食深さとから、埋設管の腐食深さが許容腐食深さに達する許容腐食深さ到達時期を算出して、許容腐食深さ到達時期を出力するステップを備える。複数の参照管の参照データは、複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含む。腐食深さ経時変化予測モデルは、第1環境因子における埋設管の腐食深さの経時変化を予測するモデルである。腐食深さ経時変化予測モデルは、第1環境因子と同じ第2環境因子を有する参照データと腐食のラグタイムとに基づいて生成されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムは、第1環境因子と同じ第2環境因子を有する参照データから第2埋設期間及び参照腐食深さに応じて算出されている。
【0009】
本発明の埋設管更新時期予測方法は、埋設管属性データ取得部が埋設管の属性データを取得するステップを備える。属性データは、埋設管の第1環境因子、第1埋設期間及び許容腐食深さを含む。本発明の埋設管更新時期予測方法は、腐食深さ超過確率予測部が、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間と、許容腐食深さとから、将来期間において埋設管の腐食深さが許容腐食深さを超過する確率である埋設管の腐食深さ超過確率を算出して、将来期間及び埋設管の腐食深さ超過確率を出力するステップを備える。複数の参照管の参照データは、複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含む。腐食深さ超過確率予測モデルは、将来期間における埋設管の腐食深さ超過確率を予測するモデルである。腐食深さ超過確率予測モデルは、第1環境因子と同じ第2環境因子を有する参照データと腐食のラグタイムとに基づいて生成されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムは、第1環境因子と同じ第2環境因子を有する参照データから第2埋設期間及び参照腐食深さに応じて算出されている。
【0010】
本発明の埋設管更新時期予測方法は、埋設管属性データ取得部が埋設管の属性データを取得するステップを備える。埋設管の属性データは、埋設管の第1環境因子と、埋設管の第1埋設期間と、埋設管の公称管厚または許容腐食深さとを含む。本発明の埋設管更新時期予測方法は、腐食深さ超過確率予測部が、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間と、公称管厚または許容腐食深さとから、ある時期における埋設管の腐食深さ超過確率を算出するステップを備える。ある時期における埋設管の腐食深さ超過確率は、ある時期において、埋設管の腐食深さが埋設管の公称管厚または許容腐食深さを超過する確率である。複数の参照管の参照データは、複数の参照管の第2環境因子、第2埋設期間及び参照腐食深さを含む。複数の参照管の修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間から、第2埋設期間及び参照腐食深さに応じた腐食のラグタイムを差し引くことによって算出されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食深さ超過確率予測モデルは、埋設管の腐食深さ超過確率を予測するモデルであって、第1環境因子と同じ第2環境因子を有する修正参照データを回帰する基本回帰線と、複数の参照管の腐食速度のばらつきと、腐食のラグタイムの分布とに基づいて生成されている。腐食速度のばらつきは、修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布で与えられる。腐食のラグタイムの分布は、第2埋設期間に対する、第1環境因子と同じ第2環境因子を有する参照データのうち参照腐食深さが0mmより大きくなるデータ数の割合の変化の微分で与えられる。
【0011】
本発明のプログラムは、本発明の埋設管更新時期予測方法をプロセッサに実行させる。
本発明のコンピュータ読み取り可能な記録媒体には、本発明のプログラムが記録されている。
【発明の効果】
【0012】
本発明の埋設管更新時期予測装置、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体によれば、埋設管の更新時期をより正確に予測することができる。
【図面の簡単な説明】
【0013】
図1】実施の形態1、実施の形態4及び実施の形態5の埋設管更新時期予測装置のハードウェア構成を示す概略図である。
図2】実施の形態1の埋設管更新時期予測装置の機能的構成を説明するブロック図である。
図3】実施の形態1の埋設管の属性データのデータ構造を示す図である。
図4】実施の形態1の埋設管の第1データのデータ構造を示す図である。
図5】環境因子データベース部のデータ構造を示す図である。
図6】公称管厚データベース部のデータ構造を示す図である。
図7】管厚許容差データベース部のデータ構造を示す図である。
図8】複数の参照管の参照データのデータ構造を示す図である。
図9】複数の参照管の第2埋設期間と参照腐食深さとの間の関係を示す図である。
図10】実施の形態1の腐食深さ経時変化予測モデルの生成方法及び腐食深さ超過確率予測モデルの生成方法のフローチャートを示す図である。
図11】参照腐食深さの累積相対度数を算出する方法のフローチャートを示す図である。
図12】複数の参照管の第2埋設期間に対する複数の参照管の参照データの数の分布を表すヒストグラムを示す図である。
図13】1-P(T2)を示す図である。
図14】腐食のラグタイムの確率Q(tL)を示す図である。
図15】腐食のラグタイムの累積相対度数と参照腐食深さの累積相対度数とを示す図である。
図16】腐食のラグタイムのデータテーブルのデータ構造を示す図である。
図17】修正参照データ(複数の参照管の修正埋設期間と参照腐食深さとの間の関係)を示す図である。
図18】複数の腐食深さ経時変化予測モデルを示す図である。
図19】実施の形態1の腐食深さ経時変化予測モデルを得るステップのフローチャートを示す図である。
図20】実施の形態1の腐食深さ超過確率予測モデルを得るステップのフローチャートを示す図である。
図21】実施の形態1の複数の腐食深さ超過確率予測モデルを示す図である。
図22】管更新時期予測結果のデータ構造を示す図である。
図23】管更新判断データテーブルを示す図である。
図24】管更新判断結果のデータ構造を示す図である。
図25】腐食深さ超過確率結果のデータ構造を示す図である。
図26】実施の形態1の第1の埋設管更新時期予測方法のフローチャートを示す図である。
図27】実施の形態1の埋設管の属性データを取得するステップのフローチャートを示す図である。
図28】実施の形態1の埋設管の許容腐食深さを得るステップのフローチャートを示す図である。
図29】管更新時期予測結果を算出するステップのフローチャートを示す図である。
図30】管更新時期結果を得るステップのフローチャートを示す図である。
図31】実施の形態1の第2の埋設管更新時期予測方法のフローチャートを示す図である。
図32】実施の形態1の腐食深さ超過確率結果を算出するステップのフローチャートを示す図である。
図33】実施の形態2の埋設管更新時期予測システムの機能的構成を説明するブロック図である。
図34】実施の形態2の埋設管更新時期予測装置の機能的構成を説明するブロック図である。
図35】実施の形態2のクライアント端末のハードウェア構成を示す概略図である。
図36】実施の形態3の埋設管更新時期予測システムの機能的構成を説明するブロック図である。
図37】実施の形態3の埋設管更新時期予測装置の機能的構成を説明するブロック図である。
図38】実施の形態3の属性データ作成ユニットのハードウェア構成を示す概略図である。
図39】実施の形態4の埋設管更新時期予測装置の機能的構成を説明するブロック図である。
図40】実施の形態4の埋設管の属性データのデータ構造を示す図である。
図41】実施の形態4の複数の腐食深さ超過確率予測モデル(砂系土質用)を示す図である。
図42】実施の形態4の複数の腐食深さ超過確率予測モデル(粘土系土質用)を示す図である。
図43】実施の形態4の腐食深さ超過確率予測モデルを得るステップのフローチャートを示す図である。
図44】実施の形態4の修正参照データ(複数の参照管の修正埋設期間と参照腐食深さとの間の関係)を示す図である。
図45】実施の形態4の修正参照データと基本回帰線とを示す図である。
図46】実施の形態4の修正参照データと複数のパーセンタイル回帰線とを示す図である。
図47】基本回帰線の分布の確率密度関数と累積分布関数とを示す図である。
図48】パーセンタイル回帰線の確率密度、腐食のラグタイムの確率及び確率指標を含む表を示す図である。
図49】埋設期間と、当該埋設期間において参照腐食深さがある腐食深さとなる確率とを示す表を示す図である。
図50】実施の形態4の埋設管更新時期予測方法のフローチャートを示す図である。
図51】実施の形態4の埋設管の属性データを取得するステップのフローチャートを示す図である。
図52】実施の形態4の腐食深さ超過確率結果を算出するステップのフローチャートを示す図である。
図53】実施の形態5の埋設管更新時期予測装置の機能的構成を説明するブロック図である。
図54】実施の形態5の埋設管の第1データに含まれる管路マップを示す図である。
図55】実施の形態5の埋設管の第1データに含まれるデータ構造を示す図である。
図56】環境因子マップを示す図である。
図57】地盤-環境因子対応データテーブルを示す図である。
図58】実施の形態5の埋設管の属性データのデータ構造を示す図である。
図59】算出された、管路ID毎の腐食深さ超過確率と漏水事故件数評価指標とを示す図である。
図60】漏水事故指標(漏水事故件数、漏水事故確率及び漏水事故総件数)を示す図である。
図61】漏水事故確率マップを示す図である。
図62】漏水事故総件数グラフを示す図である。
図63】実施の形態5の埋設管更新時期予測方法のフローチャートを示す図である。
図64】実施の形態5の埋設管の属性データを取得するステップのフローチャートを示す図である。
図65】実施の形態5の腐食深さ超過確率を算出するステップのフローチャートを示す図である。
【発明を実施するための形態】
【0014】
(実施の形態1)
図1を参照して、本実施の形態の埋設管更新時期予測装置のハードウェア構成を説明する。
【0015】
埋設管更新時期予測装置1は、主に、プログラムを実行するプロセッサ2(例えば、CPU(Central Processing Unit))と、ROM(Read Only Memory)3と、RAM(Random Access Memory)4と、ハードディスク5と、通信部6と、可搬型記憶媒体用ドライブ7と、入力部8aと、モニタ8bとを備え、これらは互いにバス9によって接続されている。埋設管更新時期予測装置1は、例えば、パーソナルコンピュータ(PC)のようなコンピュータである。本明細書では、プログラムは、プロセッサ2により直接実行可能なプログラムだけでなく、ソースプログラム形式のプログラム、圧縮処理されたプログラムまたは暗号化されたプログラム等を含む。
【0016】
RAM4は、プロセッサ2によるプログラムの実行により生成されたデータ、又は入力部8aを介して入力されたデータを揮発的に格納する。ハードディスク5は、これらデータを不揮発的に格納する。通信部6は、例えば、有線LAN(Local Area Network)、無線LANまたはBluetooth(登録商標)インターフェイス等である。可搬型記憶媒体用ドライブ7は、可搬型記憶媒体7mから情報を読み取り、可搬型記憶媒体7mに情報を書き込む。可搬型記憶媒体7mは、例えば、CD-ROM、DVD-ROM、FD(FlexibleDisk)またはUSB(Universal Serial Bus)メモリのような不揮発性の記録媒体である。入力部8aは、例えば、マウス、キーボードまたはタッチパネルを含む。モニタ8bは、例えば、液晶表示装置である。
【0017】
埋設管更新時期予測装置1における処理は、プロセッサ2により実行されるソフトウェアによって実現される。このソフトウェアは、ROM3またはハードディスク5に予め格納されていてもよい。このソフトウェアは、可搬型記憶媒体7mその他のコンピュータ読み取り可能な不揮発性のデータ記録媒体に格納されて、プログラム製品として流通してもよい。このソフトウェアは、インターネットその他のネットワークに接続されている情報提供事業者によってダウンロード可能なプログラム製品として提供されてもよい。このようなソフトウェアは、可搬型記憶媒体用ドライブ7によって可搬型記憶媒体7mから読み取られて、または、通信部6を介してダウンロードされて、ハードディスク5に格納されてもよい。そのソフトウェアは、プロセッサ2によって、可搬型記憶媒体7m、ROM3またはハードディスク5から読み出され、プロセッサ2に実行可能なプログラムの形式でRAM4に格納される。
【0018】
プロセッサ2は、プログラムを実行する。プロセッサ2がプログラムを実行することにより、埋設管更新時期予測装置1は、図2に示されるように、埋設管属性データ取得部10と、腐食深さ経時変化予測モデル選択部31と、腐食深さ超過確率予測モデル選択部32と、管更新時期予測部36と、管更新判断部37と、腐食深さ超過確率予測部38としての機能を実現する。
【0019】
図2を参照して、埋設管更新時期予測装置1の機能構成の例を説明する。埋設管更新時期予測装置1は、埋設管属性データ取得部10と、腐食深さ経時変化予測モデル選択部31と、腐食深さ超過確率予測モデル選択部32と、管更新時期予測部36と、管更新判断部37と、腐食深さ超過確率予測部38とを主に備える。埋設管更新時期予測装置1は、記憶部20をさらに備えてもよい。
【0020】
<記憶部20>
記憶部20は、図1に示される、ROM3、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも1つに対応する。図2に示されるように、記憶部20は、環境因子データベース部21と、公称管厚データベース部22と、管厚許容差データベース部23と、埋設管属性データ記憶部24と、腐食深さ経時変化予測モデル記憶部25と、腐食深さ超過確率予測モデル記憶部26と、管更新判断基準記憶部27と、腐食のラグタイム記憶部28とを含む。
【0021】
<埋設管属性データ取得部10>
埋設管は、例えば、水道管である。埋設管は、土中に埋設されている。埋設管は、例えば、鋳鉄管またはダクタイル管である。埋設管属性データ取得部10は、埋設管の属性データ16(図3を参照)を取得する。埋設管の属性データ16は、例えば、埋設管の管路番号、第1環境因子、第1埋設期間T1及び許容腐食深さを含む。第1環境因子は、埋設管が埋設されている環境を規定する因子である。第1環境因子は、土質及び土壌比抵抗を含む。第1埋設期間T1は、埋設管が埋設されている期間である。許容腐食深さは、埋設管に必要最低限要求される安全性を考慮して規定される腐食深さである。
【0022】
埋設管属性データ取得部10は、例えば、顧客から提供される埋設管の第1データ17(図4を参照)から、埋設管の属性データ16を得る。図2に示されるように、埋設管属性データ取得部10は、例えば、埋設管データ受付部11と、最小許容管厚算出部12と、許容腐食深さ算出部13と、属性データ作成部14とを含む。
【0023】
埋設管データ受付部11は、顧客から提供される埋設管の第1データ17を受け付ける。埋設管の第1データ17は、例えば、図4に示されるように、埋設管の管路番号、埋設場所、布設(埋設)年、呼び径、接合形式、管厚の種類、土被り、静水圧及び水撃圧を含む。接合形式として、A形、K形、T形またはNS形等を例示することができる。管厚の種類として、1種、2種または3種等を例示することができる。埋設管の第1データ17は、例えば、顧客から提供される可搬型記憶媒体7mに格納されてもよい。埋設管の第1データ17は、例えば、予めハードディスク5に格納されてもよい。
【0024】
埋設管属性データ取得部10は、環境因子データベース部21を参照して、埋設管の第1データ17に含まれる埋設場所から、埋設管の第1環境因子を得る。環境因子データベース部21には、例えば、図5に示されるように、場所と環境因子とが対応づけられたデータテーブル41が記憶されている。
【0025】
埋設管属性データ取得部10は、記憶部20に記憶されている現在年(埋設管の更新時期の予測を実行する年)と第1データ17に含まれる埋設管の布設年との間の差を、第1埋設期間T1として算出する。
【0026】
埋設管属性データ取得部10は、公称管厚データベース部22を参照して、埋設管の第1データ17に含まれる埋設管の布設年、呼び径、接合形式及び管厚の種類から、埋設管の公称管厚を得る。公称管厚データベース部22には、例えば、図6に示されるように、管の布設年、呼び径、接合形式、管厚の種類及び公称管厚が対応づけられたデータテーブル42が記憶されている。埋設管の公称管厚は、埋設管の規格管厚である。管の公称管厚は、例えば、埋設管の第1データ17に含まれる埋設管の土被り、静水圧及び水撃圧並びに2.0倍の安全率で算出された計算管厚と、マージン厚さ(腐食しろ)と、管厚許容差との和によって与えられる。安全率は、入力部8aを用いて指定されてもよいし、記憶部20に予め格納されていてもよい。
【0027】
埋設管属性データ取得部10は、管厚許容差データベース部23を参照して、埋設管の管厚許容差を得る。第一の例では、管厚許容差データベース部23には、図7に示されるように、管の公称管厚と管厚許容差とが対応づけられたデータテーブル43が記憶されている。埋設管属性データ取得部10は、埋設管の公称管厚(図6を参照)から、埋設管の管厚許容差を得る。第二の例では、管厚許容差データベース部23には、管厚の種類と管厚許容差とが対応づけられたデータテーブルが記憶されている。埋設管属性データ取得部10は、埋設管の管厚の種類(図6を参照)から、埋設管の管厚許容差を得る。第三の例では、管厚許容差データベース部23には、呼び径と管厚許容差とが対応づけられたデータテーブルが記憶されている。埋設管属性データ取得部10は、埋設管の呼び径(図6を参照)から、埋設管の管厚許容差を得る。
【0028】
最小許容管厚算出部12は、埋設管の第1データ17から、埋設管の最小許容管厚を算出する。最小許容管厚は、埋設管に必要最低限要求される安全性を担保するために埋設管に要求される最小限度の厚さである。最小許容管厚は、例えば、埋設管の第1データ17に含まれる埋設管の土被り、静水圧及び水撃圧並びに1.0倍の安全率で算出された計算管厚によって与えられる。
【0029】
許容腐食深さ算出部13は、埋設管の公称管厚、管厚許容差及び最小許容管厚から、埋設管の許容腐食深さを算出する。具体的には、埋設管の公称管厚から、管厚許容差及び最小許容管厚を差し引くことによって、埋設管の許容腐食深さが算出される。
【0030】
属性データ作成部14は、埋設管の管路番号、埋設管の第1環境因子、第1埋設期間T1及び許容腐食深さが対応づけられている埋設管の属性データ16(図3を参照)を作成する。埋設管属性データ取得部10は、埋設管の属性データ16を埋設管属性データ記憶部24に出力する。埋設管の属性データ16は、埋設管属性データ記憶部24に記憶される。
【0031】
なお、埋設管の第1データ17が埋設管の属性データ16を含む場合には、埋設管属性データ取得部10は、埋設管の属性データ16を含む埋設管の第1データ17を顧客から受け付ける。この場合には、最小許容管厚算出部12、許容腐食深さ算出部13、属性データ作成部14、環境因子データベース部21、公称管厚データベース部22及び管厚許容差データベース部23は、省略され得る。
【0032】
<複数の腐食深さ経時変化予測モデル>
複数の腐食深さ経時変化予測モデル(図18を参照)は、腐食深さ経時変化予測モデル記憶部25(図2を参照)に記憶されている。複数の腐食深さ経時変化予測モデルは、複数の参照管の参照データ18(図8を参照)から生成される。
