IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エイブイエックス コーポレイションの特許一覧

特許7498177電圧調整可能な積層キャパシタの制御システムおよび方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-03
(45)【発行日】2024-06-11
(54)【発明の名称】電圧調整可能な積層キャパシタの制御システムおよび方法
(51)【国際特許分類】
   H01G 7/06 20060101AFI20240604BHJP
   H01G 4/30 20060101ALI20240604BHJP
   H02M 3/155 20060101ALI20240604BHJP
【FI】
H01G7/06
H01G4/30 201K
H01G4/30 201L
H02M3/155 H
【請求項の数】 24
(21)【出願番号】P 2021537783
(86)(22)【出願日】2019-12-19
(65)【公表番号】
(43)【公表日】2022-03-14
(86)【国際出願番号】 US2019067385
(87)【国際公開番号】W WO2020139681
(87)【国際公開日】2020-07-02
【審査請求日】2021-08-18
【審判番号】
【審判請求日】2023-07-13
(31)【優先権主張番号】62/784,879
(32)【優先日】2018-12-26
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500047848
【氏名又は名称】キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100173565
【弁理士】
【氏名又は名称】末松 亮太
(72)【発明者】
【氏名】カイン,ジェフリー
(72)【発明者】
【氏名】ホック,ジョセフ・エム
【合議体】
【審判長】井上 信一
【審判官】篠原 功一
【審判官】渡辺 努
(56)【参考文献】
【文献】米国特許出願公開第2008/0106350(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 7/06
(57)【特許請求の範囲】
【請求項1】
電圧調整可能なキャパシタを調整するコントローラであって、
少なくとも1つの入力信号を受け取り、前記少なくとも1つの入力信号を少なくとも1つのディジタル信号に変換するように構成された少なくとも1つのアナログ/ディジタル変換器と、
ロジックを使用して前記少なくとも1つのディジタル信号を処理し、出力信号を生成するように構成されたプロセッサと、
前記出力信号を昇圧し、昇圧出力信号を生成するように構成されたチャージ・ポンプと、
を備え、
前記電圧調整可能なキャパシタのバイアス電圧を調節するために、前記昇圧出力信号を前記電圧調整可能なキャパシタに供給するように構成され、
前記電圧調整可能なキャパシタのバイアス電圧の前記少なくとも1つの入力信号の電圧に対する比率が約1から約10までの範囲に及ぶようにするために、当該コントローラが約0ボルトから少なくとも約50ボルトまで前記バイアス電圧を調節するように構成されると共に、前記力信号約0ボルトから少なくとも約5ボルトまでの範囲に及ぶようにする、コントローラ。
【請求項2】
請求項1記載のコントローラにおいて、前記昇圧出力信号が、前記電圧調整可能なキャパシタの容量を調節する、コントローラ。
【請求項3】
請求項1記載のコントローラにおいて、前記少なくとも1つの入力信号が、電圧、電流、または容量の内少なくとも1つを示す、コントローラ。
【請求項4】
請求項1記載のコントローラにおいて、前記少なくとも1つの入力信号が、前記電圧調整可能なキャパシタに伴う容量を示す、コントローラ。
【請求項5】
請求項1記載のコントローラにおいて、前記少なくとも1つの入力信号が、温度を示す、コントローラ。
【請求項6】
請求項1記載のコントローラにおいて、前記少なくとも1つの入力信号が、少なくとも2つの入力信号を含む、コントローラ。
【請求項7】
請求項1記載のコントローラにおいて、前記少なくとも1つの入力信号が、前記電圧調整可能なキャパシタに伴う所望の容量または所望の電圧の内少なくとも1つを示す手動制御信号を含む、コントローラ。
【請求項8】
請求項7記載のコントローラにおいて、前記手動制御信号が、約0ボルトから少なくとも約3ボルトまでの範囲に及ぶ、コントローラ。
【請求項9】
電圧調整可能なキャパシタを調整するシステムであって、
チャージ・ポンプを含む1つ以上の制御デバイスと、
複数のアクティブ電極と、複数のバイアス電極と、前記複数のアクティブ電極とバイアス電極との間に配置された複数の誘電体層とを含む電圧調整可能なキャパシタであって、前記誘電体層の少なくとも一部が、印加電圧の印加時に可変誘電定数を呈する調整可能な誘電体材料を含有する、電圧調整可能なキャパシタと、
を備え、
前記1つ以上の制御デバイスが、
少なくとも1つの入力信号を受け取り、
ロジックを使用して、前記少なくとも1つの入力信号を処理して、出力信号を生成し、
前記チャージ・ポンプを使用して、前記出力信号を昇圧し、
前記複数のバイアス電極の両端間に印加されるバイアス電圧を調節するために、前記昇圧出力信号を前記電圧調整可能なキャパシタに供給する
ように構成され、
前記少なくとも1つの入力信号が、前記電圧調整可能なキャパシタに伴う所望の容量または所望の電圧の内少なくとも1つを示す手動制御信号を含み、
前記電圧調整可能なキャパシタのバイアス電圧の前記手動制御信号の電圧に対する比率が約1から約16までの範囲に及ぶようにするために、前記1つ以上の制御デバイスが前記バイアス電圧を約0ボルトから少なくとも約50ボルトまで調節するように前記出力信号を供給するように構成されると共に、前記手動制御信号約0ボルトから少なくとも約3ボルトまでの範囲に及ぶようにする、システム。
【請求項10】
請求項9記載のシステムにおいて、前記昇圧出力信号が、前記電圧調整可能なキャパシタの容量を調節する、システム。
【請求項11】
請求項9記載のシステムにおいて、前記少なくとも1つの入力信号が、電圧、電流、または容量の内少なくとも1つを示す、システム。
【請求項12】
請求項9記載のシステムにおいて、前記少なくとも1つの入力信号が、前記電圧調整可能なキャパシタに伴う容量を示す、システム。
【請求項13】
請求項9記載のシステムにおいて、前記少なくとも1つの入力信号が、温度を示す、システム。
【請求項14】
請求項9記載のシステムにおいて、前記少なくとも1つの入力信号が、少なくとも2つの入力信号を含む、システム。
【請求項15】
請求項9記載のシステムにおいて、前記1つ以上の制御デバイスが、更に、前記入力信号からディジタル信号を生成するように構成されたアナログ/ディジタル変換器を備え、前記入力信号の処理が、前記ディジタル信号の処理を含む、システム。
【請求項16】
請求項9記載のシステムにおいて、前記調整可能な誘電体材料が、約10%から約90%までの電圧調整可能性係数を有し、前記電圧調整可能性係数が、次の一般式
T = 100 x (ε0V)/ε0
にしたがって決定され、
Tは電圧調整可能性係数であり、
εは電圧が印加されないときの材料の静的誘電定数であり、
εは、印加電圧(DC)を印加した後における前記材料の可変誘電定数である、システム。
【請求項17】
請求項9記載のシステムにおいて、前記誘電体材料の静的誘電定数が、動作温度が25°Cおよび周波数が1kHzにおいて、ASTM D2149-13にしたがって決定される場合に、約100から約10,000までの範囲に及ぶ、システム。
【請求項18】
請求項9記載のシステムにおいて、前記電圧調整可能なキャパシタが、約100pF以上の容量値に調整可能である、システム。
【請求項19】
請求項9記載のシステムにおいて、前記電圧調整可能なキャパシタが、約100pFよりも小さい容量値に調整可能である、システム。
【請求項20】
請求項9記載のシステムにおいて、前記1つ以上の制御デバイスがモノリシック・デバイスに組み込まれる、システム。
【請求項21】
請求項9記載のシステムにおいて、前記電圧調整可能なキャパシタが、更に、第1アクティブ端子、第2アクティブ端子、第1バイアス端子、および第2バイアス端子を含み、
前記複数のアクティブ電極が、前記第1アクティブ端子と電気的に接続された複数の第1アクティブ電極を含み、
前記複数のアクティブ電極が、前記第2アクティブ端子と電気的に接続された複数の第2アクティブ電極を含み、
前記複数のバイアス電極が、前記第1バイアス端子と電気的に接続された複数の第1バイアス電極を含み、
前記複数のバイアス電極が、前記第2バイアス端子と電気的に接続された複数の第2バイアス電極を含む、システム。
【請求項22】
請求項9記載のシステムにおいて、前記複数の誘電体層の厚さが、約0.5マイクロメートルから約15マイクロメートルまでの範囲に及ぶ、システム。
【請求項23】
請求項9記載のシステムにおいて、前記複数の誘電体層の厚さが、約15マイクロメートルから約150マイクロメートルまでの範囲に及ぶ、システム。
【請求項24】
電圧調整可能なキャパシタを制御する方法であって、
少なくとも1つの入力信号を受け取るステップと、
前記少なくとも1つの入力信号を少なくとも1つのディジタル信号に変換するステップと、
ロジックを使用して、前記少なくとも1つのディジタル信号を処理して、出力信号を生成するステップと、
チャージ・ポンプを使用して、前記出力信号を昇圧し、昇圧出力信号を生成するステップと、
前記電圧調整可能なキャパシタのバイアス電圧を調節するために、前記昇圧出力信号を前記電圧調整可能なキャパシタに供給するステップと、
を含み、
前記電圧調整可能なキャパシタのバイアス電圧の前記少なくとも1つの入力信号の電圧に対する比率が約1から約10までの範囲に及ぶようにするために、前記バイアス電圧が約0ボルトから少なくとも約50ボルトまで調節されると共に、前記力信号約0ボルトから少なくとも約5ボルトまでの範囲に及ぶようにする、方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願に対する相互引用
[0001] 本願は、2018年12月26日の出願日を有する米国仮特許出願第62/784,879号の出願権利を主張する。この特許出願をここで引用したことにより、その内容全体が本願にも含まれるものとする。
【従来技術】
【0002】
[0002] 誘電体の可変誘電体特性を基礎とする調整可能なキャパシタが、種々の用途において提案されている。このようなキャパシタでは、通例、ゼロ・バイアスにおける容量がその最大値付近となり、電圧印加によって容量が降下する。この容量変化のため、フィルタ、整合ネットワーク、共振回路、ならびに可聴周波数からRFおよびマイクロ波周波数までのその他の用途において、同調可能な回路を作成するために、これらのユニットを使用することが可能になる。これらの利点に拘わらず、高い電力および電圧レベルにおいても達成される容量値が比較的低いことが1つの理由となって、このようなキャパシタの使用は比較的限られている。更に、電圧調整可能な積層キャパシタの制御システムおよび方法があれば、電圧調整可能な積層キャパシタを採用する回路には有利になるであろう。
【発明の概要】
【発明が解決しようとする課題】
【0003】
