(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-05-31
(45)【発行日】2024-06-10
(54)【発明の名称】ケーソン管理システム及びプログラム
(51)【国際特許分類】
E02D 23/04 20060101AFI20240603BHJP
【FI】
E02D23/04 Z
(21)【出願番号】P 2024015237
(22)【出願日】2024-02-02
【審査請求日】2024-02-02
【早期審査対象出願】
(73)【特許権者】
【識別番号】000103769
【氏名又は名称】オリエンタル白石株式会社
(74)【代理人】
【識別番号】100120868
【氏名又は名称】安彦 元
(74)【代理人】
【識別番号】100198214
【氏名又は名称】眞榮城 繁樹
(72)【発明者】
【氏名】進藤 匡浩
(72)【発明者】
【氏名】倉知 禎直
(72)【発明者】
【氏名】正司 明夫
【審査官】亀谷 英樹
(56)【参考文献】
【文献】特開2019-065639(JP,A)
【文献】特開2022-089385(JP,A)
【文献】中国特許第113035200(CN,B)
【文献】特開2016-089540(JP,A)
【文献】特開2021-005158(JP,A)
【文献】特開2016-065750(JP,A)
【文献】特開2023-070294(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E02D 23/00-23/16
G06N 20/00-20/20
(57)【特許請求の範囲】
【請求項1】
ニューマチックケーソン工法に使用されるケーソン躯体の各種状態を示す躯体情報と、
ニューマチックケーソン工法に関する質問を示す質問情報とを取得する取得手段と、
躯体情報とニューマチックケーソン工法の作業履歴を示す履歴情報とを紐づけて記憶するデータベース
から、前記取得手段により取得された躯体情報
に類似する躯体情報と、当該躯体情報に紐づく前記履歴情報と、を含む類似躯体情報を抽出する抽出手段と、
前記取得手段により取得された質問情報を
、前記抽出手段により抽出された類似躯体情報に基づいて質問情報と回答情報との連関度を学習させた基盤モデルに入力し、質問に対するニューマチックケーソン工法に関する回答を示す回答情報を出力する出力手段とを備えること
を特徴とするケーソン管理システム。
【請求項2】
前記出力手段は、前記取得手段により取得された質問情報と前記抽出手段により抽出された類似躯体情報とに基づいて、質問情報と類似躯体情報との関係性を示す関係情報を出力し、出力した前記関係情報と前記類似躯体情報とに基づいて
前記連関度を学習させた前記基盤モデルに、前記取得手段により取得された質問情報
を入力し、前記回答情報を出力すること
を特徴とする請求項1に記載のケーソン管理システム。
【請求項3】
前記抽出手段は、前記取得手段により取得された躯体情報と前記データベースに記憶された躯体情報との類似度を示す類似度情報を抽出し、
前記出力手段は、前記取得手段により取得された質問情報
を、前記抽出手段により抽出された類似躯体情報と類似度情報とに基づいて
前記連関度を学習させた前記基盤モデルに、前記回答情報を出力すること
を特徴とする請求項1に記載のケーソン管理システム。
【請求項4】
前記取得手段は、前記ケーソン躯体の作業室内の地盤標高を示す地盤画像情報を含む前記躯体情報を取得すること
を特徴とする請求項1に記載のケーソン管理システム。
【請求項5】
前記取得手段は、時点と前記ケーソン躯体の各種状態とが紐づけられた時系列情報を含む前記躯体情報を取得すること
を特徴とする請求項1に記載のケーソン管理システム。
【請求項6】
前記出力手段は、前記取得手段により取得された質問情報を
前記抽出手段により抽出された類似躯体情報に基づいて前記連関度を学習させた大規模言語モデル(LargeLanguageModel)に入力し、回答情報を出力すること
を特徴とする請求項1に記載のケーソン管理システム。
【請求項7】
ニューマチックケーソン工法に使用されるケーソン躯体の各種状態を示す躯体情報と、
ニューマチックケーソン工法に関する質問を示す質問情報とを取得する取得ステップと、
躯体情報とニューマチックケーソン工法の作業履歴を示す履歴情報とを紐づけて記憶するデータベース
から、前記取得ステップにより取得された躯体情報
に類似する躯体情報と、当該躯体情報に紐づく前記履歴情報と、を含む類似躯体情報を抽出する抽出ステップと、
前記取得ステップにより取得された質問情報を
、前記抽出ステップにより抽出された類似躯体情報に基づいて質問情報と回答情報との連関度を学習させた基盤モデルに入力し、質問に対するニューマチックケーソン工法に関する回答を示す回答情報を出力する出力ステップとをコンピュータに実行させること
を特徴とするケーソン管理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ケーソン管理システム及びプログラムに関する。
【背景技術】
【0002】
ケーソンは、コンクリート製又は鋼製で全体が略筒状をなし、例えば、立坑等の地下構造物や橋梁基礎等の水中構造物に用いられる。ケーソンは、地下構造物として用いる場合には、地盤を掘削しながら、自重や圧入力により地中に沈設される。ケーソンを地盤中に沈設する工法には、大きくオープンケーソン工法とニューマチックケーソン工法との二つに分けられる。オープンケーソン工法は、両端に蓋のない筒として掘削する工法であるのに対して、ニューマチックケーソン工法は、ケーソンの下部に気密にした作業室を設け、そこに圧縮空気を送り込んで地下水の浸入を防ぎ、地上と同じ状態で掘削を行う工法である。
【0003】
ニューマチックケーソン工法の作業室の気圧は、原則として地盤の間隙水圧に見合った気圧にするため、一般的に周辺地盤の地下水位を下げることがなく、周辺地盤の地盤沈下や井戸涸れ等の心配がなく優れた工法と言われる。
【0004】
ところで、このニューマチックケーソン工法に基づいてケーソンを地盤に掘削しつつコンクリート躯体を沈設していく過程において、特にこのコンクリート躯体を鉛直方向に向けてまっすぐに沈下させていくことが求められる。しかしながら、掘削順序やコンクリート躯体周囲の地盤に対する摩擦力、地盤特性や、コンクリート躯体の形状等の各要因に応じてケーソンの位置や姿勢が変化してしまう場合が多々あることから、その沈下方向は必ずしも鉛直方向にならず、場合によっては斜め方向に沈下させてしまう場合もある。このため、これら各要因に基づいてケーソンの位置や姿勢を微調整しながらコンクリート躯体を地盤中に沈下させる必要があるが、実際にこれを高精度に行うためには相当の熟練が必要になり、また工事にともなう労力の負担が過大になっている。このため、これらケーソン躯体を自動的に鉛直方向に向けて沈設制御を行うことが可能な技術が従来より望まれていた。
【0005】