【0033】
複数の場所で複数の参照管を試掘して、図8に示される複数の参照管の参照データ18(複数の参照管の調査データ)が得られる。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。第2環境因子は、複数の参照管が埋設されている環境を規定する因子である。第2環境因子は、土質と土壌比抵抗とを含む。第2埋設期間T2は、複数の参照管が埋設されている期間である。参照腐食深さは、複数の参照管の腐食深さである。
【0034】
本実施の形態では、複数の参照管の参照データ18は、日本全国の5490地点における複数の参照管の調査データを含む。複数の参照管の参照データ18は、顧客から提供されてもよいし、顧客から指定された地域を、埋設管更新時期予測装置1のユーザが調査することによって得られてもよい。複数の参照管の参照データ18は、可搬型記憶媒体7m(図1)によって、または、インターネットのような通信ネットワークを通じて提供されてもよい。複数の参照管の参照データ18は、ハードディスク5(図1)に格納されてもよい。
【0035】
複数の腐食深さ経時変化予測モデルは、第2環境因子毎に生成される。1500Ω・cm以上の土壌比抵抗を有する砂系(以下、単に「砂系」という)土質における腐食深さと、1500Ω・cm以上の土壌比抵抗を有するシルト系(以下、単に「シルト系」という)土質における腐食深さと、1500Ω・cm以上の土壌比抵抗を有する粘土系(以下、単に「粘土系」という)土質における腐食深さと、1500Ω・cm未満の土壌比抵抗を有する土質(以下、「低比抵抗系土質」ということがある)における腐食深さとの間には、統計的に有意な差がある。また、これら4つの第2環境因子を有する複数の参照管の参照データ18の数は、日本全国から収集された複数の参照管の参照データ18の総数の82%を占める。
【0036】
そこで、複数の腐食深さ経時変化予測モデルは、第2環境因子毎に生成される。例えば、これら4つの第2環境因子毎に、複数の腐食深さ経時変化予測モデルが生成される。すなわち、複数の腐食深さ経時変化予測モデルは、砂系土質用の腐食深さ経時変化予測モデルと、シルト系土質用の腐食深さ経時変化予測モデルと、粘土系土質用の腐食深さ経時変化予測モデルと、1500Ω・cm未満の土壌比抵抗を有する低比抵抗系土質用の腐食深さ経時変化予測モデルとを含む。
【0037】
複数の参照管の参照データ18から、図9に示される、砂系土質に埋設されている複数の参照管の参照データ18が得られる。図9から、砂系土質に埋設されている複数の参照管の参照データ18は、多数の0mmの参照腐食深さのデータを含み、かつ、データのばらつきが大きいことが分かる。そのため、参照データ18をそのまま用いて、埋設管の更新時期を正確に予測可能な予測モデルを構築することは困難である。
【0038】
本発明者は、複数の参照管の参照データ18が、多数の0mmの参照腐食深さのデータを含み、かつ、データのばらつきが大きい理由は、管の外面に形成されている塗装膜にあると考えた。腐食が塗装膜を貫通した後にはじめて、管の腐食が始まる。複数の参照管の参照データ18が多数の0mmの参照腐食深さのデータを含むのは、管を埋設してから管が腐食し始めるまでの時間(以下、「腐食のラグタイムtL」という)があるためであると考えられる。そこで、本発明者は、統計的手法によって見積もられた腐食のラグタイムtLに基づいて修正された複数の参照管の参照データ18(以下「修正参照データ」という)に基づいて、埋設管の更新時期をより正確に予測することができる予測モデルを構築することを考えた。
【0039】
複数の参照管の参照データ18から複数の腐食深さ経時変化予測モデル(図18を参照)を生成する方法(すなわち、埋設管更新時期予測装置1の製造方法)を以下説明する。4つの第2環境因子のうち、砂系土質用の腐食深さ経時変化予測モデルを例に挙げて説明する。他の土質用の腐食深さ経時変化予測モデルも、砂系土質用の腐食深さ経時変化予測モデルと同様に生成される。
【0040】
図10を参照して、プロセッサ2は、記憶部20に記憶されている複数の参照管の参照データ18から、砂系土質に埋設されている複数の参照管の参照データ18を抽出する(S1)。
【0041】
プロセッサ2は、ステップS1において抽出された砂系土質に関する複数の参照管の参照データ18について、第2埋設期間T2毎に、0mmより大きい参照腐食深さのデータ数の割合1-P(T2)(図13を参照)を算出する(S2)。P(T2)は、第2埋設期間T2毎の、0mmの参照腐食深さのデータ数の割合である。
【0042】
具体的には、プロセッサ2は、図12に示される、第2埋設期間T2毎の総データ数nall(T2)と、第2埋設期間T2毎の0mmの参照腐食深さのデータ数n0(T2)とをカウントする。プロセッサ2は、第2埋設期間T2毎の総データ数nall(T2)に対する、第2埋設期間T2毎の0mmの参照腐食深さを有するデータ数n0(T2)の割合P(T2)を算出する。P(T2)は、n0(T2)/nall(T2)によって与えられる。プロセッサ2は、1-P(T2)を算出する。1-P(T2)は、第2埋設期間T2における、0mmより大きい腐食深さを有する参照管の割合である。
【0043】
プロセッサ2は、1-P(T2)を非線形回帰する(S3)。1-P(T2)は、上記のとおり割合(確率)であり、かつ、図13に示されるようにT2が増加するにつれてゼロから1に非線形的に漸近している。そのため、1-P(T2)は、割合(確率)を非線形的に回帰する非線形回帰モデルを用いて回帰される。このような非線形回帰モデルとして、例えば、指数分布モデルまたは分数関数モデルなどがある。指数分布モデルの一例として、式(1)で示される指数分布モデルがある。αは、1-P(T2)に応じて定められる係数である。分数関数モデルの一例として、式(2)で示される一次分数関数モデルがある。g及びhは、1-P(T2)に応じて定められる係数である。本実施の形態では、プロセッサ2は、1-P(T2)を、最小二乗法などを用いて、以下の式(1)で示される指数分布モデルで非線形回帰して、係数αを算出する。
【0044】
1-P(T2)=1-1×exp(-αT2) (1)
1-P(T2)=gT2/(1+hT2) (2)
1-P(T2)の変化率、すなわち1-P(T2)の微分値は、砂系土質に埋設されている全ての参照管のうち、第2埋設期間T2において腐食し始める参照管の割合である。第2埋設期間T2において腐食し始める参照管の割合は、砂系土質に埋設されている全ての参照管のうち、腐食のラグタイムtLが第2埋設期間T2である参照管の割合である。言い換えると、1-P(T2)の微分値は、砂系土質における腐食のラグタイムの確率Q(T2)である。砂系土質における腐食のラグタイムの確率Q(T2)は、砂系土質に埋設されている全ての参照管が有する全ての腐食のラグタイムtLのうち、腐食のラグタイムtLが第2埋設期間T2である確率である。
【0045】
そこで、プロセッサ2は、腐食のラグタイムの確率Q(tL)(図14を参照)を算出する(S4)。具体的には、プロセッサ2は、非線形回帰された1-P(T2)の近似曲線の微分曲線を算出する。全ての腐食のラグタイムtLについての腐食のラグタイムの確率Q(tL)の和、すなわち、図14に示される腐食のラグタイムの確率Q(tL)の曲線とQ=0の直線とで挟まれる領域の面積は、1に等しい。
【0046】
プロセッサ2は、腐食のラグタイムの確率Q(tL)から、腐食のラグタイムtLの累積相対度数(図15を参照)を算出する(S5)。n年の腐食のラグタイムtLの累積相対度数は、腐食のラグタイムtLがn年以上である腐食のラグタイムtLの相対度数の累積和であり、腐食のラグタイムtLがn年以上である腐食のラグタイムの確率Q(tL)の和によって与えられる。プロセッサ2は、腐食のラグタイムtLがn年以上である腐食のラグタイムの確率Q(tL)の和を、腐食のラグタイムtL=n年の累積相対度数として算出する。プロセッサ2は、腐食のラグタイムtLの累積相対度数を、腐食のラグタイム記憶部28に保存する。
【0047】
プロセッサ2は、ステップS1において抽出された砂系土質に関する複数の参照管の参照データ18から、第1所定範囲の第2埋設期間T2毎に、参照腐食深さの累積相対度数(図15を参照)を算出する(S6)。参照腐食深さの累積相対度数は、第2所定範囲の参照腐食深さ毎に算出される。第2所定範囲の参照腐食深さの累積相対度数は、第2所定範囲以下の参照腐食深さの相対度数の累積和である。
【0048】
具体的には、図11に示されるように、プロセッサ2は、ステップS1で抽出された砂系土質に関する複数の参照管の参照データ18を、第1所定範囲の第2埋設期間T2毎に仕分けて、複数のデータ群を得る(S6a)。プロセッサ2は、例えば、砂系土質に関する複数の参照管の参照データ18を、5年の第2埋設期間T2毎に仕分けて、複数のデータ群を得る。複数のデータ群は、例えば、15年以上20年未満の第2埋設期間T2を有するデータ群を含む。
【0049】
プロセッサ2は、複数のデータ群の一つについて、第2所定範囲の参照腐食深さ毎に、参照腐食深さの累積相対度数を算出する(S6b)。第2所定範囲の参照腐食深さの累積相対度数は、複数のデータ群の一つのうち、第2所定範囲以下の参照腐食深さを有するデータ数の割合である。プロセッサ2は、複数のデータ群の一つのうち、第2所定範囲以下の参照腐食深さを有するデータ数の割合を、第2所定範囲の参照腐食深さの累積相対度数として算出する。
【0050】
プロセッサ2は、例えば、図15に示されるように、15年以上20年未満の第2埋設期間T2を有するデータ群について、0.5mmの参照腐食深さ毎に、参照腐食深さの累積相対度数を算出する。例えば、15年以上20年未満の第2埋設期間T2を有するデータ群における、1.0mm以上1.5mm未満の参照腐食深さの累積相対度数は、当該データ群のうち、0mm以上1.5mm未満の参照腐食深さを有するデータの数の割合である。すなわち、15年以上20年未満の第2埋設期間T2を有するデータ群における、1.0mm以上1.5mm未満の参照腐食深さの累積相対度数は、当該データ群の総データ数に対する、当該データ群において0mm以上0.5mm未満の参照腐食深さを有するデータの数と0.5mm以上1.0mm未満の参照腐食深さを有するデータの数と1.0mm以上1.5mm未満の参照腐食深さを有するデータの数との和の割合として算出される。
【0051】
プロセッサ2は、ステップ6bを、全ての複数のデータ群について行う(S6c)。こうして、砂系土質に関して、第1所定範囲の第2埋設期間T2毎に、参照腐食深さの累積相対度数が算出される。
【0052】
一般に、腐食深さが大きい管ほど、管を埋設した後により短期間で腐食が開始し、腐食のラグライムtLがより短いと考えられる。そのため、腐食のラグタイムtLの累積相対度数と参照腐食深さの累積相対度数との間には相関があると考えられる。プロセッサ2は、砂系土質に埋設された複数の参照管の参照データ18について、腐食のラグタイムtLの累積相対度数及び参照腐食深さの累積相対度数から、第1所定範囲の第2埋設期間T2及び第2所定範囲の参照腐食深さ毎に、腐食のラグタイムtLを算出する(S7)。
【0053】
具体的には、図15の細点線矢印に示されるように、プロセッサ2は、腐食のラグタイムtLの累積相対度数が、第1所定範囲の第2埋設期間T2(例えば、15年以上20年未満)における第2所定範囲の参照腐食深さ(例えば、0.0mm以上0.5mm未満の腐食深さ)の累積相対度数に等しくなる腐食のラグライムtL(例えば、17.5年)を、第1所定範囲の第2埋設期間T2(例えば、15年以上20年未満)における第2所定範囲の参照腐食深さ(例えば、0.0mm以上0.5mm未満の腐食深さ)に対応する腐食のラグライムtL(例えば、17.5年)として得る。
【0054】
プロセッサ2は、第2環境因子、第2埋設期間T2、参照腐食深さ及び腐食のラグタイムtLを互いに関連づけて、図16に示される腐食のラグタイムtLのデータテーブル45を得る。腐食のラグタイムtLのデータテーブル45は、第2環境因子、第2埋設期間T2、参照腐食深さ及び腐食のラグタイムtLを含む。プロセッサ2は、腐食のラグタイムtLのデータテーブル45を腐食のラグタイム記憶部28に出力する。腐食のラグタイムtLのデータテーブル45は、腐食のラグタイム記憶部28に記憶される。
【0055】
プロセッサ2は、砂系土質に埋設された複数の参照管の修正参照データ(図17を参照)を得る(S8)。修正参照データは、第2環境因子、修正埋設期間及び参照腐食深さを含む。具体的には、プロセッサ2は、腐食のラグタイム記憶部28に記憶されている腐食のラグタイムtLのデータテーブル45から、第2環境因子、第2埋設期間T2、参照腐食深さ及び腐食のラグタイムtLを読み出す。プロセッサ2は、第2埋設期間T2から、第2環境因子、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtL図16を参照)を差し引くことによって、修正埋設期間を算出する。こうして、複数の参照管の修正参照データが得られる。
【0056】
図17に示される修正参照データのグラフは、図9に示される参照データ18のグラフの各点を、当該各点に対応する腐食のラグタイムtL分左方向に移動させたものである。修正参照データ(図17を参照)は、参照データ18(図9を参照)よりも、0mmの参照腐食深さのデータ数が減少し、かつ、データのばらつきが減少していることが分かる。
【0057】
プロセッサ2は、修正参照データ(図17を参照)、及び、腐食のラグタイム記憶部28に記憶されている腐食のラグタイムtLの累積相対度数(図15を参照)から、砂系土質用の腐食深さ経時変化予測モデル(図18を参照)を得る(S9)。
【0058】
修正埋設期間は第2埋設期間T2が腐食のラグタイムtL分修正されたものであるため、腐食深さは修正埋設期間に対して線形に増加すると推定される。そのため、プロセッサ2は、図17に示される修正埋設期間と参照腐食深さとの間の関係を線形回帰することによって、より高い精度を有する砂系土質用の腐食深さ経時変化予測モデルを得ることができる。砂系土質用の腐食深さ経時変化予測モデルは、以下の式(3)によって与えられる。
【0059】
y=a(t-tLC) (ただし、0≦t<tLCでは、y=0) (3)
yは管の腐食深さを、aは係数を、tは管の埋設期間を、tLCは第2環境因子(例えば、砂系土質)における腐食のラグタイムの中央値を表す。
【0060】
具体的には、図19に示されるように、プロセッサ2は、修正参照データ(図17を参照)を、最小二乗法などを用いて線形回帰することによって、係数aを算出する(S9a)。係数aは、図17に示される近似直線の傾きに等しい。
【0061】
既に述べたように、修正埋設期間は、第2埋設期間T2が腐食のラグタイムtL分修正されたものである。そのため、管の実際の埋設期間tと管の腐食深さyとの間の関係を規定する砂系土質用の腐食深さ経時変化予測モデルを得るために、修正参照データの線形関係を、腐食のラグタイムtL分補正する必要がある。プロセッサ2は、例えば、修正参照データの線形関係を、腐食のラグタイムの中央値tLC分補正して、腐食深さ経時変化予測モデルを得る。
【0062】
図19に示されるように、プロセッサ2は、腐食のラグタイム記憶部28に記憶されている腐食のラグタイムtLの累積相対度数(図15を参照)から、腐食のラグタイムの中央値tLCを算出する(S9b)。具体的には、プロセッサ2は、図15の一点鎖線に示されるように、腐食のラグタイムtLの累積相対度数(図15)が0.5となる腐食のラグタイムtLの値を、腐食のラグタイムの中央値tLC(例えば15.5年)として算出する。プロセッサ2は、腐食のラグタイムの中央値tLCを、腐食のラグタイム記憶部28に保存する。
【0063】
図19に示されるように、プロセッサ2は、図17に示される修正参照データの線形関係を、腐食のラグタイムの中央値tLC分補正する(S9c)。こうして、プロセッサ2は、図18に示される、砂系土質用の腐食深さ経時変化予測モデルを得る。
【0064】
プロセッサ2は、同様の演算処理を行って、シルト系土質に埋設されている複数の参照管の参照データ18から、図18に示される、シルト系土質用の腐食深さ経時変化予測モデルを得る。プロセッサ2は、同様の演算処理を行って、粘土系土質に埋設されている複数の参照管の参照データ18から、図18に示される、粘土系土質用の腐食深さ経時変化予測モデルを得る。プロセッサ2は、同様の演算処理を行って、1500Ω・cm未満の土壌比抵抗を有する土質に埋設されている複数の参照管の参照データ18から、1500Ω・cm未満の土壌比抵抗を有する土質用の腐食深さ経時変化予測モデル(図示せず)を得る。
【0065】
一般に、砂系土質、シルト系土質及び粘土系土質のうち、粘土系土質が最も高い腐食性を有し、砂系土質が最も低い腐食性を有する。そして、腐食性の高い土質ほど、管の腐食の進展速度は大きく、かつ、管の腐食の開始時期は早いと考えられる。そのため、腐食性の高い土質ほど、係数aが増加し、かつ、腐食のラグタイムの中央値tLCが減少すると予想される。図18に示される、砂系土質用の腐食深さ経時変化予測モデルと、シルト系土質用の腐食深さ経時変化予測モデルと、粘土系土質用の腐食深さ経時変化予測モデルとは、この予想に合致している。本実施の形態で得られた、第2環境因子毎の複数の腐食深さ経時変化予測モデルは、より高い信頼性を有していると考えられる。
【0066】
プロセッサ2は、複数の腐食深さ経時変化予測モデル(例えば、砂系土質用の腐食深さ経時変化予測モデル、シルト系土質用の腐食深さ経時変化予測モデル、粘土系土質用の腐食深さ経時変化予測モデル、及び、1500Ω・cm未満の土壌比抵抗を有する土質用の腐食深さ経時変化予測モデル)を、腐食深さ経時変化予測モデル記憶部25に保存する。
【0067】
<複数の腐食深さ超過確率予測モデル>
複数の腐食深さ超過確率予測モデルは、腐食深さ超過確率予測モデル記憶部26(図2を参照)に記憶されている。複数の腐食深さ超過確率予測モデルは、複数の参照管の参照データ18(図8を参照)から生成される。腐食深さ超過確率は、将来期間において、管の腐食深さが許容腐食深さ(図3を参照)を超過する確率である。
【0068】
複数の腐食深さ超過確率予測モデルは、第2環境因子毎に生成される。例えば、既に述べた4つの第2環境因子毎に、複数の腐食深さ超過確率予測モデルが生成される。すなわち、複数の腐食深さ超過確率予測モデルは、砂系土質用の腐食深さ超過確率予測モデルと、シルト系土質用の腐食深さ超過確率予測モデルと、粘土系土質用の腐食深さ超過確率予測モデルと、1500Ω・cm未満の土壌比抵抗を有する土質用の腐食深さ超過確率予測モデルとを含む。複数の腐食深さ超過確率予測モデルは、第2環境因子及び所定範囲の修正埋設期間毎に生成されてもよい。
【0069】
複数の参照管の参照データ18から複数の腐食深さ超過確率予測モデル(図21を参照)を生成する方法(すなわち、埋設管更新時期予測装置1の製造方法)を以下説明する。4つの第2環境因子のうち、砂系土質用の腐食深さ超過確率予測モデルを例に挙げて説明する。他の土質用の腐食深さ超過確率予測モデルも、砂系土質用の腐食深さ超過確率予測モデルと同様に生成される。
【0070】
図10に示されるように、複数の腐食深さ超過確率予測モデルの生成方法は、複数の腐食深さ経時変化予測モデルの生成方法におけるステップS1からステップS8を備えている。こうして、修正参照データ(図17を参照)が得られる。
【0071】
続いて、複数の腐食深さ超過確率予測モデルの生成方法では、プロセッサ2は、修正参照データ(図17を参照)から、砂系土質用の腐食深さ超過確率予測モデルを得る(S9p)。
【0072】
具体的には、図20に示されるように、プロセッサ2は、修正参照データ(図17を参照)を、所定範囲の修正埋設期間毎に仕分けて、複数のデータ群を得る(S9q)。プロセッサ2は、例えば、砂系土質に関する修正参照データを、10年の修正埋設期間毎に仕分けて、複数のデータ群を得る。複数のデータ群は、例えば、40年以上50年未満の修正埋設期間を有するデータ群を含む。
