IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エルジー エナジー ソリューション リミテッドの特許一覧

<>
  • 特許-リチウム二次電池 図1
  • 特許-リチウム二次電池 図2
  • 特許-リチウム二次電池 図3
  • 特許-リチウム二次電池 図4
  • 特許-リチウム二次電池 図5
  • 特許-リチウム二次電池 図6
  • 特許-リチウム二次電池 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-03
(45)【発行日】2024-06-11
(54)【発明の名称】リチウム二次電池
(51)【国際特許分類】
   H01M 10/052 20100101AFI20240604BHJP
   H01M 4/13 20100101ALI20240604BHJP
   H01M 4/136 20100101ALI20240604BHJP
   H01M 4/38 20060101ALI20240604BHJP
   H01M 4/58 20100101ALI20240604BHJP
   H01M 4/62 20060101ALI20240604BHJP
   H01M 10/0567 20100101ALI20240604BHJP
   H01M 10/0568 20100101ALI20240604BHJP
   H01M 10/0569 20100101ALI20240604BHJP
【FI】
H01M10/052
H01M4/13
H01M4/136
H01M4/38 Z
H01M4/58
H01M4/62 Z
H01M10/0567
H01M10/0568
H01M10/0569
【請求項の数】 11
(21)【出願番号】P 2022574603
(86)(22)【出願日】2022-02-25
(65)【公表番号】
(43)【公表日】2023-07-03
(86)【国際出願番号】 KR2022002757
(87)【国際公開番号】W WO2022211282
(87)【国際公開日】2022-10-06
【審査請求日】2022-12-02
(31)【優先権主張番号】10-2021-0042148
(32)【優先日】2021-03-31
(33)【優先権主張国・地域又は機関】KR
(31)【優先権主張番号】10-2022-0024018
(32)【優先日】2022-02-24
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】521065355
【氏名又は名称】エルジー エナジー ソリューション リミテッド
(74)【代理人】
【識別番号】100188558
【弁理士】
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(72)【発明者】
【氏名】ジフン・アン
(72)【発明者】
【氏名】テク・ギョン・キム
(72)【発明者】
【氏名】ボン・ス・キム
【審査官】結城 佐織
(56)【参考文献】
【文献】韓国公開特許第10-2018-0057437(KR,A)
【文献】特開平07-249432(JP,A)
【文献】特開平08-250120(JP,A)
【文献】韓国公開特許第10-2016-0000589(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/05-10/0587
H01M 4/00-4/62
(57)【特許請求の範囲】
【請求項1】
正極;負極;これらの間に介在された分離膜;及び電解液を含むリチウム二次電池であって、
前記正極は正極活物質及び正極添加剤を含み、
前記正極添加剤はテルルを含み、
前記電解液はリチウム塩、有機溶媒及び電解液添加剤を含み、
前記電解液添加剤はビス(2,2,2‐トリフルオロエチル)エーテルを含み、
前記テルルは正極活物質層全体100重量%を基準にして1重量%ないし10重量%で含まれ、
前記ビス(2,2,2‐トリフルオロエチル)エーテルは電解液全体100体積%を基準にして1体積%ないし20体積%で含まれ、
前記電解液はジオキソラン系化合物を含まない、リチウム二次電池。
【請求項2】
前記正極は正極集電体及び前記正極集電体の少なくとも一面に配置された正極活物質層を含み、
前記正極活物質層は正極活物質及びテルルを含むことを特徴とする請求項1に記載のリチウム二次電池。
【請求項3】
前記テルルは正極活物質層全体100重量%を基準にして重量%ないし重量%で含まれることを特徴とする請求項2に記載のリチウム二次電池。
【請求項4】
前記正極活物質は硫黄元素及び硫黄化合物からなる群から選択される1種以上を含むことを特徴とする請求項1~3のいずれか一項に記載のリチウム二次電池。
【請求項5】
前記ビス(2,2,2‐トリフルオロエチル)エーテルは電解液全体100体積%を基準にして体積%ないし15体積%で含まれることを特徴とする請求項1~4のいずれか一項に記載のリチウム二次電池。
【請求項6】
前記有機溶媒は環形エーテル及び非環形エーテルを含むことを特徴とする請求項1~5のいずれか一項に記載のリチウム二次電池。
【請求項7】
前記環形エーテルは、フラン、2‐メチルフラン、3‐メチルフラン、2‐エチルフラン、2‐プロピルフラン、2‐ブチルフラン、2,3‐ジメチルフラン、2,4‐ジメチルフラン、2,5‐ジメチルフラン、ピラン、2‐メチルピラン、3‐メチルピラン、4‐メチルピラン、ベンゾフラン、2‐(2‐ニトロビニル)フラン、テトラハイドロフラン、2‐メチルテトラハイドロフラン、2,5‐ジメチルテトラハイドロフラン、2,5‐ジメトキシテトラハイドロフラン、2‐エトキシテトラハイドロフラン、テトラハイドロピラン、1,2‐ジメトキシベンゼン、1,3‐ジメトキシベンゼン及び1,4‐ジメトキシベンゼンからなる群から選択される1種以上を含むことを特徴とする請求項6に記載のリチウム二次電池。
【請求項8】
前記非環形エーテルは、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、ポリエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル及びエチレングリコールエチルメチルエーテルからなる群から選択される1種以上を含むことを特徴とする請求項6又は7に記載のリチウム二次電池。
【請求項9】
前記有機溶媒は、2‐メチルフラン及びジメトキシエタンを含むことを特徴とする請求項1~8のいずれか一項に記載のリチウム二次電池。
【請求項10】