[0003] 本開示の一実施形態例は、電圧調整可能なキャパシタを調整するためのコントローラを対象とする。このコントローラは、少なくとも1つの入力信号を受け取り、この少なくとも1つの入力信号を少なくとも1つのディジタル信号に変換するように構成された少なくとも1つのディジタル/アナログ変換器を含むことができる。このコントローラは、ロジックを使用して、少なくとも1つのディジタル信号を処理し、出力信号を生成するように構成されたプロセッサを含むことができる。このコントローラは、出力信号を昇圧し、昇圧出力信号を生成するように構成されたチャージ・ポンプを含むことができる。このコントローラは、電圧調整可能なキャパシタのバイアス電圧を調節するために、昇圧出力信号を電圧調整可能なキャパシタに供給するように構成することができる。
【0004】
[0004] 種々の実施形態のこれらおよびその他の特徴、態様、ならびに利点は、以下の説明および添付した特許請求の範囲を参照することにより、一層理解が深まるであろう。本明細書に組み込まれその一部を構成する添付図面は、本開示の実施形態を例示し、説明と共に、関連する原理を説明する役割を果たす。
【0005】
[0005] 添付図面を参照する本明細書の残りの部分において、当業者を対象として、最良の態様を含む、本発明の余すところのないそして実施可能な開示について、更に具体的に明記する。
【図面の簡単な説明】
【0006】
図1】本開示の態様にしたがって、電圧調整可能なキャパシタを調整するシステムの実施形態を示す。
図2】本開示の態様にしたがって、電圧調整可能なキャパシタを調整するコントローラの実施形態を示す。
図3】本開示の態様にしたがって電圧調整可能なキャパシタを調整する方法のフローチャートを示す。
図4】本開示の態様にしたがって、正規化されたバイアス電圧変化の範囲にわたって、本明細書において開示するコントローラおよび/またはシステムによって調整することができる、電圧調整可能なキャパシタの容量変化をグラフで示す。
図5A】本明細書において開示する主題にしたがって、本明細書において開示するコントローラおよび/またはシステムによって調整することができる、4端子バイアス積層キャパシタの例示的な実施形態の断面図を示す。
図5B】本明細書において開示する主題にしたがって、本明細書において開示するコントローラおよび/またはシステムによって調整することができる、4端子バイアス積層キャパシタの例示的な実施形態の分解平面図を示す。
図5C】本明細書において開示する主題にしたがって、本明細書において開示するコントローラおよび/またはシステムによって調整することができる、4端子バイアス積層キャパシタ(four-termination biased multilayer capacitor)の例示的な実施形態の分解斜視図を示す。
図5D】先の図5Aから図5Cまでの例示的な実施形態にしたがって、本明細書において開示するコントローラおよび/またはシステムによって調整することができる組み立てデバイスの斜視図を示す。
図6A図5Aから図5Dまでのデバイスを含む回路の分路構成および直列構成を表す図を示す。
図6B図5Aから図5Dまでのデバイスを含む回路の分路構成および直列構成を表す図を示す。
図7A】本開示の態様にしたがって本明細書において開示するコントローラおよび/またはシステムによって調整することができる4端子調整可能カスケード構成積層キャパシタ(four-termination tunable cascade configuration multilayer capacitor)の断面図を示す。
図7B】本開示の態様にしたがって本明細書において開示するコントローラおよび/またはシステムによって調整することができる4端子調整可能カスケード構成積層キャパシタの分解平面図を示す。
図7C】本開示の態様にしたがって本明細書において開示するコントローラおよび/またはシステムによって調整することができる4端子調整可能カスケード構成積層キャパシタの分解斜視図を示す。
図7D】先の図7Aから図7Cまでの例示的な実施形態を含む回路の分路構成を表す図を示す。
図7E】先の図7Aから図7Cまでの例示的な実施形態を含む回路の直列構成を表す図を示す。
図8A】本明細書において開示する主題の態様にしたがって本明細書において開示するコントローラおよび/またはシステムによって調整することができる4端子調整可能部分的バイアス構成の積層キャパシタ(four-termination tunable partially biased configuration multilayer capacitor)の例示的な実施形態の断面図を示す。
図8B】本明細書において開示する主題の態様にしたがって本明細書において開示するコントローラおよび/またはシステムによって調整することができる4端子調整可能部分的バイアス構成の積層キャパシタの例示的な実施形態の分解平面図を示す。
図8C図8Aおよび図8Bのデバイスを含む回路を表す図を示す。
図9】共に開示する実施形態例のデバイスを製造するときに使用可能な、本明細書において開示する主題による例示的な実施形態のチップ製造自動プロセス(CMAP)を表す。
図10】本明細書において開示する主題によるバイアス非対称積層キャパシタの例示的な実施形態の断面図を示す。
図11A】本明細書において開示する主題によるバイアス積層キャパシタの比率1:1の重複対称設計(1:1 ratio overlapped symmetric design)の例示的な実施形態の断面図を示す。
図11B】本明細書において開示する主題によるバイアス積層キャパシタの比率1:1の重複対称設計の例示的な実施形態の部分的拡大斜視図を示す。
図11C】本明細書において開示する主題によるバイアス積層キャパシタの比率1:1の重複対称設計の他の例示的な実施形態の分解内部斜視図を示す。
図11D】本明細書において開示する主題によるバイアス積層キャパシタの比率1:1の重複対称設計の他の例示的な実施形態の斜視図を示す。
図12A】本明細書において開示する主題によるバイアス積層キャパシタの比率11:1の非遮蔽非対称設計(11:1 ratio non-shielded asymmetric design)の例示的な実施形態の断面図を示す。
図12B】本明細書において開示する主題によるバイアス積層キャパシタの比率11:1の遮蔽非対称設計の例示的な実施形態の断面図を示す。
図13A】本明細書において開示する主題による部分的に調整可能な積層キャパシタの例示的な実施形態の断面図を示す。
図13B】本明細書において開示する主題による部分的に調整可能な積層キャパシタの例示的な実施形態の模式図を示す。
図14】本明細書において開示する主題による組成配合バイアス積層キャパシタ(compositionally blended biased multilayer capacitor)の例示的な実施形態の断面図を示す。
図15A】本発明の特定実施形態においてアクティブおよびバイアス端子に採用することができる種々の対称配向(symmetric orientation)を示す。
図15B】本発明の特定実施形態においてアクティブおよびバイアス端子に採用することができる種々の対称配向を示す。
図15C】本発明の特定実施形態においてアクティブおよびバイアス端子に採用することができる種々の対称配向を示す。
図16A】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の側面図を示す。
図16B】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の正面図を示す。
図16C】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の斜視図を示す。
図17A】本明細書において開示する主題の態様による部分的に調整可能な積層キャパシタ・アレイの実施形態の側面図を示す。
図17B】本明細書において開示する主題の態様による部分的に調整可能な積層キャパシタ・アレイの実施形態の正面図を示す。
図17C】本明細書において開示する主題の態様による部分的に調整可能な積層キャパシタ・アレイの実施形態の斜視図を示す。
図18A】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の側面図を示す。
図18B】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の正面図を示す。
図18C】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の斜視図を示す。
図19】本明細書において開示する主題の態様による調整可能な積層キャパシタ・アレイの実施形態の斜視図を示す。
【発明を実施するための形態】
【0007】
[0030] 本明細書および添付図面全体にわたって参照符号を繰り返し使用する場合、同じまたは類似の構造、要素、またはステップを表すことを意図している。
【0008】
[0031] この論述は、例示的な実施形態の説明に過ぎず、本発明のもっと広い態様を限定するものとして意図するのではなく、もっと広い態様は例示的な構造において具体化されることは、当業者には理解されてしかるべきである。
【0009】
[0032] 一般的に言うと、本開示は、電圧調整可能なキャパシタの調整システムおよび方法を対象とする。電圧調整可能なキャパシタは、比較的高い動作電圧に合わせて構成することができる。ある実施態様では、コントローラは、比較的低い電圧を有する1つ以上の入力信号に基づいて、電圧調整可能なキャパシタを調整するように構成することができる。つまり、このコントローラは、高い電圧入力信号および/またはバイアス電圧を供給することが難しいまたは実用的でない回路に、電圧調整可能なキャパシタを実装することを可能にするとして差し支えない。このコントローラは、電圧調整可能なキャパシタを、比較的高い電圧を伴う用途を含む、更に広い多種多様な用途に採用することを可能にするとしてよい。
【0010】
[0033] ある実施形態では、このコントローラは、少なくとも1つの入力信号を受け取り、この少なくとも1つの入力信号を少なくとも1つのディジタル信号に変換するように構成された少なくとも1つのアナログ/ディジタル変換器を含むことができる。このコントローラは、出力信号を生成するロジックを使用して、少なくとも1つのディジタル信号を処理するように構成されたプロセッサを含むことができる。このコントローラは、出力信号を昇圧して昇圧出力信号を生成するように構成されたチャージ・ポンプを含むことができる。このコントローラは、電圧調整可能なキャパシタのバイアス電圧を調節するために、昇圧出力信号を電圧調整可能なキャパシタに供給するように構成することができる。
【0011】
[0034] ある実施形態では、昇圧出力信号は、電圧調整可能なキャパシタの容量を調節することができる。例えば、コントローラは、約0ボルトから少なくとも約500ボルトまで、ある実施形態では少なくとも約300ボルトまで、ある実施形態では少なくとも約200ボルトまで、ある実施形態では少なくとも約100ボルトまで、ある実施形態では少なくとも約70ボルトまで、ある実施形態では少なくとも約50ボルトまで、ある実施形態では少なくとも約30ボルトまで、そしてある実施形態では少なくとも約20ボルトまでの範囲に及ぶ昇圧出力信号を供給するように構成することもできる。
【0012】
[0035] ある実施形態では、入力信号(1つまたは複数)は種々の適した信号を含むことができる。例として、入力信号(1つまたは複数)は、電圧調整可能なキャパシタに伴う電圧、電流、容量、温度、および/または他の適したパラメータを示すことができる。実例をあげると、入力信号(1つまたは複数)は、電圧調整可能なキャパシタの容量を示すのでもよい(たとえば、電圧調整可能なキャパシタの容量に対して閉ループ制御を行うため)。
