(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-03
(45)【発行日】2024-06-11
(54)【発明の名称】電子顕微鏡およびキャリブレーション方法
(51)【国際特許分類】
H01J 37/22 20060101AFI20240604BHJP
H01J 37/26 20060101ALI20240604BHJP
【FI】
H01J37/22 501Z
H01J37/22 501C
H01J37/26
(21)【出願番号】P 2022085240
(22)【出願日】2022-05-25
【審査請求日】2023-08-31
(73)【特許権者】
【識別番号】000004271
【氏名又は名称】日本電子株式会社
(74)【代理人】
【識別番号】100090387
【氏名又は名称】布施 行夫
(74)【代理人】
【識別番号】100090398
【氏名又は名称】大渕 美千栄
(74)【代理人】
【識別番号】100161540
【氏名又は名称】吉田 良伸
(72)【発明者】
【氏名】小入羽 祐治
【審査官】後藤 慎平
(56)【参考文献】
【文献】特開2015-032392(JP,A)
【文献】特開2016-085917(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/00-37/36
(57)【特許請求の範囲】
【請求項1】
試料に電子線を照射し、前記試料を透過した電子で結像する電子光学系と、
イメージセンサーを含み、前記イメージセンサーの各セルに電子が入射することによって得られた信号に基づくフレーム画像を出力するカメラと、
前記フレーム画像に基づいて画像を生成する演算部と、
を含み、
前記演算部は、
閾値を設定する処理と、
前記フレーム画像を前記閾値を用いて二値化し、二値化された前記フレーム画像に基づいて前記画像を生成する処理と、
を行い、
前記閾値を設定する処理では、
仮閾値を設定し、前記イメージセンサーに入射する電子がポアソン過程に従う条件で得られた複数の前記フレーム画像を取得し、取得した複数の前記フレーム画像の各々を前記仮閾値を用いて二値化し、二値化された複数の前記フレーム画像を積算して積算画像を生成し、当該積算画像の各画素の画素値の平均と分散を
算出し、算出した平均を算出した分散で除算して正規化定数を求める処理を、前記仮閾値を変更しながら繰り返し、
1-0.07≦S≦1+0.07を満たす前記正規化定数
Sが得られた前記仮閾値、または1に最も近い前記正規化定数が得られた前記仮閾値に基づき最適閾値を求め、当該最適閾値を前記閾値として設定する、電子顕微鏡。
【請求項2】
請求項1において、
前記イメージセンサーに入射する電子の電流量を測定する測定器を含み、
前記演算部は、
複数の前記フレーム画像の各々を前記最適閾値を用いて二値化し、二値化された複数の前記フレーム画像を積算して積算画像を生成し、当該積算画像の各画素の画素値の平均と前記イメージセンサーの各セルに入射する電子の数に基づいて、検出量子効率を求める処理を行う、電子顕微鏡。
【請求項3】
請求項1または2において、
前記演算部は、前記閾値を設定する処理において、
前記フレーム画像において、隣接する複数の画素の画素値に基づいて、電子が入射したセルに対応する画素を特定する、電子顕微鏡。
【請求項4】
請求項1または2において、
前記カメラは、電子を前記イメージセンサーで直接検出する、電子顕微鏡。
【請求項5】
試料に電子線を照射し、前記試料を透過した電子で結像する電子光学系と、
イメージセンサーを含み、前記イメージセンサーの各セルに電子が入射することによって得られた信号に基づくフレーム画像を出力するカメラと、
前記フレーム画像に基づいて画像を生成する演算部と、
を含み、
前記演算部は、前記フレーム画像を閾値を用いて二値化し、二値化された前記フレーム画像に基づいて前記画像を生成する処理を行う電子顕微鏡における閾値のキャリブレーション方法であって、
仮閾値を設定し、前記イメージセンサーに入射する電子がポアソン過程に従う条件で得られた複数の前記フレーム画像を取得し、取得した複数の前記フレーム画像の各々を前記仮閾値を用いて二値化し、二値化された複数の前記フレーム画像を積算して積算画像を生成し、当該積算画像の各画素の画素値の平均と分散
を算出し、算出した平均を算出した分散で除算して正規化定数を求める処理を、前記仮閾値を変更しながら繰り返し、
1-0.07≦S≦1+0.07を満たす前記正規化定数
Sが得られた前記仮閾値、または1に最も近い前記正規化定数が得られた前記仮閾値に基づき最適閾値を求め、当該最適閾値を前記閾値として設定する、キャリブレーション方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子顕微鏡およびキャリブレーション方法に関する。
【背景技術】
【0002】
透過電子顕微鏡では、試料を透過した電子をカメラを用いて検出する。
【0003】
例えば、特許文献1の装置では、マルチチャンネルプレート、光を発生するための蛍光板、および光を記録するためのカメラを用いて、二次元的に電子を検出する。特許文献1の装置では、カメラからのフレームを画素ごとに調べてイベントを検出し、タグ付けを行い、タグ付けされたイベントを結合して、二次元画像を生成する。