【0073】
プロセッサ2は、複数のデータ群の一つについて、参照腐食深さ超過確率を算出する(S9r)。参照腐食深さ超過確率は、所定範囲の修正埋設期間において、参照管の参照腐食深さが所定の腐食深さを超える確率を意味する。具体的には、プロセッサ2は、複数のデータ群の一つ(例えば、40年以上50年未満の修正埋設期間を有するデータ群)に含まれる修正埋設期間と参照腐食深さとの組のデータを、参照腐食深さの大きい順に並べる。プロセッサ2は、このデータ群のうち所定の腐食深さ(例えば、0mm、0.5mm、1.0mm、1.5mm、2.0mm、2.5mm、3.0mm、3.5mm、4.0mm、4.5mm、5.0mm、5.5mm、6.0mm)を超えるデータ数の割合を、当該所定の腐食深さにおける参照腐食深さ超過確率として算出する。
【0074】
プロセッサ2は、ステップS9rで得られた参照腐食深さと参照腐食深さ超過確率との間の関係(図21を参照)を非線形回帰して、複数のデータ群の一つについて、砂系土質用の腐食深さ超過確率予測モデルを得る(S9s)。上記のとおり、参照腐食深さ超過確率は、所定範囲の修正埋設期間において参照管の参照腐食深さが所定の腐食深さを超える第1の事象及び所定範囲の修正埋設期間において参照管の参照腐食深さが所定の腐食深さを超えない第2の事象のうち、第1の事象が発生する確率である。そのため、参照腐食深さ超過確率は、二項分布の累積分布関数で非線形回帰されてもよい。一例として、プロセッサ2は、ステップS9rで得られた参照腐食深さと参照腐食深さ超過確率との間の関係を、二項分布の累積分布関数の一つである以下の式(4)で非線形回帰して、係数b,cを算出する。
【0075】
R=100×exp(b+cx)/(1+exp(b+cx)) (4)
Rは腐食深さ超過確率(%)を、b,cは係数を、xは腐食深さを表す。
【0076】
プロセッサ2は、以上のステップ9r及びステップ9sを、全ての複数のデータ群について行う(S9t)。例えば、プロセッサ2は、10年以上20年未満の修正埋設期間を有するデータ群と、20年以上30年未満の修正埋設期間を有するデータ群と、30年以上40年未満の修正埋設期間を有するデータ群とに対して、以上のステップ9r及びステップ9sを行う。こうして、図21に示される、所定範囲の修正埋設期間毎に、砂系土質用の腐食深さ超過確率予測モデルが得られる。
【0077】
プロセッサ2は、複数の腐食深さ超過確率予測モデル(例えば、砂系土質用の腐食深さ超過確率予測モデル、シルト系土質用の腐食深さ超過確率予測モデル、粘土系土質用の腐食深さ超過確率予測モデル、及び、1500Ω・cm未満の土壌比抵抗を有する土質用の腐食深さ超過確率予測モデル)を、腐食深さ超過確率予測モデル記憶部26に保存する。
【0078】
<腐食深さ経時変化予測モデル選択部31>
図2に示される腐食深さ経時変化予測モデル選択部31は、複数の参照管の第2環境因子毎に得られた複数の腐食深さ経時変化予測モデルから、第1環境因子用の腐食深さ経時変化予測モデルを選択する。
【0079】
具体的には、腐食深さ経時変化予測モデル選択部31は、埋設管属性データ記憶部24から、埋設管の第1環境因子(図3を参照)を読み出す。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得る場合、腐食深さ経時変化予測モデル選択部31は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16(図3を参照)を参照して、管路番号ABC-1に対応する埋設管の第1環境因子(1500Ω・cm以上の土壌比抵抗を有する砂系土質)を読み出す。
【0080】
続いて、腐食深さ経時変化予測モデル選択部31は、腐食深さ経時変化予測モデル記憶部25に記憶されている複数の腐食深さ経時変化予測モデルから、第1環境因子用の腐食深さ経時変化予測モデルを選択する。例えば、管路番号ABC-1の埋設管の管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得る場合、腐食深さ経時変化予測モデル選択部31は、腐食深さ経時変化予測モデル記憶部25に記憶されている複数の腐食深さ経時変化予測モデルから、砂系土質用の腐食深さ経時変化予測モデル(図18を参照)を選択する。
【0081】
<腐食深さ超過確率予測モデル選択部32>
図2に示される腐食深さ超過確率予測モデル選択部32は、複数の参照管の第2環境因子毎に得られた複数の腐食深さ超過確率予測モデルから、埋設管の第1環境因子用の腐食深さ超過確率予測モデルを選択する。
【0082】
具体的には、腐食深さ超過確率予測モデル選択部32は、埋設管属性データ記憶部24から、埋設管の第1環境因子(図3を参照)を読み出す。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測モデル選択部32は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16(図3を参照)を参照して、管路番号ABC-1に対応する埋設管の第1環境因子(1500Ω・cm以上の土壌比抵抗を有する砂系土質)を読み出す。
【0083】
続いて、腐食深さ超過確率予測モデル選択部32は、腐食深さ超過確率予測モデル記憶部26に記憶されている複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択する。例えば、管路番号ABC-1の埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測モデル選択部32は、腐食深さ超過確率予測モデル記憶部26に記憶されている複数の腐食深さ超過確率予測モデルから、砂系土質用の腐食深さ超過確率予測モデル(図21を参照)を選択する。
【0084】
<管更新時期予測部36>
図2に示される管更新時期予測部36は、腐食深さ経時変化予測モデル選択部31で選択された腐食深さ経時変化予測モデルと埋設管の第1埋設期間T1及び許容腐食深さとから、埋設管の腐食深さが許容腐食深さ(図3を参照)に到達する許容腐食深さ到達時期ΔT(図18を参照)を算出する。
【0085】
具体的には、管更新時期予測部36は、埋設管属性データ記憶部24から、管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得るべき埋設管の管路番号、許容腐食深さ及び第1埋設期間T1を読み出す。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50または管更新判断結果52を得る場合、管更新時期予測部36は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16(図3を参照)を参照して、埋設管の管路番号(例えば、ABC-1)、許容腐食深さ(例えば、6.0mm)及び第1埋設期間T1(例えば、32年)を読み出す。
【0086】
続いて、管更新時期予測部36は、腐食深さ経時変化予測モデル選択部31で選択された第1環境因子用の腐食深さ経時変化予測モデルの管の腐食深さが許容腐食深さに到達する第3埋設期間T3図18を参照)を算出する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得る場合、管更新時期予測部36は、6.0mmの許容腐食深さを、腐食深さ経時変化予測モデル選択部31で選択された砂系土質用の腐食深さ経時変化予測モデルに当てはめて、管路番号ABC-1を有する埋設管の第3埋設期間T3図18を参照)として73年を算出する。
【0087】
管更新時期予測部36は、第3埋設期間T3から第1埋設期間T1を差し引いて、許容腐食深さ到達時期ΔTを算出する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得る場合、管更新時期予測部36は、73年の第3埋設期間T3から32年の第1埋設期間T1を差し引いて、41年の許容腐食深さ到達時期ΔTを得る。
【0088】
管更新時期予測部36は、埋設管の管路番号と許容腐食深さ到達時期ΔTとが対応づけられている管更新時期予測結果50(図22を参照)を作成して、出力する。具体的には、管更新時期予測結果50は、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。管更新時期予測結果50は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。管更新時期予測結果50は、モニタ8bに表示される。
【0089】
<管更新判断部37>
図2に示される管更新判断部37は、埋設管について管更新判断結果52(図24を参照)を出力する。管更新判断結果52は、埋設管の管路番号と、管路番号に対応づけられている管更新判断内容とを含む。
【0090】
具体的には、管更新判断部37は、記憶部20から、管更新判断結果52を得るべき埋設管の管路番号と許容腐食深さ到達時期ΔTとを読み出す。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新判断結果52を得る場合、管更新判断部37は、埋設管属性データ記憶部24から埋設管の管路番号(例えば、ABC-1)を読み出すとともに、記憶部20から許容腐食深さ到達時期ΔT(例えば、41年)を読み出す。
【0091】
管更新判断部37は、管更新判断基準記憶部27から、許容腐食深さ到達時期ΔTに対応する管更新判断内容を読み出す。管更新判断基準記憶部27には、管更新判断データテーブル51(図23を参照)が記憶されている。管更新判断データテーブル51は、許容腐食深さ到達時期ΔTと、許容腐食深さ到達時期ΔTに対応づけられている管更新判断内容とを含む。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新判断結果52を得る場合、管更新判断部37は、管更新判断基準記憶部27に記憶されている管更新判断データテーブル51を参照して、41年の許容腐食深さ到達時期ΔTに対応する管更新判断内容(20年後に管を再診断)を読み出す。
【0092】
管更新判断部37は、埋設管の管路番号と管更新判断内容とが対応づけられている管更新判断結果52(図24を参照)を作成して、出力する。管更新判断結果52は、例えば、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。管更新判断結果52は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。管更新判断結果52は、モニタ8bに表示される。
【0093】
<腐食深さ超過確率予測部38>
図2に示される腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された腐食深さ超過確率予測モデルと、埋設管の第1埋設期間T1及び許容腐食深さとから、将来期間における埋設管の腐食深さ超過確率を算出する。埋設管の腐食深さ超過確率は、将来期間において、埋設管の腐食深さが許容腐食深さ(図3)を超過する確率である。
【0094】
具体的には、腐食深さ超過確率予測部38は、埋設管属性データ記憶部24から、腐食深さ超過確率を得るべき埋設管の管路番号と、第1埋設期間T1と、許容腐食深さとを読み出す。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測部38は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16を参照して、管路番号ABC-1と、管路番号ABC-1に対応する第1埋設期間T1(例えば、32年)と、管路番号ABC-1に対応する埋設管の許容腐食深さ(例えば、6.0mm)とを読み出す。
【0095】
続いて、腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された第1環境因子用の腐食深さ超過確率予測モデルと埋設管の許容腐食深さとから、所定範囲の修正埋設期間における、埋設管の腐食深さ超過確率を算出する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測部38は、管路番号ABC-1に対応する埋設管の許容腐食深さ(6.0mm)を、腐食深さ超過確率予測モデル選択部32で選択された砂系土質用の腐食深さ超過確率予測モデル(図21を参照)に当てはめることによって、40年以上50年未満の修正埋設期間において、9%の埋設管の腐食深さ超過確率を算出する。
【0096】
既に記載したとおり、修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtL分差し引かれている。算出された腐食深さ超過確率の将来期間を算出するために、算出された修正埋設期間と第2埋設期間T2との間の差を補償する必要がある。また、腐食深さ超過確率を算出する時点において、埋設管は既に第1埋設期間T1の間埋設されている。算出された腐食深さ超過確率の将来期間を算出するために、算出された修正埋設期間を第1埋設期間T1分調整する必要がある。
【0097】
そこで、腐食深さ超過確率予測部38は、腐食のラグタイム記憶部28から腐食のラグタイムの中央値tLCを読み出す。なお、腐食のラグタイムの中央値tLCが腐食のラグタイム記憶部28に記憶されていない場合には、腐食深さ超過確率予測部38は、既に述べた腐食のラグタイムの中央値tLCの算出方法と同じ方法によって、腐食のラグタイム記憶部28に記憶されている腐食のラグタイムtLの累積相対度数(図15を参照)から、腐食のラグタイムの中央値tLCを算出する。腐食深さ超過確率予測部38は、腐食深さ超過確率が算出された修正埋設期間に、腐食のラグタイムの中央値tLCを加え、さらに、埋設管の第1埋設期間T1を差し引いて、埋設管の腐食深さが埋設管の許容腐食深さを超過する将来期間を算出する。
【0098】
具体的には、腐食深さ超過確率予測部38は、40年以上50年未満の修正埋設期間(図21を参照)に、砂系土質用の腐食のラグタイムの中央値tLC(15.5年)を加え、さらに、管路番号ABC-1に対応する埋設管の第1埋設期間T1(32年)を差し引いて、23.5年以上33.5年未満の将来期間(図25)を得る。
【0099】
腐食深さ超過確率予測部38は、埋設管の管路番号と、将来期間と、腐食深さ超過確率とが対応づけられている腐食深さ超過確率結果53(図25を参照)を作成して、出力する。腐食深さ超過確率結果53は、例えば、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。腐食深さ超過確率結果53は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。腐食深さ超過確率結果53は、モニタ8bに表示される。
【0100】
<埋設管更新時期予測方法>
図26から図30を参照して、本実施の形態の埋設管更新時期予測方法を説明する。本実施の形態の埋設管更新時期予測方法は、複数の腐食深さ経時変化予測モデルを用いて管更新時期予測結果50または管更新判断結果52の少なくとも一つを得る第1の埋設管更新時期予測方法と、複数の腐食深さ超過確率予測モデルを用いて腐食深さ超過確率を得る第2の埋設管更新時期予測方法とを含む。
【0101】
<第1の埋設管更新時期予測方法>
図26を参照して、本実施の形態の第1の埋設管更新時期予測方法は、埋設管の属性データ16を取得するステップ(S10)を備える。図3に示されるように、埋設管の属性データ16は、例えば、埋設管の管路番号と、第1環境因子と、第1埋設期間T1と、許容腐食深さとを含む。
【0102】
図27を参照して、埋設管の属性データ16を取得するステップ(S10)は、例えば、埋設管の第1データ17を受け付けるステップ(S11)と、埋設管の第1環境因子を得るステップ(S12)と、埋設管の第1埋設期間T1を得るステップ(S13)と、埋設管の許容腐食深さを得るステップ(S14)と、埋設管の属性データ16を作成するステップ(S19)とを含む。
【0103】
埋設管の第1データ17を受け付けるステップ(S11)では、埋設管データ受付部11が、顧客から提供される埋設管の第1データ17(図4を参照)を受け付ける。埋設管の第1データ17は、例えば、顧客から提供される可搬型記憶媒体7mに格納されてもよい。埋設管の第1データ17は、例えば、予めハードディスク5に格納されてもよい。
【0104】
埋設管の第1環境因子を得るステップ(S12)では、埋設管属性データ取得部10が、環境因子データベース部21(図5を参照)を参照して、埋設管の第1データ17に含まれる埋設場所から、埋設管の第1環境因子を得る。
【0105】
埋設管の第1埋設期間T1を得るステップ(S13)では、埋設管属性データ取得部10は、現在年(埋設管の更新時期の予測を実行する年)と埋設管の第1データ17に含まれる布設年との間の差を算出して、第1埋設期間T1を算出する。
【0106】
図28を参照して、埋設管の許容腐食深さを得るステップ(S14)は、例えば、埋設管の公称管厚を得るステップ(S15)と、埋設管の管厚許容差を得るステップ(S16)と、埋設管の最小許容管厚を算出するステップ(S17)と、埋設管の許容腐食深さを算出するステップ(S18)とを含む。
【0107】
埋設管の公称管厚を得るステップ(S15)では、埋設管属性データ取得部10が、公称管厚データベース部22(図6を参照)を参照して、埋設管の第1データ17(図4を参照)に含まれる埋設管の布設年、呼び径、接合形式及び管厚の種類から、埋設管の公称管厚を得る。
【0108】
埋設管の管厚許容差を得るステップ(S16)では、埋設管属性データ取得部10が、管厚許容差データベース部23を参照して、埋設管の管厚許容差を得る。第一の例では、管厚許容差データベース部23には、図7に示されるように、管の公称管厚と管厚許容差とが対応づけられたデータテーブル43が記憶されておいる。埋設管属性データ取得部10は、埋設管の公称管厚から、埋設管の管厚許容差を得る。第二の例では、管厚許容差データベース部23には、管厚の種類と管厚許容差とが対応づけられたデータテーブルが記憶されている。埋設管属性データ取得部10は、埋設管の管厚の種類から、埋設管の管厚許容差を得る。第三の例では、管厚許容差データベース部23には、呼び径と管厚許容差とが対応づけられたデータテーブルが記憶されている。埋設管属性データ取得部10は、埋設管の呼び径から、埋設管の管厚許容差を得る。
【0109】
埋設管の最小許容管厚を算出するステップ(S17)では、最小許容管厚算出部12が、埋設管の第1データ17から、埋設管の最小許容管厚を算出する。最小許容管厚は、埋設管に必要最低限要求される安全性を担保するために埋設管に要求される最小限度の厚さである。
【0110】
埋設管の許容腐食深さを算出するステップ(S18)では、許容腐食深さ算出部13が、埋設管の公称管厚、管厚許容差及び最小許容管厚から、埋設管の許容腐食深さを算出する。具体的には、埋設管の公称管厚から、管厚許容差及び最小許容管厚を引くことによって、埋設管の許容腐食深さが算出される。
【0111】
図27を参照して、埋設管の属性データ16を作成するステップ(S19)では、属性データ作成部14が、埋設管の管路番号、埋設管の第1環境因子、第1埋設期間T1及び許容腐食深さが対応づけられている埋設管の属性データ16(図3を参照)を作成する。埋設管属性データ取得部10は、埋設管の属性データ16を埋設管属性データ記憶部24に出力する。埋設管の属性データ16は、埋設管属性データ記憶部24に記憶される。
【0112】
なお、埋設管の第1データ17が埋設管の属性データ16を含む場合には、埋設管の第1環境因子を得るステップ(S12)から埋設管の属性データ16を作成するステップ(S19)は省略され得る。
【0113】
図26に示されるように、本実施の形態の第1の埋設管更新時期予測方法は、腐食深さ経時変化予測モデル記憶部25に記憶されている複数の腐食深さ経時変化予測モデルから、第1環境因子用の腐食深さ経時変化予測モデルを選択するステップ(S20)を備える。