【0013】
[0036] ある実施形態では、入力信号(1つまたは複数)は、電圧調整可能なキャパシタを含む回路、それ以外では電圧調整可能なキャパシタに接続された回路または関連付けられた回路に伴う電圧、電流、容量、温度、および/または他の適したパラメータを示すこともできる。実例をあげると、入力信号(1つまたは複数)は、電圧調整可能なキャパシタに関連付けられた回路のコンポーネント(例えば、ヒート・シンクまたは温度に過敏な他のコンポーネント)の温度を示すこともできる。他の例として、入力信号(1つまたは複数)は、回路の所望の出力電圧または電流を示すこともできる。
【0014】
[0037] 入力信号(1つまたは複数)は、約0ボルトから少なくとも約20ボルトまで、ある実施形態では少なくとも約15ボルトまで、ある実施形態では少なくとも約10ボルトまで、ある実施形態では少なくとも約7ボルトまで、ある実施形態では少なくとも約5ボルトまで、そしてある実施形態では少なくとも約3ボルトまでの範囲に及ぶことができる。
【0015】
[0038] 電圧調整可能なキャパシタの、バイアス電圧の上限の入力信号電圧の上限に対する比率は、約1から約500以上、ある実施形態では約1から約250まで、ある実施形態では約1から約150まで、ある実施形態では約1から約100まで、ある実施形態では約1から約75まで、ある実施形態では約1から約50まで、ある実施形態では約1から約20まで、ある実施形態では約1から約10まで、そしてある実施形態では約1から約5までの範囲に及ぶことができる。
【0016】
[0039] ある実施形態では、入力信号(1つまたは複数)は、電圧調整可能なキャパシタに伴う所望の容量、または電圧調整可能なキャパシタに伴う所望の電圧を示す手動制御信号を示すこともできる。手動制御信号は、約0ボルトから少なくとも約3ボルトまで、ある実施形態では約0ボルトから少なくとも約2ボルトまで、ある実施形態では約0ボルトから少なくとも約1ボルトまで、約0ボルトから少なくとも約0.5ボルトまで、そしてある実施形態では約0ボルトから少なくとも約0.1ボルトまでの範囲に及ぶことができる。
【0017】
[0040] 電圧調整可能なキャパシタのバイアス電圧の上限の、手動制御信号の上限に対する比は、約1から約500以上、ある実施形態では約1から約250まで、ある実施形態では約1から約150まで、ある実施形態では約1から約100まで、ある実施形態では約1から約75まで、ある実施形態では約1から約50まで、ある実施形態では約1から約20まで、ある実施形態では約1から約16まで、そしてある実施形態では約1から約10までの範囲に及ぶことができる。
【0018】
[0041] ある実施形態では、電圧調整可能なキャパシタを制御するシステムの1つ以上のコンポーネントをモノリシック・デバイス内に組み込んでもよい。例えば、コントローラを成形材またはパッケージング材内に密封して、モノリシック・デバイスを形成することもできる。ある実施形態では、アナログ/ディジタル変換器(1つまたは複数)および/またはチャージ・ポンプをモノリシック・デバイス内に組み込んでもよい。モノリシック・デバイスは、コントローラおよび調整可能なキャパシタを入力と、電圧調整可能なキャパシタと、および/または他の電気コンポーネントと電気的に接続するための外部端子を含むこともできる。モノリシック・デバイスは、印刷回路ボードに表面実装するように構成することもできる。
【0019】
[0042] チャージ・ポンプは、任意の適した形式の電圧昇圧デバイス(例えば、DC/DC変換器)でよい。例えば、チャージ・ポンプは、昇圧出力信号を生成するために、交流電流の高速切り替え(rapid switching)を採用してもよい。チャージ・ポンプは、インダクタがなくてもよい。チャージ・ポンプの昇圧出力信号は、チャージ・ポンプが受け取るDC電圧と正に(positively)相関付けられてもよい。言い換えると、チャージ・ポンプは、チャージ・ポンプが受け取ったDC電圧を線形利得だけおよび/または非減少関数にしたがって昇圧するように構成されてもよい。例えば、チャージ・ポンプは、チャージ・ポンプが受け取ったDC電圧を、2倍または2の利得以上(例えば、「二倍」チャージ・ポンプ)、ある実施形態では4倍以上、ある実施形態では8倍以上、そしてある実施形態では16倍以上に昇圧するように構成することもできる。
【0020】
[0043] 本開示の態様は、電圧調整可能なキャパシタを調整するシステムを対象とする。このシステムは、1つ以上の制御デバイス(たとえば、コントローラ(1つまたは複数))を含むことができる。制御デバイス(1つまたは複数)はチャージ・ポンプを含むことができる。このシステムは、複数のアクティブ電極と、複数のバイアス電極と、複数のアクティブ電極とバイアス電極との間に配置された複数の誘電体層とを含む電圧調整可能なキャパシタを含むことができる。誘電体層の少なくとも一部は、印加電圧の印加時に可変誘電定数を呈する調整可能な誘電体材料を含有することができる。制御デバイス(1つまたは複数)は、少なくとも1つの入力信号を受け取るように構成することができる。制御デバイス(1つまたは複数)は、ロジックを使用して、入力信号(1つまたは複数)を処理して、出力信号を生成するように構成することができる。制御デバイス(1つまたは複数)は、チャージ・ポンプを使用して、出力信号を昇圧するように構成することができる。制御デバイス(1つまたは複数)は、複数のバイアス電極の両端間に印加されるバイアス電圧を調節するために、昇圧出力信号を電圧調整可能なキャパシタに供給するように構成することができる。
【0021】
[0044] 電圧調整可能なキャパシタは、積層キャパシタであってもよく、またはこれを含んでもよい。積層電圧調整可能なキャパシタは、交互のアクティブ電極層の間に挟まれた複数の誘電体層を含む。誘電体層の少なくとも一部は、印加電圧の印加時に可変誘電定数を呈する調整可能な材料を含むことができる。更に具体的には、このような材料は、通例、約10%から約90%、ある実施形態では約20%から約80%、そしてある実施形態では約30%から約70%の範囲内の「電圧調整可能係数」(voltage tunability coefficient)を有し、「電圧調整可能係数」は以下の一般式にしたがって決定される。
T = 100 x (ε0V)/ε0
ここで、
Tは電圧調整可能係数であり、
εは電圧が印加されないときの材料の静的誘電定数であり、
εは、印加電圧(DC)を印加した後における材料の可変誘電定数である。
【0022】
[0045] 材料の静的誘電定数は、約-55°Cから約150°Cまでの範囲に及ぶ動作温度(例えば、25°C)および約100Hzから約1GHzまでの範囲に及ぶ周波数(例えば、1kHz)においてASTM D2149-13にしたがって判定される場合のように、通例、約100から約25,000まで、ある実施形態では約200から約10,000、そしてある実施形態では約500から約9,000までの範囲に及ぶ。勿論、静的誘電定数の具体的な値は、一般に、キャパシタが採用される個々の用途に基づいて選択されることは理解されてしかるべきである。印加されるDCバイアスを高くする程、誘電定数は全体的に先に記した範囲内で減少する。誘電定数に所望の変化を誘発させるために印加される調整電圧は、一般に、誘電体組成が電界の印加時に導電性になり始める電圧(「ブレークダウン電圧」)と比較して、変化することができる。ブレークダウン電圧は、25°Cの温度において、ASTM D149-13にしたがって決定することができる。殆どの実施形態において、最大印加DCバイアス電圧は、誘電体組成のブレークダウン電圧の約50%以下、ある実施形態では約30%以下、そしてある実施形態では、約0.5%から約10%である。
【0023】
[0046] 当該技術分野では周知のように、種々の調整可能な誘電体材料のいずれでも、一般に採用することができる。特に適した材料は、その基礎組成に、ペロブスカイト、タングステン銅材料(例えば、ニオブ酸ナトリウム・バリウム)、層状構造材料(例えば、チタン酸ビスマス)のような、1つ以上の強誘電基本相を含む誘電体である。実例をあげると、適したペロブスカイトには、チタン酸バリウムおよび関連する固溶体(例えば、チタン酸バリウム・ストロンチウム、チタン酸バリウム・カルシウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸バリウム・ストロンチウム、チタン酸ジルコン酸バリウム・カルシウム等)、チタン酸鉛および関連する固溶体(例えば、チタン酸ジルコン酸鉛、チタン酸ジルコン酸鉛ランタン)、チタン酸ナトリウム・ビスマス等を含んでもよい。1つの特定実施形態では、実例をあげると、化学式BaSr1-xTiOのチタン酸バリウム・ストロンチウム(「BSTO」)を採用することができ、ここで、xは0から1、ある実施形態では約0.15から約0.65、そしてある実施形態では約0.25から約0.6である。チタン酸バリウム・ストロンチウムの代わりに部分的にまたは全体的に、他の電子的に調整可能な誘電体材料を使用してもよい。実例をあげると、1つの例にBaCa1-xTiOがあり、ここで、xは約0.2から約0.8、そしてある実施形態では約0.4から約0.6である。他の適したペロブスカイトには、PbZr1-xTiO(「PZT」)、ここで、xは約0.05から約0.4までの範囲に及び、チタン酸鉛ランタン・ジルコニウム(「PLZT」)、チタン酸鉛(PbTiO)、チタン酸バリウム・カルシウム・ジルコニウム(BaCaZrTiO)、硝酸ナトリウム(NaNO)、KNbO、LiNbO、LiTaO、PbNb、PbTa、KSr(NbO)、およびNaBa(NbO)5KHbPOを含んでもよい。更に他の複合ペロブスカイトには、A[B11/3B22/3]O材料を含んでもよく、ここで、AはBaSr1-x(xは0から1までの値とすることができる)であり、B1はMgZn1-y(yは0から1までの値とすることができる)、B2はTaNb1-z(zは0から1までの値とすることができる)である。潜在的に可能な対象の誘電体材料は、図14の例示的な実施形態に示すように、交互層内に2つの端成分組成を組み合わせることによって形成することができる。このような端成分組成は、化学的に同様であるが、先に論じたように、A-部位ドーパントの比率が異なってもよい。例えば、化合物1(図14における132)は、一般式(A1,A2(1-x))BOのペロブスカイト化合物でもよく、化合物2(134)は、一般式(A1、A2(1-y))BOのペロブスカイトでもよく、ここで、A1およびA2はBa、Sr、Mg、およびCaから選択される(are from)。潜在的に可能なB-部位成分は、Zr、Ti、およびSnであり、「x」および「y」は、各成分のモル分率である。化合物1の具体例は(Ba0.8Sr0.2)TiOとしてもよく、化合物2は(Ba0.6Sr0.4)TiOとしてもよい。これら2つの化合物は、各材料の誘電特性が重ね合わされるように、図14に示すように、調整可能な電極構造と共に焼結された積層キャパシタにおいて、交互層内に組み合わせることができる。望ましければ、5.0モル・パーセント以下の量で、更に好ましくは0.1から1モル・パーセントでというように、ペロブスカイト材料にも希土類酸化物 (「REO」)をドーピングしてもよい。この目的に適した希土類酸化物ドーパントには、実例をあげると、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテチウムを含むことができる。