【0004】
イベントを検出することでフレームごとに得られる画像は、どこでイベントが生じたか、すなわち、どこに電子が入射したかを表すマップとなる。具体的には、イベントが検出された後の各フレームの画素値は、入射電子を表すイベントを意味する「1」、イベントなしを意味する「0」となる。そのため、イベントを結合して生成された二次元画像の各画素の画素値は、結合されたすべてのフレームを撮影した期間に、その画素に生じたイベントの数、すなわち、入射した電子の数に対応する。このように、特許文献1では、フレームを二値化することで電子の数をカウントするカウンティング処理を行って、二次元画像を生成している。
【0005】
特許文献1では、高フレームレートで電子を検出し、各フレームに対してカウンティング処理を行うことによって、蛍光体プレートが強度に対して非線形なゲインプロファイルを有することによる影響を低減し、良好なリニアリティ(線形性)を有する画像を取得可能としている。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
フレームを二値化して入射電子をカウントするカウンティング処理を行う場合、適切な閾値を設定しなければ、ノイズを入射電子としてカウントしたり、電子が入射したにも関わらずカウントされない数え落としが生じたりしてしまう。
【課題を解決するための手段】
【0008】
本発明に係る電子顕微鏡の一態様は、
試料に電子線を照射し、前記試料を透過した電子で結像する電子光学系と、
イメージセンサーを含み、前記イメージセンサーの各セルに電子が入射することによって得られた信号に基づくフレーム画像を出力するカメラと、
前記フレーム画像に基づいて画像を生成する演算部と、
を含み、
前記演算部は、
閾値を設定する処理と、
前記フレーム画像を前記閾値を用いて二値化し、二値化された前記フレーム画像に基づいて前記画像を生成する処理と、
を行い、
前記閾値を設定する処理では、
仮閾値を設定し、前記イメージセンサーに入射する電子がポアソン過程に従う条件で得られた複数の前記フレーム画像を取得し、取得した複数の前記フレーム画像の各々を前記仮閾値を用いて二値化し、二値化された複数の前記フレーム画像を積算して積算画像を生成し、当該積算画像の各画素の画素値の平均と分散を算出し、算出した平均を算出した分散で除算して正規化定数を求める処理を、前記仮閾値を変更しながら繰り返し、1-0.07≦S≦1+0.07を満たす前記正規化定数Sが得られた前記仮閾値、または1に最も近い前記正規化定数が得られた前記仮閾値に基づき最適閾値を求め、当該最適閾値を前記閾値として設定する。
【0009】
このような電子顕微鏡では、二値化の閾値を適切に設定できる。
【0010】
本発明に係るキャリブレーション方法の一態様は、
試料に電子線を照射し、前記試料を透過した電子で結像する電子光学系と、
イメージセンサーを含み、前記イメージセンサーの各セルに電子が入射することによって得られた信号に基づくフレーム画像を出力するカメラと、
前記フレーム画像に基づいて画像を生成する演算部と、
を含み、
前記演算部は、前記フレーム画像を閾値を用いて二値化し、二値化された前記フレーム画像に基づいて前記画像を生成する処理を行う電子顕微鏡における閾値のキャリブレーション方法であって、
仮閾値を設定し、前記イメージセンサーに入射する電子がポアソン過程に従う条件で得られた複数の前記フレーム画像を取得し、取得した複数の前記フレーム画像の各々を前記仮閾値を用いて二値化し、二値化された複数の前記フレーム画像を積算して積算画像を生成し、当該積算画像の各画素の画素値の平均と分散を算出し、算出した平均を算出した分散で除算して正規化定数を求める処理を、前記仮閾値を変更しながら繰り返し、1-0.07≦S≦1+0.07を満たす前記正規化定数Sが得られた前記仮閾値、または1に最も近い前記正規化定数が得られた前記仮閾値に基づき最適閾値を求め、当該最適閾値を前記閾値として設定する。
【0011】
このようなキャリブレーション方法では、二値化の閾値を適切に設定できる。
【図面の簡単な説明】
【0012】
【
図1】本発明の一実施形態に係る電子顕微鏡の構成を示す図。
【
図2】入射電子による信号の発生量とその頻度を示すグラフ。
【
図4】入射電子による信号の発生量とその頻度を示すグラフにノイズを加えたグラフ。
【
図5】演算部の閾値を設定する処理の一例を示すフローチャート。
【
図6】演算部の検出量子効率を算出する処理の一例を示すフローチャート。
【
図7】1つのセルに入射した電子が隣接する他のセルに侵入した場合に、電子が入射した1つのセルを特定する手法を説明するための図。
【
図8】演算部の閾値を設定する処理の変形例を示すフローチャート。
【
図9】演算部の閾値を設定する処理の変形例を示すフローチャート。
【
図10】イメージセンサーに入射した電子から得られる信号(ノイズを含む)を模擬した確率密度分布および累積密度関数を示す図。
【