【0114】
具体的には、腐食深さ経時変化予測モデル選択部31は、埋設管属性データ記憶部24から、埋設管の第1環境因子を読み出す。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得る場合、腐食深さ経時変化予測モデル選択部31は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16を参照して、管路番号ABC-1に対応する第1環境因子を読み出す。
【0115】
それから、腐食深さ経時変化予測モデル選択部31は、腐食深さ経時変化予測モデル記憶部25に記憶されている複数の腐食深さ経時変化予測モデルから、第1環境因子用の腐食深さ経時変化予測モデルを選択する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得る場合、腐食深さ経時変化予測モデル選択部31は、腐食深さ経時変化予測モデル記憶部25に記憶されている複数の腐食深さ経時変化予測モデルから、砂系土質用の腐食深さ経時変化予測モデル(図18を参照)を選択する。
【0116】
図26に示されるように、本実施の形態の第1の埋設管更新時期予測方法は、管更新時期予測結果50を出力するステップ(S30)を備える。
【0117】
具体的には、図29に示されるように、管更新時期予測部36は、埋設管属性データ記憶部24から、管更新時期予測結果50(図22を参照)または管更新判断結果52(図24を参照)を得るべき埋設管の管路番号、許容腐食深さ及び第1埋設期間T1を読み出す(S31)。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50または管更新判断結果52を得る場合、管更新時期予測部36は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16を参照して、埋設管の管路番号(例えば、ABC-1)、許容腐食深さ(例えば、6.0mm)及び第1埋設期間T1(例えば、32年)を読み出す。
【0118】
図29に示されるように、管更新時期予測部36は、腐食深さ経時変化予測モデル選択部31で選択された第1環境因子用の腐食深さ経時変化予測モデルの管の腐食深さが許容腐食深さに到達する第3埋設期間T3図18を参照)を算出する(S32)。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50または管更新判断結果52を得る場合、6.0mmの許容腐食深さを、腐食深さ経時変化予測モデル選択部31で選択された砂系土質用の腐食深さ経時変化予測モデルに当てはめることによって、第3埋設期間T3(例えば、73年)が算出される。
【0119】
図29に示されるように、管更新時期予測部36は、埋設管の腐食深さが許容腐食深さに到達する許容腐食深さ到達時期ΔTを算出する(S33)。具体的には、管更新時期予測部36は、第3埋設期間T3から第1埋設期間T1を差し引いて、許容腐食深さ到達時期ΔTを算出する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新時期予測結果50または管更新判断結果52を得る場合、管更新時期予測部36は、73年の第3埋設期間T3から32年の第1埋設期間T1を差し引いて、41年の許容腐食深さ到達時期ΔTを得る。
【0120】
図29に示されるように、管更新時期予測部36は、埋設管の管路番号と許容腐食深さ到達時期ΔTとが対応づけられている管更新時期予測結果50(図22を参照)を作成する。管更新時期予測部36は、埋設管の管路番号と許容腐食深さ到達時期ΔTとを含む管更新時期予測結果50を出力する(S34)。管更新時期予測結果50は、例えば、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。管更新時期予測結果50は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。管更新時期予測結果50は、モニタ8bに表示される。
【0121】
図26に示されるように、本実施の形態の第1の埋設管更新時期予測方法は、管更新判断結果52を出力するステップ(S40)をさらに備えてもよい。図24に示されるように、管更新判断結果52は、埋設管の管路番号と、管路番号に対応づけられている管更新判断内容とを含む。
【0122】
具体的には、図30に示されるように、管更新判断部37は、記憶部20から、管更新判断結果52を得るべき埋設管の管路番号及び許容腐食深さ到達時期ΔTを読み出す(S41)。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新判断結果52を得る場合、管更新判断部37は、埋設管属性データ記憶部24から埋設管の管路番号(例えば、ABC-1)を読み出すとともに、記憶部20から許容腐食深さ到達時期ΔT(41年)を読み出す。
【0123】
図30に示されるように、管更新判断部37は、管更新判断基準記憶部27から、許容腐食深さ到達時期ΔTに対応する管更新判断内容を読み出す(S42)。管更新判断基準記憶部27には、管更新判断データテーブル51(図23を参照)が記憶されている。管更新判断データテーブル51は、例えば、許容腐食深さ到達時期ΔTと、許容腐食深さ到達時期ΔTに対応づけられている管更新判断内容とを含む。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の管更新判断結果52を得る場合、管更新判断部37は、管更新判断基準記憶部27に記憶されている管更新判断データテーブル51を参照して、41年の許容腐食深さ到達時期ΔTに対応する管更新判断内容(20年後に管を再診断)を読み出す。
【0124】
管更新判断部37は、埋設管の管路番号と管更新判断内容とが対応づけられている管更新判断結果52(図24を参照)を作成する。管更新判断部37は、埋設管の管路番号と管更新判断内容とを含む管更新判断結果52を出力する(S43)。管更新判断結果52は、例えば、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。管更新判断結果52は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。管更新判断結果52は、モニタ8bに表示される。
【0125】
<第2の埋設管更新時期予測方法>
図31に示されるように、本実施の形態の第2の埋設管更新時期予測方法は、埋設管の属性データ16を取得するステップ(S10)を備える。第2の埋設管更新時期予測方法におけるステップ(S10)は、図26に示される第1の埋設管更新時期予測方法におけるステップ(S10)と同じである。
【0126】
図31に示されるように、本実施の形態の第2の埋設管更新時期予測方法は、腐食深さ超過確率予測モデル記憶部26に記憶されている複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択するステップ(S50)を備える。
【0127】
具体的には、腐食深さ超過確率予測モデル選択部32は、埋設管属性データ記憶部24から、埋設管の第1環境因子を特定する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測モデル選択部32は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16を参照して、管路番号ABC-1に対応する第1環境因子を読み出す。
【0128】
それから、腐食深さ超過確率予測モデル選択部32は、腐食深さ超過確率予測モデル記憶部26に記憶されている複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択する。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測モデル選択部32は、腐食深さ超過確率予測モデル記憶部26に記憶されている複数の腐食深さ超過確率予測モデルから、砂系土質用の腐食深さ超過確率予測モデル(図21を参照)を選択する。
【0129】
図31に示されるように、本実施の形態の第2の埋設管更新時期予測方法は、腐食深さ超過確率結果53を出力するステップ(S60)を備える。腐食深さ超過確率結果53は、図25に示されるように、管路番号と、将来期間と、腐食深さ超過確率とを含む。
【0130】
具体的には、図32に示されるように、腐食深さ超過確率予測部38は、埋設管属性データ記憶部24から、腐食深さ超過確率を得るべき埋設管の管路番号、第1埋設期間T1及び許容腐食深さを読み出す(S61)。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測部38は、埋設管属性データ記憶部24に記憶されている埋設管の属性データ16を参照して、管路番号ABC-1と、管路番号ABC-1に対応する第1埋設期間T1(例えば、32年)と、管路番号ABC-1に対応する埋設管の許容腐食深さ(例えば、6.0mm)とを読み出す。
【0131】
図32に示されるように、腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された第1環境因子用の腐食深さ超過確率予測モデルと埋設管の許容腐食深さとから、所定範囲の修正埋設期間における、埋設管の腐食深さ超過確率を算出する(S62)。例えば、管路番号ABC-1(図3を参照)で特定される埋設管の腐食深さ超過確率を得る場合、腐食深さ超過確率予測部38は、管路番号ABC-1に対応する埋設管の許容腐食深さ(6.0mm)を、腐食深さ超過確率予測モデル選択部32で選択された砂系土質用の腐食深さ超過確率予測モデル(図21を参照)に当てはめることによって、40年以上50年未満の修正埋設期間において、9%の埋設管の腐食深さ超過確率を算出する。
【0132】
既に記載したとおり、修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtL分差し引かれている。算出された腐食深さ超過確率の将来期間を算出するために、算出された修正埋設期間と第2埋設期間T2との間の差を補償する必要がある。また、腐食深さ超過確率を算出する時点において、埋設管は既に第1埋設期間T1の間埋設されている。算出された腐食深さ超過確率の将来期間を算出するために、算出された修正埋設期間を第1埋設期間T1分調整する必要がある。
【0133】
そこで、腐食深さ超過確率予測部38は、腐食のラグタイム記憶部28から腐食のラグタイムの中央値tLCを読み出す。なお、腐食のラグタイムの中央値tLCが腐食のラグタイム記憶部28に記憶されていない場合には、腐食深さ超過確率予測部38は、既に述べた腐食のラグタイムの中央値tLCの算出方法と同じ方法によって、腐食のラグタイム記憶部28に記憶されている腐食のラグタイムtLの累積相対度数(図15を参照)から、腐食のラグタイムの中央値tLCを算出する。腐食深さ超過確率予測部38は、腐食深さ超過確率が算出された修正埋設期間に、腐食のラグタイムの中央値tLCを加え、さらに、埋設管の第1埋設期間T1を差し引いて、埋設管の腐食深さが埋設管の許容腐食深さを超過する将来期間を算出する(S63)。
【0134】
具体的には、腐食深さ超過確率予測部38は、40年以上50年未満の修正埋設期間(図21を参照)に、砂系土質用の腐食のラグタイムの中央値tLC(15.5年)を加え、さらに、管路番号ABC-1に対応する埋設管の第1埋設期間T1(32年)を差し引いて、23.5年以上33.5年未満の将来期間(図25)を得る。
【0135】
腐食深さ超過確率予測部38は、埋設管の管路番号と、将来期間と、腐食深さ超過確率とが対応づけられている腐食深さ超過確率結果53(図25を参照)を作成する。腐食深さ超過確率予測部38は、埋設管の管路番号と、将来期間と、腐食深さ超過確率とを含む腐食深さ超過確率結果53を出力する(S64)。腐食深さ超過確率結果53は、例えば、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。腐食深さ超過確率結果53は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。腐食深さ超過確率結果53は、モニタ8bに表示される。
【0136】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体は、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させるプログラムが記録されている。
【0137】
本実施の形態の埋設管更新時期予測装置1、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体の効果を説明する。
【0138】
本実施の形態の埋設管更新時期予測装置1は、埋設管属性データ取得部10と、管更新時期予測部36とを備える。埋設管属性データ取得部10は、埋設管の属性データ16を取得する。属性データ16は、埋設管の第1環境因子、第1埋設期間T1及び許容腐食深さを含む。管更新時期予測部36は、第1環境因子用の腐食深さ経時変化予測モデルと、第1埋設期間T1と、許容腐食深さとから、埋設管の腐食深さが許容腐食深さに達する許容腐食深さ到達時期ΔTを算出する。管更新時期予測部36は、許容腐食深さ到達時期ΔTを出力する。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。腐食深さ経時変化予測モデルは、第1環境因子における埋設管の腐食深さの経時変化を予測するモデルである。腐食深さ経時変化予測モデルは、第1環境因子と同じ第2環境因子を有する参照データ18と腐食のラグタイムtLとに基づいて生成されている。腐食のラグタイムtLは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムtLは、第1環境因子と同じ第2環境因子を有する参照データ18から第2埋設期間T2及び参照腐食深さに応じて算出されている。
【0139】
このように、埋設管更新時期予測装置1では、参照データ18と腐食のラグタイムtLとに基づいて生成されている腐食深さ経時変化予測モデルを用いて、許容腐食深さを算出している。埋設管更新時期予測装置1によれば、埋設管の更新時期をより正確に予測することができる。
【0140】
本実施の形態の埋設管更新時期予測装置1では、腐食深さ経時変化予測モデルは、上記式(3)によって与えられている。係数aは、複数の参照管の修正参照データ(図17を参照)を線形回帰することによって算出されている。修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtLを差し引くことによって算出されている。腐食のラグタイムの中央値tLCは、腐食のラグタイムtLの累積相対度数が0.5となる腐食のラグタイムtLである。管更新時期予測部36は、式(3)から腐食深さ経時変化予測モデルの管の腐食深さyが許容腐食深さに到達する管の埋設期間tを算出し、算出された管の埋設期間tから第1埋設期間T1を差し引くことによって許容腐食深さ到達時期ΔTを算出する。埋設管更新時期予測装置1によれば、埋設管の更新時期をより正確に予測することができる。
【0141】
本実施の形態の埋設管更新時期予測装置1は、管更新判断部37をさらに備える。管更新判断部37は、管更新判断基準記憶部27から、許容腐食深さに対応する管更新判断内容を読み出して、管更新判断内容を含む埋設管の管更新判断結果52を出力する。埋設管更新時期予測装置1によれば、埋設管の更新時期をより正確に予測することができる。埋設管更新時期予測装置1は、顧客が埋設管の更新計画を立案することを容易にする管更新判断結果52を、顧客に提供することができる。
【0142】
本実施の形態の埋設管更新時期予測装置1では、腐食深さ経時変化予測モデル選択部31をさらに備える。腐食深さ経時変化予測モデル選択部31は、複数の参照管の第2環境因子毎に作成された複数の腐食深さ経時変化予測モデルから、第1環境因子用の腐食深さ経時変化予測モデルを選択する。埋設管更新時期予測装置1によれば、埋設管の複数の第1環境因子に応じて、埋設管の更新時期をより正確に予測することができる。
【0143】
本実施の形態の埋設管更新時期予測装置1は、埋設管属性データ取得部10と、腐食深さ超過確率予測部38とを備える。埋設管属性データ取得部10は、埋設管の属性データ16を取得する。属性データ16は、埋設管の第1環境因子、第1埋設期間T1及び許容腐食深さを含む。腐食深さ超過確率予測部38は、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間T1と、許容腐食深さとから、将来期間において埋設管の腐食深さが許容腐食深さを超過する確率である埋設管の腐食深さ超過確率を算出する。腐食深さ超過確率予測部38は、将来期間及び埋設管の腐食深さ超過確率を出力する。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。腐食深さ超過確率予測モデルは、将来期間における埋設管の腐食深さ超過確率を予測するモデルである。腐食深さ超過確率予測モデルは、第1環境因子と同じ第2環境因子を有する参照データ18と腐食のラグタイムtLとに基づいて生成されている。腐食のラグタイムtLは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムtLは、第1環境因子と同じ第2環境因子を有する参照データ18から第2埋設期間T2及び参照腐食深さに応じて算出されている。
【0144】
このように、埋設管更新時期予測装置1では、参照データ18と腐食のラグタイムtLとに基づいて生成されている腐食深さ超過確率予測モデルを用いて、将来期間における埋設管の腐食深さ超過確率を算出している。埋設管更新時期予測装置1によれば、埋設管の更新時期をより正確に予測することができる。埋設管更新時期予測装置1によれば、顧客が埋設管の更新計画を立案することを容易にする将来期間における埋設管の腐食深さ超過確率を、顧客に提供することができる。
【0145】
本実施の形態の埋設管更新時期予測装置1では、腐食深さ超過確率予測モデルは、上記式(4)によって与えられている。係数b,cは、第1環境因子と同じ第2環境因子と所定範囲の修正埋設期間とを有する複数の参照管の腐食深さ超過確率データ(図20を参照)を、式(4)で非線形回帰することによって算出されている。複数の参照管の腐食深さ超過確率データは、複数の参照管の修正参照データ(図17を参照)から得られており、かつ、参照腐食深さと複数の参照管の腐食深さ超過確率とを含む。複数の参照管の修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtLを差し引くことによって算出されている。所定の腐食深さにおける複数の参照管の腐食深さ超過確率は、第1環境因子と同じ第2環境因子を有しかつ所定範囲の修正埋設期間内にある複数の参照管の修正参照データのうち、参照腐食深さが所定の腐食深さを超える複数の参照管の修正参照データの数の割合として算出されている。腐食深さ超過確率予測部38は、所定範囲の修正埋設期間に腐食のラグタイムの中央値tLCを加え、第1埋設期間T1を差し引くことによって、将来期間を算出する。腐食のラグタイムの中央値tLCは、腐食のラグタイムtLの累積相対度数が0.5となる腐食のラグタイムtLである。
【0146】
埋設管更新時期予測装置1によれば、埋設管の更新時期をより正確に予測することができる。埋設管更新時期予測装置1によれば、顧客が埋設管の更新計画を立案することを容易にする将来期間における埋設管の腐食深さ超過確率を、顧客に提供することができる。
【0147】