前記リチウム塩は、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiB(Ph)、LiCBO、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiSOCH、LiSOCF、LiSCN、LiC(CFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、クロロボランリチウム、低級脂肪族カルボン酸リチウム、テトラフェニルホウ酸リチウム及びリチウムイミドからなる群から選択される1種以上を含むことを特徴とする請求項1~9のいずれか一項に記載のリチウム二次電池。
【請求項11】
前記リチウム二次電池はリチウム‐硫黄電池であることを特徴とする請求項1~10のいずれか一項に記載のリチウム二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は2021年3月31日付韓国特許出願第10‐2021‐0042148号及び2022年2月24日付韓国特許出願第10‐2022‐0024018号に基づく優先権の利益を主張し、該当韓国特許出願の文献に開示されている全ての内容を本明細書の一部として組み込む。
【0002】
本発明はリチウム二次電池に係り、より詳しくは、正極添加剤でテルルを含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを含むリチウム二次電池に関する。
【背景技術】
【0003】
最近、電子製品、電子機器、通信機器などの小型軽量化が急速に進行され、環境問題と係わって電気自動車の必要性が大きく台頭されることによって、これらの製品の動力源で使用される二次電池の性能改善に対する要求も増加する実情である。その中で、リチウム二次電池は高エネルギー密度及び高い標準電極電位のため高性能電池として相当な脚光を浴びている。
【0004】
特に、リチウム‐硫黄(Li‐S)電池はS‐S結合(Sulfur‐sulfur bond)を持つ硫黄系列物質を正極活物質として使用し、リチウム金属を負極活物質として使用する二次電池である。正極活物質の主材料である硫黄は資源がとても豊かで、毒性がなく、単位原子当たり低い重さを持つ長所がある。また、リチウム‐硫黄電池の理論放電容量は1675mAh/g‐sulfurで、理論エネルギー密度が2,600Wh/kgであって、現在研究されている他の電池システムの理論エネルギー密度(Ni‐MH電池:450Wh/kg、Li‐FeS電池:480Wh/kg、Li‐MnO電池:1,000Wh/kg、Na‐S電池:800Wh/kg)に比べて非常に高いので、現在まで開発されている電池の中で最も有望な電池である。
【0005】
リチウム‐硫黄電池の放電反応の中で負極(Negative electrode)ではリチウムの酸化反応が発生し、正極(Positive electrode)では硫黄の還元反応が発生する。放電前の硫黄は環形のS構造を持っているが、還元反応(放電)時にS‐S結合が切れながらSの酸化数が減少し、酸化反応(充電)時にS‐S結合がまた形成されながらSの酸化数が増加する酸化‐還元反応を利用して電気エネルギーを貯蔵及び生成する。このような反応の中で硫黄は環形のSで還元反応によって線形構造のリチウムポリスルフィド(Lithium polysulfide、Li、x=8、6、4、2)に変換するようになり、結局、このようなリチウムポリスルフィドが完全に還元されると、最終的にリチウムスルフィド(Lithium sulfide、LiS)が生成されるようになる。それぞれのリチウムポリスルフィドに還元される過程によってリチウム‐硫黄電池の放電挙動は一般的なリチウムイオン電池とは違って段階的に放電電圧を示すことが特徴である。
【0006】
しかし、リチウム‐硫黄電池の商業化において最大の問題は寿命で、充・放電過程中に充電/放電効率(Efficiency)が減って電池の寿命が退化するようになる。このようなリチウム‐硫黄電池の寿命が退化する原因としては、電解液の副反応(電解液の分解による副産物の堆積)、リチウムメタルの不安定性(リチウム負極上にデンドライトが成長してショート発生)及び正極副産物の堆積(正極からのリチウムポリスルフィド湧出)などで多様である。
【0007】
すなわち、硫黄系列の化合物を正極活物質として使用し、リチウムのようなアルカリ金属を負極活物質として使用する電池において、充・放電時にリチウムポリスルフィドの湧出及びシャトル現象が発生し、リチウムポリスルフィドが負極に伝達されてリチウム‐硫黄電池の容量が減少され、これによってリチウム‐硫黄電池は寿命が減少して反応性が減少する大きな問題点を持っている。すなわち、正極で湧出されたリチウムポリスルフィドは有機電解液への溶解度が高いため、電解液を通じて負極の方へ望まない移動(PS shuttling)が起きることがあり、それによって正極活物質の非可逆的損失による容量減少及び副反応によるリチウムメタル表面への硫黄粒子蒸着による電池寿命の減少が発生するようになる。
【0008】
また、リチウム金属は高い化学的/電気化学的反応性によって電解質と容易に反応することによって負極表面に不働態被膜(passivation layer)が形成される。このような不働態被膜は機械的強度が弱いため、電池の充・放電が進められることによって構造が崩壊され、局所上の電流密度の差をもたらしてリチウム金属表面に樹状のリチウムデンドライトを形成させる。また、このように形成されたリチウムデンドライトは電池内部短絡と不活性リチウム(dead lithium)を引き起こしてリチウム‐硫黄電池の物理的、化学的不安定性を加重させるだけでなく、電池の容量を減少させ、サイクル寿命を短縮させる問題を発生させる。
【0009】
このような問題点を解決してリチウム‐硫黄電池の寿命特性を改善するために、正極粒子の表面にリチウムポリスルフィドの溶解を防ぐことができるコーティング層を形成、リチウムポリスルフィドを吸収することができる正極添加剤の使用、シャトル反応を制御するためのリチウム負極の酸化膜形成、ポリスルフィドの電解質への溶解を抑制するための新規な組成の機能性電解質使用などの努力が進められてはいるが、方法がやや複雑な問題がある。したがって、このような問題を解決し、リチウム‐硫黄電池の寿命特性を改善することができる新しい技術の開発が必要な実情である。
【先行技術文献】
【特許文献】
【0010】
【文献】韓国公開特許第10‐2017‐0121047号
【発明の概要】
【発明が解決しようとする課題】
【0011】