図12】閾値と正規化定数の関係、閾値とカウンティング画像の各画素の画素値の平均の関係、閾値とカウンティング画像の各画素の画素値の分散の関係を示すグラフ。
【
図14】閾値を25に設定してカウンティング処理されたカウンティング画像と、閾値を75に設定してカウンティング処理されたカウンティング画像を示す図。
【発明を実施するための形態】
【0013】
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
【0014】
1. 電子顕微鏡
まず、本発明の一実施形態に係る電子顕微鏡について図面を参照しながら説明する。
図1は、本発明の一実施形態に係る電子顕微鏡100の構成を示す図である。
【0015】
電子顕微鏡100は、電子源10と、電子光学系20と、試料ステージ30と、カメラ40と、測定器50と、演算部60と、を含む。
【0016】
電子源10は、電子線を放出する。電子源10は、例えば、陰極から放出された電子を陽極で加速し電子線を放出する電子銃である。
【0017】
電子光学系20は、電子源10からの電子線を試料Sに照射し、試料Sを透過した電子で結像する。電子光学系20は、照射系22と、結像系24と、を含む。
【0018】
照射系22は、電子源10から放出された電子線を試料Sに照射する。例えば、照射系22は、試料Sに対して平行ビームを照射する。照射系22は、複数のコンデンサーレンズ220を含む。コンデンサーレンズ220は、電子源10から放出された電子線を集束する。図示はしないが、照射系22は、コンデンサーレンズ220以外のレンズや絞りなどを含んでいてもよい。
【0019】
結像系24は、試料Sを透過した電子線で結像するための光学系である。結像系24は、対物レンズ240と、中間レンズ242と、投影レンズ244と、を含む。
【0020】
対物レンズ240は、試料Sを透過した電子線でTEM像を結像するための初段のレンズである。対物レンズ240の後焦点面には、電子回折パターンが形成される。中間レンズ242は、焦点距離を変えて、対物レンズ240によって形成されるTEM像または電子回折パターンに焦点を合わせて、TEM像または電子回折パターンを拡大し、投影レンズ244の物面にTEM像または電子回折パターンを形成する。投影レンズ244は、中間レンズ242が形成した像(TEM像または電子回折パターン)を拡大し、カメラ40のイメージセンサー42上に結像する。
【0021】
図示はしないが、結像系24は、対物レンズ240、中間レンズ242、および投影レンズ244以外のレンズや絞りなどを含んでいてもよい。
【0022】
試料ステージ30は、試料ホルダー32に保持された試料Sを支持する。試料ステージ30によって、試料Sを位置決めできる。
【0023】
カメラ40は、イメージセンサー42を含む。カメラ40は、電子をイメージセンサー42で直接検出する直接検出カメラ(Direct Electron Detector)である。すなわち、カメラ40は、シンチレーターで電子を光に変換し、光をカメラで撮影して電子を検出する間接検出カメラではなく、シンチレーターを用いることなく、イメージセンサー42で直接電子を検出する。そのため、カメラ40では、電子を光に変換する過程において、光が広がることによるボケを低減でき、解像度の高い像を取得できる。
【0024】
直接検出カメラとしては、Gatan社製のK2、Gatan社製のK3、Thermo Fisher Science社製のFalcon 4、Direct Electron社製のDE-64などが挙げられる。直接検出カメラでは、低照射量で高いコント
ラストが得られるため、クライオ電顕などに好適である。
【0025】
イメージセンサー42は、支持層と、有感層と、電極層と、を含む。支持層は、有感層および電極層を支持している。有感層に電子が入射すると光電効果により電子正孔対が発生し、この電子(または正孔)を電圧に変換して信号を読み出す。配線層は、信号を伝える配線として機能する。
【0026】
イメージセンサー42は、複数のセルを有している。イメージセンサー42の各セルに電子が入射することによってセルごとに信号が得られる。イメージセンサー42では、各セルが独立して電子を検出する。
【0027】
イメージセンサー42は、例えば、CMOSイメージセンサー、CCDイメージセンサーなどである。イメージセンサー42としてCMOSイメージセンサーを用いることによって、CCDイメージセンサーを用いた場合と比べて、高フレームレートでフレーム画像を撮影できる。すなわち、イメージセンサー42としてCMOSイメージセンサーを用いることによって、単位時間あたりに撮影できるフレーム画像の数を多くできる。
【0028】
カメラ40は、イメージセンサー42の各セルに電子が入射することによって得られた信号に基づくフレーム画像を出力する。カメラ40から出力されるフレーム画像は、各画素がイメージセンサー42の各セルに対応している。また、フレーム画像の各画素の画素値は、対応するセルに入射した電子による信号の発生量に対応している。なお、イメージセンサー42の複数のセルをまとめて1つのセルとみなして、フレーム画像の各画素に対応させてもよい。
【0029】