【0024】
[0047] 調整可能な誘電体材料は、バイアス端子を介してDCバイアス電圧を印加することによって、結果的に得られるキャパシタの容量調整を可能にすることができる。更に具体的には、キャパシタは、第1アクティブ端子(例えば、入力端子)と電気的に接触する1組の第1アクティブ電極と、第2アクティブ端子(例えば、出力端子)と電気的に接触する1組の第2アクティブ電極とを含む。 また、このキャパシタは、第1DCバイアス端子と電気的に接触する1組の第1DCバイアス電極と、第2DCバイアス端子と電気的に接触する1組の第2DCバイアス電極とを含む。回路内に設けられると、第1および第2バイアス端子を介して、DC電源(例えば、バッテリ、定電圧電源、多出力電源、DC/DC変換器等)がDCバイアスをキャパシタに供給することができる。これは、第1および第2バイアス端子は逆極性を有することから、通例、二極型である。電極および端子は、貴金属(例えば、銀、金、パラジウム、プラチナ等)、卑金属(例えば、銅、錫、ニッケル等)等、およびこれらの種々の組み合わせというような、当技術分野において周知である種々の異なる材料の内任意のもので形成することができる。誘電体層は、それぞれのアクティブ電極とバイアス電極との間に挟まれる。
【0025】
[0048] 電圧調整可能なキャパシタは、中および高動作電圧において、高い容量値の範囲にわたって優れた調整可能性を呈しつつ、例外的に低い等価直列抵抗を付与することができる。ある実施形態では、続く章において更に詳細に説明するように、これらのキャパシタをアレイに組み込むこともできる。他の実施形態では、これらのキャパシタを個々のコンポーネントとして使用することもできる。個々の調整可能な積層キャパシタは、0.1マイクロファラッド(「μF」)以上の値、ある実施形態では約1μF以上、ある実施形態では約10μF以上、そしてある実施形態では200μF以上というような、高容量が要求される用途において使用することができる。実例をあげると、このようなキャパシタは、0.1から100μFまで、ある実施形態では約0.5μFから約50μFまで、ある実施形態では約1μFから約40μFまで、そしてある実施形態では約2μFから約30μFまでの範囲に及ぶ、初期容量値を有する調整能力を提供することができる。代替実施形態では、調整可能な積層キャパシタの初期容量値は、約100ピコファラッド(「pF」)以上、ある実施形態では約10,000pF以上、ある実施形態では約100,000pFから約10,000,000pFまで、ある実施形態では約200,000pFから5,000,000pFまで、そしてある実施形態では約400,000pFから約3,500,000pFまでであってもよい。調整可能な積層キャパシタは、任意の適した初期容量値を有するように構成することができる。
【0026】
[0049] 容量を調整できる度合いは、所望通りに変えることができる。例えば、キャパシタの初期容量、 即ち、DCバイアス電圧を印加しないときの容量の約10%から約100%まで、そしてある実施形態では初期容量の約20%から約95%まで、そしてある実施形態では約30%から約80%まで、容量を調節することができる。
【0027】
[0050] 先に示したように、個々の調整可能なキャパシタは低いESRを呈することができる。ある実施形態では、ここの調整可能なキャパシタの等価直列抵抗(ESR)は、約50ミリオーム(mΩ)からそれ以下、ある実施形態では約20mΩからそれ以下、ある実施形態では約10mΩからそれ以下の範囲に及ぶことができる。例えば、ある実施形態では、調整可能なキャパシタのESRは、約1mΩから約50mΩまで、ある実施形態では約5mΩから約40mΩまで、そしてある実施形態では約5mΩから約20mΩまでの範囲に及ぶことができる。
【0028】
[0051] 先に示したように、個々の調整可能なキャパシタは、中から高動作電圧で動作することができる。動作電圧とは、DCバイアス電圧(即ち、バイアス電極の両端間にかかる電圧)および/または信号電圧(即ち、アクティブ電極の両端間にかかる電圧)を指すとしてよい。動作電圧は、一般に、電界の印加時に誘電体組成が導電性になり始める電圧、即ち、「ブレークダウン電圧」に対して変化することができる。ブレークダウン電圧は、25°Cの温度において、ASTM D149-13にしたがって決定することができる。 殆どの実施形態において、動作電圧は、誘電体組成のブレークダウン電圧の約50%以下、ある実施形態では約30%以下、そしてある実施形態では、約0.5%から約10%である。
【0029】
[0052] 例えば、調整可能なキャパシタは、約10Vよりも高いAC電圧(例えば、ピーク-ピーク振幅)、ある実施形態では約50Vよりも高いAC電圧、ある実施形態では約100Vよりも高いAC電圧で動作することができる。例えば、ある実施形態では、調整可能なキャパシタは、約10Vから約300Vまで、ある実施形態では約15Vから約150Vまで、そしてある実施形態では約20Vから約100Vまでの範囲に及ぶ電圧において動作することができる。ある実施形態では、調整可能なキャパシタは、約10Vよりも高いDC電圧、ある実施形態では約50Vよりも高いDC電圧、そしてある実施形態では約100Vよりも高いDC電圧で動作することができる。例えば、ある実施形態では、調整可能なキャパシタは、約10Vから約300Vまで、ある実施形態では約15Vから約150Vまで、そしてある実施形態では約20Vから約100Vまでの範囲に及ぶ電圧において動作することができる。ある実施形態では、調整可能なキャパシタは、AC成分およびDC成分の双方を有する電圧でも動作することができる。
【0030】
[0053] ある実施形態では、誘電体層は、約0.5マイクロメートル(μm)から約50μmまで、ある実施形態では約1μmから約40μmまで、そしてある実施形態では約2μmから約15μmまでの範囲に及ぶ厚さを有することができる。電極層は、約0.5μmから約3.0μmまで、ある実施形態では約1μmから約2.5μmまで、そしてある実施形態では約1μmから約2μmまでの範囲に及ぶ厚さ、例えば、約1.5μmを有することができる。
【0031】
[0054] アクティブおよびバイアス電極層の総数は、変化してよい。例えば、ある実施形態では、アクティブ電極層の総数は、2から約1,000まで、ある実施形態では約10から約700まで、そしてある実施形態では約100から約500までの範囲に及ぶことができる。例えば、ある実施形態では、バイアス電極の総数は、2から約1,000まで、そしてある実施形態では約10から約500までの範囲に及ぶことができる。尚、図面に示し本明細書において説明した電極およびバイアス層の数は一例に過ぎないことは理解されてしかるべきである。
【0032】
[0055] ある実施形態では、このキャパシタは、高い容量を付与しつつも、それが実装される表面の小さな立体空間(volume)および/または表面積を占めるように、小型にすることができる。したがって、このキャパシタは、例えば、印刷回路ボード上の設置に非常に適しているといって差し支えない。個々のキャパシタの長さは、実例をあげると、約1mmから約50mmまで、ある実施形態では約2mmから約35mmまで、ある実施形態では約3mmから約10mm、ある実施形態では約3mmから約7mmまでの範囲に及ぶことができる。個々のキャパシタの幅は、実例をあげると、約1mmから約50mmまで、ある実施形態では約2mmから約35mmまで、ある実施形態では約3mmから約10mmまで、ある実施形態では約3mmから約7mmまでの範囲に及ぶことができる。
【0033】
[0056] 同様に、キャパシタは、例えば、印刷回路ボード上の設置に適した薄型にすることもできる。個々のキャパシタの厚さは、実例をあげると、約1mmから約500mmまで、ある実施形態では約2mmから約35mmまで、ある実施形態では約3mmから約10mmまで、ある実施形態では約2mmから約4mmまでの範囲に及ぶことができる。
【0034】
[0057] 加えて、ある実施態様では、本明細書において説明するシステムおよび方法は、部分的に調整可能な積層キャパシタを調整するために使用することもできる。部分的積層キャパシタは、少なくとも1つの調整不可能な領域と少なくとも1つの調整可能な領域とを含むことができる。部分的に調整可能な積層キャパシタは、等価な完全調整可能な積層キャパシタと比較すると、分解能または正確度が高い調整を可能にすることができる。ある実施形態では、部分的に調整可能な積層キャパシタは、印加電圧の単位変化毎の容量変化を小さくすることができ、一層正確な調整を行うことができる。
【0035】
[0058] 部分的に調整可能な積層キャパシタは、等価な完全調整可能な積層キャパシタよりも、狭い範囲の容量値にわたって調整可能であるとしてよい。実例をあげると、完全調整可能なキャパシタは、例えば、初期容量値の約10%から約95%まで調整可能な場合がある。これは、最大DCバイアス電圧の0%から100%までの範囲に及ぶDCバイアス電圧を完全調整可能なキャパシタに印加することによって、達成することができる。対照的に、比肩し得る大きさに作られた部分的に調整可能な積層キャパシタは、同じ印加DCバイアス電圧範囲に対して、初期容量値の、例えば、約50%から約95%までしか調整可能でない場合もある。このように、部分的に調整可能な積層キャパシタは、単位当たりの印加電圧変化に対する容量変化を少なくすることができる。ある実施形態では、部分的に調整可能な積層キャパシタは、初期容量値の約20%から約95%まで、ある実施形態では初期容量値の約30%から約95%まで、ある実施形態では初期容量値の40%から95%まで、ある実施形態では初期容量値の約50%から約95%まで、ある実施形態では初期容量値の約60%から約95%まで、ある実施形態では初期容量値の約70%から約95%まで、そしてある実施形態では初期容量値の約80%から約95%までの範囲で調整可能にすることもできる。
【0036】
[0059] ある実施態様では、本明細書において説明するシステムおよび方法は、調整可能な積層キャパシタのアレイを調整するために使用することもできる。調整可能な積層キャパシタのアレイは、複数の電圧調整可能なキャパシタおよび/または調整可能でないキャパシタを含むことができる。これらのキャパシタは、容量を増やすために並列に接続されてもよい。これらのキャパシタは、動作電圧を高くするために、直列に接続されてもよい。
【0037】
I.本システムおよびコントローラの実施形態例
[0060] 図1は、本開示の態様にしたがって電圧調整可能なキャパシタ102を調整するシステム100の実施形態を示す。システム100は、コントローラ104と電圧調整可能なキャパシタ102とを含むことができる。コントローラは、少なくとも1つの入力信号を受け取るように構成することができる。一例として、コントローラ102は、手動制御信号106、VCONTROLを受け取るように構成することができる。手動制御信号106は、電圧調整可能なキャパシタ102に伴う所望の容量および/または所望の電圧を示すことができる。ある実施形態では、手動制御信号は約0ボルトから少なくとも約3ボルトまでの範囲に及ぶことができる。しかしながら、ある実施形態では、コントローラ104は、手動制御信号(1つまたは複数)106を全く受け取らないように構成することもできる。