ここで、本発明者らは前記問題を解決するために多角的に研究した結果、リチウム二次電池の正極添加剤としてテルル(Tellurium、Te)を含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテル(Bis(2,2,2‐trifluoroethyl)ether、BTFE)を含む場合、リチウム二次電池の寿命特性が改善されることを確認して本発明を完成した。
【0012】
したがって、本発明の目的は優れる寿命特性を具現することができるリチウム二次電池を提供することにある。
【課題を解決するための手段】
【0013】
前記目的を達成するために、
本発明は、正極;負極;これらの間に介在された分離膜;及び電解液を含むリチウム二次電池であって、
前記正極は正極活物質及び正極添加剤を含み、
前記正極添加剤はテルルを含み、
前記電解液はリチウム塩、有機溶媒及び電解液添加剤を含み、
前記電解液添加剤は、ビス(2,2,2‐トリフルオロエチル)エーテルを含むリチウム二次電池を提供することを目的とする。
【0014】
前記正極は集電体及び前記集電体の少なくとも一面に配置された正極活物質層を含み、前記正極活物質層は正極活物質及びテルルを含むことができる。
【0015】
前記テルルは正極活物質層全体100重量%を基準にして1ないし10重量%で含まれることができる。
【0016】
前記正極活物質は硫黄元素及び硫黄化合物からなる群から選択される1種以上を含むことができる。
【0017】
前記ビス(2,2,2‐トリフルオロエチル)エーテルは電解液全体100体積%を基準にして1ないし20体積%で含まれることができる。
【0018】
前記有機溶媒は環形エーテル及び非環形エーテルを含むことができる。
【0019】
前記環形エーテルは、フラン、2‐メチルフラン、3‐メチルフラン、2‐エチルフラン、2‐プロピルフラン、2‐ブチルフラン、2,3‐ジメチルフラン、2,4‐ジメチルフラン、2,5‐ジメチルフラン、ピラン、2‐メチルピラン、3‐メチルピラン、4‐メチルピラン、ベンゾフラン、2‐(2‐ニトロビニル)フラン、テトラハイドロフラン、2‐メチルテトラハイドロフラン、2,5‐ジメチルテトラハイドロフラン、2,5‐ジメトキシテトラハイドロフラン、2‐エトキシテトラハイドロフラン、テトラハイドロピラン、1,2‐ジメトキシベンゼン、1,3‐ジメトキシベンゼン及び1,4‐ジメトキシベンゼンからなる群から選択される1種以上を含むことができる。
【0020】
前記非環形エーテルは、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、ポリエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル及びエチレングリコールエチルメチルエーテルからなる群から選択される1種以上を含むことができる。
【0021】
前記有機溶媒は、2‐メチルフラン及びジメトキシエタンを含むことができる。
【0022】
前記リチウム塩は、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiB(Ph)、LiCBO、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiSOCH、LiSOCF、LiSCN、LiC(CFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、クロロボランリチウム、低級脂肪族カルボン酸リチウム、テトラフェニルホウ酸リチウム及びリチウムイミドからなる群から選択される1種以上を含むことができる。
【0023】
前記リチウム二次電池はリチウム‐硫黄電池である。
【発明の効果】
【0024】
本発明のリチウム二次電池は正極添加剤としてテルルを含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを含むことによってリチウム金属を含む負極の効率を向上させ、リチウムポリスルフィドの湧出を抑制し、リチウム金属である負極表面に保護層を形成することができてリチウムデンドライトの生成を抑制させることができ、負極表面での電解液またはリチウムポリスルフィドとの副反応及びこれによる電解液の分解を減少させることができる。それによって、リチウム二次電池の初期放電容量対比80%水準に到逹するサイクルを延長させることができてリチウム二次電池の寿命特性を向上させることができる。
【図面の簡単な説明】
【0025】
図1】実施例1ないし3及び比較例1ないし3のリチウム‐硫黄電池の寿命特性を測定したグラフである。
図2】実施例4のリチウム‐硫黄電池の寿命特性を評価したグラフである。
図3】実施例1のリチウム‐硫黄電池のサイクル電圧を測定したグラフである。
図4】実施例4のリチウム‐硫黄電池のサイクル電圧を測定したグラフである。
図5】実施例5のリチウム‐硫黄電池の寿命特性を測定したグラフである。
図6】実施例3のリチウム‐硫黄電池の初期クーロン効率を測定したグラフである。
図7】実施例1ないし3及び比較例3のリチウム‐硫黄電池の初期クーロン効率を測定したグラフである。
【発明を実施するための形態】
【0026】
以下、本発明をより詳しく説明する。
【0027】
本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味で解釈されてはならず、発明者は自分の発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に即して本発明の技術的思想に符合する意味と概念で解釈しなければならない。
【0028】
本発明で使用した用語は、単に特定の実施例を説明するために使われたもので、本発明を限定しようとする意図ではない。単数の表現は文脈上明白に違うことを意味しない限り、複数の表現を含む。本発明において、「含む」または「持つ」などの用語は明細書上に記載された特徴、数字、段階、動作、構成要素、部品またはこれらを組み合わせたものが存在することを指定しようとするものであって、一つまたはそれ以上の他の特徴や数字、段階、動作、構成要素、部品またはこれらを組み立てたものなどの存在または付加可能性を予め排除しないものとして理解しなければならない。
【0029】
本明細書で使われている用語「複合体(composite)」とは、二つ以上の材料が組み合わせられて物理的・化学的に互いに異なる相(phase)を形成しながらより有効な機能を発現する物質を意味する。
【0030】
本明細書で使われている用語「ポリスルフィド」は「ポリスルフィドイオン(S 2‐、x=8、6、4、2))」及び「リチウムポリスルフィド(LiまたはLiS 、x=8、6、4、2)」をいずれも含む概念である。
【0031】