このようなケーソン躯体の鉛直方向への自動的な沈設制御を行う上では、現時点におけるケーソン躯体の各種状態から、次時点におけるケーソン躯体の各種状態を予測することが重要となる。つまり、現時点におけるケーソン躯体の位置や姿勢等の各種状態においてある掘削方法に基づいて掘削を行った場合、次時点においてケーソン躯体がどのような位置や姿勢等の各種状態に遷移するのかを予測することができれば、逆にケーソン躯体の鉛直方向への沈設を行う上で必要な掘削方法を見出すことが可能となり、ひいてはケーソン躯体の鉛直方向への自動的な沈設制御にもつながる(例えば、特許文献1参照)。
【0006】
特許文献1では、ケーソンを用いた施工において、ケーソンの躯体に設けられたセンサ装置が取得したセンサ情報に基づき、掘削後の地盤の形状を示す掘削形状情報を取得する掘削形状情報取得部と、センサ情報に基づき、地盤の掘削によって沈下後の前記ケーソンの沈設状態に関する情報を示す沈設状態情報を取得する沈設状態情報取得部と、地盤の掘削とケーソンの沈下の関係を学習した予測モデルを用いて、取得された掘削形状情報及び沈設状態情報から次の掘削における地盤の掘削形状を予測する予測部と、を備える掘削形状予測装置が開示されている。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
ここで、地盤を掘削することによるケーソンの沈下状態は、ケーソン躯体の形状や寸法、現場の地質、さらには掘削の深さや方法等の様々な要因により、多様に変化する。このため、ケーソンを沈下させる利用者は、例えば「掘削後に特定の位置が何分後に沈下するか?」等の疑問や質問が出てくるケースが多い。
【0009】
一方、特許文献1に開示されている掘削形状予測装置は、利用者に次に掘削すべき情報を予測することを前提としており、利用者の質問に回答することを想定していない。このため、特許文献1に開示されている掘削形状予測装置では、利用者のケーソンに関する質問に対して柔軟に回答することができないという問題点があった。
【0010】
そこで本発明は、上述した問題に鑑みて案出されたものであり、その目的とするところは、利用者の質問に対して柔軟に回答することができるケーソン管理システム及びプログラムを提供することにある。
【課題を解決するための手段】
【0011】
第1発明に係るケーソン管理システムは、ニューマチックケーソン工法に使用されるケーソン躯体の各種状態を示す躯体情報と、ニューマチックケーソン工法に関する質問を示す質問情報とを取得する取得手段と、躯体情報とニューマチックケーソン工法の作業履歴を示す履歴情報とを紐づけて記憶するデータベースから、前記取得手段により取得された躯体情報に類似する躯体情報と、当該躯体情報に紐づく前記履歴情報と、を含む類似躯体情報を抽出する抽出手段と、前記取得手段により取得された質問情報を、前記抽出手段により抽出された類似躯体情報に基づいて質問情報と回答情報との連関度を学習させた基盤モデルに入力し、質問に対するニューマチックケーソン工法に関する回答を示す回答情報を出力する出力手段とを備えることを特徴とする。
【0012】
第2発明に係るケーソン管理システムは、第1発明において、前記出力手段は、前記取得手段により取得された質問情報と前記抽出手段により抽出された類似躯体情報とに基づいて、質問情報と類似躯体情報との関係性を示す関係情報を出力し、出力した前記関係情報と前記類似躯体情報とに基づいて前記連関度を学習させた前記基盤モデルに、前記取得手段により取得された質問情報を入力し、前記回答情報を出力することを特徴とする。
【0013】
第3発明に係るケーソン管理システムは、第1発明において、前記抽出手段は、前記取得手段により取得された躯体情報と前記データベースに記憶された躯体情報との類似度を示す類似度情報を抽出し、前記出力手段は、前記取得手段により取得された質問情報を、前記抽出手段により抽出された類似躯体情報と類似度情報とに基づいて前記連関度を学習させた前記基盤モデルに、前記回答情報を出力することを特徴とする。
【0014】
第4発明に係るケーソン管理システムは、第1発明において、前記取得手段は、前記ケーソン躯体の作業室内の地盤標高を示す地盤画像情報を含む前記躯体情報を取得することを特徴とする。
【0015】
第5発明に係るケーソン管理システムは、第1発明において、前記取得手段は、時点と前記ケーソン躯体の各種状態とが紐づけられた時系列情報を含む前記躯体情報を取得することを特徴とする。
【0016】
第6発明に係るケーソン管理システムは、第1発明において、前記出力手段は、前記取得手段により取得された質問情報を前記抽出手段により抽出された類似躯体情報に基づいて前記連関度を学習させた大規模言語モデル(LLM:LargeLanguageModel)に入力し、前記抽出手段により抽出された類似躯体情報に基づいて、回答情報を出力することを特徴とする。
【0017】
第7発明に係るケーソン管理プログラムは、ニューマチックケーソン工法に使用されるケーソン躯体の各種状態を示す躯体情報と、ニューマチックケーソン工法に関する質問を示す質問情報とを取得する取得ステップと、躯体情報とニューマチックケーソン工法の作業履歴を示す履歴情報とを紐づけて記憶するデータベースから、前記取得ステップにより取得された躯体情報に類似する躯体情報と、当該躯体情報に紐づく前記履歴情報と、を含む類似躯体情報を抽出する抽出ステップと、前記取得ステップにより取得された質問情報を、前記抽出ステップにより抽出された類似躯体情報に基づいて質問情報と回答情報との連関度を学習させた基盤モデルに入力し、質問に対するニューマチックケーソン工法に関する回答を示す回答情報を出力する出力ステップとをコンピュータに実行させることを特徴とする。
【発明の効果】
【0018】
第1発明から第7発明によれば、本発明のケーソン管理システム及びプログラムは、質問情報を基盤モデルに入力し、類似躯体情報に基づいて、回答情報を出力する。これにより、類似躯体情報に基づいて、単語間の生成確率等を設定することにより、利用者の質問に対して、適切な履歴情報を考慮し、柔軟に回答することが可能となる。
【0019】
特に、第2発明によれば、本発明のケーソン管理システムは、関係情報と質問情報と履歴情報とに基づいて、回答情報を出力する。これにより、質問に対して関係性の高い履歴情報を考慮することができる。このため、より高精度に質問に対して回答することが可能となる。
【0020】
特に、第3発明によれば、本発明のケーソン管理システムは、質問情報、履歴情報及び類似度情報に基づいて、回答情報を出力する。これにより、例えば施工現場のケーソン躯体の状態と類似する躯体情報に紐づく履歴情報に基づいて回答することが可能となる。このため、より高精度に質問に対して回答することが可能となる。
【0021】
特に、第4発明によれば、本発明のケーソン管理システムは、画像情報を含む躯体情報を取得する。これにより、コンター図等の画像情報を考慮して、回答情報を出力することが可能となる。このため、より柔軟に質問に対して回答することが可能となる。
【0022】
特に、第5発明によれば、本発明のケーソン管理システムは、時系列情報を含む躯体情報を取得する。これにより、時系列的な躯体情報の変化等を考慮して、回答情報を出力することが可能となる。このため、より柔軟に質問に対して回答することが可能となる。