【0038】
[0061] ある実施形態では、コントローラ102は、電圧調整可能なキャパシタ102に関連付けられたフィードバック信号108(例えば、電圧、容量、電流、温度等)を受け取るように構成することができる。このように、コントローラ102は、閉ループ動作に合わせて構成することができる。他の実施形態では、しかしながら、コントローラ102は開ループ動作に合わせて構成することもできる。言い換えると、コントローラ102は、電圧調整可能なキャパシタ102に関連付けられたフィードバック信号を受け取らなくてもよい。
【0039】
[0062] コントローラ104は、他の入力信号109を受け取るように構成することもできる。入力信号の例には、電圧調整可能なキャパシタを含む回路、それ以外では電圧調整可能なキャパシタに結合された回路または関連付けられた回路に伴う電圧、容量、電流、または温度を示す信号が含まれる。
【0040】
[0063] コントローラ104は、電圧共通コレクタ110、VCCと結合することができる。電圧共通コレクタ110は、コントローラ104に電力を供給するように構成することができる。コントローラ104は、入力信号(1つまたは複数)を処理するように構成することができる。例えば、入力信号は、VCONTROL110、フィードバック信号108、および/または、例えば、図2を参照して以下で説明するような、他の入力信号109の内1つ以上を含む。コントローラ104は、ロジックを使用して入力信号(1つまたは複数)を処理して昇圧出力信号112を生成し、電圧調整可能なキャパシタ102に昇圧出力信号112を供給して、電圧調整可能なキャパシタ102のバイアス電圧を調整するように構成することができる。電圧調整可能なキャパシタ102のバイアス電圧を調整することにより、例えば、図4から図19を参照して以下で説明するように、電圧調整可能なキャパシタ102またはキャパシタ・アレイの容量を調節することができる。
【0041】
[0064] ある実施形態では、コントローラ104またはシステム100をモノリシック・デバイスに組み込むこともできる。例えば、コントローラ104を成形材料またはパッケージング材料に密封して、モノリシック・デバイスを形成することもできる。モノリシック・デバイスは、コントローラ104を調整可能なキャパシタ102、入力、および/または他の電気コンポーネントと電気的に接続するために、外部端子を含むことができる。モノリシック・デバイスは、印刷回路ボードへの表面実装に合わせて構成することができる。
【0042】
[0065] 図2は、本開示の態様にしたがって電圧調整可能なキャパシタを調整するコントローラ200の実施形態を示す。コントローラ200は、図1を参照して先に説明したシステム100のコントローラ104と対応するとしてよい。コントローラ200は、電圧共通コレクタ201、VCCと結合することができる。電圧共通コレクタ201は、コントローラ200に電力を供給するように構成することができる。
【0043】
[0066] コントローラ200は、1つ以上の入力信号を受け取るように構成することができる。一例として、コントローラ200は、例えば、図1を参照して先に説明したような、手動制御信号203,VCONTROLを受け取ることができる。手動制御信号214は、電圧調整可能なキャパシタに伴う所望の容量または所望の電圧の内少なくとも1つを示すことができる。ある実施形態では、手動制御信号は約0ボルトから少なくとも約3ボルトまでの範囲に及ぶことができる。
【0044】
[0067] コントローラ200は、1つ以上の入力信号(例えば、手動制御信号202に加えて、またはその代わりに)を受け取るように構成することができる。コントローラ202は、入力信号204を受け取り、入力信号204をディジタル信号206に変換するように構成されたアナログ/ディジタル変換器203を含むことができる。コントローラ200は、信号入力204(例えば、INPUT1)を受け取り、入力信号204をディジタル信号206に変換するように構成されたアナログ/ディジタル変換器203(例えば、A/D1)を含むことができる。ある実施形態では、コントローラ200は、追加のアナログ/ディジタル変換器208(例えば、「A/D2」から「A/DN」まで)を含むこともできる。追加のアナログ/ディジタル変換器208は、追加の入力信号210(例えば、「INPUT1」から「INPUTN」まで)を受け取るように構成することができる。追加のアナログ/ディジタル変換器208は、追加の入力信号210をそれぞれのディジタル信号212を変換するように構成することができる。
【0045】
[0068] コントローラ200は、ロジックを使用してディジタル信号(1つまたは複数)206、212を処理して、出力信号217を生成するように構成されたプロセッサ216を含むことができる。プロセッサ216は、論理演算を実行することができる任意の適した種類の回路(例えば、集積回路)であってもよく、または含んでもよい。実例をあげると、ある実施形態では、プロセッサ216は、高度RISCマシン(ARM:Advanced RISC Machines)プロセッサ・メモリ・デバイス(1つまたは複数)(例えば、「Armcore」プロセッサ)であってもよく、またはこれを含んでもよい。プロセッサ216は、任意の適した処理デバイスでよく(例えば、プロセッサ・コア、マイクロプロセッサ、ASIC、FPGA、コントローラ、マイクロコントローラ等)を含み、1つのプロセッサまたは動作可能に接続された複数のプロセッサとすることもできる。プロセッサ216は、メモリ・エレメント(1つまたは複数)を含んでも、または結合されてもよい。メモリ・エレメントには、RAM、ROM、EEPROM、EPROM、フラッシュ・メモリ・デバイス、磁気ディスク等のような1つ以上の非一時的コンピュータ読み取り可能記憶媒体、およびこれらの組み合わせが含まれる。メモリは、データおよび命令を格納することができる。命令は、コンピューティング・デバイスに、図3を参照して以下で説明する方法300の1つ以上の態様というような、種々の動作を実行させるために、プロセッサによって実行される。プロセッサ216は、開ループ制御または閉ループ制御のような、あらゆる適した形式のロジックを採用するように構成することができる。開ループ制御の例には、比例、比例-積分(PI)、または比例-積分-微分(PID)制御ループが含まれる。プロセッサ216は、ブール・ロジック、ファジ・ロジック、および/または機械学習技法もしくはモデルを実装することができる。
【0046】
[0069] コントローラ200は、出力信号217を昇圧して昇圧出力信号219を生成するように構成されたチャージ・ポンプ218を含むことができる。チャージ・ポンプ218は、任意の適した種類の昇圧デバイス(例えば、DC/DC変換器)でよい。例えば、チャージ・ポンプ218は、昇圧出力信号を生成するために、交流電流の高速切り替えを採用してもよい。ある実施形態では、チャージ・ポンプ218は、インダクタがなくてもよい。通常、昇圧出力信号219が、チャージ・ポンプが受け取ったDC電圧(例えば、プロセッサ216の出力信号217)と正に相関付けられるように、チャージ・ポンプ218は規制を受けないとしてよい。言い換えると、チャージ・ポンプ218は、線形利得によってまたは非減少関数にしたがってプロセッサ216の出力信号217を昇圧するように構成することができる。例えば、チャージ・ポンプ218は、2倍以上、または2以上の利得で、プロセッサ216の出力信号217を昇圧するように構成することができる(例えば、「二倍」チャージ・ポンプとして)。
【0047】
[0070] コントローラ200は、昇圧出力信号219、例えば、図1を参照して説明したように、電圧調整可能なキャパシタのバイアス電圧を調節するために、VBIASを電圧調整可能なキャパシタに供給するように構成することができる。
【0048】
[0071] 入力信号(1つまたは複数)204、210は、種々の異なる入力またはパラメータを含むことができる。例として、入力信号(1つまたは複数)204、210は、例えば、図1のフィードバック信号108に関して先に説明したように、電圧調整可能なキャパシタに伴う電圧、電流、容量、温度、および/または他の適したパラメータを示すことができる。
【0049】
[0072] 他の例として、入力信号(1つまたは複数)204、210は、電圧調整可能なキャパシタを含む回路、それ以外では電圧調整可能なキャパシタに接続された回路または関連付けられた回路に伴う電圧、電流、容量、温度、および/または他の適したパラメータを示すこともできる。入力信号(1つまたは複数)204、210は、電圧調整可能なキャパシタに関連付けられた回路のコンポーネント(例えば、電圧調整可能なキャパシタ以外のもの)の温度を示すこともできる。実例をあげると、入力信号(1つまたは複数)204、210は、ヒート・シンクまたは他の温度に敏感な回路のコンポーネントの温度を示すこともできる。他の例として、入力信号(1つまたは複数)204、210は、回路の所望の出力電圧または電流を示すこともできる。
【0050】
[0073] 電圧調整可能なキャパシタまたは他のコンポーネントの温度は、熱電対のような温度センサによって検出することができる。コントローラ200は、温度センサからの検出温度を示す信号を受け取るように構成することができる。
【0051】
[0074] コントローラ200は、比較的低い電圧を有する1つ以上の入力信号に基づいて、比較的高い動作電圧を有することができる、電圧調整可能なキャパシタの容量に対する制御を行うことができる。例えば、コントローラ200は、電圧調整可能なキャパシタのバイアス電圧を約0ボルトから少なくとも約50ボルトに調節するように構成することができる。入力信号(1つまたは複数)は、約0ボルトから少なくとも約5ボルトまでの範囲に及ぶことができる。したがって、電圧調整可能なキャパシタのバイアス電圧の入力信号電圧に対する比率は、約1から約10以上までの範囲に及ぶことができる。同様に、手動制御信号は、約0ボルトから少なくとも約3ボルトまでの範囲に及ぶことができる。したがって、電圧調整可能なキャパシタのバイアス電圧の手動制御信号に対する比率は、約1から約16以上までの範囲に及ぶことができる。
【0052】
[0075] 図3は、本開示の態様にしたがって、電圧調整可能なキャパシタを調整する方法300のフローチャートを示す。図3は、図示および論述の目的で、特定の順序で実行されるステップを示す。尚、本明細書において説明する方法はいずれも、本開示の範囲から逸脱することなく、種々の方法で、その種々のステップを省略する、広げる、同時に実行する、並び替える、および/または変更できることは、本明細書において提示する開示を使用すれば、当業者には理解されよう。加えて、本開示の範囲から逸脱することなく、種々のステップ(図示せず)を実行することができる。加えて、方法300については、図1および図2を参照して先に説明したシステム100およびコントローラ200を参照しながら、全体的に説明する。しかしながら、この方法300の態様は、電圧調整可能なキャパシタを調整するのに適した任意の制御システムおよび/またはコントローラにも適用できることは、理解されてしかるべきである。
【0053】
[0076] 方法300は、(302)において、例えば、手動制御信号106、202を参照して先に説明したような少なくとも1つの入力信号、および/または図1および図2を参照して先に説明した他の入力信号109、204、210を受け取るステップを含むことができる。