リチウム二次電池の中でもリチウム‐硫黄電池は幾つかの二次電池の中で高い理論放電容量及び理論エネルギー密度を持ち、正極活物質の主材料として使われる硫黄は埋蔵量が豊かで低価であり、環境にやさしいという利点で次世代二次電池として脚光を浴びている。
【0032】
リチウム‐硫黄電池は幾つかの二次電池の中で高い理論放電容量及び理論エネルギー密度を示すだけでなく、負極活物質で主に使われるリチウム金属は原子量(6.94g/a.u.)及び密度(0.534g/cm)が非常に小さいため、小型化及び軽量化が容易で、次世代電池として脚光を浴びている。
【0033】
しかし、前述したように、リチウム金属は反応性が高くて電解質と容易に反応することによって電解質の自発的分解によってリチウム金属表面に不働態被膜が形成され、これはリチウム金属表面での不均一な電気化学的反応を起こすことによって不活性リチウム及びリチウムデンドライトを形成させ、負極の効率及び安定性を低下させる。また、硫黄系列物質を正極活物質で使用するリチウム‐硫黄電池において、電池駆動の際に正極で形成されたリチウムポリスルフィド(lithium polysulfide、Li、x=8、6、4、2)の中で硫黄の酸化数が高いリチウムポリスルフィド(Li、普通x≧4)は電解質に対する溶解度が高くて持続的に溶け、正極反応領域の外に湧出されて負極に移動するようになる。この時、正極から湧出されたリチウムポリスルフィドはリチウム金属と副反応を起こしてリチウム金属表面にリチウムスルフィドが固着されることによって電極の不動化を引き起こすだけでなく、リチウムポリスルフィドの湧出によって硫黄の利用率が低くなって理論放電容量の最大70%程度まで具現可能で、サイクルが進行されることによって容量及び充・放電効率が早く低下され、電池の寿命特性が低い問題がある。
【0034】
このために従来技術ではリチウム金属表面の均一な反応性を確保し、リチウムデンドライトの成長を抑制するためにリチウム金属表面に保護層を形成したり、電解質の組成を変更する方法などが試みられている。しかし、リチウム金属表面に導入する保護層の場合、リチウムデンドライトを抑制するための高い機械的強度とリチウムイオン伝達のための高いイオン伝導度が同時に要求されるが、前記機械的強度及びイオン伝導度は互いに相反関係(trade‐off)において機械的強度及びイオン伝導度を同時に向上させるには困難があって、現在まで提案されたリチウム金属保護層のリチウム安定性改善効果は優秀ではない実情である。また、電池を構成する他の要素との互換性問題によって電池の性能及び駆動安定性に深刻な問題を引き起こすので、実際の適用は容易ではない。
【0035】
ここで、本発明では正極添加剤としてテルルを含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを含んでリチウムポリスルフィドの湧出を抑制し、初期放電段階で負極であるリチウム金属表面に保護膜(solid electrolyte interface、SEI層)を形成して前記問題点を解決してリチウム二次電池、好ましくはリチウム‐硫黄電池の寿命特性を向上させようとした。
【0036】
本発明は、正極;負極;これらの間に介在された分離膜;及び電解液を含むリチウム二次電池に係り、
前記正極は正極活物質及び正極添加剤を含み、
前記正極添加剤はテルル(Tellurium、Te)を含み、
前記電解液はリチウム塩、有機溶媒及び電解液添加剤を含み、
前記電解液添加剤は、ビス(2,2,2‐トリフルオロエチル)エーテル(Bis(2,2,2‐trifluoroethyl)ether、BTFE)を含む。
【0037】
前記正極は正極集電体と前記正極集電体の少なくとも一面に配置された正極活物質層を含むことができ、前記正極活物質層は正極活物質及び正極添加剤を含む。
【0038】
前記本発明の正極添加剤はテルル(Tellurium、Te)を含む。
【0039】
前記テルルはリチウムポリスルフィドと反応してポリテルロスルフィドイオン(STe 2‐)を形成し、前記ポリテルロスルフィドイオンは電解液に溶解されて負極であるリチウム金属に移動してリチウムチオテルレイドまたはリチウムテルライドからなる負極の保護層形成に寄与する。それによって負極であるリチウム金属表面で向上されたストリッピング/メッキ(stripping/plating)過程を遂行することができる。前記保護層はリチウム金属がもっと密度高くメッキされるようにし、不要な電解液の分解またはリチウムの損失を抑制する効果を持つ。よって、負極の効率及び安定性が改善され、これを含むリチウム二次電池、好ましくはリチウム‐硫黄電池の寿命特性を高めることができる。
【0040】
本発明のリチウム二次電池の正極において、前記正極添加剤であるテルルは前記正極活物質層全体100重量%を基準にして1ないし10重量%、好ましくは3ないし7重量%で含まれることができる。前記テルルは1ないし10重量%の範囲でテルルの含量が高くなるほど初期クーロン効率が減少することがあるが、初期クーロン効率が減少してもリチウム‐硫黄電池の寿命特性は改善される結果を示すことができる。もし、前記テルルが1重量%未満で含まれると、リチウム二次電池の寿命特性向上効果が微々たるものであり、10重量%を超えて含まれると、初期クーロン効率が減少し過ぎて寿命特性まで低下される問題が起こることがある。
【0041】
前記正極集電体は正極活物質を支持し、当該電池に化学的変化を引き起こさずに高い導電性を持つものであれば特に制限されない。例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、パラジウム、焼成炭素、銅やステンレススチール表面にカーボン、ニッケル、銀などで表面処理したもの、アルミニウム‐カドミウム合金などが使われることができる。
【0042】
前記正極集電体は、その表面に微細な凹凸を形成して正極活物質との結合力を強化させることができ、フィルム、シート、ホイル、メッシュ、ネット、多孔質体、発泡体、不織布体など多様な形態を使用することができる。
【0043】
前記正極活物質は硫黄元素(S)及び硫黄化合物からなる群から選択される1種以上を含むことができる。好ましくは無機硫黄、Li(n≧1)、ジスルフィド化合物、有機硫黄化合物及び炭素‐硫黄ポリマー((C、x=2.5ないし50、n≧2)からなる群から選択される1種以上を含むことができ、最も好ましくは正極活物質は無機硫黄を含むことができる。
【0044】
したがって、本発明のリチウム二次電池はリチウム‐硫黄電池である。
【0045】
前記正極活物質に含まれる硫黄の場合、単独では電気伝導性がないため、炭素材のような伝導性素材と複合化して使われる。これによって、前記硫黄は硫黄‐炭素複合体の形態で含まれ、好ましくは前記正極活物質は硫黄‐炭素複合体である。