カメラ40は、イメージセンサー42に結像されたTEM像または電子回折パターンを撮影し、フレーム画像として出力する。フレームは最小撮影単位であり、フレーム画像は1フレームの撮影で得られる画像である。
【0030】
測定器50は、イメージセンサー42に入射する電子の電流量を測定する。測定器50は、ファラデーゲージ52と、電流計54と、を含む。ファラデーゲージ52を電子光学系20の光軸上に配置し、ファラデーゲージ52に接続された電流計54で電流を測定する。これにより、イメージセンサー42に入射する電子の電流量を測定できる。なお、カメラ40でTEM像や電子回折パターンを撮影する際には、ファラデーゲージ52を光軸上から退避させる。
【0031】
演算部60は、フレーム画像に基づいて画像を生成する。演算部60は、例えばCPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)等の処理回路と、半導体メモリ等の記憶回路と、を含む。演算部60の処理の詳細については後述する。
【0032】
2. 演算部の処理
2.1. 画像生成
演算部60は、カメラ40で撮影されたフレーム画像をカウンティング処理(二値化)し、カウンティング処理されたフレーム画像を積算して、画像を生成する。ここで、画像とは、TEM像、電子回折パターンなどである。
【0033】
直接検出カメラでは、イメージセンサー42の有感層に電子が入射すると光電効果により電子正孔対が発生し、この電子(または正孔)を電圧に変換して信号を読み出す。
【0034】
図2は、入射電子による信号の発生量とその頻度を示すグラフである。
【0035】
光電効果による信号の発生量は、
図2に示すように、ランダウ分布となる。そのため、信号の発生量から入射電子の数を知ることができない。これは、有感層の材質がシリコンであり、厚さが数μm程度であるため、多くの場合、入射電子は、エネルギーが完全に消失することなく、イメージセンサーの最下部まで到達するためである。したがって、フレーム画像を単純に積算して画像を生成した場合、フレーム画像の各画素の画素値(各セルにおける信号の発生量)と入射電子の数のリニアリティが不十分である。
【0036】
演算部60は、リニアリティを向上させるために、カウンティング処理を行う。カウンティング処理では、フレーム画像を二値化して、入射電子をカウントする。
【0037】
図3は、カウンティング処理を説明するための図である。
図3には、カメラ40から出力されたフレーム画像2、およびカウンティング処理後のフレーム画像4を示している。フレーム画像2の各画素の画素値は、イメージセンサー42の各セルに入射した電子による信号の発生量に対応している。
【0038】
ここで、閾値が140に設定された場合、フレーム画像2の各画素の画素値が140よりも大きい場合には画素値を「1」とし、フレーム画像2の各画素の画素値が140以下の場合には画素値を「0」とする。これにより、フレーム画像2を二値化して、二値化されたフレーム画像4を得ることができる。
【0039】
このようにして、カウンティング処理を行ったフレーム画像4を積算する。これにより、画素値と入射電子の数のリニアリティを向上させた画像を生成できる。
【0040】
2.2. 閾値のキャリブレーション方法
2.2.1. 閾値
演算部60は、カウンティング処理においてフレーム画像を二値化する。
【0041】
撮影単位である1フレームの間に、2個以上の電子がイメージセンサー42の1つのセルに入射しても、二値化によって1個の電子が入射したと判別されるため、数え落としが生じる。これにより、検出量子効率(detective quantum efficiency、DQE)が低下する。したがって、フレーム画像に対してカウンティング処理を行う場合、イメージセンサー42の各セルに入射する電子の数の平均は、0.1e-/pixel/frame以下、すなわち、1フレームあたり、各セルに電子が0.1個以下入射する条件を満たすことが好ましい。
【0042】
なお、検出量子効率は、入力信号の(S/N)2と出力(検出された)信号の(S/N)2の比であり、理想的な検出器の場合、検出量子効率は1になる。なお、S/Nは、SN比(signal to noise ratio)である。
【0043】
図4は、
図2に示す入射電子による信号の発生量とその頻度を示すグラフにセルのノイズを加えたグラフである。
【0044】
図4に示すように、電子をイメージセンサーで検出する場合、
図2に示すランダウ分布にノイズ(ランダムノイズ)が重畳される。このとき、閾値をノイズよりも大きい値に設定すれば、ノイズを信号としてカウントしない。また、入射電子の数え落としを減らすためには、閾値をノイズが含まれない範囲で小さい値に設定すればよい。
【0045】
このように、カウンティング処理においては、二値化の閾値を適切に設定しなければ、ノイズを電子としてカウントしたり、電子が入射したにも関わらずカウントされない数え落としが生じたりしてしまう。
【0046】
また、直接検出カメラでは、イメージセンサー42を構成するトランジスタ等が電子によってダメージを受ける。この電子によるダメージが蓄積すると、ノイズの増加や、信号の発生量の減少を引き起こし、イメージセンサー42が劣化する。イメージセンサー42が劣化すると、