【0023】
特に、第6発明によれば、本発明のケーソン管理システムは、大規模言語モデルを用いる。これにより、膨大なデータからモデルを学習することが可能となる。このため、より柔軟に質問に対して回答することが可能となる。
【図面の簡単な説明】
【0024】
【
図1】
図1は、ニューマチックケーソン工法の主要設備を示す縦断面図である。
【
図3】
図3は、本発明に係る作業機の一例である掘削機の側面図である。
【
図4】
図4は、掘削機における制御系統を示すブロック図である。
【
図5】
図5は、本実施形態を適用したケーソン管理システムの構成を示すブロック図である。
【
図6】
図6は、本実施形態を適用したケーソン管理システムの動作についてのフローチャートである。
【
図8】
図8は、基盤モデルの連関性を示す図である。
【発明を実施するための形態】
【0025】
図1は、本発明に係るケーソン管理システムが用いられるニューマチックケーソン工法の主要設備の一例を示す図である。
図1では、ケーソン1の構築途中の状態が示されている。詳しくは、ケーソン1のうちの大半が地盤8内に沈下して静止している状態が示されている。ニューマチックケーソン工法は、掘削設備E1、艤装設備E2、排土設備E3、送気設備E4及び予備・安全設備E5を用いて、鉄筋コンクリート製のケーソン1を地中に沈下させていくことにより、地下構造物を構築するように構成されている。
【0026】
掘削設備E1は、例えば、掘削機100(以下、ケーソンショベル100という)と、土砂自動積込装置11と、地上遠隔操作室13とを備える。ケーソンショベル100は、ケーソン1の底部に設けられた刃口部7の内側に設けられる作業室2内に設置される。土砂自動積込装置11は、ケーソンショベル100により掘削された土砂を円筒状のアースバケット31に積み込む。地上遠隔操作室13は、ケーソンショベル100の作動を地上から遠隔操作する遠隔操作装置12を備える。
【0027】
艤装設備E2は、例えば、マンシャフト21と、マンロック22(エアロック)と、マテリアルシャフト23と、マテリアルロック24(エアロック)とを備える。マンシャフト21は、作業者が作業室2へ出入りするために地上と作業室2とを繋ぐ円筒状の通路であり、例えば、螺旋階段25が設けられている。マンロック22は、マンシャフト21に設けられ地上の大気圧と作業室2内の圧力差を調節する二重扉構造の気密扉である。マテリアルシャフト23は、土砂自動積込装置11により土砂が積み込まれたアースバケット31を地上に運び出すために地上と作業室2とを繋ぐ円筒状の通路である。マテリアルロック24は、マテリアルシャフト23と、材料等を搬出入するためのマテリアルシャフト23に設けられた地上の大気圧と作業室2内の圧力差を調節する二重扉構造の気密扉である。マンロック22およびマテリアルロック24は、作業室2内の気圧が変化することを抑えて作業者やアースバケット31を作業室2へ出入りさせることが可能になるように構成されている。
【0028】
排土設備E3は、例えば、アースバケット31と、キャリア装置32と、土砂ホッパー33とを備える。アースバケット31は、ケーソンショベル100により掘削された土砂が積み込まれる有底円筒状の筒容器である。キャリア装置32は、アースバケット31を、マテリアルシャフト23を介して地上まで引き上げて運び出す装置である。土砂ホッパー33は、アースバケット31及びキャリア装置32により地上に運び出された土砂を一時的に貯めておく設備である。
【0029】
送気設備E4は、例えば、空気圧縮機42と、空気清浄装置43と、送気圧力調整装置44と、自動減圧装置45とを備える。空気圧縮機42は、送気管41及びケーソン1に形成された送気路3を介して作業室2内に圧縮空気を送る装置である。空気清浄装置43は、空気圧縮機42により送り込む圧縮空気を浄化する装置である。送気圧力調整装置44は、作業室2内の気圧が地下水圧と等しくなるように空気圧縮機42から作業室2内へ送る圧縮空気の量(圧力)を調整する装置である。自動減圧装置45は、マンロック22内の気圧を減圧する装置である。
【0030】
予備・安全設備E5は、例えば、非常用空気圧縮機51と、ホスピタルロック53とを備える。非常用空気圧縮機51は、空気圧縮機42の故障又は点検などの時に空気圧縮機42に代わって作業室2内に圧縮空気を送ることが可能な装置である。ホスピタルロック53は、作業室2内で作業を行った作業者が入り、当該作業者の身体を徐々に大気圧に慣らしていくための減圧室である。
【0031】
次に、本発明における刃口部7について、
図2を用いて説明する。刃口部7は、ケーソン1の下端部に備えられるものである。刃口部7は、
図2に示すように、ケーソン沈下時に地盤8に貫入する部位であり、概ね円筒状に形成されている。刃口部7の内周面71は、刃口部先端72から上方に向かうほどケーソン1の中心側に近づくように傾斜したテーパー状に形成されている。詳しくは、刃口部7の最下端部における内周面71の傾斜角は、その上側の内周面71における上述した傾斜角よりも大きくなるように設定されている。
【0032】
ここで、ケーソン沈設施工の際に、刃口部7は、
図2に示すように、掘り残し土80に貫入する。掘り残し土80は、刃口部7に掛かる地盤反力を弱めてケーソン1の沈降を制限する目的で刃口部7近傍に設ける土砂の掘り残しである。掘り残し土80が内周面71に達しているときには内周面71が地盤反力を受けるため、ケーソン1の沈降を抑えることができる。特に軟弱地盤においては、掘り残し土80を大きくすることにより刃口部7が受ける地盤反力を低減させることにより、ケーソン1の沈降を抑えることができる。また、刃口境界部70は、刃口部7の内周面71のうちの作業室2に露出している部分と内周面71のうちの掘り残し土80内に貫入している部分との境界である。刃口境界部70を判定することにより、掘り残し土幅81の算出が可能となる。また、刃口境界部70から、刃口部先端72までの高さHが刃口深度となる。
【0033】
次に、本発明に係るケーソンショベル100について
図3~
図4を用いて説明する。ケーソンショベル100は、
図3に示すように、例えば、走行体110と、ブーム130と、バケットアタッチメント150とを備える。走行体110は、作業室2の天井部に設けられた左右一対の走行レール4に取り付けられ、左右の走行レール4に懸下された状態で走行レール4に沿って走行移動する。ブーム130は、走行体110の旋回フレーム121に上下方向に揺動可能に枢結される。バケットアタッチメント150は、ブーム130の先端部に取り付けられる。
【0034】
走行体110は、走行フレーム111と、旋回フレーム121と、走行ローラ113とを備える。旋回フレーム121は、走行フレーム111の下面側に旋回自在に設けられる。走行ローラ113は、走行フレーム111の上面側前後に、設けられている前後左右の4個のローラである。走行体110は、前後左右の走行ローラ113を回転駆動させて左右の走行レール4に沿って走行移動するように構成されている。
【0035】