本実施の形態の埋設管更新時期予測装置1は、腐食深さ超過確率予測モデル選択部32をさらに備える。腐食深さ超過確率予測モデル選択部32は、複数の参照管の第2環境因子毎に作成された複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択する。埋設管更新時期予測装置1によれば、埋設管の複数の第1環境因子に応じて、埋設管の更新時期をより正確に予測することができる。
【0148】
本実施の形態の埋設管更新時期予測方法は、埋設管属性データ取得部10が埋設管の属性データ16を取得するステップ(S10)を備える。属性データ16は、埋設管の第1環境因子、第1埋設期間T1及び許容腐食深さを含む。本実施の形態の埋設管更新時期予測方法は、管更新時期予測部36が、第1環境因子用の腐食深さ経時変化予測モデルと、第1埋設期間T1と、許容腐食深さとから、埋設管の腐食深さが許容腐食深さに達する許容腐食深さ到達時期ΔTを算出して、許容腐食深さ到達時期ΔTを出力するステップ(S30)を備える。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。腐食深さ経時変化予測モデルは、第1環境因子における埋設管の腐食深さの経時変化を予測するモデルである。腐食深さ経時変化予測モデルは、第1環境因子と同じ第2環境因子を有する参照データ18と腐食のラグタイムtLとに基づいて生成されている。腐食のラグタイムtLは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムtLは、第1環境因子と同じ第2環境因子を有する参照データ18から第2埋設期間T2及び参照腐食深さに応じて算出されている。
【0149】
このように、本実施の形態の埋設管更新時期予測方法では、参照データ18と腐食のラグタイムとに基づいて生成されている腐食深さ経時変化予測モデルを用いて、許容腐食深さを算出している。本実施の形態の埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。
【0150】
本実施の形態の埋設管更新時期予測方法では、腐食深さ経時変化予測モデルは、上記式(3)によって与えられている。係数aは、複数の参照管の修正参照データ(図17を参照)を線形回帰することによって算出されている。修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtLを差し引くことによって算出されている。腐食のラグタイムの中央値tLCは、腐食のラグタイムtLの累積相対度数が0.5となる腐食のラグタイムtLである。許容腐食深さ到達時期を算出するステップ(S30)では、管更新時期予測部36は、式(3)から腐食深さ経時変化予測モデルの管の腐食深さyが許容腐食深さに到達する管の埋設期間tを算出し、算出された管の埋設期間tから第1埋設期間T1を差し引くことによって許容腐食深さ到達時期ΔTを算出する。本実施の形態の埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。
【0151】
本実施の形態の埋設管更新時期予測方法は、管更新判断部37が、管更新判断基準記憶部27から、許容腐食深さに対応する管更新判断内容を読み出して、管更新判断内容を含む埋設管の管更新判断結果52を出力するステップ(S40)をさらに備える。本実施の形態の埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。本実施の形態の埋設管更新時期予測方法によれば、顧客が埋設管の更新計画を立案することを容易にする管更新判断結果52を、顧客に提供することができる。
【0152】
本実施の形態の埋設管更新時期予測方法は、腐食深さ経時変化予測モデル選択部31が、複数の参照管の第2環境因子毎に作成された複数の腐食深さ経時変化予測モデルから、第1環境因子用の腐食深さ経時変化予測モデルを選択するステップ(S20)をさらに備える。本実施の形態の埋設管更新時期予測方法によれば、埋設管の複数の第1環境因子に応じて、埋設管の更新時期をより正確に予測することができる。
【0153】
本実施の形態の埋設管更新時期予測方法は、埋設管属性データ取得部10が埋設管の属性データ16を取得するステップ(S10)を備える。属性データ16は、埋設管の第1環境因子、第1埋設期間T1及び許容腐食深さを含む。本実施の形態の埋設管更新時期予測方法は、腐食深さ超過確率予測部38が、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間T1と、許容腐食深さとから、将来期間において埋設管の腐食深さが許容腐食深さを超過する確率である埋設管の腐食深さ超過確率を算出して、将来期間及び埋設管の腐食深さ超過確率を出力するステップ(S60)を備える。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。腐食深さ超過確率予測モデルは、将来期間における埋設管の腐食深さ超過確率を予測するモデルである。腐食深さ超過確率予測モデルは、第1環境因子と同じ第2環境因子を有する参照データ18と腐食のラグタイムtLとに基づいて生成されている。腐食のラグタイムtLは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食のラグタイムtLは、第1環境因子と同じ第2環境因子を有する参照データ18から第2埋設期間T2及び参照腐食深さに応じて算出されている。
【0154】
このように、本実施の形態の埋設管更新時期予測方法では、参照データ18と腐食のラグタイムtLとに基づいて生成されている腐食深さ超過確率予測モデルを用いて、将来期間における埋設管の腐食深さ超過確率を算出している。本実施の形態の埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。本実施の形態の埋設管更新時期予測方法によれば、顧客が埋設管の更新計画を立案することを容易にする将来期間における埋設管の腐食深さ超過確率を、顧客に提供することができる。
【0155】
本実施の形態の埋設管更新時期予測方法では、腐食深さ超過確率予測モデルは、上記式(4)によって与えられている。係数b,cは、第1環境因子と同じ第2環境因子と所定範囲の修正埋設期間とを有する複数の参照管の腐食深さ超過確率データを、式(4)で非線形回帰することによって算出されている。複数の参照管の腐食深さ超過確率データは、複数の参照管の修正参照データから得られており、かつ、参照腐食深さと複数の参照管の腐食深さ超過確率とを含む。複数の参照管の修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムtLを差し引くことによって算出されている。所定の腐食深さにおける複数の参照管の腐食深さ超過確率は、第1環境因子と同じ第2環境因子を有しかつ所定範囲の修正埋設期間内にある複数の参照管の修正参照データのうち、参照腐食深さが所定の腐食深さを超える複数の参照管の修正参照データの数の割合として算出されている。将来期間を出力するステップ(S60)では、腐食深さ超過確率予測部38は、所定範囲の修正埋設期間に腐食のラグタイムの中央値tLCを加え、第1埋設期間T1を差し引くことによって、将来期間を算出する。腐食のラグタイムの中央値tLCは、腐食のラグタイムtLの累積相対度数が0.5となる腐食のラグタイムtLである。
【0156】
本実施の形態の埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。本実施の形態の埋設管更新時期予測方法によれば、顧客が埋設管の更新計画を立案することを容易にする将来期間における埋設管の腐食深さ超過確率を、顧客に提供することができる。
【0157】
本実施の形態の埋設管更新時期予測方法は、腐食深さ超過確率予測モデル選択部32が、複数の参照管の第2環境因子毎に作成された複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択するステップ(S50)をさらに備える。本実施の形態の埋設管更新時期予測方法によれば、埋設管の複数の第1環境因子に応じて、埋設管の更新時期をより正確に予測することができる。
【0158】
本実施の形態の埋設管更新時期予測装置1及び埋設管更新時期予測方法では、腐食のラグタイムtLは、腐食のラグタイムtLの累積相対度数と、参照腐食深さの累積相対度数とから算出されている。腐食のラグタイムtLの累積相対度数は、腐食のラグタイムの確率Q(tL)から算出されている。腐食のラグタイムの確率Q(tL)は、第1環境因子と同じ第2環境因子を有する参照データ18における、第2埋設期間T2に対する参照腐食深さが0mmより大きい参照データ18の数の割合の変化から算出されている。そのため、本実施の形態の埋設管更新時期予測装置1及び埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。
【0159】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法の各ステップをプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体には、本実施の形態のプログラムが記録されている。本実施の形態のプログラム及びコンピュータ読み取り可能な記録媒体によれば、埋設管の更新時期をより正確に予測することができる。
【0160】
(実施の形態2)
図33及び図34を参照して、実施の形態2の埋設管更新時期予測装置1bを説明する。本実施の形態の埋設管更新時期予測装置1bは、実施の形態1の埋設管更新時期予測装置1と同様の構成を備えるが、主に以下の点で異なる。
【0161】
図33に示されるように、埋設管更新時期予測装置1bは、インターネットのような通信ネットワーク90を介して、クライアント端末80に通信可能に接続されている。埋設管更新時期予測装置1bは、例えば、パーソナルコンピュータ(PC)端末またはサーバである。埋設管更新時期予測装置1bは、埋設管の第1データ17(図4を参照)を、インターネットのような通信ネットワーク90を経由して、クライアント端末80から受信する。
【0162】
図35を参照して、クライアント端末80のハードウェア構成を説明する。クライアント端末80は、例えば、パーソナルコンピュータ(PC)端末、または、スマートフォンもしくはタブレット端末のような携帯端末である。具体的には、クライアント端末80は、プロセッサ82(例えば、CPU)と、ROM83と、RAM84と、記憶部85と、通信部86と、入力部87と、モニタ88とを含む。プロセッサ82は、クライアント端末80の制御装置として機能する演算装置である。ROM83は、プロセッサ82で実行されるプログラムなどを不揮発的に記憶する。RAM84は、プロセッサ82でプログラムを実行する際の作業領域として機能する。
【0163】
記憶部85は、例えば、ハードディスクまたはフラッシュメモリである。記憶部85は、埋設管の第1データ17(図4を参照)を格納している。通信部86は、クライアント端末80が、通信ネットワーク90を介して、埋設管更新時期予測装置1bと通信を行うために用いられる。記憶部85に格納されている埋設管の第1データ17(図4を参照)は、通信部86から、通信ネットワーク90を経由して、埋設管更新時期予測装置1bに送信される。入力部87は、例えば、マウス、キーボードまたはタッチパネルを含む。モニタ88は、例えば、液晶表示装置である。
【0164】
図33を参照して、記憶ユニット65は、環境因子データベース部21と、公称管厚データベース部22と、管厚許容差データベース部23とを含む。図34を参照して、埋設管更新時期予測装置1bの記憶部20は、実施の形態1の埋設管更新時期予測装置1の記憶部20と同様であるが、環境因子データベース部21、公称管厚データベース部22及び管厚許容差データベース部23を含んでいない。
【0165】
図33及び34を参照して、埋設管データ受付部11は、クライアント端末80から、通信ネットワーク90を経由して、埋設管の第1データ17(図4を参照)を受信する。管更新時期予測部36は、管更新時期予測結果50(図22を参照)を、通信ネットワーク90を経由して、クライアント端末80に送信する。管更新判断部37は、管更新判断結果52(図24を参照)を、通信ネットワーク90を経由して、クライアント端末80に送信する。腐食深さ超過確率予測部38は、腐食深さ超過確率結果53(図25を参照)を、通信ネットワーク90を経由して、クライアント端末80に送信する。
【0166】
クライアント端末80は、管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53を受信する。管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53は、記憶部85(図35を参照)に格納される。管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53は、モニタ88(図35を参照)に表示される。
【0167】
本実施の形態では、埋設管更新時期予測装置1b及び記憶ユニット65は、埋設管更新時期予測システム60を構成している。
【0168】
本実施の形態の埋設管更新時期予測方法を説明する。本実施の形態の埋設管更新時期予測方法は、実施の形態1の埋設管更新時期予測方法と同様のステップを備えるが、主に以下の点で異なる。
【0169】
埋設管の第1データ17を受け付けるステップ(S11)では、埋設管データ受付部11が、クライアント端末80から、通信ネットワーク90を経由して、埋設管の第1データ17(図4を参照)を受信する。
【0170】
埋設管の第1環境因子を得るステップ(S12)では、埋設管属性データ取得部10は、通信ネットワーク90を経由して、記憶ユニット65に含まれる環境因子データベース部21を参照する。埋設管属性データ取得部10は、埋設管の第1データ17(図4を参照)に含まれる埋設場所から、埋設管の第1環境因子を得る。
【0171】
埋設管の公称管厚を得るステップ(S15)では、埋設管属性データ取得部10は、通信ネットワーク90を経由して、記憶ユニット65に含まれる公称管厚データベース部22を参照する。そして、埋設管属性データ取得部10は、埋設管の第1データ17(図4を参照)に含まれる埋設管の布設年、呼び径、接合形式及び管厚の種類から、埋設管の公称管厚を得る。
【0172】
埋設管の管厚許容差を得るステップ(S16)では、埋設管属性データ取得部10は、通信ネットワーク90を経由して、記憶ユニット65に含まれる管厚許容差データベース部23を参照して、埋設管の管厚許容差を得る。
【0173】
管更新時期予測結果50を出力するステップ(S30)では、管更新時期予測部36は、管更新時期予測結果50(図22を参照)を、通信ネットワーク90を経由して、クライアント端末80に送信する。管更新判断結果52を出力するステップ(S40)では、管更新判断部37は、管更新判断結果52(図24を参照)を、通信ネットワーク90を経由して、クライアント端末80に送信する。腐食深さ超過確率結果53を出力するステップ(S60)では、腐食深さ超過確率予測部38は、腐食深さ超過確率結果53(図25を参照)を、通信ネットワーク90を経由して、クライアント端末80に送信する。
【0174】
クライアント端末80は、管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53を受信する。管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53は、記憶部85(図35を参照)に格納される。管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53は、モニタ88(図35を参照)に表示される。
【0175】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体は、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させるプログラムが記録されている。
【0176】
本実施の形態の埋設管更新時期予測装置1b、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体は、実施の形態1の埋設管更新時期予測装置1、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体と同様の効果を奏する。
【0177】
(実施の形態3)
図36及び図37を参照して、実施の形態3の埋設管更新時期予測装置1cを説明する。本実施の形態の埋設管更新時期予測装置1cは、実施の形態2の埋設管更新時期予測装置1bと同様の構成を備えるが、主に以下の点で異なる。
【0178】
図37に示されるように、埋設管更新時期予測装置1cは、インターネットのような通信ネットワーク90を介して、属性データ作成ユニット70に通信可能に接続されている。埋設管更新時期予測装置1cは、例えば、パーソナルコンピュータ(PC)端末またはサーバである。埋設管更新時期予測装置1cは、実施の形態2の埋設管更新時期予測装置1bと同様であるが、埋設管データ受付部11と、許容腐食深さ算出部13と、最小許容管厚算出部12と、属性データ作成部14とを含んでいない。
【0179】
管更新時期予測部36は、管更新時期予測結果50(図22を参照)を、通信ネットワーク90を経由して、属性データ作成ユニット70に送信する。管更新判断部37は、管更新判断結果52(図24を参照)を、通信ネットワーク90を経由して、属性データ作成ユニット70に送信する。腐食深さ超過確率予測部38は、腐食深さ超過確率結果53(図25を参照)を、通信ネットワーク90を経由して、属性データ作成ユニット70に送信する。属性データ作成ユニット70は、管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53を、通信ネットワーク90を経由して、クライアント端末80に送信する。属性データ作成ユニット70は、クライアント端末80に対して、送受信サーバとして機能する。
【0180】
図36に示されるように、属性データ作成ユニット70は、通信ネットワーク90を介して、埋設管更新時期予測装置1c、記憶ユニット65及びクライアント端末80に通信可能に接続されている。属性データ作成ユニット70は、埋設管データ受付部11と、最小許容管厚算出部12と、許容腐食深さ算出部13と、属性データ作成部14とを含む。
【0181】
図38を参照して、属性データ作成ユニット70のハードウェア構成を説明する。属性データ作成ユニット70は、例えば、パーソナルコンピュータ(PC)端末、または、サーバである。具体的には、属性データ作成ユニット70は、プロセッサ72と、ROM73と、RAM74と、ハードディスク75と、通信部76と、入力部77と、モニタ78とを含む。プロセッサ72は、属性データ作成ユニット70の制御装置として機能する演算装置である。ROM73は、プロセッサ72で実行されるプログラムなどを不揮発的に記憶する。RAM74は、プロセッサ72でプログラムを実行する際の作業領域として機能する。
【0182】
ハードディスク75は、クライアント端末80から受信した埋設管の第1データ17(図4を参照)を格納している。ハードディスク75は、埋設管の属性データ16を格納している。通信部76は、属性データ作成ユニット70が、通信ネットワーク90を介して、埋設管更新時期予測装置1c、記憶ユニット65及びクライアント端末80と通信を行うために用いられる。入力部77は、例えば、マウス、キーボードまたはタッチパネルを含む。モニタ78は、例えば、液晶表示装置である。
【0183】
本実施の形態では、埋設管更新時期予測装置1cと、記憶ユニット65と、属性データ作成ユニット70とは、埋設管更新時期予測システム60cを構成している。
【0184】
本実施の形態の埋設管更新時期予測方法を説明する。本実施の形態の埋設管更新時期予測方法は、実施の形態2の埋設管更新時期予測方法と同様のステップを備えるが、主に以下の点で異なる。
【0185】