【0046】
前記硫黄‐炭素複合体は、前述した硫黄が均一で安定的に固定されることができる骨格を提供するだけでなく、硫黄の低い電気伝導度を補完して電気化学的反応が円滑に進められることができるように多孔性炭素材を含む。
【0047】
前記多孔性炭素材は一般的に多様な炭素材質の前駆体を炭化させることで製造される。前記多孔性炭素材は内部に一定しない気孔を含み、前記気孔の平均直径は1ないし200nm範囲で、気孔率または孔隙率は多孔性炭素材全体体積の10ないし90%範囲である。もし、前記気孔の平均直径が前記範囲未満の場合、気孔の大きさが分子水準に過ぎないため硫黄の含浸が不可能であり、これと逆に前記範囲を超える場合、多孔性炭素材の機械的強度が弱化されて電極の製造工程に適用することに好ましくない。
【0048】
前記多孔性炭素材の形態は、球形、棒形、針状、板状、チューブ型またはバルク型でリチウム‐硫黄電池に通常使われるものであれば、制限せずに使われることができる。
【0049】
前記多孔性炭素材は、多孔性構造であるか、比表面積が高いもので、当業界で通常使われるものであれば、いずれもかまわない。例えば、前記多孔性炭素材としては、グラファイト(graphite);グラフェン(graphene);デンカブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;単一壁炭素ナノチューブ(SWCNT)、多重壁炭素ナノチューブ(MWCNT)などの炭素ナノチューブ(CNT);グラファイトナノファイバー(GNF)、カーボンナノファイバー(CNF)、活性化炭素ファイバー(ACF)などの炭素繊維;天然黒鉛、人造黒鉛、膨脹黒鉛などの黒鉛及び活性炭素からなる群から選択された1種以上であるが、これに制限されない。好ましくは、前記多孔性炭素材は炭素ナノチューブである。
【0050】
前記硫黄‐炭素複合体において、前記硫黄は前記多孔性炭素材の内部及び外部表面の少なくともいずれか1ヶ所に位置し、一例として前記多孔性炭素材の内部及び外部全体表面の100%未満、好ましくは1ないし95%、より好ましくは40ないし96%領域に存在することができる。前記硫黄が前記多孔性炭素材の内部及び外部表面に前記範囲内で存在する時、電子伝達面積及び電解質との濡れ性の面で最大の効果を示すことができる。具体的に、前記硫黄が前述した範囲の領域で前記多孔性炭素材の内部及び外部表面に薄くて均一に含浸されるので、充・放電過程で電子伝達接触面積を増加させることができる。もし、前記硫黄が前記多孔性炭素材の内部及び外部全体表面の100%領域に位置する場合、前記多孔性炭素材が完全に硫黄で覆われて電解質に対する濡れ性が落ちるし、接触性が低下されて電子伝達を受けることができず、電気化学反応に参加することができなくなる。
【0051】
前記硫黄‐炭素複合体は、硫黄‐炭素複合体100重量%を基準にして前記硫黄を65ないし90重量%、好ましくは70ないし85重量%、より好ましくは72ないし80重量%で含むことができる。前記硫黄の含量が前述した範囲未満の場合、硫黄‐炭素複合体内で多孔性炭素材の含量が相対的に多くなることによって比表面積が増加し、正極製造の際にバインダーの含量が増加する。このようなバインダーの使容量増加は、結局正極の面抵抗を増加させて電子移動(electron pass)を防ぐ絶縁体の役目をするようになって、電池の性能を低下させることができる。これと逆に、前記硫黄の含量が前述した範囲を超える場合、多孔性炭素材と結合することができなかった硫黄がそれらどうし集まったり、多孔性炭素材の表面に再湧出されることによって電子を受けにくくなって、電気化学的反応に参加することができなくなって、電池の容量損失が発生することがある。
【0052】
本発明の硫黄‐炭素複合体の製造方法は本発明で特に限定せず、当業界で通常使われる方法が利用されることができる。一例として、前記硫黄と多孔性炭素材を単純混合した後、熱処理して複合化する方法が利用されることができる。
【0053】
前記正極活物質は前述した組成以外に遷移金属元素、2族元素、3族元素、これらの元素の硫黄化合物、及びこれらの元素と硫黄の合金の中で選択される一つ以上をさらに含むことができる。
【0054】
前記遷移金属元素では、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Os、Ir、Pt、AuまたはHgなどが含まれ、前記2族元素としてはAl、Ga、In、Tiなどが含まれ、前記3族元素としてはGe、Sn、Pbなどが含まれることができる。
【0055】
本発明のリチウム二次電池の正極で前記正極活物質はリチウム二次電池の正極を構成する正極活物質層全体100重量%を基準にして50ないし95重量%で含まれることができる。前記正極活物質の含量は、前記正極活物質層全体100重量%を基準にして、下限値は70重量%以上または85重量%以上であって、上限値は99重量%以下または90重量%以下である。前記正極活物質の含量は前記下限値と上限値の組み合わせで設定することができる。前記正極活物質の含量が前記範囲未満の場合、電極の電気化学的反応を十分発揮しにくく、これと逆に前記範囲を超える場合、バインダーの含量が相対的に不足して電極の物理的性質が低下される問題がある。
【0056】
また、前記正極活物質層は正極活物質及びテルル以外にバインダー及び導電材などをさらに含むことができる。
【0057】
前記バインダーは正極活物質及びテルルを正極集電体によく付着させるためにさらに使われるものである。
【0058】
前記バインダーは正極活物質を正極集電体に維持させ、正極活物質の間を有機的に連結させて、これらの間の結着力をより高めるもので、当該業界で公知された全てのバインダーを使用することができる。
【0059】
例えば、前記バインダーは、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVA)、ポリアクリル酸(PAA)ポリアクリル酸金属塩(Metal‐PAA)、ポリメタクリル酸(PMA)、ポリメチルメタクリレート(PMMA)ポリアクリルアミド(PAM)、ポリメタクリルアミド、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、ポリイミド(PI)、キトサン(Chitosan)、澱粉、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン‐プロピレン‐ジエンポリマー(EPDM)、スルホン化‐EPDM、スチレン‐ブタジエンゴム(SBR)、フッ素ゴム、ヒドロキシプロピルセルロース、再生セルロース及びこれらの多様な共重合体などを挙げることができるが、これに制限されるものではない。