【0054】
[0077] 方法300は、(304)において、入力信号(1つまたは複数)を少なくとも1つのディジタル信号に変換するステップを含むことができる。入力信号(1つまたは複数)は、例えば、図2を参照して先に説明したような1つ以上のアナログ/ディジタル変換器206、212を使用して、ディジタル信号(1つまたは複数)に変換することができる。
【0055】
[0078] 方法300は、(306)において、例えば、図1および図2の出力信号112、217を参照して先に説明したように、ロジックを使用してディジタル信号(1つまたは複数)を処理して、出力信号を生成するステップを含むことができる。
【0056】
[0079] 方法300は、(308)において、例えば、図2のチャージ・ポンプ218を参照して先に説明したように、チャージ・ポンプを使用して出力信号(1つまたは複数)を昇圧して、昇圧出力信号を生成するステップを含むことができる。
【0057】
[0080] 方法300は、(310)において、例えば、図1および図2を参照して先に説明したように、昇圧出力信号を電圧調整可能なキャパシタに供給して、電圧調整可能なキャパシタのバイアス電圧を調節するステップを含むことができる。
【0058】
II.調整可能な積層キャパシタの実施形態例
[0081] 図4は、正規化したバイアス電圧変化の範囲にわたって達成することができる容量変化をグラフ形式で示す。具体的には、横軸は、0%から150%までというように、デバイスの定格電圧の百分率として、正規化したバイアス電圧を表す。図示のように、デバイスの有効容量の対応する変化を、バイアスが全くないときの容量値からの変化の百分率として、縦軸に表す。このような図4のグラフによって示すように、正規化したバイアス電圧量が150%増大すると、図示のように比較的直線状の曲線に沿って、バイアスがないときの容量値の80%減少に向かって接近する。このように、本明細書において開示する主題による電圧調整可能なキャパシタ・デバイスは、使用条件の範囲にわたって効率を最大化するのに役立つ。
【0059】
[0082] これより図5Aから図5Dまでを参照しながら、本開示にしたがって形成することができるキャパシタ10の一特定実施形態について、これより更に詳しく説明する。図示のように、キャパシタ10は複数の誘電体層12を内蔵する。誘電体層12は、別々の2組のアクティブ電極14および20と、別々の2組のバイアス電極22および26とに関係付けて、交互に積層されている。このキャパシタは、矩形状本体のような、六面体でもよい。図示する実施形態では、第1アクティブ端子16が第1アクティブ電極14に電気的に接続され、第2アクティブ端子18が第2アクティブ電極20に電気的に接続されている。第1バイアス電極22は、キャパシタ10の側面まで達する延長部材24(例えば、タブ)を介して、第1DCバイアス(+)端子30と電気的に接続されている。同様に、第2バイアス電極26は、延長部材28を介して、第2DCバイアス(-)端子32と電気的に接続されている。したがって、結果的に得られるキャパシタ10は、4つの別々の端子を内蔵する。ある実施形態では、アクティブ端子16、18は、キャパシタ10のそれぞれの端部を包み込み、回路におけるキャパシタ10を電気的に接続するために、もっと大きな端子16、18を設けることもできる。DCバイアス端子30、32は、キャパシタ10の側面全体に延びないストリップとして構成されてもよい。他の実施形態では、しかしながら、DCバイアス端子30、32は、代わりに、キャパシタ10の側面を包み込んでもよく、アクティブ端子16、18は、キャパシタの端部全体に沿って延びないストリップとして構成されてもよい。
【0060】
[0083] 図6Aおよび図6Bは、それぞれ、先の図5Aから図5Dまでの例示的な実施形態の分路構成および直列構成を表す図である。図示のように、接地34もバイアス入力に関係付けて設けられ、分路構成について示す。
【0061】
[0084] 先に論じた実施形態では、交互する各電極が反対側の端子に接続するように、アクティブ電極が積層されている。特定実施形態では、「カスケード」構成の使用によって、交互する層を同じ端子に接続することもできる。「カスケード」構成では、各組のアクティブ電極が、積層状ではなく、横方向に離間される。このようなカスケード状キャパシタ49の一実施形態を図7Aから図7Cに示す。図示のように、キャパシタ49は、2組の別々のアクティブ電極36および40、ならびに2組の別々のバイアス電極46および50に関係付けて配列された、複数の誘電体層44を含む。図示する実施形態では、この実例では、第1アクティブ端子38が第1アクティブ電極36と電気的に接続され、第2アクティブ端子42が第2アクティブ電極40に電気的に接続されている。第1バイアス電極46は、キャパシタ49の側面まで達する延長部材48を介して、第1DCバイアス(-)端子54と電気的に接続されている。同様に、第2バイアス電極50は、延長部材52を介して、第2DCバイアス(+)端子56と電気的に接続されている。図7Dおよび図7Eは、それぞれ、先の図7Aから図7Cの例示的な実施形態の分路構成および直列構成を表す図である。図示のように、バイアス入力に関係付けて接地58も設けられ、分路構成について示す。
【0062】
[0085] 図8Aから図8Cは、本開示にしたがって、部分的カスケード構成に形成することができるキャパシタ59の他の実施形態を示す。キャパシタ59を「部分的カスケード状」と見なすのは、アクティブ容量領域全体の内、部分的領域60だけがバイアスされるからである(図8A参照)。図示のように、バイアスされた浮遊電極を追加すると、外部電圧の印加によって、他の要因および構造(features)によって決定されるように、総容量の誘電体特性を変化させることが可能になる。このような図に示すように、誘電体層62は、第1および第2組のアクティブ電極64および66、第1および第2組のバイアス電極68および72、ならびに複数の浮遊電極76に対して交互に積層されればよい。第1アクティブ電極64は第1アクティブ端子78と電気的に接続され、一方第2アクティブ電極66は第2アクティブ端子80と電気的に接続されている。第1バイアス電極68は、キャパシタ59の側面まで達する延長部材70を介して、第1DCバイアス(+)端子82と電気的に接続されている。同様に、第2バイアス電極72は、延長部材74を介して、第2DCバイアス(-)端子84と電気的に接続されている。尚、図8Aに示す電極層の数は、一例に過ぎないことは理解されてしかるべきである。
【0063】
[0086] 本明細書において説明するコントローラおよび/またはシステムによって調整することができるキャパシタの更に他の実施形態を図11Aおよび図11Bに示す。この実施形態では、第1および第2組のアクティブ電極1014、1020が、それぞれ、第1および第2組のバイアス電極1022、1026と、それぞれ、比率1:1のパターンで交互に積層される。図11Bを参照すると、ある実施形態では、バイアス電極1022、1026のリード1024、1028を、突出するタブのように構成することができる。リード1024、1028は、図2Dに示したような完成した形態において、DCバイアス端子30、32に接触することができる。尚、図11Aおよび図11Bに示す電極層の数は一例に過ぎないことは理解されてしかるべきである。
【0064】
[0087] 本明細書において開示するコントローラおよび/またはシステムによって調整することができるキャパシタの他の実施形態を、図11Cおよび図11Dに示す。この実施形態では、アクティブ電極1014、1020は、突出するタブのように構成することができるそれぞれのリード1025および1027を含むことができる。リード1025、1027は、図11Dに示す、それぞれのアクティブ端子16、18と電気的に接続することができる。これは、キャパシタの層のエッジ間、特に層の角において、積層を改良することができ、その結果一層堅牢なキャパシタを得ることができる。加えて、この構成は、製造中における剥離問題の発生を減らすこともできる。
【0065】
[0088] 加えて、タブ1024、1025、1026、1027のそれぞれの幅は、それぞれの電極1014、1020、1022、1026に対する電気的接触が増える(例えば、抵抗が減る)利点が得られるように選択することができる。加えて、タブ1024、1028の幅、およびDCバイアス電極1022、1026に関連付けられた端子30、32の幅は、バイアス電極端子30、32と信号電極端子16、18との間の接触を回避するように選択することもできる。例えば、ある実施形態では、タブ1024、1025、1026、1027は、キャパシタのエッジの10%以上、ある実施形態では30%以上、そしてある実施形態では60%以上に沿って延びてもよい。尚、図11Aから図11Dに示す電極層の数は一例に過ぎないことは理解されてしかるべきである。
【0066】
[0089] 以上で論じた実施形態では、総じて、「対称」構成の電極を採用し、第1アクティブ電極と第2アクティブ電極との間の距離(または誘電体の厚さ)が、第1バイアス電極と第2バイアス電極との間の距離とほぼ同じである。特定実施形態では、しかしながら、「非対称」構成を得るために、この厚さを変化させることが望ましい場合もある。例えば、第1および第2アクティブ電極間の距離は、第1および第2バイアス電極間の距離よりも短くしてもよい。更に他の実施形態では、第1および第2アクティブ電極間の距離は、第1および第2バイアス電極間の距離よりも大きくてもよい。とりわけ、これは所与のレベルの印加DCバイアスに対して形成されるDC電界を増加させることができ、所与のDCバイアス電圧に対する調整可能性のレベルを上げることになる。また、このような配列は、相対的に控えめなDC電圧に対して相対的に大きな調整可能性を可能にし、更に控えめな調整可能性(潜在的に損失が少なくおよび温度/周波数可変性が低い)を有する材料の使用を可能にする場合もある。このような非対称構成は種々の方法で達成することができるが、通例、アクティブ電極の各対間に追加の「浮遊」バイアス電極を使用することが望ましい。図10を参照して実例をあげると、このような非対称キャパシタの一実施形態が示されており、それぞれ、第1および第2アクティブ電極1014および1020を、それぞれ、第1および第2バイアス電極1022および1026と共に内蔵する。
【0067】
[0090] 図12Aは、各11番目の電極が、バイアス電極ではなく、アクティブ電極である(比率11:1の設計)非対称キャパシタの他の実施形態を示す。この場合、このようなそれぞれのアクティブ電極(例えば、AC電極)の各々は、逆極性を有する1対のDCバイアス電極によって挟む(bound)ことができる。つまり、各AC電極を横切るバイアス電界(biasing field)を生成することができる。このような構成は、AC信号とDCバイアス電圧の両極性との間に、そしてその逆に、容量性結合を形成することができる。各AC電極214、220は、逆極性を有する1対のバイアス電極222、226の間に配置されればよい。第1組のバイアス電極222は、全て同じ極性を有することができ、第2組のバイアス電極226(破線で示す)は、全て、第1組のバイアス電極222とは逆極性をそれぞれ有することができる。この構成は、各AC電極214、220と両DCバイアス極性との間に容量性結合を形成することができる。
【0068】