図4に示すノイズと信号のプロファイルが変化する。したがって、カウンティング処理を実行する際には、最適な閾値を新たに求める必要がある。このように、電子顕微鏡100では、閾値のキャリブレーションを行う必要がある。
【0047】
2.2.2. 前提
まず、演算部60が閾値のキャリブレーションを実行する前に、イメージセンサー42に入射する電子がポアソン過程に従うように、電子光学系20を調整する。具体的には、1フレームあたりにイメージセンサー42の各セルに入射する電子の数の平均と分散が一致するように電子光学系20を調整する。例えば、試料Sに電子線を照射せずに、真空部分に電子線を照射し、電子線がイメージセンサー42に対して一様に照射される平行照射条件となるように電子光学系20を調整する。
【0048】
また、1フレームあたりにイメージセンサー42の各セルに入射する電子の数の平均を1個よりも小さくする。1フレームあたりにイメージセンサー42の各セルに入射する電子の数の平均は、1フレームあたりにイメージセンサー42に入射する電子の数を、イメージセンサー42を構成するセルの数で除算したものである。1フレームあたりにイメージセンサー42の各セルに入射する電子の数の平均は、0.1個以下、すなわち、0.1e-/pixel/frameであることが好ましい。電子光学系20を調整することで、1フレームあたりにイメージセンサー42の各セルに入射する電子の数を調整できる。
【0049】
また、前提条件として、イメージセンサー42の1つのセルに入射した電子は、他のセルに侵入しないものとする。
【0050】
最適な閾値を算出するためには、イメージセンサー42への入力およびカウンティング処理後の出力がポアソン過程を満たす必要がある。
【0051】
2.2.3. 処理の流れ
図5は、演算部60の閾値を設定する処理の一例を示すフローチャートである。
【0052】
演算部60は、ユーザーが閾値のキャリブレーションを開始する指示を行ったか否かを判定する(S100)。演算部60は、例えば、キャリブレーション開始ボタンの押下操作が行われた場合や、GUIや入力機器からキャリブレーション開始指示が入力された場合に、ユーザーが開始指示を行ったと判定する。
【0053】
演算部60は、開始指示を行ったと判定した場合(S100のYes)、複数のフレーム画像を取得する(S102)。
【0054】
演算部60は、あらかじめ設定された数のフレーム画像を取得する。フレーム画像の数が多いほど統計ゆらぎを小さくできる。取得するフレーム画像の数は、例えば、数十以上数百以下程度である。
【0055】
フレーム画像は、上述した前提条件で撮影される。すなわち、フレーム画像は、イメージセンサー42に入射する電子がポアソン過程に従い、かつ、1フレームあたりにイメージセンサー42の各セルに入射する電子の数の平均が1よりも小さくなる条件で撮影される。
【0056】
ユーザーは、開始指示を行う前に、あらかじめ上述した前提条件となるように電子光学系20を調整しておく。演算部60は、カメラ40にあらかじめ設定された数のフレーム画像を撮影させる。これにより、演算部60は、イメージセンサー42に入射する電子がポアソン過程に従う条件で得られた複数のフレーム画像を取得できる。
【0057】
次に、演算部60は、カウンティング処理における二値化の仮の閾値(仮閾値thM)を設定する(S104)。ここでは、M=1とし、仮の閾値として、仮閾値th1を設定する。
【0058】
演算部60は、取得した複数のフレーム画像の各々をカウンティング処理する(S106)。演算部60は、仮閾値th1を用いて各フレーム画像を二値化する。具体的には、演算部60は、フレーム画像の各画素において、画素値が仮閾値th1よりも大きい場合には画素値を「1」とし、画素値が仮閾値th1以下の場合には画素値を「0」とする。このようにして、フレーム画像を二値化して二値画像を生成する。
【0059】
次に、演算部60は、二値化された複数のフレーム画像を積算して積算画像を生成する(S108)。演算部60は、二値化された複数のフレーム画像において、対応する画素の画素値を積算して、積算画像を生成する。
【0060】
次に、演算部60は、積算画像の各画素の画素値の平均と分散を算出する(S110)。演算部60は、算出された平均と分散に基づいて、正規化定数Sを求める(S112)。演算部60は、算出した平均を算出した分散で除算し、正規化定数Sを求める。
【0061】
次に、演算部60は、M=Nを満たすか否かを判定する(S114)。すなわち、演算部60は、仮閾値thNを設定したか否かを判定する。
【0062】
演算部60はM=Nを満たさないと判定した場合(S114のNo)、M=M+1とし、処理S104に戻って、仮閾値th2を設定する(S104)。仮閾値th2は、仮閾値th1と異なる値を持つ。
【0063】
演算部60は、取得した複数のフレーム画像の各々をカウンティング処理する(S106)。演算部60は、仮閾値th2を用いて各フレーム画像を二値化する。演算部60は、二値化された複数のフレーム画像を積算して積算画像を生成し(S108)、積算画像の各画素の画素値の平均と分散を算出し(S110)、算出された平均と分散に基づいて、正規化定数Sを求める(S112)。