ブーム130は、例えば、基端ブーム131と、先端ブーム132と、伸縮シリンダ133と、起伏シリンダ134とを備える。基端ブーム131は、旋回フレーム121に起伏自在又は上下方向に揺動自在に取り付けられる。先端ブーム132は、基端ブーム131に入れ子式に組み合わされ、構成される。伸縮シリンダ133は、基端ブーム131内に設けられている。起伏シリンダ134は、基端ブーム131の左右に2個設けられている。ブーム130は、伸縮シリンダ133を伸縮させると、基端ブーム131に対して先端ブーム132が長手方向に移動し、これによりブーム130が伸縮するように構成されている。2個の起伏シリンダ134の基端部は基端ブーム131の左右側部にそれぞれ回動自在に取り付けられている。
【0036】
バケットアタッチメント150は、ベース部材151と、バケット152と、バケットシリンダ153とを備える。ベース部材151は、先端ブーム132に取り付けられる。バケット152は、ベース部材151の先端部に上下揺動自在に取り付けられる。バケットシリンダ153は、ベース部材151に対してバケット152を上下揺動させるように構成される。
【0037】
コントロールユニット165は、
図4に示すように、メインコントローラ165aと、走行体用コントローラ165bと、ブーム・バケット用コントローラ165cとを備える。また、コントロールユニット165は、ケーソンショベル100と、遠隔操作装置12と接続されていてもよい。コントロールユニット165は、遠隔操作装置12に内蔵されていてもよい。メインコントローラ165aは、走行体用コントローラ165bと、ブーム・バケット用コントローラ165cとに接続され、遠隔操作装置12からの操作信号を受けて、その操作信号に応じた駆動制御信号を走行体用コントローラ165bと、ブーム・バケット用コントローラ165cとに出力する。走行体用コントローラ165bは、メインコントローラ165aから出力された駆動制御信号に応じて、走行体110を駆動させるように構成されている。メインコントローラ165aおよび走行体用コントローラ165bは、走行体110の旋回フレーム121に配設されている。ブーム・バケット用コントローラ165cは、メインコントローラ165aから出力された駆動制御信号に応じて、ブーム130及びバケットアタッチメント150を駆動させるように構成されている。ブーム・バケット用コントローラ165cは、ブーム130の基端ブーム131の側部に配設されている。
【0038】
ケーソンショベル100は、
図4に示すように、走行体位置センサ201と、旋回角度センサ202と、ブーム起伏角度センサ203と、ブーム伸長量センサ204と、バケット揺動角度センサ205と、外界センサ206とを備える。走行体位置センサ201は、走行体110が走行レール4の何処の位置に位置しているかを検出する。旋回角度センサ202は、走行フレーム111に対する旋回フレーム121の旋回角度を検出する。ブーム起伏角度センサ203は、旋回フレーム121に対するブーム130の起伏角度を検出する。ブーム伸長量センサ204は、ブーム130の伸長量を検出する。バケット揺動角度センサ205は、ブーム130又はバケットアタッチメント150のベース部材151に対するバケット152の揺動角度を検出する。外界センサ206は、走行体110に設けられて作業室2内の掘削地面までの距離、地面の形状などの情報を取得する。また、ケーソンショベル100は、遠隔操作装置12と、コントロールユニット165と通信を行い、各センサ201~206で得たデータを、遠隔操作装置12と、コントロールユニット165とに送信してもよい。
【0039】
走行体位置センサ201は、例えば、走行体110の走行フレーム111に配設されたレーザセンサによって構成される。走行体位置センサ201は、レーザ光を走行レール4の端部又は作業室2の壁部に向けて照射して走行レール4の端部又は作業室2の壁部において反射して戻ってくるまでの時間を測定する。走行体位置センサ201は、この時間に基づいて走行レール4の端部又は作業室2の壁部から走行体110までの距離を検出する。旋回角度センサ202は、例えば、走行体110の旋回フレーム121に配設された光学式のロータリーエンコーダによって構成される。旋回角度センサ202は、走行フレーム111に対する旋回フレーム121の旋回量を電気信号に変換する。旋回角度センサ202は、その信号を演算処理して旋回フレーム121の旋回方向及び位置を含める旋回角度を検出する。なお、走行体位置センサ201及び旋回角度センサ202は一例を説明したもので、走行体110の二次元的な位置を検出する他のセンサ、旋回フレーム121の旋回角度を検出する他のセンサをそれぞれ用いてもよい。
【0040】
ブーム起伏角度センサ203は、例えば、起伏シリンダ134のシリンダボトムの側部に配設されたレーザセンサによって構成される。ブーム起伏角度センサ203は、レーザ光を旋回フレーム121に向けて照射して旋回フレーム121において反射して戻ってくるまでの時間を測定する。ブーム起伏角度センサ203は、この時間に基づいて起伏シリンダ134の伸長量を検出し、その起伏シリンダ134の伸長量に基づいて旋回フレーム121に対するブーム130の起伏角度又は起伏位置を検出する。ブーム起伏角度センサ203も一例を説明したものであり、光学式ロータリーエンコーダ、ポテンショメータなどによりブーム130の起伏角を直接検出する他のセンサを用いてもよい。
【0041】
ブーム伸長量センサ204は、例えば、ブーム130の基端ブーム131に配設されたレーザセンサによって構成される。ブーム伸長量センサ204は、レーザ光を先端ブーム132の先端部に取り付けられたバケットアタッチメント150のベース部材151に向けて照射してベース部材151において反射して戻ってくるまでの時間を測定する。ブーム伸長量センサ204は、この時間に基づいて、ブーム130の伸長量として基端ブーム131に対する先端ブーム132の伸長量を検出する。ブーム伸長量センサ204も一例を説明したものであり、ブーム伸縮と共に伸縮するケーブルの伸長量を直接測定する他のセンサを用いてもよい。
【0042】
バケット揺動角度センサ205は、例えば、バケットシリンダ153の油路に配設された流量センサによって構成される。バケット揺動角度センサ205は、バケットシリンダ153に供給される作動油の流量を検出し、その流量の積分値を算出する。バケット揺動角度センサ205は、この流量積分値に基づいてバケットシリンダ153のピストンロッドの伸長量を求め、そのバケットシリンダ153の伸長量に基づいて、バケットアタッチメント150のベース部材151又はブーム130に対するバケット152の揺動角度又は揺動位置を検出する。バケット揺動角度センサ205も一例を説明したものであり、光学式ロータリーエンコーダ、ポテンショメータなどによりバケット152の揺動角度を直接検出他のセンサや、レーザセンサによりバケットシリンダ153の伸長量を求める他のセンサを用いてもよい。
【0043】