[0091] 図12Bは、本明細書において開示する主題によるバイアス積層キャパシタの比率11:1の「遮蔽」非対称設計の例示的な実施形態の断面図を示す。これは、各AC電極314、320が、同じ極性を有する1対のDC電極(322または326)によって挟まれていることを除いて、図8に示す例と同様である。1組のバイアス電極322は全て同じ極性を有することができ、他の1組のバイアス電極326(破線で示す)は全て逆の極性を有することができる。2つのDC電極(322または326)間にあり同じ極性を有する材料には、調整できないものもあるが、この材料は潜在的にAC信号に対する遮蔽を設けることができ、付随するノイズを低減する。また、このような構成は、第1組のAC電極314の各々と1つのDCバイアス極性との間にのみ結合を形成することもできる。同様に、このような構成は、第2組のAC電極320と逆のDCバイアス極性との間にのみ容量性結合を形成することもできる。尚、図8および図9に示す電極層の数は一例に過ぎないことは理解されてしかるべきである。
【0069】
[0092] 図13Aは、本明細書において開示する主題の態様による部分的に調整可能な積層キャパシタ400の例示的な実施形態の断面図を示す。部分的に調整可能な積層キャパシタ400は、第1アクティブ端子404と電気的に接続された第1組のAC電極402と、第2アクティブ端子408と電気的に接続された第2組のAC電極406とを含むことができる。また、部分的に調整可能な積層キャパシタ400は、先に詳細に論じたように可変誘電体領域412の誘電定数を変化させるように、1つ以上の可変誘電体領域412の両端間にDCバイアス電圧を印加するように構成されたDCバイアス電極410も含むことができる。また、部分的に調整可能な積層キャパシタ400は、DCバイアス電圧の印加によって調整することができない調整不可能領域414も含むことができる。例えば、ある実施形態では、調整不可能領域414は、DCバイアス電極410を全く含まなくてもよい。あるいは、他の実施形態では、調整不可能領域414は、調整不可能領域414内にはDCバイアス電圧が印加されないように、いずれの端子とも接続されていない電極を内蔵してもよい。このように、ある実施形態では、調整不可能セクション402における誘電体材料の容量は、DCバイアス電極410の両端間に印加されるDCバイアス電圧による影響を受けないようにすることができる。
【0070】
[0093] 図13Bは、図13Aに示した部分的に調整可能な積層キャパシタの模式図である。この実施形態では、調整不可能領域414は、1つ以上の可変誘電体領域412と並列に接続されている。DCバイアス端子の両端間にDCバイアス電圧を印加すると、調整可能領域(1つまたは複数)412の容量を変化させることができるが、調整不可能領域414の容量を変化させることはできない。この結果、部分的に調整可能な積層キャパシタは、等価な完全調整可能な積層キャパシタよりも狭い容量値の範囲にわたって調整可能になる。その結果、印加したDCバイアス電圧の単位当たりの変化に対する容量変化は、等価な完全調整可能な積層キャパシタよりも少なくすることができる。つまり、部分的に調整可能な積層キャパシタは、調整分解能または正確度を高めることができる。
【0071】
[0094] ある実施形態では、アクティブおよびDCバイアス端子は、キャパシタの軸を中心として対称的に配置される。例えば、一実施形態では、キャパシタは、長手方向に離間された、対向する第1および第2終端領域と、横方向に離間された対向する第1および側面領域とを含むことができる。特定実施形態では、アクティブ端子は、キャパシタのそれぞれの終端領域に配置することができ、一方DCバイアス端子はキャパシタのそれぞれの側面領域に配置することができる。対称的に配置したとき、アクティブ端子および/またはDCバイアス端子は、キャパシタの幾何学的中心を貫通する長手方向および横方向軸から等距離に離間されるとして差し支えない。図15Aを参照すると、例えば、キャパシタ1000の一実施形態が示されており、互いに垂直であり、幾何学的中心「C」を貫通する長手方向軸「x」および横方向軸「y」を含む。この特定実施形態では、キャパシタ1000は、第1および第2アクティブ端子1100および1120を含み、それぞれ、キャパシタ1000の終端領域に配置され、軸「x」および「y」双方を中心として位置付けられている。同様に、キャパシタ1000は、第1および第2バイアス端子1140および1160も含み、これらはキャパシタ1000の側面領域に配置され、軸「x」および「y」双方を中心として位置付けられている。
【0072】
[0095] 特定実施形態では、2つ以上の端子をキャパシタの同じ側に配置することが望ましい場合もある。図15Bにおいて実例をあげると、キャパシタ2000の一実施形態が示されおり、同じ側面領域に配置された第1アクティブ端子2100および第2アクティブ端子2140を含む。また、キャパシタ2000は、アクティブ端子とは対向する他方の側面領域に双方とも配置された、第1バイアス端子2160および第2バイアス端子2120も含む。側面領域のみに配置されているが、アクティブ端子2100および2140は、双方とも軸「x」および「y」から等距離に位置付けられていることから、対称的に配列されていることに変わりはないと言うことができる。同様に、バイアス端子2160および2120も、軸「x」および「y」から等距離に配置されている。以上で引用した実施形態では、第1アクティブ端子および第1バイアス端子は、それぞれの第2アクティブ端子および第2バイアス端子と対向して位置付けられている。勿論、これは必須では全くない。図15Cにおいて実例をあげると、キャパシタ3000が示され、第1および第2アクティブ電極端子3100および3160を含み、それぞれ、オフセット構成で、対向する側面領域に配置されている。しかしながら、第1アクティブ端子3100および第2アクティブ端子3160は、双方共軸「x」および「y」から等距離に位置付けられていることから、対称的に配置されていることに変わりはない。同様に、キャパシタ3000は、第1および第2バイアス端子3120および3140も含み、対向する側面領域に、オフセット構成で、軸「x」および「y」から等距離に配置されている。他の実施形態では、端子、例えば、バイアス端子および/またはアクティブ電極端子は、先に説明した「x」および「y」軸を中心として、対称的に構成することができる。
【0073】
[0096] 本明細書において開示する主題は、同時に、電圧調整デバイスの改良に関連する方法および/または対応する方法も包含し、例えば、このようなデバイスの生産、および関連する回路と組み合わせたそれらの使用も含む。更に他の例として、図9は、チップ製造自動プロセス(CMAP:chip manufacturing automated process)86を表す。このプロセス86は、本明細書において共に開示される、デバイス製造の例示的な実施形態と併せて使用することができる。図示のように、プロセス86は、複数の連続ステージを含むことができ、ある実例では、代表的に示すように、3つのオーブンと、その間に入るセラミック・ステーション、あるいはスクリーン・ヘッドまたはエレベータおよびコンベア構造の使用というような、他のステップ/ファセットとを伴う。尚、連続ステップの正確な設置(provision)は、本明細書で開示した例示的なデバイスの実施形態(またはその変更)の内どれを生産するかによって異なることは、当業者には理解されよう。また、図示する個々のステップは、示されるステップの種類を表すことを意図するに過ぎず、示されるステップの一般的な性質を超えて必要とされる他の態様の使用を指定するのではない。例えば、スクリーン・ヘッド・ステップは、ステンレス鋼製のスクリーンを、電極層のスクリーン・ペースティング(screen pasting)のための電極ペーストと共に使用することを伴う場合もあり、またはこのようなステップのための他の技術を実施してもよい。例えば、従来と変わらない交互積層(stacking and laminating)のステップ(テープによる)を実施しても良い。いずれのプロセス(または他のもの)でも、本明細書において開示する主題の所与の用途に選択された特定の構造(design)を生産するために、選択されたステップを実施できることは、当業者には認められよう。
【0074】
[0097] 図16Aから図16Cまでを参照すると、個々のキャパシタ10を「水平スタック」構成に配列することによって、調整可能な積層キャパシタ・アレイ4000を形成することができる。個々のキャパシタは、例えば、図2および図7を参照して説明したように構成することができる。積層された(stacked)キャパシタ・アレイ4000は、1つのキャパシタ10と比較して、容量の増大およびESRの低減をもたらすことができる。加えて、積層されたキャパシタ・アレイ400は、容易な製造および、例えば、印刷回路ボード上への実装も可能にすることができる。加えて、積層されたキャパシタ・アレイ400は、機械的安定性の向上および熱消散の改良ももたらすことができる。
【0075】
[0098] ある実施形態では、キャパシタ・アレイ4000のキャパシタ10を並列に接続することができる。例えば、第1リード・フレーム4002は各第1アクティブ端子16に接続することができ、第2リード・フレーム4004は、各第2アクティブ端子18に接続することができる。第1単線リード4006は各第1DCバイアス端子30に接続することができ、第2単線リード4008は各第2DCバイアス端子32に接続することができる。ある実施形態では、DCバイアス端子30、32は、図16Bおよび図16Cに示すように、キャパシタの側面を包み込んでもよい。この構成は、DCバイアス端子30、32と、各バイアス端子30、32が接続されたそれぞれのバイアス電極との間における機械的および/または電気的接続を改良することができる。加えて、このような構成は、隣接するキャパシタ10の種々の第1DCバイアス端子30および種々の第2DCバイス端子32との間における電気的接続も改良することができる。これによって一層弾力性のある(resilient)アレイ4000を提供することができる。
【0076】
[0099] 他の実施形態では、DCバイアス端子30、32は、図16Aに示すように、キャパシタ10の側面のみに設けられてもよい。このような構成では、キャパシタ10をアレイ4000において一層密接に配列することができ、例えば、更に小型化したアレイ4000を得ることができる。
【0077】
[0100] DCバイアス電圧を第1および第2単線リード4006、4008の両端間に印加することによって、アレイ4000内にあるキャパシタ10の各々にDCバイアス電圧を印加することができる。明確化のために、単線リード4006、4008を図16Aおよび図16Bから省略した。第1および第2リード・フレーム4002、4004の各々は、回路、例えば、印刷回路ボードへの接続のために、キャパシタ・アレイ4000から延びる複数のリード4010を含むことができる。ある実施形態では、リード4010は、図16Aに示すように、直線状であってもよく、他の実施形態では、リード4010は、図16Bに示すように、「J」字型に外側に湾曲してもよい。更に他の実施形態では、リード4010は、内側に湾曲してもよく、または実装に適した任意の他の構成を有してもよい。
【0078】