【0064】
このように、演算部60は、仮閾値を変更しながら、処理S104、処理S106、処理S108、処理S110、処理S112、処理S114を繰り返す。演算部60は、これらの処理をN回繰り返して、M=Nとなった場合(S114のYes)、得られたN個の正規化定数Sに基づいて最適閾値を決定する(S116)。
【0065】
演算部60は、例えば、1-0.07≦S≦1+0.07を満たす正規化定数Sが得られた仮閾値のうちの最小の仮閾値を最適閾値とする。この1-0.07≦S≦1+0.07の判定基準は、単位時間あたりにイメージセンサー42の各セルに入射する電子の数(e-/pixel/sec)、フレーム画像が持つデータの大きさ(画素数)、ビット深度(1画素に割り当てられるデータ量)、信号の発生量(ランダウ分布+ノイズ)、カウンティング処理を行うフレーム画像の数などに基づいて決定される。また、この範囲を満たす仮閾値のうちの最小の仮閾値を最適閾値とすることで、電子の数え落としを低減できる。
【0066】
なお、最適閾値の決定方法は、これに限定されず、例えば、最も「1」に近い正規化定
数Sが得られた仮閾値を最適閾値として設定してもよい。
【0067】
演算部60は、最適閾値とした仮閾値を、画像を生成する処理における閾値として設定し、処理を終了する。
【0068】
2.3. 検出量子効率の算出
演算部60は、検出量子効率(DQE)を算出できる。
図6は、演算部60の検出量子効率を算出する処理の一例を示すフローチャートである。
【0069】
検出量子効率を求める際の前提条件は、閾値のキャリブレーションを行う際の前提条件と同じである。
【0070】
演算部60は、ユーザーが検出量子効率を算出する処理を開始する指示を行ったか否かを判定する(S200)。演算部60は、例えば、算出処理開始ボタンの押下操作が行われた場合や、GUIや入力機器から算出処理開始指示が入力された場合に、ユーザーが開始指示を行ったと判定する。
【0071】
演算部60は、開始指示を行ったと判定した場合(S200のYes)、複数のフレーム画像を取得する(S202)。
【0072】
次に、演算部60は、カウンティング処理における二値化の仮閾値thMを設定し(S204)、取得した複数のフレーム画像の各々をカウンティング処理する(S206)。次に、演算部60は、二値化された複数のフレーム画像を積算して積算画像を生成し(S208)、積算画像の各画素の画素値の平均と分散を算出し(S210)、正規化定数Sを求める(S212)。
【0073】
次に、演算部60は、M=Nを満たすか否かを判定し(S214)、M=Nを満たさないと判定した場合(S214のNo)、M=M+1とし、処理S204に戻る。演算部60は、仮閾値を変更しながら、処理S204、処理S206、処理S208、処理S210、処理S212、処理S214を繰り返す。
【0074】
演算部60は、これらの処理をN回繰り返して、M=Nとなった場合(S214のYes)、得られたN個の正規化定数Sに基づいて最適閾値を決定する(S216)。
【0075】
処理S202、処理S204、処理S206、処理S208、処理S210、処理S212、処理S214、処理S216は、それぞれ上述した
図5に示す処理S102、処理S104、処理S106、処理S108、処理S110、処理S112、処理S114、処理S116と同様に行われる。
【0076】
次に、演算部60は、検出量子効率を算出する(S218)。演算部60は、まず、処理S202で取得した複数のフレーム画像の各々を処理S216で求めた最適閾値を用いて二値化する。次に、演算部60は、二値化された複数のフレーム画像を積算して積算画像を生成する。次に、演算部60は、積算画像の各画素の画素値の平均と、イメージセンサー42の各セルに入射する電子の数に基づいて、検出量子効率を求める。
【0077】
ここで、イメージセンサー42の各セルに入射する電子の数は、処理S202で複数のフレーム画像をカメラ40で撮影したときの露光時間(総露光時間)にイメージセンサー42の各セルに入射する電子の数である。このイメージセンサー42の各セルに入射する電子の数(e-/pixel)は、単位時間あたりにイメージセンサー42の各セルに入射する電子の数(e-/pixel/sec)と、処理S202で複数のフレーム画像をカメラ40で撮影
したときの露光時間から求めることができる。
【0078】
演算部60は、測定器50で測定されたイメージセンサー42に入射する電子の電流量から単位時間あたりにイメージセンサー42の各セルに入射する電子の数(e-/pixel/sec)を算出する。演算部60は、算出した単位時間あたりにイメージセンサー42の各セルに入射する電子の数(e-/pixel/sec)と露光時間に基づいて、イメージセンサー42の各セルに入射する電子の数(e-/pixel)を求める。
【0079】
演算部60は、最適閾値を用いて二値化された複数のフレーム画像を積算して得られた積算画像の各画素の画素値の平均を算出し、当該平均をイメージセンサー42の各セルに入射する電子の数(e-/pixel)で除算することで、検出量子効率を算出する。