本実施の形態の埋設管更新時期予測方法では、埋設管の属性データ16を取得するステップ(S10)は、属性データ作成ユニット70で行われる。すなわち、埋設管の第1データ17を受け付けるステップ(S11)と、埋設管の第1環境因子を得るステップ(S12)と、埋設管の第1埋設期間T1を得るステップ(S13)と、埋設管の許容腐食深さを得るステップ(S14)と、埋設管の属性データ16を作成するステップ(S19)とは、属性データ作成ユニット70で行われる。埋設管の属性データ16が、属性データ作成ユニット70で作成される。属性データ作成ユニット70は、埋設管の属性データ16を、通信ネットワーク90を経由して、埋設管更新時期予測装置1cに送信する。埋設管更新時期予測装置1cに含まれる埋設管属性データ取得部10は、属性データ作成ユニット70から、通信ネットワーク90を経由して、埋設管の属性データ16を受信する。
【0186】
管更新時期予測結果50を出力するステップ(S30)では、管更新時期予測部36は、管更新時期予測結果50(図22を参照)を、通信ネットワーク90を経由して、属性データ作成ユニット70に送信する。管更新判断結果52を出力するステップ(S40)では、管更新判断部37は、管更新判断結果52(図24を参照)を、通信ネットワーク90を経由して、属性データ作成ユニット70に送信する。腐食深さ超過確率結果53を出力するステップ(S60)では、腐食深さ超過確率予測部38は、腐食深さ超過確率結果53(図25を参照)を、通信ネットワーク90を経由して、属性データ作成ユニット70に送信する。属性データ作成ユニット70は、管更新時期予測結果50、管更新判断結果52及び腐食深さ超過確率結果53を、通信ネットワーク90を経由して、クライアント端末80に送信する。
【0187】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体は、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させるプログラムが記録されている。
【0188】
本実施の形態では、腐食深さ経時変化予測モデル記憶部25と、腐食深さ超過確率予測モデル記憶部26と、管更新判断基準記憶部27と、腐食のラグタイム記憶部28とは、埋設管更新時期予測装置1cの記憶部20に含まれているが、腐食深さ経時変化予測モデル記憶部25と、腐食深さ超過確率予測モデル記憶部26と、管更新判断基準記憶部27と、腐食のラグタイム記憶部28とは、記憶ユニット65に含まれてもよい。
【0189】
本実施の形態では、埋設管属性データ取得部10と、腐食深さ経時変化予測モデル選択部31と、腐食深さ超過確率予測モデル選択部32と、管更新時期予測部36と、管更新判断部37と、腐食深さ超過確率予測部38とが、一台のコンピュータ装置に実装されているが、埋設管属性データ取得部10と、腐食深さ経時変化予測モデル選択部31と、腐食深さ超過確率予測モデル選択部32と、管更新時期予測部36と、管更新判断部37と、腐食深さ超過確率予測部38とが、複数台のコンピュータ装置に実装されており、これら複数台のコンピュータが、互いに通信ネットワーク90を介して通信可能に接続されてもよい。すなわち、埋設管属性データ取得部10と、腐食深さ経時変化予測モデル選択部31と、腐食深さ超過確率予測モデル選択部32と、管更新時期予測部36と、管更新判断部37と、腐食深さ超過確率予測部38とが実装された複数台のコンピュータは、埋設管更新時期予測サブシステムを構成してもよい。本明細書の埋設管更新時期予測装置1cは、このような埋設管更新時期予測サブシステムも含む。
【0190】
本実施の形態の埋設管更新時期予測装置1c、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体は、実施の形態1の埋設管更新時期予測装置1、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体と同様の効果を奏する。
【0191】
(実施の形態4)
図39から図52を参照して、実施の形態4の埋設管更新時期予測装置1d及び埋設管更新時期予測方法を説明する。本実施の形態の埋設管更新時期予測装置1dは実施の形態1の埋設管更新時期予測装置1と同様の構成を備え、本実施の形態の埋設管更新時期予測方法は実施の形態1の埋設管更新時期予測方法と同様のステップを備えるが、主に以下の点で異なる。
【0192】
図39を参照して、埋設管更新時期予測装置1dは、管更新時期予測部36(図2を参照)と、管更新判断部37(図2を参照)とを備えていない。埋設管更新時期予測装置1dでは、埋設管属性データ取得部10は、最小許容管厚算出部12(図2を参照)と、許容腐食深さ算出部13(図2を参照)とを含んでいない。記憶部20は、管厚許容差データベース部23(図2を参照)と、管更新判断基準記憶部27(図2を参照)とを含んでいない。
【0193】
属性データ作成部14は、顧客から提供される埋設管の第1データ17(図4を参照)と、環境因子データベース部21と、公称管厚データベース部22とから、埋設管の属性データ16を作成する。図40を参照して、埋設管の属性データ16は、例えば、埋設管の管路番号、第1環境因子、第1埋設期間T1及び公称管厚を含む。
【0194】
埋設管属性データ取得部10(属性データ作成部14)は、公称管厚データベース部22を参照して、埋設管の第1データ17に含まれる埋設管の布設年、呼び径、接合形式及び管厚の種類から、埋設管の公称管厚を得る。埋設管属性データ取得部10(属性データ作成部14)は、記憶部20に記憶されている現在年(埋設管の更新時期の予測を実行する年)と第1データ17に含まれる埋設管の布設年との間の差を、第1埋設期間T1として算出する。埋設管属性データ取得部10(属性データ作成部14)は、埋設管の属性データ16を埋設管属性データ記憶部24に出力する。埋設管の属性データ16は、埋設管属性データ記憶部24に記憶される。
【0195】
腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された腐食深さ超過確率予測モデルと、埋設管の属性データ16に含まれる埋設管の第1埋設期間T1及び公称管厚さとから、ある時期(例えば、現在年、将来年または将来期間)における埋設管の腐食深さ超過確率を算出する。
【0196】
腐食深さ超過確率予測モデル記憶部26(図39を参照)は、図41及び図42に例示される複数の腐食深さ超過確率予測モデルを記憶している。なお、腐食深さ超過確率予測モデル記憶部26は、砂系土質用の腐食深さ超過確率予測モデル(図41を参照)及び粘土系土質用の腐食深さ超過確率予測モデル(図42を参照)に加えて、シルト系土質用の腐食深さ超過確率予測モデル(図示せず)及び1500Ω・cm未満の土壌比抵抗を有する低比抵抗系土質用の腐食深さ超過確率予測モデル(図示せず)を格納している。
【0197】
複数の腐食深さ超過確率予測モデルは、修正参照データ(図44を参照)から生成される。本実施の形態の修正参照データ(図44を参照)は、実施の形態1の修正参照データ(図17を参照)からさらに参照深さが0mmであるデータが削除されている。修正参照データは、修正埋設期間と、参照腐食深さとを含む。
【0198】
図43を参照して、砂系土質用の腐食深さ超過確率予測モデルを得るステップ(S9p)の一例を説明する。
【0199】
プロセッサ2(図1を参照)は、修正参照データを回帰する基本回帰線を得る(S71)。一例として、修正参照データを、式(5)で示される指数モデルによって回帰して、基本回帰線を得る。
【0200】
y=jtk (5)
yは参照管の参照腐食深さを、j,kは係数を、tは参照管の修正埋設期間を表す。
【0201】
具体的には、修正埋設期間の対数と参照腐食深さの対数とを算出して、修正参照データの両対数データを得る(図45を参照)。また、式(5)の両対数の関係式として、式(6)が得られる。
【0202】
logy=logj+k×logt (6)
修正参照データの両対数データを、最小二乗法を用いて、式(6)で回帰して、基本回帰線が得られる(図45を参照)。図45を参照して、基本回帰線から大きく乖離している修正参照データが多い。その理由は、(i)同一の環境因子下における参照管の腐食速度のばらつきと、(ii)同一の環境因子下における腐食のラグタイムtLの分布のためであると推定される。
【0203】
図43を参照して、プロセッサ2(図1を参照)は、基本回帰線と、(i)腐食速度のばらつきと、(ii)腐食のラグタイムtLの分布とに基づいて、本実施の形態の腐食深さ超過予測モデルを作成する(S72)。特定的には、基本回帰線が、腐食速度及び腐食のラグタイムtLの各々についてある分布を有している(例えば、基本回帰線が、腐食速度及び腐食のラグタイムtLの各々についてある確率密度でばらついている)と考えて、本実施の形態の腐食深さ超過予測モデルを作成する。
【0204】
具体的には、(i)腐食速度のばらつきは、主に、修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布に反映される。基本回帰線の分布は、式(5)または式(6)における係数j,kの分布に反映される。修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布は、例えば、修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布の確率密度関数で表現され得る。
【0205】
例えば、図46及び図47を参照して、基本回帰線の分布の確率密度関数が正規分布であると仮定する。プロセッサ2(図1を参照)は、修正参照データの両対数データの各々について、基本回帰線からの修正参照データの両対数データのずれ量を算出して、このずれの標準偏差σを算出する。確率密度関数の標準偏差は、算出された標準偏差σに等しいと見なす。基本回帰線からの全てのずれ量にわたる確率密度関数の積分値は1に等しく、かつ、確率密度関数の標準偏差σの正規分布であるため、プロセッサ2は、確率密度関数を得ることができる。プロセッサ2は、確率密度関数を、マイナス無限大のずれ量から、所定のずれ量まで積分することによって、当該所定のずれ量における基本回帰線の分布の累積分布関数を得る。
【0206】
基本回帰線は、基本回帰線の分布の累積分布関数の値(累積確率密度)が50パーセンタイルである回帰線であり、50パーセンタイル回帰線と呼ぶ。基本回帰線の分布の累積分布関数の値(累積確率密度)がpパーセンタイルである回帰線を、pパーセンタイル回帰線と呼ぶ。プロセッサ2(図1を参照)は、基本回帰線と、基本回帰線の分布の確率密度関数と、基本回帰線の分布の累積分布関数とから、複数のパーセンタイル回帰線を得る。複数のパーセンタイル回帰線は、例えば、5パーセンタイル回帰線、6.25パーセンタイル回帰線、12.5パーセンタイル回帰線、18.75パーセンタイル回帰線、25パーセンタイル回帰線、31.25パーセンタイル回帰線、37.5パーセンタイル回帰線、43.75パーセンタイル回帰線、50パーセンタイル回帰線、56.25パーセンタイル回帰線、62.5パーセンタイル回帰線、68.75パーセンタイル回帰線、75パーセンタイル回帰線、81.25パーセンタイル回帰線、87.5パーセンタイル回帰線、93.75パーセンタイル回帰線、95パーセンタイル回帰線を含む。
【0207】
プロセッサ2(図1を参照)は、複数のパーセンタイル回帰線と基本回帰線の分布の確率密度関数とから、複数のパーセンタイル回帰線の各々の係数j,k(図48の項目(B)及び(C)を参照)と、複数のパーセンタイル回帰線の各々の確率密度関数の値(確率密度)(図48の項目(D)を参照)とを算出する。
【0208】
それから、複数のパーセンタイル回帰線に対応する修正埋設期間を第2埋設期間T2に戻す際に、複数のパーセンタイル回帰線の各々について、(ii)腐食のラグタイムtLの分布を考慮する。
【0209】
具体的には、プロセッサ2(図1を参照)は、複数のパーセンタイル回帰線の各々について、参照腐食深さが所定深さである時の、修正埋設期間を算出する。プロセッサ2は、例えば、0.125mm毎に0mmから10mmまでの所定深さを設定する(図48の項目(E)を参照)。プロセッサ2は、複数のパーセンタイル回帰線の各々を規定する式(5)または式(6)に、所定深さを代入して、所定深さに対応する修正埋設期間を算出する(図48の項目(F)を参照)。
【0210】
腐食のラグタイムtLの分布のため、複数のパーセンタイル回帰線の各々から得られる修正埋設期間(図48の項目(F)を参照)は、様々な第2埋設期間T2に対応している。腐食のラグタイムtLの分布は、例えば、複数のパーセンタイル回帰線の各々から得られる修正埋設期間の各々が第2埋設期間T2に対応する確率として表現され得る。そこで、プロセッサ2(図1を参照)は、複数のパーセンタイル回帰線の各々から得られる修正埋設期間の各々が第2埋設期間T2に対応する確率を算出する。
【0211】
具体的には、プロセッサ2は、1年毎に0年から80年までの腐食のラグタイムtLを設定する(図48の項目(G)を参照)。プロセッサ2は、複数のパーセンタイル回帰線の各々から得られる修正埋設期間と腐食のラグタイムtLの和を第2埋設期間T2として算出する(図48の項目(H)を参照)。修正埋設期間が第2埋設期間T2に対応する確率は、対応する腐食のラグタイムtLの確率Q(tL)(図48の項目(I)を参照)によって与えられる。腐食のラグタイムtLの確率は、実施の形態1において既に述べた1-P(T2)(図13を参照)の微分、すなわち腐食のラグタイムの確率Q(T2)(図14を参照)によって与えられる。腐食のラグタイムの確率Q(T2)は、腐食のラグタイム記憶部28(図39を参照)に記憶されている。プロセッサ2は、腐食のラグタイム記憶部28を参照して、腐食のラグタイムの確率Q(T2)を、修正埋設期間が第2埋設期間T2に対応する確率とする。
【0212】
プロセッサ2(図1を参照)は、パーセンタイル回帰線の確率密度(図48の項目(D)を参照)と修正埋設期間が第2埋設期間T2に対応する確率、すなわち、腐食のラグタイムの確率Q(tL)(図48の項目(I)を参照)との積を、確率指標(図48の項目(J)を参照)として算出する。この積は、腐食のラグタイムtLを有するあるパーセンタイル回帰線の存在確率に比例しており、腐食のラグタイムtLを有するあるパーセンタイル回帰線の確率指標と見なすことができる。
【0213】
プロセッサ2(図1を参照)は、参照腐食深さ(図48の項目(E)を参照)毎にかつ所定範囲(例えば、0年以上10年以下)の第2埋設期間T2毎に、確率指標(図48の項目(J)を参照)の和を、腐食深さ到達確率指標として算出する。腐食深さ到達確率指標は、所定範囲(例えば、0年以上10年以下)の第2埋設期間T2において、ある参照腐食深さに到達する確率の指標である。それから、プロセッサ2は、所定範囲の第2埋設期間T2において、全ての参照腐食深さにわたる腐食深さ到達確率指標の総和が1となるように、腐食深さ到達確率指標を規格化して、腐食深さ到達確率を算出する(図49を参照)。腐食深さ到達確率は、所定範囲(例えば、0年以上10年以下)の第2埋設期間T2において、ある参照腐食深さに到達する確率である。
【0214】
プロセッサ2(図1を参照)は、所定範囲(例えば、0年以上10年以下)の第2埋設期間T2毎に、腐食深さ超過確率を算出する。例えば、埋設期間が0年から10年において、腐食深さがr(mm)を超過する腐食深さ超過確率は、埋設期間が0年から10年において、腐食深さがr(mm)を超える腐食深さ到達確率の和によって与えられる。こうして、プロセッサ2は、図41に示される腐食深さ超過確率予測モデルを得る。プロセッサ2は、同様の演算処理を行って、シルト系土質用の腐食深さ超過確率予測モデル、粘土系土質用の腐食深さ超過確率予測モデル(図42を参照)及び1500Ω・cm未満の土壌比抵抗を有する低比抵抗系土質用の腐食深さ超過確率予測モデルを得る。
【0215】
本実施の形態における埋設管更新時期予測方法を説明する。本実施の形態における埋設管更新時期予測方法は、実施の形態1における腐食深さ超過確率予測モデルを用いる埋設管更新時期予測方法(第2の埋設管更新時期予測方法)と同様であるが、腐食深さ超過確率を算出する際に、本実施の形態の腐食深さ超過確率予測モデルを用いる点と、埋設管の公称管厚(図40から図42を参照)とを用いる点とにおいて、実施の形態1における腐食深さ超過確率予測モデルを用いる埋設管更新時期予測方法と異なっている。
【0216】
図50を参照して、本実施の形態の埋設管更新時期予測方法では、埋設管の属性データ16を取得する(S75)。
【0217】
具体的には、図51を参照して、埋設管データ受付部11は、顧客から提供される埋設管の第1データ17を受け付ける(S11)。埋設管の第1データ17は、例えば、埋設管の管路番号、埋設場所、布設(埋設)年、呼び径、接合形式及び管厚の種類(図4を参照)を含む。埋設管の第1データ17は、土被り、静水圧及び水撃圧(図4を参照)を含んでいなくてもよい。
【0218】
埋設管属性データ取得部10(属性データ作成部14)は、環境因子データベース部21(図5を参照)を参照して、埋設管の第1データ17に含まれる埋設場所から、埋設管の第1環境因子を得る(S12)。埋設管属性データ取得部10(属性データ作成部14)は、記憶部20に記憶されている現在年(埋設管の更新時期の予測を実行する年)と第1データ17に含まれる埋設管の布設年との間の差を、第1埋設期間T1として算出する(S13)。埋設管属性データ取得部10(属性データ作成部14)は、第1データ17に含まれる布設(埋設)年、呼び径、接合形式及び管厚の種類(図4を参照)と、公称管厚データベース部22とから、埋設管の管路番号毎に公称管厚を特定する(S76)。
【0219】
属性データ作成部14は、埋設管の管路番号、埋設管の第1環境因子、第1埋設期間T1及び公称管厚が対応づけられている埋設管の属性データ16(図40を参照)を作成する(S19)。埋設管属性データ取得部10は、埋設管の属性データ16を埋設管属性データ記憶部24に出力する。埋設管の属性データ16は、埋設管属性データ記憶部24に記憶される。
【0220】
図50を参照して、腐食深さ超過確率予測モデル選択部32は、腐食深さ超過確率予測モデル記憶部26に記憶されている本実施の形態の複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択する(S77)。既に記載したとおり、本実施の形態の複数の腐食深さ超過確率予測モデルは、実施の形態1の複数の腐食深さ超過確率予測モデルと異なっている。
【0221】
図50を参照して、腐食深さ超過確率予測部38は、腐食深さ超過確率結果53を出力する(S60)。腐食深さ超過確率結果53は、図25に示されるように、管路番号と、将来期間と、腐食深さ超過確率とを含む。
【0222】
具体的には、図52に示されるように、腐食深さ超過確率予測部38は、埋設管属性データ記憶部24から、埋設管の管路番号、第1埋設期間T1及び公称管厚を読み出す(S81)。
【0223】
腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された第1環境因子用の腐食深さ超過確率予測モデルと、埋設管の属性データ16に含まれる埋設管の第1埋設期間T1及び公称管厚とから、埋設管の腐食深さ超過確率を算出する(S82)。
【0224】
現在年における埋設管の腐食深さ超過確率は、以下のようにして求められる。腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された腐食深さ超過確率予測モデルのうち、埋設管の第1埋設期間T1に対応する腐食深さ超過確率予測モデルを選択する。この腐食深さ超過確率予測モデルに埋設管の公称管厚を適用する。こうして、腐食深さ超過確率予測部38は、現在年における埋設管の腐食深さ超過確率を、管路番号毎に算出する。
【0225】