外界センサ206は、例えば、走行体110の旋回フレーム121に配設されたRGB-Dセンサによって構成される。外界センサ206は、掘削地面のRGB画像又はカラー画像、及び距離画像又は点群データを取得し、それらの画像に基づいて掘削地面までの距離情報、掘削地面の形状情報を取得する。外界センサ206は、RGB-Dセンサの他の例として、ステレオカメラや超音波距離計、レーザセンサなどを用いてもよい。
【0044】
走行体位置センサ201、旋回角度センサ202、ブーム起伏角度センサ203、ブーム伸長量センサ204、バケット揺動角度センサ205及び外界センサ206により検出されたそれぞれの情報は、コントロールユニット165のメインコントローラ165aに送信される。メインコントローラ165aは、走行体位置測定部211と、バケット位置測定部212と、地盤形状測定部213とを備える。
【0045】
走行体位置測定部211は、走行体位置センサ201により検出された走行レール4の端部又は作業室2の壁部から走行体110までの距離情報と、当該走行レール4が作業室2内の何処の位置に設けられた走行レールであるかという情報とを用いて、走行体110が作業室2内のどこに位置しているかを算出する。また、走行レール4が作業室2内の何処の位置に設けられた走行レールであるかという情報は、走行体110が取り付けられた走行レール4の情報であり、走行体110が取り付けられたときに走行体位置測定部211に設定されてもよい。また、走行体位置センサ201による距離情報の検出を周囲複数箇所に対して検出することにより、走行体110の天井内における二次元的な位置又は走行体110の向きを含む位置を検出してもよい。
【0046】
バケット位置測定部212は、旋回角度センサ202により検出された走行フレーム111に対する旋回フレーム121の旋回方向及び位置を含める旋回角度と、ブーム起伏角度センサ203により検出された旋回フレーム121に対するブーム130の起伏角度又は起伏位置と、ブーム伸長量センサ204により検出されたブーム130の伸長量と、バケット揺動角度センサ205により検出されたブーム130に対するバケット152の揺動角度又は揺動位置とを用いて、走行体110の走行フレーム111に対するバケット152の位置を算出する。
【0047】
地盤形状測定部213は、走行体位置測定部211により求められた作業室2内における走行体110の位置と、旋回角度センサ202により検出された走行フレーム111に対する旋回フレーム121の旋回方向および位置を含める旋回角度とを用いて、旋回フレーム121に設けられた外界センサ206の位置と、外界センサ206により距離情報を取得する方向と、外界センサ206により取得した距離情報を用いて、掘削地面の位置とを算出する。また、地盤形状測定部213は、掘り残し土80の形状を算出してもよい。掘り残し土80の形状とは、掘り残し土法面82と形状と、掘り残し土80が内周面71に接する面の水平面での形状との両方を含む。
【0048】
また、ケーソン1は、ケーソン1の各種状態を示す躯体情報を計測する計測装置9を備える。
【0049】
以下、本発明の第1実施形態について図面を参照しながら説明する。
図5は、本発明の実施形態を適用したケーソン管理システム6の全体構成を示すブロック図である。ケーソン管理システム6は、ケーソン管理システム6の利用者の質問に対する回答を行う。ケーソン管理システム6は、上述した計測装置9と、計測装置9に接続された遠隔操作装置12とを備えている。
【0050】
計測装置9は、ケーソン1に設けられた各種センサ等により測定された躯体情報を取得する。計測装置9は、躯体情報を遠隔操作装置12に送信する。
【0051】
遠隔操作装置12は、取得した情報から各種処理を行う。遠隔操作装置12は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。遠隔操作装置12は、ケーソン1に有線で接続されるように設けられてもよいが、これに限らず、無線通信等を用いて、情報を取得し、処理を行ってもよい。
【0052】
遠隔操作装置12は、計測装置9から躯体情報を取得する取得部14と、取得部14に接続される抽出部15と、抽出部15と取得部14とに接続される出力部16を備える。また、遠隔操作装置12は、取得部14と抽出部15と出力部16とに接続される記憶部17及び提示部18とを備える。
【0053】
取得部14は、各種情報を取得する。取得部14は、例えば計測装置9から躯体情報を取得する。また、取得部14は、例えば図示しないキーボードやマイクを介して、利用者から入力された、質問を含む質問情報や躯体情報を取得してもよい。取得部14は、取得した情報を抽出部15及び出力部16等に出力する。
【0054】
抽出部15は、取得部14から出力された躯体情報に基づいて、ニューマチックケーソン工法の作業履歴を示す履歴情報と躯体情報とを含む類似躯体情報を抽出する。抽出部15は、例えば躯体情報と履歴情報とを紐づけた類似躯体情報が記憶される記憶部17のデータベースを参照し、躯体情報に基づいて、類似躯体情報を抽出する。
【0055】
出力部16は、取得部14により取得された質問情報を基盤モデルに入力し、抽出部15により抽出された履歴情報に基づいて、質問に対するニューマチックケーソン工法に関する回答を示す回答情報を出力する。
【0056】
記憶部17は、躯体情報、質問情報、類似躯体情報、基盤モデル等の各種情報が記憶される。記憶部17は、例えばHDD(Hard Disk Drive)の他、SSD(Solid State Drive)やSDカード、miniSDカード等のデータ保存装置が用いられる。
【0057】
提示部18は、記憶部17に記憶された躯体情報等の各種情報、又は遠隔操作装置12の処理状況等を出力する。提示部18として、例えばディスプレイが用いられ、例えばタッチパネル式でもよい。提示部18は、例えばスピーカ等が用いられてもよい。
【0058】
次に、本発明の本実施形態を適用したケーソン管理システム6の動作について説明をする。
図6は、本実施形態を適用したケーソン管理システム6の動作についてのフローチャートである。
図6に示すように、ステップS1において、取得部14は、各種情報を取得する。取得部14は、例えば、計測装置9から送信された実際の現場で計測された躯体情報を取得する。取得部14は、例えば、利用者から入力された質問情報又は躯体情報を取得する。取得部14は、取得した躯体情報を抽出部15に出力し、質問情報を出力部16に出力する。
【0059】
質問情報は、質問を示す情報であり、テキスト又は音声形式の情報であってもよい。また、質問情報は、ニューマチックケーソン工法に関する質問であってよい。質問情報は、例えばケーソン1の施工に対する質問を含む情報であり、例えばテキストベースの情報であってもよいがこの限りではなく、音声の情報であってもよい。質問情報は、質問又は指示を示す情報であり、テキスト又は音声、画像形式の情報であってもよい。また、質問情報は、プロンプトであってもよい。質問情報は、例えば「ケーソン1のA点を沈下させるにはどうしたらいいか」、又は「ケーソン1のA点を○○メートル掘削したらどうなるか」等の質問を示す情報である。また、質問情報は、質問を形態素解析した情報であってもよい。取得部14は、取得した質問情報が音声又は画像形式である場合、音声認識又は画像認識を用いて、質問情報をテキスト形式に変換してもよい。取得部14は、取得した質問情報が画像形式である場合、R-CNN(Region Based Convolutional Neural Networks)、YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)等を用いて、質問情報の画像から特徴量を算出して、この特徴量に基づく物体や場所等の名称等のテキスト形式に変換してもよい。