[0101] 調整可能な積層キャパシタ・アレイ4000は、長手方向4014の長さ4012、幅方向4018の幅4016、および高さ方向4022の高さ4020を有することができる。各キャパシタ10は、複数の調整可能な積層キャパシタ10の各々の厚さが、アレイ4000の長さ方向4014に延びるように、「水平積層」構成に配列されるとよい。図16Aおよび図16Bに示すように、アレイ4000の高さ4020は、アレイ4000と、アレイ4000が実装される表面(点線で示す)との間にギャップ距離4021を含んでもよい。ギャップ距離4021は、アレイ400の底面(端子32を含む)と、アレイ4000が実装される表面との間で測定すればよい。リード・フレーム4002、4004は、この表面の上方でアレイ4000を支持することができる。ギャップ距離4021は、アレイ4000を表面から熱的に分離し、アレイ4000を表面における歪みから機械的に断ち切るのを助けることができる。
【0079】
[0102] 図17Aから図17Cまでを参照すると、調整可能な積層キャパシタ10および調整不可能なキャパシタ5002、即ち、調整機能を有していないキャパシタの双方を「水平積層」構成に配列することによって、部分的に調整可能な積層キャパシタ・アレイ5000を形成することができる。図16Aから図16Cまでに示した実施形態と同様、部分的に調整可能な積層キャパシタ・アレイ5000は、調整可能な積層キャパシタ10の各第1アクティブ端子16に接続する第1リード・フレーム4002と、調整可能な積層キャパシタ10の各第2アクティブ端子19に接続する第2リード・フレーム4004とを含むことができる。加えて、第1単線リード4006が調整可能な積層キャパシタ10の各第1DCバイス端子30に接続することができ、第2単線リード4008が調整可能な積層キャパシタ10の各第2DCバイアス端子32に接続することができる。明確化のため、単線リード4006、4008を図17Aおよび図17Bから省略した。図16Aから図16Cを参照して説明したアレイ4000と同様、部分的に調整可能なアレイ5000の調整可能なキャパシタ10は、図17Bおよび図17Cに示すように、キャパシタ10の側面を包み込むDCバイアス端子30、32を含むことができる。他の実施形態では、DCバイアス端子30、32は、例えば、図17Aに示すように、調整可能なキャパシタの側面のみに配置することもできる。
【0080】
[0103] 部分的に調整可能な積層キャパシタ・アレイ5000は、図13Aおよび図13Bを参照して先に説明した部分的に調整可能な積層キャパシタ400と同様に、調整分解能または精度を高めることができる。調整不可能なキャパシタ5002は、単線リード4006、4008を使用してアレイのDCバイアス電極30、32の両端間に最大DCバイアス電圧が印加されるときに、アレイ5000の最小容量を増加させることができる。
【0081】
[0104] 図18Aから図18Cを参照すると、ある実施形態では、底面終端アレイ(bottom-terminated array)6000を形成することができる。これは、アレイ6000の底面に沿って配列された第1および第2DCバイアス端子30、32を有する。例えば、各キャパシタ10は、同じ側に沿って配列された、それぞれの第1および第2DCバイアス端子30、32を有することができる。他の実施形態では、DCバイアス端子30、32は、双方共、アレイ4000の上面に沿って配置されてもよい。DCバイアス端子30、32は、しかしながら、任意の適した構成を有することができる。
【0082】
[0105] 図18Aから図18Cまでに示す構成は、例えば、実装が一層容易になる、機械的耐久性が向上する等を含む、利点を提供することができる。実例をあげると、DCバイアス端子30、32は、アレイ400が実装されている表面、例えば、印刷回路ボード上にあるそれぞれの端子との接続を一層容易にすることができる。ある実施形態では、単線リード4006、4008は、それぞれのDCバイアス端子30、32を実装面上にあるそれぞれの端子と接続することができる。他の実施形態では、しかしながら、単線リード4006、4008を使用せずに、例えば、はんだ付けによって、DCバイアス端子を実装面上にあるそれぞれの端子と直接接続することもできる。
【0083】
[0106] 加えて、先に説明した底面終端構成は、図17Aから図17Cを参照して説明した実施形態と同様に、部分調整キャパシタ・アレイを形成するために採用することもできる。例えば、ある実施形態では、図17Aから図17Cまでを参照して先に説明した部分的に調整可能なアレイ5000と同様に、底面終端調整可能なキャパシタ10の組み合わせを、調整不可能なキャパシタ5002と並列に接続してもよい。
【0084】
[0107] 他の実施形態では、例えば、図16Aから図16Cまでに示すように、対向する両側面に配列されたDCバイアス端子30、32を有する第1組の調整可能なキャパシタ10は、例えば、図18Aから図18Cに示すように、同じ側面(例えば、底面)上に配列されたDCバイアス端子30、32を有する第2組の調整可能なキャパシタ10と共に、アレイを形成するために使用することができる。このような構成は、第1DCバイアス電圧を第1組の調整可能なキャパシタ10に印加し、第1DCバイアス電圧とは異なる第2バイアス電圧を第2組の調整可能なキャパシタ10に印加することを可能にすることができる。これは、2つの異なるDCバイアス電圧に基づいて調整することができる調整可能なアレイ4000を提供することができる。更に他の実施形態では、底面上に配列されたDCバイアス端子30、32を有する第1組の調整可能なキャパシタ10を、例えば、上面上に配列されたDCバイアス端子30、32を有する第2組の調整可能なキャパシタ10を有するアレイ内に接続することができる。また、この構成は、第1DCバイス電圧を第1組の調整可能なキャパシタ10に印加し、第1DCバイアス電圧とは異なる第2DCバイアス電圧を第2組の調整可能なキャパシタ10に印加することを可能にすることができる。これは、2つの異なるDCバイアス電圧に基づいて調整することができる調整可能なアレイ4000を提供することができる。
【0085】
[0108] 尚、本明細書において説明および図示した種々の構成を有する調整可能なキャパシタの更に他の組み合わせも、具体的に本明細書において説明したものを超える追加のアレイを形成することができることは、当業者であれば理解されよう。同様に、本明細書において説明および図示したような構成を有する調整可能および調整不可能なキャパシタの更に他の組み合わせも可能である。
【0086】
[0109] 図19を参照すると、ある実施形態では、キャパシタ・アレイ4000は垂直スタック構成を有することができる。垂直スタック・キャパシタ・アレイ4000は、同様に、第1アクティブ端子16の一部または全部と接続された第1リード・フレーム4002を有することができ、第2リード・フレーム4004は、第2アクティブ端子18の一部または全部と接続することができる。第1単線リード4006は、一部または全部の第1DCバイアス端子30に接続することができ、第2単線リード4008は第2DCバイアス端子32の一部または全部に接続することができる。このように、垂直スタック・キャパシタ・アレイ4000は、ある実施形態では完全に調整可能なキャパシタ・アレイとして、そして他の実施形態では部分的に調整可能なキャパシタ・アレイとして構成することができる。ある実施形態では、例えば、図18Aから図18Cに示す底面終端調整可能アレイを参照して先に説明したキャパシタ10のように構成された調整可能なキャパシタ10を使用して、バイアス端子30、32双方を同じ側に有する垂直スタック・アレイを形成することができる。同様に、異なる調整可能および/または調整不可能なキャパシタの組み合わせを、水平スタック・アレイ4000、5000を参照して先に説明したように、垂直スタック・アレイ4000に組み込むこともできる。
【0087】
[0110] 図12から図14を参照して先に説明した水平スタック構成は、多数のキャパシタを含むキャパシタ・アレイの機械的安定性を改善することができる。例えば、5つよりも多いキャパシタを含むアレイでは、垂直スタック・アレイの高さが、例えば、印刷回路ボードの表面に実装するには非実用的になる場合がある。加えて、このようなアレイの高さが、アレイを機械的に不安定にするおそれもある。しかしながら、少数のキャパシタ、例えば、5つ以下のキャパシタを有するアレイでは、垂直スタック・アレイは、フットプリントを狭くし、低い外形(lower profile)にすることができる。
【0088】
III.用途
[0111] 本明細書において説明したように電圧調整可能なキャパシタを調整するコントローラおよび/またはシステムは、例えば、電力変換回路を含む、多種多様な用途に採用することができる。高容量および電圧において調整可能であることから、回路の性能の最適化に対処することができる。更に他の用途には、負荷点フィルタ回路(point-of-load filter circuit)および種々の負荷回路におけるスムージング・キャパシタを含むことができる。他の適した用途には、実例をあげると、導波路、RF用途(例えば、遅延線)、アンテナ構造、マッチング・ネットワーク、共振回路、およびその他の用途を含むことができる。
【0089】
検査方法
容量
[0112] Keithley3330 Precision LCZメータを使用し、DCバイアスを0.0ボルト、1.1ボルト、または2.1ボルト(1ボルト二乗平均平方根正弦波信号)として、MIL-STD-202法305にしたがって、容量を測定することができる。動作周波数は1kHzであり、温度は約25°Cである。相対湿度は25%または85%でよい。
【0090】
等価直列抵抗(ESR)
[0113] Keithley2400、2602、または3330Precision LCZメータを使用し、DCバイスを0.0ボルト、1.1ボルト、または2.1ボルト(0.5ボルト・ピーク・ピーク正弦波信号)、動作周波数を10KHz、50KHz、または100KHzとして、等価直列抵抗を測定することができる。種々の温度および相対湿度レベルを検査することができる。例えば、温度は23°C、80°C、または105°Cでもよく、相対湿度は25%または85%でもよい。
【0091】
キャパシタ・アレイの例
[0114] キャパシタ・アレイを調整するために、前述のコントローラおよび/またはシステムを使用することができる。本開示の態様による調整可能な積層キャパシタ・アレイの例を表1に示す。
【表1】

【0092】
[0115] 表1に列挙した初期容量は、DCバイアス電圧を印加しないアレイの容量としてよい。アレイは、初期容量の約10%から約95%まで調整可能であるとしてよい。
【0093】
[0116] 当業者であれば、本発明の主旨および範囲から逸脱することなく、本発明のこれらおよびその他の変更ならびに変形を実施することができよう。加えて、種々の実施形態の態様は、全体的または部分的のいずれでも、相互交換できることも理解されてしかるべきである。更に、以上の説明は一例に過ぎず、添付した特許請求の範囲における記載を超えて本発明を限定することは意図していないことは、当業者には認められよう。
図1
図2
図3
図4
図5A
図5B
図5C
図5D
図6A
図6B
図7A
図7B
図7C
図7D
図7E
図8A
図8B
図8C
図9
図10
図11A
図11B
図11C
図11D
図12A
図12B
図13A
図13B
図14
図15A
図15B
図15C
図16A
図16B
図16C
図17A
図17B
図17C
図18A
図18B
図18C
図19