【0080】
3. 効果
電子顕微鏡100では、演算部60は、閾値を設定する処理を行い、閾値を設定する処理では、仮閾値を設定し、イメージセンサー42に入射する電子がポアソン過程に従う条件で得られた複数のフレーム画像を取得し、取得した複数のフレーム画像の各々を仮閾値を用いて二値化し、二値化された複数のフレーム画像を積算して積算画像を生成し、積算画像の各画素の画素値の平均と分散に基づいて正規化定数を求める処理を、仮閾値を変更しながら繰り返して、仮閾値を求め、仮閾値に基づき最適閾値を求め、当該最適閾値を閾値として設定する。そのため、電子顕微鏡100では、適切な閾値を設定することができ、画素値と入射電子の数のリニアリティを向上できる。
【0081】
また、電子顕微鏡100では、演算部60がカウンティング処理における二値化の閾値を求めるため、容易に、閾値を設定できる。したがって、電子顕微鏡100では、例えば、放射線ダメージによってイメージセンサー42が劣化しても、劣化したイメージセンサー42に応じた閾値を容易に設定できる。
【0082】
電子顕微鏡100では、演算部60は、複数のフレーム画像の各々を最適閾値を用いて二値化し、二値化された複数のフレーム画像を積算して積算画像を生成し、当該積算画像の各画素の画素値の平均と、イメージセンサー42の各セルに入射する電子の数に基づいて、検出量子効率を求める処理を行う。このように、電子顕微鏡100では、検出量子効率を求めることができる。
【0083】
電子顕微鏡100では、検出量子効率を求めることができるため、例えば、放射線ダメージによってイメージセンサー42が劣化する前後の検出量子効率を求めることで、検出量子効率の低下の度合いを把握できる。
【0084】
4. 変形例
4.1. 第1変形例
上述した実施形態では、前提条件として、イメージセンサー42の1つのセルに入射した電子は、他のセルに侵入しないものとしたが、1つのセルに入射した電子が隣接する他のセルに侵入する場合がある。
【0085】
カメラ40への入力とカメラ40の出力がポアソン過程を満たすためには、1つのセルに入射した電子が隣接する他のセルに侵入した場合でも、入射した1つのセルを特定する必要がある。このとき、セルの位置を特定しなくてもよく、イメージセンサー42に入射した電子の数と、フレーム画像において特定される電子の数が一致すればよい。
【0086】
図7は、1つのセルに入射した電子が隣接する他のセルに侵入した場合に、電子が入射した1つのセルを特定する手法を説明するための図である。
【0087】
例えば、
図7に示すように、フレーム画像2において注目する1つの画素(ハッチングを付した画素)に隣接する8つの画素を1つのグループGとし(グルーピング)、画素値における重心位置を求め、重心位置と重なる画素を電子が入射したセルに対応する画素とする。
【0088】
また、例えば、
図7に示すように、フレーム画像2において注目する1つの画素に隣接する8つの画素を1つのグループGとし、グループGのなかで、最も大きな画素値を持つ画素を電子が入射したセルに対応する画素とする。
【0089】
また、例えば、
図7に示すように、フレーム画像2において注目する1つの画素に隣接する8つの画素を1つのグループGとし、グループGのなかであらかじめ指定された位置にある画素を電子が入射したセルに対応する画素とする。例えば、グループGのなかで左上端に位置する画素を電子が入射したセルに対応する画素とする。
【0090】
上記では、注目する画素と、当該画素に隣接する8つの画素を1つのグループGとしたが、複数の画素を1つのグループにまとめるグルーピングの手法やグループに含まれる画素の数はこれに限定されない。
【0091】
このように電子が入射した1つのセルを特定する手法は、これらに限定されず、イメージセンサー42に入射した電子の数と、フレーム画像において特定される電子の数が一致するように、電子が入射した1つのセルを特定できればよい。
【0092】
4.2. 第2変形例
図8は、演算部60の閾値を設定する処理の変形例を示すフローチャートである。
【0093】
図8に示すように、演算部60は、複数のフレーム画像を取得する処理S102の後に、複数のフレーム画像の各々に対して黒引き処理S103を行う。
【0094】
黒引き処理は、フレーム画像から黒画像を減算する処理である。ここで、黒画像は、イメージセンサー42に電子が入射しない条件で撮影された画像である。黒引き処理を行うことによって、イメージセンサー42の規則的なノイズを除去できる。
【0095】
図6に示す検出量子効率を算出する処理においても、複数のフレーム画像を取得する処理S202の後に、複数のフレーム画像の各々に対して黒引き処理を行ってもよい。
【0096】
4.3. 第3変形例
図9は、演算部60の閾値を設定する処理の変形例を示すフローチャートである。
【0097】
上述した
図5に示す例では、仮閾値th1~仮閾値thNのそれぞれに対応する正規化定数Sを求めた後、仮閾値th1~仮閾値thNから最適閾値を決定した。
【0098】
これに対して、