n年後の将来における埋設管の腐食深さ超過確率は、以下のようにして求められる。腐食深さ超過確率予測部38は、腐食深さ超過確率予測モデル選択部32で選択された腐食深さ超過確率予測モデルのうち、埋設管の第1埋設期間T1とn年との和に対応する腐食深さ超過確率予測モデルを選択する。この腐食深さ超過確率予測モデルに埋設管の公称管厚を適用する。こうして、腐食深さ超過確率予測部38は、n年後の将来における埋設管の腐食深さ超過確率を、管路番号毎に算出する。
【0226】
腐食深さ超過確率予測部38は、埋設管の管路番号と、将来期間と、腐食深さ超過確率とが対応づけられている腐食深さ超過確率結果53(図25を参照)を作成する。腐食深さ超過確率予測部38は、埋設管の管路番号と、将来期間と、腐食深さ超過確率とを含む腐食深さ超過確率結果53を出力する(S64)。腐食深さ超過確率結果53は、例えば、RAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力される。腐食深さ超過確率結果53は、RAM4、ハードディスク5及び可搬型記憶媒体7mの少なくとも一つに格納される。腐食深さ超過確率結果53は、モニタ8bに表示される。
【0227】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体は、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させるプログラムが記録されている。
【0228】
本実施の形態において、埋設管の属性データ16は、埋設管の公称管厚に代えて、埋設管の許容腐食深さを含んでもよい。埋設管更新時期予測装置1dは、最小許容管厚算出部12と、許容腐食深さ算出部13と、管厚許容差データベース部23とを備えてもよい。腐食深さ超過確率予測モデルに、埋設管の第1埋設期間T1と許容腐食深さとを適用して、腐食深さ超過確率が算出されてもよい。埋設管の腐食深さ超過確率を予測するモデルは、修正参照データ(図44)に代えて、実施の形態1の修正参照データ(図17を参照)を回帰することによって生成されてもよい。
【0229】
本実施の形態の埋設管更新時期予測装置1d、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体の効果を説明する。
【0230】
本実施の形態の埋設管更新時期予測装置1dは、埋設管属性データ取得部10と、腐食深さ超過確率予測部38とを備える。埋設管属性データ取得部10は、埋設管の属性データ16を取得する。埋設管の属性データ16は、埋設管の第1環境因子と、埋設管の第1埋設期間T1と、埋設管の公称管厚または許容腐食深さとを含む。腐食深さ超過確率予測部38は、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間T1と、公称管厚または許容腐食深さとから、ある時期における埋設管の腐食深さ超過確率を算出する。ある時期における埋設管の腐食深さ超過確率は、ある時期において、埋設管の腐食深さが埋設管の公称管厚または許容腐食深さを超過する確率である。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。複数の参照管の修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間T2から、第2埋設期間T2及び参照腐食深さに応じた腐食のラグタイムを差し引くことによって算出されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食深さ超過確率予測モデルは、埋設管の腐食深さ超過確率を予測するモデルであって、第1環境因子と同じ第2環境因子を有する修正参照データを回帰する基本回帰線と、複数の参照管の腐食速度のばらつきと、腐食のラグタイムtLの分布とに基づいて生成されている。腐食速度のばらつきは、修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布で与えられる。腐食のラグタイムtLの分布は、第2埋設期間T2に対する、第1環境因子と同じ第2環境因子を有する参照データ18のうち参照腐食深さが0mmより大きくなるデータ数の割合の変化の微分で与えられる。
【0231】
埋設管更新時期予測装置1dでは、腐食深さ超過確率予測モデルを用いて、埋設管の腐食深さ超過確率を算出している。腐食深さ超過確率予測モデルは、埋設管の第1環境因子と同じ第2環境因子を有する修正参照データを回帰する基本回帰線と、複数の参照管の腐食速度のばらつきと、腐食のラグタイムtLの分布とに基づいて生成されている。埋設管更新時期予測装置1dによれば、埋設管の更新時期をより正確に予測することができる。埋設管更新時期予測装置1dによれば、顧客が埋設管の更新計画を立案することを容易にする埋設管の腐食深さ超過確率を、顧客に提供することができる。
【0232】
本実施の形態の埋設管更新時期予測方法は、埋設管属性データ取得部10が埋設管の属性データ16を取得するステップを備える。埋設管の属性データ16は、埋設管の第1環境因子と、埋設管の第1埋設期間T1と、埋設管の公称管厚または許容腐食深さとを含む。本実施の形態の埋設管更新時期予測方法は、腐食深さ超過確率予測部38が、第1環境因子用の腐食深さ超過確率予測モデルと、第1埋設期間T1と、公称管厚または許容腐食深さとから、ある時期における埋設管の腐食深さ超過確率を算出するステップを備える。ある時期における埋設管の腐食深さ超過確率は、ある時期において、埋設管の腐食深さが埋設管の公称管厚または許容腐食深さを超過する確率である。複数の参照管の参照データ18は、複数の参照管の第2環境因子、第2埋設期間T2及び参照腐食深さを含む。複数の参照管の修正参照データは、複数の参照管の修正埋設期間と参照腐食深さとを含む。修正埋設期間は、第2埋設期間T2から、第2埋設期間及び参照腐食深さに応じた腐食のラグタイムを差し引くことによって算出されている。腐食のラグタイムは、複数の参照管が埋設されてから複数の参照管が腐食し始めるまでの期間である。腐食深さ超過確率予測モデルは、埋設管の腐食深さ超過確率を予測するモデルであって、第1環境因子と同じ第2環境因子を有する修正参照データを回帰する基本回帰線と、複数の参照管の腐食速度のばらつきと、腐食のラグタイムtLの分布とに基づいて生成されている。腐食速度のばらつきは、修正参照データにおける参照腐食深さのばらつきによる基本回帰線の分布で与えられる。腐食のラグタイムtLの分布は、第2埋設期間T2に対する、第1環境因子と同じ第2環境因子を有する参照データ18のうち参照腐食深さが0mmより大きくなるデータ数の割合の変化の微分で与えられる。
【0233】
本実施の形態の埋設管更新時期予測方法では、腐食深さ超過確率予測モデルを用いて、埋設管の腐食深さ超過確率を算出している。腐食深さ超過確率予測モデルは、埋設管の第1環境因子と同じ第2環境因子を有する修正参照データを回帰する基本回帰線と、複数の参照管の腐食速度のばらつきと、腐食のラグタイムtLの分布とに基づいて生成されている。本実施の形態の埋設管更新時期予測方法によれば、埋設管の更新時期をより正確に予測することができる。本実施の形態の埋設管更新時期予測方法によれば、顧客が埋設管の更新計画を立案することを容易にする埋設管の腐食深さ超過確率を、顧客に提供することができる。
【0234】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法の各ステップをプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体には、本実施の形態のプログラムが記録されている。本実施の形態のプログラム及びコンピュータ読み取り可能な記録媒体によれば、埋設管の更新時期をより正確に予測することができる。
【0235】
(実施の形態5)
図53から図62を参照して、実施の形態5の埋設管更新時期予測装置1eを説明する。本実施の形態の埋設管更新時期予測装置1eは、実施の形態4の埋設管更新時期予測装置1dと同様の構成を備えるが、主に以下の点で異なる。
【0236】
図53を参照して、埋設管更新時期予測装置1eは、漏水事故件数算出部123、漏水事故確率算出部127、漏水事故確率出力部128、漏水事故総件数算出部131、漏水事故総件数出力部132をさらに備える。埋設管更新時期予測装置1eでは、埋設管属性データ取得部10は、埋設管データ受付部11と属性データ作成部14とに加えて、環境因子マップ作成部105をさらに含む。埋設管更新時期予測装置1eでは、記憶部20は、公称管厚データベース部22と、埋設管属性データ記憶部24と、腐食深さ超過確率予測モデル記憶部26と、腐食のラグタイム記憶部28とに加えて、地盤情報マップデータベース部107と、地盤-環境因子対応関係データベース部108と、環境マップ記憶部109と、漏水事故指標記憶部124とをさらに含む。
【0237】
埋設管データ受付部11は、顧客から提供される埋設管の第1データ17を受け付ける。埋設管の第1データ17は、例えば、管路マップ101(図54を参照)と、埋設管の管路ID(例えば、管路番号)、布設(埋設)年、呼び径、接合形式、管厚の種類及び管路長さ(図55を参照)とを含む。管路マップ101には、顧客が管理する埋設管の位置が埋設管の管路ID毎に地図上に表示されている。埋設管の第1データ17は、例えば、顧客から提供される可搬型記憶媒体7m(図1を参照)に格納されてもよい。埋設管の第1データ17は、例えば、予めハードディスク5(図1を参照)に格納されてもよい。
【0238】
環境因子マップ作成部105は、管路マップ101に対応する地域における環境因子マップ106(図56を参照)を作成する。環境因子マップ106は、埋設管が埋設されている土壌環境を規定する埋設管の第1環境因子の地図である。埋設管の第1環境因子は、実施の形態1において既に述べたとおり、1500Ω・cm以上の土壌比抵抗を有する砂系土質と、1500Ω・cm以上の土壌比抵抗を有するシルト系土質と、1500Ω・cm以上の土壌比抵抗を有する粘土系土質と、1500Ω・cm未満の土壌比抵抗を有する低比抵抗系土質の4つの環境因子を含む。
【0239】
地盤情報マップデータベース部107に記憶されている地盤情報マップは、例えば、国土交通省から提供されている土地分類調査のような、一般に入手可能な地盤情報を含む地図である。地盤情報マップには、地盤の表層の地質及び地形などの地盤情報が地図上に示されている。
【0240】
本発明者は、腐食速度に関して、埋設管の環境因子の種類と統計的に相関があるように、地盤情報を分類できることを見出した。そこで、4つの環境因子(砂系土質、シルト系土質、粘土系土質及び低比抵抗系土質)と統計的に相関する4つの地盤分類(地盤分類(a)、地盤分類(b)、地盤分類(c)、地盤分類(d))に地盤情報を分類し、図57に示されるように、4つの地盤分類がそれぞれ4つの環境因子に対応づけられている地盤-環境因子対応データテーブル110を作成した。地盤-環境因子対応関係データベース部108は、地盤-環境因子対応データテーブル110が格納されている。
【0241】
環境因子マップ作成部105は、顧客から提供された管路マップ101(図54を参照)と、地盤情報マップデータベース部107に記憶されている地盤情報マップと、地盤-環境因子対応関係データベース部108に記憶されている、地盤-環境因子対応データテーブル110(図57を参照)とから作成する。具体的には、環境因子マップ作成部105は、地盤情報マップデータベース部107を参照して、地盤情報マップから、管路マップ101に対応する地域における地盤情報を取得する。環境因子マップ作成部105は、地盤-環境因子対応関係データベース部108を参照して、取得された地盤情報と地盤-環境因子対応データテーブル110とから、管路マップ101に対応する地域における埋設管の第1環境因子を特定する。環境因子マップ作成部105は、特定された埋設管の第1環境因子を管路マップ101に対応する地図に表示して、環境因子マップ106(図56を参照)を作成する。環境因子マップ作成部105は、環境因子マップ106を環境マップ記憶部109に格納する。
【0242】
埋設管属性データ取得部10(属性データ作成部14)は、記憶部20に記憶されている現在年(埋設管の更新時期の予測を実行する年)と第1データ17に含まれる埋設管の布設年との間の差を、第1埋設期間T1として算出する。埋設管属性データ取得部10(属性データ作成部14)は、第1埋設期間T1を、埋設管の管路ID毎に算出する。埋設管属性データ取得部10(属性データ作成部14)は、第1データ17に含まれる布設(埋設)年、呼び径、接合形式及び管厚の種類(図4を参照)と、公称管厚データベース部22とから、埋設管の管路ID毎に公称管厚を特定する。
【0243】
属性データ作成部14は、顧客から提供される埋設管の第1データ17(図54及び図5を参照)と、環境マップ記憶部109に記憶されている環境因子マップ106(図56を参照)と、公称管厚データベース部22とから、埋設管の属性データ16を作成する。図58を参照して、埋設管の属性データ16は、例えば、埋設管の管路ID、第1環境因子、第1埋設期間T1及び公称管厚を含む。埋設管属性データ取得部10(属性データ作成部14)は、埋設管の属性データ16を埋設管属性データ記憶部24に出力する。埋設管の属性データ16は、埋設管属性データ記憶部24に記憶される。
【0244】
図53を参照して、腐食深さ超過確率予測モデル記憶部26は、実施の形態4の複数の腐食深さ超過確率予測モデルを記憶している。本実施の形態の腐食深さ超過確率予測部38は、実施の形態4の腐食深さ超過確率予測部38と同様に、腐食深さ超過確率予測モデル選択部32で選択された腐食深さ超過確率予測モデルと、埋設管の属性データ16に含まれる埋設管の第1埋設期間T1及び公称管厚さとから、ある時期(例えば、現在年、将来年または将来期間)における埋設管の腐食深さ超過確率を、管路ID毎に算出する(図59を参照)。
【0245】
漏水事故指標記憶部124は、後述する漏水事故件数(図60を参照)、漏水事故確率(図60を参照)、漏水事故総件数(図60を参照)、漏水事故確率結果(図60及び図61を参照)及び漏水事故総件数結果(図60及び図62を参照)を記憶している。
【0246】
図53を参照して、漏水事故件数算出部123は、ある時期(例えば、現在年、将来年または将来期間)における漏水事故件数(図60を参照)を、管路ID毎に算出する。漏水事故件数は、例えば、単位時間(例えば、一年)当たりに、管路IDで特定される埋設管に漏水事故が発生する件数である。漏水事故件数算出部123は、例えば、現在年における漏水事故件数を管路ID毎に算出してもよいし、n年後(例えば、n=30)における漏水事故件数を管路ID毎に算出してもよいし、現在年における漏水事故件数とn年後における漏水事故件数の両方を算出してもよい。
【0247】
具体的には、漏水事故件数算出部123は、管路ID毎に、埋設管の第1データ17に含まれる管路長さと、腐食深さ超過確率予測部38によって算出された、ある時期(例えば、現在年、将来年または将来期間)における埋設管の腐食深さ超過確率との積を計算して、漏水事故件数評価指標(図59を参照)を算出する。漏水事故件数評価指標は、管路長さと腐食深さ超過確率との積であるから、管路ID毎の漏水事故件数に比例する指標である。そして、記憶部20には、漏水事故件数評価指標から漏水事故件数を得るために漏水事故件数評価指標に掛ける係数が記憶されている。なお、この係数は、過去に得られたある管路の実際の漏水事故件数と当該管路の漏水事故件数評価指標とから、既に算出されている。漏水事故件数算出部123は、漏水事故件数評価指標にこの係数を掛けることによって、管路ID毎に漏水事故件数を算出する。漏水事故件数算出部123は、管路ID毎の漏水事故件数を漏水事故指標記憶部124に出力する。管路ID毎の漏水事故件数は、漏水事故指標記憶部124に格納される。
【0248】
n年後における漏水事故件数は、管路IDで特定される埋設管の管路長さと、n年後における、管路IDで特定される埋設管の腐食深さ超過確率とから算出される。n年後における、管路IDで特定される埋設管の腐食深さ超過確率は、管路IDで特定される埋設管の公称管厚と、管路IDで特定される埋設管の第1埋設期間T1とn年との和とを、管路IDで特定される埋設管の第1環境因子に対応する腐食深さ超過確率予測モデルに適用することによって得られる。
【0249】
漏水事故確率算出部127は、ある時期(例えば、現在年、将来年または将来期間)における漏水事故確率(図60を参照)を、管路ID毎に算出する。漏水事故確率は、例えば、ある時期(例えば、現在年、将来年または将来期間)において、単位時間(例えば、一年)かつ単位距離(例えば、1km)当たりに、管路IDで特定される埋設管に漏水事故が発生する件数である。漏水事故確率算出部127は、例えば、現在年における漏水事故確率を管路ID毎に算出してもよいし、n年後(例えば、n=30)における漏水事故確率を管路ID毎に算出してもよいし、現在年における漏水事故確率とn年後における漏水事故確率の両方を管路ID毎に算出してもよい。
【0250】
具体的には、漏水事故確率算出部127は、管路ID毎に、漏水事故件数算出部123で算出された漏水事故件数を、埋設管の第1データ17に含まれる管路長さ(図55を参照)で割ることによって、漏水事故確率を算出する。漏水事故確率算出部127は、管路ID毎の漏水事故確率を漏水事故指標記憶部124に出力する。管路ID毎の漏水事故確率は、漏水事故指標記憶部124に格納される。
【0251】
n年後における漏水事故確率は、管路IDで特定される埋設管の管路長さと、n年後における、管路IDで特定される埋設管の腐食深さ超過確率とから算出される。n年後における、管路IDで特定される埋設管の腐食深さ超過確率は、管路IDで特定される埋設管の公称管厚と、管路IDで特定される埋設管の第1埋設期間T1とn年との和とを、管路IDで特定される埋設管の第1環境因子に対応する腐食深さ超過確率予測モデルに適用することによって得られる。
【0252】
漏水事故確率出力部128は、漏水事故確率結果を作成して、漏水事故確率結果を、漏水事故指標記憶部124に出力するとともに、図1に示されるRAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力する。漏水事故確率結果は、漏水事故指標記憶部124に格納される。漏水事故確率結果は、例えば、漏水事故確率テーブル(図60を参照)または漏水事故確率マップ129(図61を参照)である。漏水事故確率出力部128は、管路IDと当該管路IDに対応する漏水事故確率とをテーブルにまとめて、漏水事故確率テーブルを作成してもよい。漏水事故確率出力部128は、埋設管の第1データ17に含まれる管路マップ101図54を参照)に管路ID毎の漏水事故確率を表示して、漏水事故確率マップ129を作成してもよい。
【0253】
漏水事故総件数算出部131は、ある時期(例えば、現在年、将来年または将来期間)における漏水事故総件数(図60を参照)を算出する。漏水事故総件数は、属性データ16に含まれる全ての管路ID(属性データ16または管路マップ101図54を参照)に含まれる全ての管路)についての、ある時期(例えば、現在年、将来年または将来期間)における漏水事故件数の総和である。漏水事故総件数算出部131は、属性データ16に含まれる全ての管路IDについて、ある時期(例えば、現在年、将来年または将来期間)における漏水事故件数を足し合わせることによって、漏水事故総件数を算出する。図60に示されるように、漏水事故総件数算出部131は、例えば、現在年における漏水事故総件数を算出してもよいし、n年後(例えば、n=30)における漏水事故総件数を算出してもよいし、現在年における漏水事故総件数とn年後における漏水事故総件数の両方を算出してもよい。漏水事故総件数算出部131は、漏水事故総件数を漏水事故指標記憶部124に出力する。漏水事故総件数は、漏水事故指標記憶部124に格納される。
【0254】