【0060】
躯体情報は、ケーソン1の位置、ケーソン1の速度、ケーソン1の加速度、ケーソン1の姿勢、ケーソン1の変形量等である。ケーソン1の位置は、目標となる座標とのズレを示すものであり、基準座標(x,y,z)-誤差(x,y,z)で表される。躯体姿勢は、
図7のようにケーソン1の傾きθ等を表しており、躯体の4隅のz座標の差分値で表示してもよいし、x軸方向、y軸方向、z軸方向の傾き角を介して表示してもよい。また、躯体情報には、刃口深度、函内地形情報、相対的地盤情報、ケーソン情報、固定的地盤情報及び函内圧力が含まれてもよい。また、躯体情報は、ケーソンショベル100の台数の情報であってもよい。また、躯体情報は、ケーソン1の画像の情報でもよく、例えば地盤8のコンター図等でもよい。躯体情報は、ケーソン1の3次元画像であってもよい。かかる場合、躯体情報は、例えば公知のフォトグラメトリー等の技術を用いて複数の2次元画像から生成された3次元画像であってもよい。また、躯体情報は、センサ等により実際に測定された情報に限らず、シミュレーション等により擬似的に算出された情報であってもよい。
【0061】
函内地形情報は、函内地形であり、例えば掘り残し土の量や位置に応じて定量化される情報である。この函内地形情報は、函内の地盤を等間隔な格子で区切った場合に、各格子点の基準面からの高さを表したデータ等で表示するようにしてもよい。また、函内地形情報は、地盤8の地質の情報であってもよい。地質の情報は、例えば地盤8に含まれる水分量、構成物質等の情報である。函内地形情報は、ケーソン躯体の作業室内の地盤標高を示す地盤画像情報を含む。
【0062】
相対的地盤情報は、ケーソン1の受圧面積、開口率、周辺摩擦力、刃口反力、周囲地盤状況、周囲構造物状態等である。受圧面積は、食込刃口面積+未掘削面積+仮受材面積で表示される。開口率は、掘削済面積[m2]/躯体底面積[m2]で表される。また、受圧面積に基づいて刃口部7が、接している地面から受ける刃口反力を算出してもよい。周囲構造物状態は、ケーソン1の周囲にある構造物の位置や距離等の情報である。
【0063】
函内圧力は、作業室2内の圧力である。ケーソン情報は、ケーソン1の寸法、ケーソン1の形状、底面積、形状、重量等の情報が含まれる。固定的地盤情報は、掘削対象としている地盤8の地質や地下水位等の情報が含まれる。
【0064】
なお、上述した躯体情報は、函内地形情報、相対的地盤情報、函内圧力、ケーソン情報、固定的地盤情報の例に限定されるものではなく、概念的にこれらに含まれるいかなるパラメータも含まれる。躯体情報は、例えばケーソン1に加えられた圧力、水の荷重等の情報であってもよい。また、躯体情報は、これらのパラメータの時間的な変化量及び変化の傾向を示す情報であってもよい。そして、計測装置9は、これら各種情報を検出する上で必要な任意のセンサやデバイス等の計測手段により具現化される。躯体情報は、常に固定的なものではなく、ケーソン1による掘削の進展に応じて変動、更新される可能性のある情報である。このため、これら躯体情報は、計測装置9を介して随時取得され、更新されることになる。計測装置9は、計測した躯体情報を遠隔操作装置12に出力する。
【0065】
次に、ステップS2において、抽出部15は、類似躯体情報を抽出する。類似躯体情報は、履歴情報及び躯体情報を含む情報である。履歴情報は、ニューマチックケーソン工法の作業履歴を示す情報である。履歴情報は、過去のニューマチックケーソン工法の作業の現場で行われた作業の内容と、作業により起こった事象の内容とを含む情報である。履歴情報は、例えば、ケーソンショベル100が掘削した位置、掘削量、時間、動作量等の作業の内容の情報と、ケーソン1の沈下量、沈下時間、又は開口率及び掘り残し幅の時間変化等の事象の内容の情報とを含む。
【0066】
ステップS2において、抽出部15は、例えば躯体情報と履歴情報とを紐づけた類似躯体情報が記憶されるデータベースを参照し、取得部14により取得された躯体情報に基づいて、類似躯体情報を抽出する。かかる場合、抽出部15は、例えば記憶部17に記憶されているデータベースから、取得部14により取得された躯体情報に基づいて、検索を行い、取得部14により取得された躯体情報と類似するデータベースに記憶されている躯体情報を検索し、検索した躯体情報に紐づいて記憶されている履歴情報を含む類似躯体情報を抽出する。また、抽出部15は、例えば記憶部17に記憶されているデータベースから、取得部14により取得された躯体情報に基づいて、検索を行い、取得部14により取得された躯体情報との類似度が基準値よりも高い、データベースに記憶されている躯体情報を2以上検索し、検索した2以上の躯体情報に紐づいて記憶されている2以上の履歴情報を含む類似躯体情報を抽出する。かかる場合、抽出部15は、取得部14により取得された躯体情報とデータベースに記憶されている躯体情報との類似度を示す類似度情報も取得してよい。また、抽出部15は、例えば記憶部17に記憶されているデータベースから、取得部14により取得された躯体情報に基づいて、検索を行い、取得部14により取得された躯体情報との類似度が高い上位K個の躯体情報を検索し、検索したK個の躯体情報に紐づいて記憶されているK個の履歴情報を含む類似躯体情報を抽出してもよい。抽出部15は、各種情報を出力部16に出力する。
【0067】
また、ステップS2において、抽出部15は、例えば最大内積検索(MIPS;maximum inner-product search)を用いて、取得部14により取得された躯体情報と類似するデータベースに記憶されている躯体情報を検索し、検索した躯体情報に紐づいて記憶されている履歴情報を含む類似躯体情報を抽出してもよい。
【0068】
また、ステップS2において、抽出部15は、記憶部17に記憶されているデータベースに限らず、公共通信網を用いて、通信可能なサーバ等に記憶されているデータベースを参照し、検索を行ってもよい。
【0069】
また、ステップS2において、抽出部15は、躯体情報に含まれる各種情報毎に設定された優先度に基づいて、取得部14により取得された躯体情報とデータベースに記憶されている躯体情報との類似度を取得してもよい。かかる場合、抽出部15は、例えば躯体情報に含まれる刃口深度、函内地形情報、相対的地盤情報、ケーソン情報、固定的地盤情報及び函内圧力等の各種情報毎に優先度を設定し、優先度が高く設定された種類の情報が類似又は一致する場合、類似度が高くなるように設定してもよい。
【0070】