【0060】
前記バインダーの含量は、リチウム二次電池用正極を構成する正極活物質層全体100重量%を基準にして1ないし10重量%である。前記バインダーの含量が前記範囲未満であれば正極の物理的性質が低下して正極活物質が脱落することがあるし、前記範囲を超えると、正極で正極活物質の割合が相対的に減少して電池容量が減少されることがあるので、上述した範囲内で適正含量を決めることが好ましい。
【0061】
また、前記導電材は正極活物質の導電性をさらに向上させるために、さらに使用するものである。
【0062】
前記導電材は電解質と正極活物質を電気的に連結させて集電体(current collector)から電子が正極活物質まで移動する経路の役目をする物質として、導電性を持つものであれば制限せずに使用することができる。
【0063】
例えば、前記導電材としては、天然黒鉛、人造黒鉛などの黒鉛;スーパーP(Super‐P)、デンカブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素ナノチューブ、フラーレンなどの炭素誘導体;炭素繊維、金属繊維などの導電性繊維;フッ化カーボン;アルミニウム、ニッケル粉末などの金属粉末またはポリアニリン、ポリチオフェン、ポリアセチレン、ポリピロールなどの伝導性高分子を単独または混合して使用することができる。
【0064】
前記導電材は前記正極を構成する正極活物質層全体100重量%を基準にして1ないし10重量%、好ましくは4ないし7重量%で含むことができる。前記導電材の含量が前記範囲未満であれば正極活物質と集電体との間の電子伝達が容易ではなくて電圧及び容量が減少する。これと逆に、前記範囲を超えると、相対的に正極活物質の割合が減少して電池の総エネルギー(電荷量)が減少することがあるので、上述した範囲内で適正含量を決めることが好ましい。
【0065】
本発明において、前記正極の製造方法は特に限定されず、通常の技術者によって公知の方法またはこれを変形する多様な方法が使用可能である。
【0066】
一例として、前記正極は上述した組成を含む正極スラリー組成物を製造した後、これを前記正極集電体の少なくとも一面に塗布することで製造されたものである。
【0067】
前記正極スラリー組成物は前述した正極活物質及びテルルを含み、さらにバインダー、導電材及び溶媒をさらに含むことができる。
【0068】
前記溶媒としては、正極活物質、テルル、導電材及びバインダーを均一に分散させることができるものを使用する。このような溶媒としては、水系溶媒として水が最も好ましく、この時、水は蒸溜水(distilled water)、脱イオン水(deionzied water)である。ただし、必ずこれに限定されるものではなく、必要な場合、水と容易に混合可能な低級アルコールが使われることができる。前記低級アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール及びブタノールなどがあり、好ましくはこれらは水とともに混合して使われることができる。
【0069】
前記溶媒の含量はコーティングを容易にすることができる程度の濃度を持つ水準で含有されることができ、具体的な含量は塗布方法及び装置によって変わる。
【0070】
前記正極スラリー組成物は必要に応じて該当技術分野でその機能の向上などを目的として通常使われる物質を必要に応じてさらに含むことができる。例えば、粘度調整剤、流動化剤、充填剤などを挙げることができる。
【0071】
前記正極スラリー組成物の塗布方法は本発明で特に限定せず、例えば、ドクターブレード(doctor blade)、ダイキャスティング(die casting)、コンマコーティング(comma coating)、スクリーンプリンティング(screen printing)などの方法を挙げることができる。また、別途の基材(substrate)上に成形した後、プレッシング(pressing)またはラミネーション(lamination)方法によって正極スラリーを正極集電体上に塗布することもできる。
【0072】
前記塗布後、溶媒除去のための乾燥工程を行うことができる。前記乾燥工程は溶媒を充分取り除くことができる水準の温度及び時間で遂行し、その条件は溶媒の種類によって変わることがあるので本発明に特に制限されない。一例として、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線及び電子線などの照射による乾燥法を挙げることができる。乾燥速度は通常応力集中によって正極活物質層に亀裂が生じたり、正極活物質層が正極集電体から剥離されない程度の速度範囲内で、できるだけ早く溶媒を取り除くことができるように調整する。
【0073】
さらに、前記乾燥後集電体をプレスすることで正極内で正極活物質の密度を高めることもできる。プレス方法としては、金型プレス及びロールプレスなどの方法を挙げることができる。
【0074】
前記電解液はリチウム塩、有機溶媒及び電解液添加剤を含む。
【0075】
前記電解液添加剤は、ビス(2,2,2‐トリフルオロエチル)エーテル(Bis(2,2,2‐trifluoroethyl)ether、BTFE)を含む。
【0076】
前記ビス(2,2,2‐トリフルオロエチル)エーテルはリチウムポリスルフィドに対して低い溶解度を持つ。それによってリチウムポリスルフィドの湧出を抑制し、リチウム二次電池、具体的にリチウム‐硫黄電池の初期放電段階で負極表面に保護層を形成することができる。したがって、リチウムポリスルフィドと負極のリチウム金属との間の副反応を効果的に抑制することができてリチウムポリスルフィドによるシャトル現象を低減させる効果を示してリチウム‐硫黄電池の寿命特性を向上させることができる。
【0077】
前記ビス(2,2,2‐トリフルオロエチル)エーテルは電解液全体100体積%を基準にして1ないし20体積%、好ましくは5ないし15体積%、より好ましくは7ないし12体積%で含まれることができる。
【0078】
前記ビス(2,2,2‐トリフルオロエチル)エーテルが1体積%未満で含まれると、リチウム‐硫黄電池の寿命特性向上効果が微々たるものであり、20体積%を超えると過電圧が形成されて高率放電容量及び出力特性が減少する問題が発生することがある。
【0079】
前記電解液全体100体積%はリチウム塩を除いた液体の体積を意味する。
【0080】
前記リチウム塩は前記電解液の電解質塩で含まれ、前記リチウム塩の種類は本発明で特に限定されず、リチウム‐硫黄電池に通常使用可能なものであれば制限されずに使われることができる。
【0081】