図9に示す変形例では、演算部60は、正規化定数Sを求める処理S112の後に、正規化定数Sが1-0.07≦S≦1+0.07を満たすか否かを判定する(S115)。
【0099】
演算部60は、処理S112で求めた正規化定数Sが1-0.07≦S≦1+0.07を満たしていないと判定した場合(S115のNo)、閾値を変更し、処理S104に戻って、処理S106、処理S108、処理S110、処理S112、処理S115を行う。
【0100】
演算部60は、処理S112で求めた正規化定数Sが1-0.07≦S≦1+0.07を満たしていると判定した場合(S115のYes)、このときの仮閾値を最適閾値とする(S116)。
【0101】
5. 実験例
図10は、イメージセンサーに入射した電子から得られる信号(ノイズを含む)を模擬した確率密度分布および累積密度関数を示す図である。
【0102】
図10に示す確率密度分布および累積密度関数から、シミュレーションにより模擬画像を10フレーム分作成した。
【0103】
図11は、10フレーム分の模擬画像を示す図である。
図11では、便宜上、模擬画像をグレースケールで表している。
【0104】
模擬画像は、
図10に示す確率密度分布および累積密度関数でイメージセンサーに電子が入射したときに得られるフレーム画像を模擬したものである。模擬画像のサイズは、100pixel×100pixelである。
【0105】
二値化の閾値を設定し、
図11に示す10フレーム分の模擬画像を、カウンティング処理(二値化)した。次に、二値化された10フレーム分の模擬画像を積算してカウンティング画像(積算画像)を生成した。次に、カウンティング画像の各画素の画素値の平均と分散を算出し、算出した平均を算出した分散で除算し、正規化定数を求めた。
【0106】
この処理を、閾値を25から200まで25刻みで変更しながら繰り返して、閾値ごとに正規化定数を求めた。
【0107】
図12は、閾値と正規化定数の関係、閾値とカウンティング画像の各画素の画素値の平均の関係、閾値とカウンティング画像の各画素の画素値の分散の関係を示すグラフである。なお、
図12に示す矢印は、対応する軸を示している。
【0108】
閾値が25では、平均と分散が大きく乖離している。閾値が50では、閾値が25のときと比べて、平均と分散の差が小さくなる。閾値が100以上の範囲では、平均と分散の差がほとんど変化しない。
【0109】
図12に示すように、正規化定数Sが1-0.07≦S≦1+0.07の範囲に含まれる最小の閾値は75である。したがって、最適閾値は75となる。
【0110】
ここで、
図12に示すように、閾値が75から200の範囲で、正規化定数Sは1-0.07≦S≦1+0.07の範囲に含まれており、ポアソン過程を満たしている。しかし、閾値が75から200の範囲で、カウンティング画像の各画素の画素値の平均は、閾値が75のときに最大となり、閾値が大きくなるほど減少する。この閾値の減少は、電子の数え落としが生じていることを示唆している。したがって、最適閾値として、正規化定数Sが1-0.07≦S≦1+0.07の範囲に含まれる最小の閾値を選択することで、電子の数え落としを低減できる。
【0111】
なお、上記では、閾値の刻み幅を25とした場合について説明したが、閾値の刻み幅は特に限定されない。閾値の刻み幅を小さくすることで、より最適な閾値を求めることができる。
【0112】
次に、検出量子効率を求めた。ここでは、1フレームあたりに1つのセルに入射する電子の数の平均を0.1e-/pixel/frameとして、閾値ごとに検出量子効率を求めた。
【0113】
図13は、閾値と検出量子効率の関係を示すグラフである。
【0114】
図13に示すように、閾値が50以下では、検出量子効率が100を超えている。このことからも、閾値が50以下では、ポアソン過程を満たしていないことが確認できる。また、閾値が大きくなるほど、検出量子効率が低下していることがわかる。
【0115】
図14は、閾値を25に設定してカウンティング処理されたカウンティング画像I2と、閾値を75(最適閾値)に設定してカウンティング処理されたカウンティング画像I4を示す図である。
【0116】
図14に示すように、カウンティング画像I2にはカウンティング画像I4に比べて、白い画素が多い。これは、
図13に示すように、閾値が25の場合には検出量子効率が100%を超えており、カウンティング画像I2ではノイズがカウントされているためである。
【0117】
本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成を含む。実質的に同一の構成とは、例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
【符号の説明】
【0118】
2…フレーム画像、4…フレーム画像、10…電子源、20…電子光学系、22…照射系、24…結像系、30…試料ステージ、32…試料ホルダー、40…カメラ、42…イメージセンサー、50…測定器、52…ファラデーゲージ、54…電流計、60…演算部、100…電子顕微鏡、220…コンデンサーレンズ、240…対物レンズ、242…中間レンズ、244…投影レンズ