次に、ステップS3において、出力部16は、取得部14により取得された質問情報を基盤モデルに入力し、抽出部15により抽出された類似躯体情報に基づいて、回答情報を出力する。回答情報は、質問情報に含まれる質問に対するニューマチックケーソン工法に関する回答を示す情報である。回答情報は、例えば「ケーソン1のA点を沈下させるにはどうしたらいいか」という質問に対する「A点の開口率をX%減らすとYmm沈下するでしょう」等のニューマチックケーソン工法に関する回答を示す情報である。また、回答情報は、回答の根拠を示す情報が含まれてもよい。回答の根拠を示す情報は、例えば道路橋示方書、コンクリート標準示方書等の示方書、及び道路橋定期点検要領 国道交通省又は道路局が発行している要領、各県の橋梁長寿命化修繕計画等、論文、特許公文の記載事項等であってもよい。
【0071】
基盤モデルの生成方法として、例えばニューラルネットワークをモデルとした機械学習を用いて、基盤モデルを生成してもよい。基盤モデルは、例えばAIニューラルネットワークである。基盤モデルは、例えばCNN(Convolution Neural Network)等のニューラルネットワークをモデルとした機械学習を用いて学習されるほか、任意のモデルが用いられてもよい。また、基盤モデルの生成方法として、例えば検索拡張生成(RAG:Retrieval-Augmented Generation)、seq2seq(Sequence To Sequence)線形判別、サポートベクターマシン、k-近傍法、ランダムフォレスト、ディープラーニング等を用いて、基盤モデルを生成してもよい。
【0072】
かかる場合、基盤モデルには、例えば
図8のように、入力データである質問情報と出力データである回答情報との間における重みを有する連関性が記憶される。また、かかる場合、質問情報に含まれる形態素又は単語等を入力データとし、回答情報に含まれる形態素又は単語等を出力データとしてもよい。重みは、入力データと出力データとの繋がりの度合いを示しており、例えば重みが高いほど各データの繋がりが強いと判断することができる。重みは、例えば百分率等の3値以上又は3段階以上で示されるほか、2値又は2段階で示されてもよい。また、重みの学習に用いられる質問情報及び回答情報は、例えば予め取得した学習データに用いるための質問情報及び回答情報であるがこれに限らず、任意のタイミングで取得した情報を用いてもよい。
【0073】
例えば連関性は、複数の入力データ、対、複数の出力データの間における繋がりの度合いにより構築される。連関性は、機械学習の過程で適宜更新され、例えば複数の入力データ、及び複数の出力データに基づいて最適化された関数を用いた分類器を示す。なお、連関性は、例えば各データの間における繋がりの度合いを示す複数の重みを有してもよい。重みは、例えばデータベースがニューラルネットワークで構築される場合、重み変数に対応させることができる。連関性は、例えば
図8に示すように、複数の入力データと、複数の出力データとの間における繋がりの度合いを示してもよい。この場合、連関性を用いることで、
図8の「質問情報A」~「質問情報C」のそれぞれの入力データに対し、「回答情報A」~「回答情報C」の複数の出力データとの関係の度合いを紐づけて記憶させることができる。このため、例えば連関性を介して、1つの出力データに対して、複数の入力データを紐づけることができる。これにより、入力データに対して多角的な出力データの選択を実現することができる。また、入力データ及び出力データは、これに限らず、任意の種類の情報がさらに用いられてもよい。また、入力データは、例えば質問情報に含まれるテキスト情報及び/又は画像情報であってもよい。
【0074】
連関性は、例えば各入力データと、各出力データとをそれぞれ紐づける複数の重みを有する。重みは、例えば百分率、10段階、又は5段階等の3段階以上で示され、例えば線の特徴(例えば太さ等)で示される。例えば、入力データに含まれる「質問情報A」は、出力データに含まれる「回答情報A」との間の重みAA「73%」を示し、出力データに含まれる「回答情報B」との間の重みAB「12%」を示す。すなわち、「重み」は、各データ間における繋がりの度合いを示しており、例えば重みが高いほど、各データの繋がりが強いことを示す。
【0075】
このような
図8に示す3段階以上の重みを予め取得しておく。つまり実際の解の判別を行う上で、入力データと、出力データとの何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで
図8に示す重みを作り上げておく。
【0076】
例えば、過去において「質問情報B」という入力データに対して、「回答情報B」が最も適合性が高いと判断され、評価されたものとする。このようなデータセットを集めて分析することにより、入力データと出力データとの重みが強くなる。
【0077】
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例え「質問情報B」という入力データに対して、「回答情報B」が推定される事例が多い場合には、この「質問情報B」と「回答情報B」とにつながる重みをより高く設定する。
【0078】
また、この重みは、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した重みに対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
【0079】
また、基盤モデルは、入力データと出力データとの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力データ又は隠れ層データの何れか一方又は両方において上述した重みが設定され、これが各データの重み付けとなり、これに基づいて出力の選択が行われる。そして、この重みがある閾値を超えた場合に、その出力を選択するようにしてもよい。
【0080】
このような重みが、人工知能でいうところの学習データとなる。このような学習データを予め学習し、実際にステップS3において、出力部16は、新たに質問情報を基盤モデルに入力し、回答情報の出力を行うこととなる。出力の際には、例えば予め取得した
図8に示す重みを参照する。例えば、新たに取得した質問情報が「質問情報A」と同一かこれに類似するものである場合には、重みを介して「回答情報A」との間の重みAA「73%」、「回答情報B」との間の重みAB「12%」で関連付けられている。この場合には、重みの最も高い「質問情報A」を最適解として選択する。但し、最も重みの高いものを最適解として選択することは必須ではなく、重みは低いものの連関性そのものは認められる「回答情報B」を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、重みに基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
【0081】
このような重みを参照することにより、質問情報が、入力データと同一又は類似である場合のほか、非類似である場合においても、入力データに適した出力データを定量的に選択することができる。
【0082】