例えば、前記リチウム塩は、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiB(Ph)、LiCBO、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiSOCH、LiSOCF、LiSCN、LiC(CFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、クロロボランリチウム、低級脂肪族カルボン酸リチウム、テトラフェニルホウ酸リチウム及びリチウムイミドからなる群から選択される1種以上を含むことができ、好ましくは(SOF)NLi(lithium bis(fluorosulfonyl)imide;LiFSI)である。
【0082】
前記リチウム塩の濃度はイオン伝導度、溶解度などを考慮して適切に決まることができ、例えば0.1ないし4.0M、好ましくは0.5ないし2.0Mである。前記リチウム塩の濃度が前記範囲未満の場合、電池駆動に適したイオン伝導度の確保が難しく、これと逆に前記範囲を超える場合、電解液の粘度が増加してリチウムイオンの移動性が低下され、リチウム塩自体の分解反応が増加して電池の性能が低下することがあるので前記範囲内で適切に調節する。
【0083】
前記有機溶媒はリチウム二次電池の電気化学的反応に関わるイオンが移動することができる媒質で有機溶媒を含む。
【0084】
前記有機溶媒は環形エーテル及び非環形エーテルを含む。
【0085】
前記エーテル系化合物は硫黄または硫黄系列化合物に対する溶解度を維持しながら電気化学的安定性が電池の駆動電圧範囲内で確保され、相対的に電池の駆動による中間生成物との副反応の発生が少ない。
【0086】
前記環形エーテルは、フラン、2‐メチルフラン、3‐メチルフラン、2‐エチルフラン、2‐プロピルフラン、2‐ブチルフラン、2,3‐ジメチルフラン、2,4‐ジメチルフラン、2,5‐ジメチルフラン、ピラン、2‐メチルピラン、3‐メチルピラン、4‐メチルピラン、ベンゾフラン、2‐(2‐ニトロビニル)フラン、テトラハイドロフラン、2‐メチルテトラハイドロフラン、2,5‐ジメチルテトラハイドロフラン、2,5‐ジメトキシテトラハイドロフラン、2‐エトキシテトラハイドロフラン、テトラハイドロピラン、1,2‐ジメトキシベンゼン、1,3‐ジメトキシベンゼン及び1,4‐ジメトキシベンゼンからなる群から選択される1種以上を含むことができる。好ましくは2‐メチルフランを含むことができる。
【0087】
前記環形エーテルに主に使われるジオキソラン系化合物は、リチウムポリスルフィドに対する溶解度が高すぎてシャトル現象を誘発する可能性が非常に高く、正極活物質である硫黄の損失を加速化してリチウム二次電池の寿命性能を低下させることがある。したがって、前記ジオキソラン系化合物は本発明のリチウム二次電池電解液の有機溶媒として使用するには好ましくない。
【0088】
前記非環形エーテルは、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、ポリエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル及びエチレングリコールエチルメチルエーテルからなる群から選択される1種以上を含むことができ、好ましくはジメチルエーテルを含むことができる。
【0089】
前記環形エーテル及び非環形エーテルは1:9ないし9:1の体積比、好ましくは1:2ないし1:5の体積比で混合して使用することができる。
【0090】
本発明のリチウム二次電池の電解液は、好ましくはリチウム塩、2‐メチルフラン、ジメトキシエタン及びビス(2,2,2‐トリフルオロエチル)エーテルを含むものである。
【0091】
また、本発明のリチウム二次電池の電解液は、リチウム二次電池の電解液に通常使われる有機溶媒をさらに含むことができる。例えば、エステル化合物、アミド化合物、線形カーボネート化合物及び環形カーボネート化合物からなる群から選択される1種以上をさらに含むことができる。
【0092】
前記エステル化合物としては、メチルアセテート、エチルアセテート、プロピルアセテート、メチルプロピオネイト、エチルプロピオネイト、プロピルプロピオネイト、γ‐ブチロラクトン、γ‐バレロラクトン、γ‐カプロラクトン、σ‐バレロラクトン及びε‐カプロラクトンからなる群から選択される1種以上を使用することができるが、これに限定されるものではない。
【0093】
前記線形カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート及びエチルプロピルカーボネートからなる群から選択される1種以上を含むことができるが、これに限定されるものではない。
【0094】
前記環形カーボネート化合物としては、エチレンカーボネート、プロピレンカーボネート、1,2‐ブチレンカーボネート、2,3‐ブチレンカーボネート、1,2‐ペンチレンカーボネート、2,3‐ペンチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート及びこれらのハロゲン化物からなる群から選択される1種以上を含むことができるが、これに限定されるものではない。
【0095】
本発明のリチウム二次電池の電解液は、前述した組成以外に硝酸または亜硝酸系化合物をさらに含むことができる。前記硝酸または亜硝酸系化合物は、負極のリチウム金属電極に安定的な被膜を形成し、充・放電効率を向上させる効果がある。
【0096】
このような硝酸または亜硝酸系化合物としては、本発明で特に限定しないが、硝酸リチウム(LiNO)、硝酸カリウム(KNO)、硝酸セシウム(CsNO)、硝酸バリウム(Ba(NO)、硝酸アンモニウム(NHNO)、亜硝酸リチウム(LiNO)、亜硝酸カリウム(KNO)、亜硝酸セシウム(CsNO)、亜硝酸アンモニウム(NHNO)などの無機系硝酸または亜硝酸化合物;メチルニトラート、ジアルキルイミダゾリウムニトラート、グアニジンニトラート、イミダゾリウムニトラート、ピリジニウムニトラート、エチルニトラート、プロピルニトラート、ブチルニトラート、ペンチルニトラート、オクチルニトラートなどの有機系硝酸または亜硝酸化合物;ニトロメタン、ニトロプロパン、ニトロブタン、ニトロベンゼン、ジニトロベンゼン、ニトロピリジン、ジニトロピリジン、ニトロトルエン、ジニトロトルエンなどの有機ニトロ化合物及びこれらの組み合わせからなる群から選択された1種が可能であり、好ましくは硝酸リチウムを使用する。
【0097】