漏水事故総件数出力部132は、漏水事故総件数結果を作成して、漏水事故総件数結果を、漏水事故指標記憶部124に出力するとともに、図1に示されるRAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力する。漏水事故総件数結果は、漏水事故指標記憶部124に格納される。漏水事故総件数結果は、例えば、漏水事故総件数テーブル(図60を参照)または漏水事故総件数グラフ133(図62を参照)である。漏水事故総件数出力部132は、漏水事故総件数の経年変化を示す漏水事故総件数テーブルを作成してもよい。漏水事故総件数出力部132は、漏水事故総件数の経年変化を示す漏水事故総件数グラフ133を作成してもよい。
【0255】
図62に示されるように、漏水事故総件数出力部132は、将来における管路の更新の態様に応じた漏水事故総件数の経年変化を出力してもよい。例えば、漏水事故総件数出力部132は、(s)n年後(例えば、n=30)の将来時期まで管路を全く更新しない場合の漏水事故総件数の経年変化と、(t)n年後(例えば、n=30)の将来時期までの間に、第1埋設期間T1が長い管路から順に、毎年一定距離(例えば、100km)ずつ管路を更新する場合の漏水事故総件数の経年変化と、(u)n年後(例えば、n=30)の将来時期までの間に、漏水事故確率が高い管路から順に、毎年一定距離(例えば、100km)ずつ管路を更新する場合の漏水事故総件数の経年変化とを示す漏水事故総件数グラフ133を作成して、出力してもよい。漏水事故総件数グラフ133のような、将来における管路の更新の態様に応じた漏水事故総件数の経年変化は、顧客が管路の更新計画を策定することを容易にする。
【0256】
図63から図65などを参照して、本実施の形態の埋設管更新時期予測方法を説明する。本実施の形態の埋設管更新時期予測方法は、実施の形態4の埋設管更新時期予測方法と同様のステップを備えるが、主に以下の点で異なる。
【0257】
図63を参照して、本実施の形態の埋設管更新時期予測方法では、埋設管の属性データ16を取得する(S75)。
【0258】
具体的には、図64を参照して、埋設管データ受付部11は、顧客から提供される埋設管の第1データ17を受け付ける(S11)。埋設管の第1データ17は、例えば、管路マップ101(図54を参照)と、埋設管の管路ID、布設(埋設)年、呼び径、接合形式、管厚の種類及び管路長さ(図55を参照)とを含む。
【0259】
環境因子マップ作成部105は、管路マップ101に対応する地域における環境因子マップ106(図56を参照)を作成する(S84)。具体的には、環境因子マップ作成部105は、地盤情報マップデータベース部107を参照して、地盤情報マップから、管路マップ101に対応する地域における地盤情報を取得する。環境因子マップ作成部105は、地盤-環境因子対応関係データベース部108を参照して、取得された地盤情報と地盤-環境因子対応データテーブル110とから、管路マップ101に対応する地域における埋設管の第1環境因子を、埋設管の管路ID毎に特定する。環境因子マップ作成部105は、特定された埋設管の第1環境因子を管路マップ101に対応する地図に表示して、環境因子マップ106(図56を参照)を作成する。環境因子マップ作成部105は、環境因子マップ106を環境マップ記憶部109に格納する。
【0260】
埋設管属性データ取得部10(属性データ作成部14)は、記憶部20に記憶されている現在年(埋設管の更新時期の予測を実行する年)と第1データ17に含まれる埋設管の布設年との間の差を、第1埋設期間T1として算出する(S13)。埋設管属性データ取得部10(属性データ作成部14)は、第1埋設期間T1を、埋設管の管路ID毎に算出する。埋設管属性データ取得部10(属性データ作成部14)は、第1データ17に含まれる布設(埋設)年、呼び径、接合形式及び管厚の種類(図4を参照)と、公称管厚データベース部22とから、埋設管の管路ID毎に公称管厚を特定する(S76)。
【0261】
属性データ作成部14は、埋設管の管路ID、埋設管の第1環境因子、第1埋設期間T1及び公称管厚が対応づけられている埋設管の属性データ16(図40を参照)を作成する(S19)。埋設管属性データ取得部10は、埋設管の属性データ16を埋設管属性データ記憶部24に出力する。埋設管の属性データ16は、埋設管属性データ記憶部24に記憶される。
【0262】
図63を参照して、腐食深さ超過確率予測モデル選択部32は、腐食深さ超過確率予測モデル記憶部26に記憶されている本実施の形態の複数の腐食深さ超過確率予測モデルから、第1環境因子用の腐食深さ超過確率予測モデルを選択する(S77)。本実施の形態のステップ(S77)は、実施の形態4のステップ(S77)と同じである。
【0263】
図63を参照して、管路ID毎に、腐食深さ超過確率を出力する(S85)。
具体的には、図65に示されるように、腐食深さ超過確率予測部38は、埋設管属性データ記憶部24から、埋設管の管路ID、第1埋設期間T1及び公称管厚を読み出す(S81)。
【0264】
腐食深さ超過確率予測部38は、ステップ(S77)で選択された第1環境因子用の腐食深さ超過確率予測モデルと、埋設管の第1埋設期間T1及び公称管厚とから、管路ID毎に、腐食深さ超過確率を算出する(S82)。本実施の形態のステップ(S82)は、実施の形態4のステップ(S82)と同じである。腐食深さ超過確率予測部38は、管路ID毎に、現在年における腐食深さ超過確率を算出してもよいし、管路ID毎に、n年後の将来における腐食深さ超過確率を算出してもよいし、管路ID毎に、現在年における腐食深さ超過確率とn年後の将来における腐食深さ超過確率の両方を算出してもよい。
【0265】
図63を参照して、漏水事故件数算出部123は、ある時期(例えば、現在年、将来年または将来期間)における漏水事故件数(図60を参照)を、管路ID毎に算出する(S86)。漏水事故件数算出部123は、例えば、現在年における漏水事故件数を管路ID毎に算出してもよいし、n年後(例えば、n=30)における漏水事故件数を管路ID毎に算出してもよいし、現在年における漏水事故件数とn年後における漏水事故件数の両方を管路ID毎に算出してもよい。
【0266】
具体的には、漏水事故件数算出部123は、管路ID毎に、埋設管の第1データ17に含まれる管路長さと、腐食深さ超過確率予測部38によって算出された、ある時期(例えば、現在年、将来年または将来期間)における埋設管の腐食深さ超過確率との積を計算して、漏水事故件数評価指標(図59を参照)を算出する。漏水事故件数評価指標は、管路長さと腐食深さ超過確率との積であるから、管路ID毎の漏水事故件数に比例する指標である。漏水事故件数算出部123は、既に述べた係数を漏水事故件数評価指標に掛けることによって、管路ID毎に漏水事故件数を算出する。漏水事故件数算出部123は、管路ID毎の漏水事故件数を漏水事故指標記憶部124に出力する。管路ID毎の漏水事故件数は、漏水事故指標記憶部124に格納される。
【0267】
図63を参照して、漏水事故確率算出部127は、ある時期(例えば、現在年、将来年または将来期間)における漏水事故確率(図60を参照)を、管路ID毎に算出する(S87)。漏水事故確率算出部127は、例えば、現在年における漏水事故確率を管路ID毎に算出してもよいし、n年後(例えば、n=30)における漏水事故確率を管路ID毎に算出してもよいし、現在年における漏水事故確率とn年後における漏水事故確率の両方を管路ID毎に算出してもよい。
【0268】
具体的には、漏水事故確率算出部127は、管路ID毎に、漏水事故件数算出部123で算出された漏水事故件数を、埋設管の第1データ17に含まれる管路長さ(図55を参照)で割ることによって、漏水事故確率を算出する。漏水事故確率算出部127は、管路ID毎の漏水事故確率を漏水事故指標記憶部124に出力する。管路ID毎の漏水事故確率は、漏水事故指標記憶部124に格納される。
【0269】
図63を参照して、漏水事故確率出力部128は、漏水事故確率結果を作成して、出力する(S88)。漏水事故確率出力部128は、漏水事故確率結果を、漏水事故指標記憶部124に出力するとともに、図1に示されるRAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力する。漏水事故確率結果は、漏水事故指標記憶部124に格納される。漏水事故確率結果は、例えば、漏水事故確率テーブル(図60を参照)または漏水事故確率マップ129(図61を参照)である。漏水事故確率出力部128は、管路IDと当該管路IDに対応する漏水事故確率とをテーブルにまとめて、漏水事故確率テーブルを作成してもよい。漏水事故確率出力部128は、埋設管の第1データ17に含まれる管路マップ101図54を参照)に管路ID毎の漏水事故確率を表示して、漏水事故確率マップ129を作成してもよい。
【0270】
図63を参照して、漏水事故総件数算出部131は、ある時期(例えば、現在年、将来年または将来期間)における漏水事故総件数(図60を参照)を算出する(S90)。漏水事故総件数算出部131は、属性データ16に含まれる全ての管路ID(属性データ16または管路マップ101図54を参照)に含まれる全ての管路)について、ある時期(例えば、現在年、将来年または将来期間)における漏水事故件数を足し合わせることによって、漏水事故総件数を算出する。漏水事故総件数算出部131は、例えば、現在年における漏水事故総件数を算出してもよいし、n年後(例えば、n=30)における漏水事故総件数を算出してもよいし、現在年における漏水事故総件数とn年後における漏水事故総件数の両方を算出してもよい。漏水事故総件数算出部131は、漏水事故総件数を漏水事故指標記憶部124に出力する。漏水事故総件数は、漏水事故指標記憶部124に格納される。
【0271】
図63を参照して、漏水事故総件数出力部132は、漏水事故総件数結果を作成して出力する(S91)。漏水事故総件数出力部132は、漏水事故総件数結果を、漏水事故指標記憶部124に出力するとともに、図1に示されるRAM4、ハードディスク5、可搬型記憶媒体7m及びモニタ8bの少なくとも一つに出力する。漏水事故総件数結果は、漏水事故指標記憶部124に格納される。漏水事故総件数結果は、例えば、漏水事故総件数テーブル(図60を参照)または漏水事故総件数グラフ133(図62を参照)である。漏水事故総件数出力部132は、漏水事故総件数の経年変化を示す漏水事故総件数テーブルを作成してもよい。漏水事故総件数出力部132は、漏水事故総件数の経年変化を示す漏水事故総件数グラフ133として作成してもよい。
【0272】
図62に示されるように、漏水事故総件数出力部132は、将来における埋設管の更新の態様に応じた漏水事故総件数の経年変化を出力してもよい。例えば、漏水事故総件数出力部132は、(s)n年後の将来時期まで管路を全く更新しない場合の漏水事故総件数の経時変化と、(t)n年後の将来時期までの間に、第1埋設期間T1が長い管路から順に、毎年一定距離(例えば、100km)ずつ管路を更新する場合の漏水事故総件数の経時変化と、(u)n年後の将来時期までの間に、漏水事故確率が高い管路から順に、毎年一定距離(例えば、100km)ずつ管路を更新する場合の漏水事故総件数の経時変化とを示す漏水事故総件数グラフ133を作成して、出力してもよい。漏水事故総件数グラフ133のような、将来における埋設管の更新の態様に応じた漏水事故総件数の経年変化は、顧客が管路の更新計画を策定することを容易にする。
【0273】
本実施の形態の埋設管更新時期予測装置1e及び埋設管更新時期予測方法では、漏水事故件数、漏水事故確率及び漏水事故総件数が算出されているが、漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つが算出されてもよい。
【0274】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体は、本実施の形態の埋設管更新時期予測方法をプロセッサ2に実行させるプログラムが記録されている。
【0275】
本実施の形態において、埋設管の属性データ16は、埋設管の公称管厚に代えて、埋設管の許容腐食深さを含んでもよい。埋設管更新時期予測装置1eは、最小許容管厚算出部12と、許容腐食深さ算出部13と、管厚許容差データベース部23とを備えてもよい。腐食深さ超過確率予測モデルに、埋設管の第1埋設期間T1と許容腐食深さとを適用して、腐食深さ超過確率と、漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つとが算出されてもよい。
【0276】
本実施の形態の埋設管更新時期予測装置1e、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体の効果は、実施の形態4の埋設管更新時期予測装置1d、埋設管更新時期予測方法、プログラム及びコンピュータ読み取り可能な記録媒体の効果に加えて、以下の効果を奏する。
【0277】
本実施の形態の埋設管更新時期予測装置1eは、漏水事故件数算出部123、漏水事故確率算出部127または漏水事故総件数算出部131の少なくとも一つをさらに備える。属性データ16は、埋設管の管路IDと管路長さとをさらに含む。漏水事故件数算出部123は、管路IDで特定される埋設管の腐食深さ超過確率と管路IDで特定される埋設管の管路長さとから、ある時期における漏水事故件数を管路ID毎に算出する。漏水事故件数は、ある時期において、単位時間当たりに、管路IDで特定される埋設管に漏水事故が発生する件数である。漏水事故確率算出部127は、管路IDで特定される埋設管の腐食深さ超過確率と管路IDで特定される埋設管の管路長さとから、ある時期における漏水事故確率を管路ID毎に算出する。漏水事故確率は、ある時期において、単位時間かつ単位距離当たりに、管路IDで特定される埋設管に漏水事故が発生する件数である。漏水事故総件数算出部131は、属性データ16に含まれる全ての管路IDについて、ある時期における漏水事故件数を足し合わせて、ある時期における漏水事故総件数を算出する。
【0278】
埋設管更新時期予測装置1eによれば、顧客が管路の更新計画を策定することを容易にする漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つを、顧客に提供することができる。
【0279】
本実施の形態の埋設管更新時期予測方法は、漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つを算出するステップをさらに備える。属性データ16は、埋設管の管路IDと管路長さとをさらに含む。漏水事故件数は、ある時期において、単位時間当たりに、埋設管に漏水事故が発生する件数であって、管路IDで特定される埋設管の腐食深さ超過確率と管路IDで特定される埋設管の管路長さとから管路ID毎に算出される。漏水事故確率は、ある時期において、単位時間かつ単位距離当たりに、管路IDで特定される埋設管に漏水事故が発生する件数であって、管路IDで特定される埋設管の腐食深さ超過確率と管路IDで特定される埋設管の管路長さとから算出される。漏水事故総件数は、属性データ16に含まれる全ての管路IDについて、ある時期における漏水事故件数を足し合わせて算出される。
【0280】
本実施の形態の埋設管更新時期予測方法によれば、顧客が管路の更新計画を策定することを容易にする漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つを、顧客に提供することができる。
【0281】
本実施の形態のプログラムは、本実施の形態の埋設管更新時期予測方法の各ステップをプロセッサ2に実行させる。本実施の形態のコンピュータ読み取り可能な記録媒体には、本実施の形態のプログラムが記録されている。本実施の形態のプログラム及びコンピュータ読み取り可能な記録媒体によれば、顧客が管路の更新計画を策定することを容易にする漏水事故件数、漏水事故確率または漏水事故総件数の少なくとも一つを、顧客に提供することができる。
【0282】
(変形例)
実施の形態1から実施の形態3において、埋設管の属性データ16は、埋設管の許容腐食深さに代えて、埋設管の公称管厚(図6を参照)を含んでもよい。管更新時期予測部36は、埋設管の腐食深さが埋設管の公称管厚に達する公称管厚到達時期を算出して出力してもよい。管更新判断部37は、管更新判断基準記憶部27から、埋設管の公称厚さに対応する管更新判断内容を読み出して、当該管更新判断内容を含む埋設管の管更新判断結果52を出力してもよい。
【0283】
実施の形態1から実施の形態4において、埋設管の第1データ17は、埋設場所(図4を参照)に代えて、管路マップ101(図54を参照)を含んでもよい。実施の形態1から実施の形態4の埋設管更新時期予測装置1,1b,1c,1dでは、環境因子マップ作成部105と、地盤情報マップデータベース部107と、地盤-環境因子対応関係データベース部108と、環境マップ記憶部109とを備えてもよい。
【0284】
実施の形態4及び実施の形態5の埋設管更新時期予測装置1d,1eは、実施の形態2または実施の形態3に示されているように、通信ネットワーク90を介して、クライアント端末80または属性データ作成ユニット70に通信可能に接続されてもよい。
【0285】
実施の形態4及び実施の形態5の埋設管更新時期予測装置1d,1eは、管更新時期予測部36(図2を参照)と、管更新判断部37(図2を参照)と、最小許容管厚算出部12(図2を参照)と、許容腐食深さ算出部13(図2を参照)と、管厚許容差データベース部23(図2を参照)と、管更新判断基準記憶部27(図2を参照)とを備えてもよい。
【0286】
今回開示された実施の形態1-5及びそれらの変形例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
【符号の説明】
【0287】
1,1b,1c,1d,1e 埋設管更新時期予測装置、2,72,82 プロセッサ、3,73,83 ROM、4,74,84 RAM、5,75 ハードディスク、6,76,86 通信部、7 可搬型記憶媒体用ドライブ、7m 可搬型記憶媒体、8a,77,87 入力部、8b,78,88 モニタ、9 バス、10 埋設管属性データ取得部、11 埋設管データ受付部、12 最小許容管厚算出部、13 許容腐食深さ算出部、14 属性データ作成部、16 属性データ、17 第1データ、18 参照データ、20,85 記憶部、21 環境因子データベース部、22 公称管厚データベース部、23 管厚許容差データベース部、24 埋設管属性データ記憶部、25 腐食深さ経時変化予測モデル記憶部、26 腐食深さ超過確率予測モデル記憶部、27 管更新判断基準記憶部、28 腐食のラグタイム記憶部、31 腐食深さ経時変化予測モデル選択部、32 腐食深さ超過確率予測モデル選択部、36 管更新時期予測部、37 管更新判断部、38 腐食深さ超過確率予測部、41,42,43,45 データテーブル、50 管更新時期予測結果、51 管更新判断データテーブル、52 管更新判断結果、53 腐食深さ超過確率結果、60,60c 埋設管更新時期予測システム、65 記憶ユニット、70 属性データ作成ユニット、80 クライアント端末、90 通信ネットワーク、101 管路マップ、105 環境因子マップ作成部、106 環境因子マップ、107 地盤情報マップデータベース部、108 環境因子対応関係データベース部、109 環境マップ記憶部、110 環境因子対応データテーブル、123 漏水事故件数算出部、124 漏水事故指標記憶部、127 漏水事故確率算出部、128 漏水事故確率出力部、129 漏水事故確率マップ、131 漏水事故総件数算出部、132 漏水事故総件数出力部、133 漏水事故総件数グラフ。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37
図38
図39
図40
図41
図42
図43
図44
図45
図46
図47
図48
図49
図50
図51
図52
図53
図54
図55
図56
図57
図58
図59
図60
図61
図62
図63
図64
図65