ステップS3において、出力部16は、類似躯体情報に基づいて、例えば基盤モデルの質問情報と回答情報との重みを再設定してもよい。かかる場合、類似躯体情報に含まれる単語又は類似する単語を含む質問情報と回答情報との重みが高くなるように設定してもよい。
【0083】
また、基盤モデルは、自然言語モデルであってもよい。基盤モデルは、教師なし学習により生成されたモデルであってもよい。また、基盤モデルは生成AIであってもよい。自然言語モデルは、質問情報に含まれる指示文の受け付けと、回答情報に含まれる応答文の生成とを交互に行う対話型、いわばチャット型または会話形のモデルであってよい。自然言語モデルは、大量のテキストデータで学習した大規模言語モデル(LLM:LargeLanguageModel)、又は当該大規模言語モデルを転移学習したモデルであってよい。
【0084】
大規模言語モデルは、人間の話す言葉をその出現確率でモデル化した言語モデルと呼ばれるものを、膨大なデータから事前学習する深層学習モデルである。即ち、大規模言語モデルは、大量のテキストデータを使ってトレーニングされた自然言語処理のモデルのことであり、質問情報として文章を入力とし、回答情報として文章を出力する。質疑応答を行うシステムに大規模言語モデルを適用した場合、質問情報として、質問文を大規模言語モデルに入力すると、回答情報として、LLMから回答文が出力される。
【0085】
ステップS3において、出力部16は、質問情報としてテキストデータ(プロンプト)を受信すると、大規模言語モデルを用いて、受信されたプロンプトに含まれる文章から次の単語の生成確率を統計的に推定し、推定結果に基づく回答情報を出力する。大規模言語モデルとしては、例えば、インターネットサイトとして、「https://chatgpt-lab.com/n/n418d3aa56f0b」や、「https://agirobots.com/chatgpt-mechanism-and-problem/」等に記載されている公知の技術を採用することができる。また、大規模言語モデルとして、例えば、米国OpenAI社が提供するGPT-4を用いてもよい。
【0086】
また、基盤モデルとして、大規模言語モデルを扱う場合、ステップS3において、出力部16は、類似躯体情報に基づいて、受信されたプロンプトに含まれる文章から次の単語を生成する生成確率を設定してもよい。かかる場合、ステップS3において、出力部16は、類似躯体情報に含まれる単語又は類似する単語の基盤モデルの生成確率が高くなるように設定してもよい。
【0087】
また、ステップS3において、出力部16は、ステップS1により取得された質問情報とステップS2により抽出された類似躯体情報とに基づいて、質問情報と類似躯体情報との関係性を示す関係情報を出力し、出力した関係情報と類似躯体情報とに基づいて、ステップS1により取得された質問情報を基盤モデルに入力し、回答情報を出力してもよい。関係情報は、例えば質問情報と類似躯体情報との重みを示す情報である。かかる場合、出力部16は、例えば質問情報に含まれる質問を示すテキスト情報を形態素解析し、形態素解析した質問情報と合致又は類似する情報が類似躯体情報に含まれているかを判定し、判定結果に応じて、質問情報と類似躯体情報との重みを決定してもよい。出力部16は、出力した関係情報と類似躯体情報とに基づいて、基盤モデルの質問情報と回答情報との重みを決定してもよい。また、出力部16は、例えば質問情報と関係情報とを入力データとし、回答情報を出力データとする学習データを用いて学習された基盤モデルを参照し、ステップS1により取得された質問情報と、ステップS2により抽出された類似躯体情報と、出力した関係情報とに基づいて、回答情報を出力してもよい。これにより、質問に対して関係性の高い類似躯体情報を考慮することができる。このため、より高精度に質問に対して回答することが可能となる。
【0088】
また、ステップS3において、出力部16は、ステップS1により取得された質問情報を基盤モデルに入力し、ステップS2により抽出された履歴情報と類似度情報とに基づいて、回答情報を出力してもよい。また、出力部16は、抽出した類似度情報に基づいて、基盤モデルの質問情報と回答情報との重みを決定してもよい。これにより、例えば施工現場のケーソン躯体の状態と類似する躯体情報に紐づく履歴情報に基づいて回答することが可能となる。このため、より高精度に質問に対して回答することが可能となる。
【0089】
また、任意のタイミングで、出力部16により回答情報を出力してもよい。
【0090】
これにより、本実施形態におけるケーソン管理システム6の動作が終了する。これにより、利用者の質問に対して、適切な履歴情報を考慮し、柔軟に回答することが可能となる。
【0091】
本発明の実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0092】
1 ケーソン
2 作業室
3 送気路
4 走行レール
6 ケーソン管理システム
7 刃口部
8 地盤
9 計測装置
11 土砂自動積込装置
12 遠隔操作装置
13 地上遠隔操作室
14 取得部
15 抽出部
16 出力部
17 記憶部
18 提示部
21 マンシャフト
22 マンロック
23 マテリアルシャフト
24 マテリアルロック
25 螺旋階段
31 アースバケット
32 キャリア装置
33 土砂ホッパー
41 送気管
42 空気圧縮機
43 空気清浄装置
44 送気圧力調整装置
45 自動減圧装置
51 非常用空気圧縮機
53 ホスピタルロック
70 刃口境界部
71 内周面
72 刃口部先端
80 掘り残し土
81 掘り残し土幅
82 掘り残し土法面
100 ケーソンショベル
110 走行体
111 走行フレーム
113 走行ローラ
121 旋回フレーム
130 ブーム
131 基端ブーム
132 先端ブーム
133 伸縮シリンダ
134 起伏シリンダ
150 バケットアタッチメント
151 ベース部材
152 バケット
153 バケットシリンダ
165 コントロールユニット
165a メインコントローラ
165b 走行体用コントローラ
165c ブーム・バケット用コントローラ
201 走行体位置センサ
202 旋回角度センサ
203 ブーム起伏角度センサ
204 ブーム伸長量センサ
205 バケット揺動角度センサ
206 外界センサ
211 走行体位置測定部
212 バケット位置測定部
213 地盤形状測定部
【要約】
【課題】利用者の質問に対して柔軟に回答することができるケーソン管理システム及びプログラムを提供する。
【解決手段】本発明に係るケーソン管理システムは、ニューマチックケーソン工法に使用されるケーソン躯体の各種状態を示す躯体情報と、質問を示す質問情報とを取得する取得手段と、躯体情報とニューマチックケーソン工法の作業履歴を示す履歴情報とを紐づけて記憶するデータベースを参照し、前記取得手段により取得された躯体情報に基づいて、前記履歴情報と前記躯体情報とを含む類似躯体情報を抽出する抽出手段と、前記取得手段により取得された質問情報を基盤モデルに入力し、前記抽出手段により抽出された類似躯体情報に基づいて、質問に対するニューマチックケーソン工法に関する回答を示す回答情報を出力する出力手段とを備えることを特徴とする。
【選択図】
図5