また、本発明の電解液は、充・放電特性、難燃性などの改善を目的として、その他添加剤をさらに含むことができる。前記添加剤の例示としては、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n‐グライム(glyme)、ヘキサメチルリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N‐置換オキサゾリジノン、N,N‐置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2‐メトキシエタノール、三塩化アルミニウム、フルオロエチレンカーボネート(FEC)、プロペンスルトン(PRS)、ビニレンカーボネート(VC)などを挙げることができる。
【0098】
前記電解液の注入は最終製品の製造工程及び要求物性によって、電気化学素子の製造工程中に適切な段階で行われることができる。すなわち、電気化学素子の組み立て前または電気化学素子の組み立て最終段階などで適用されることができる。
【0099】
本発明のリチウム二次電池の負極は、負極集電体及び前記負極集電体の一面または両面に塗布された負極活物質層を含むことができる。または、前記負極はリチウム板金である。
【0100】
前記負極集電体は負極活物質層の支持のためのもので、正極集電体で説明したとおりである。
【0101】
前記負極活物質層は負極活物質以外に導電材、バインダーなどを含むことができる。この時、前記導電材及びバインダーは前述した内容にしたがう。
【0102】
前記負極活物質は、リチウム(Li)を可逆的に挿入(intercalation)または脱挿入(deintercalation)できる物質、リチウムイオンと反応して可逆的にリチウム含有化合物を形成することができる物質、リチウム金属またはリチウム合金を含むことができる。
【0103】
前記リチウムイオン(Li)を可逆的に挿入または脱挿入することができる物質は、例えば、結晶質炭素、非晶質炭素またはこれらの混合物である。前記リチウムイオン(Li)と反応して可逆的にリチウム含有化合物を形成することができる物質は、例えば、酸化スズ、窒化チタンまたはシリコーンである。前記リチウム合金は、例えば、リチウム(Li)とナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、アルミニウム(Al)及びスズ(Sn)からなる群から選択される金属の合金である。
【0104】
好ましくは、前記負極活物質はリチウム金属であってもよく、具体的にリチウム金属薄膜またはリチウム金属粉末の形態である。
【0105】
前記負極活物質の形成方法は特に制限されず、当業界で通常使われる層または膜の形成方法を利用することができる。例えば、圧搾、コーティング、蒸着などの方法を利用することができる。また、集電体にリチウム薄膜がない状態で電池を組み立てた後、初期充電によって板金上に金属リチウム薄膜が形成される場合も本発明の負極に含まれる。
【0106】
前記分離膜は正極と負極との間に位置することができる。
【0107】
前記分離膜は前記正極と負極を互いに分離または絶縁させ、正極と負極の間にリチウムイオンの輸送ができるようにすることで多孔性非伝導性または絶縁性物質からなることができ、通常リチウム二次電池として分離膜で使われるものであれば特に制限されずに使用可能である。このような分離膜はフィルムのような独立的な部材であってもよく、正極及び/または負極に付加されたコーティング層であってもよい。
【0108】
前記分離膜としては電解液のイオン移動に対して低抵抗でありながら電解液に対する含湿能力に優れるものが好ましい。
【0109】
前記分離膜は多孔性基材からなることができるが、前記多孔性基材は通常二次電池に使われる多孔性基材であれば、いずれも使用可能であり、多孔性高分子フィルムを単独でまたはこれらを積層して使用することができ、例えば、高融点のガラス繊維、ポリエチレンテレフタレート繊維などからなる不織布またはポリオレフィン系多孔性膜を使用することができるが、これに限定されるものではない。
【0110】
前記多孔性基材の材質としては、本発明で特に限定せず、通常電気化学素子に使われる多孔性基材であれば、いずれも使用可能である。例えば、前記多孔性基材は、ポリエチレン(polyethylene)、ポリプロピレン(polypropylene)などのポリオレフィン(polyolefin)、ポリエチレンテレフタレート(polyethyleneterephthalate)、ポリブチレンテレフタレート(polybutyleneterephthalate)などのポリエステル(polyester)、ポリアミド(polyamide)、ポリアセタール(polyacetal)、ポリカーボネート(polycarbonate)、ポリイミド(polyimide)、ポリエーテルエーテルケトン(polyetheretherketone)、ポリエテルスルホン(polyethersulfone)、ポリフェニレンオキサイド(polyphenyleneoxide)、ポリフェニレンスルフィド(polyphenylenesulfide)、ポリエチレンナフタレン(polyethylenenaphthalate)、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリフッ化ビニリデン(polyvinylidenefluoride)、ポリ塩化ビニル(polyvinyl chloride)、ポリアクリロニトリル(polyacrylonitrile)、セルロース(cellulose)、ナイロン(nylon)、ポリパラフェニレンベンゾビスオキサゾール(poly(p‐phenylene benzobisoxazole)及びポリアリレート(polyarylate)からなる群から選択された1種以上の材質を含むことができる。
【0111】
前記多孔性基材の厚さは特に制限されないが、1ないし100μm、好ましくは5ないし50μmである。前記多孔性基材の厚さの範囲が前述した範囲に限定されることではないが、厚さが前述した下限より薄すぎる場合は機械的物性が低下され、電池使用中に分離膜が容易に損傷されることがある。
【0112】
前記多孔性基材に存在する気孔の平均直径及び気孔率も特に制限されないが、それぞれ0.001ないし50μm及び10ないし95%である。
【0113】
本発明によるリチウム二次電池は一般的な工程である巻取(winding)以外もセパレーターと電極の積層(lamination、stack)及びフォールディング(folding)工程が可能である。
【0114】
前記リチウム二次電池の形状は特に制限されず、円筒状、積層型、コイン型など多様な形状にすることができる。
【0115】
本発明のリチウム二次電池、具体的に、リチウム‐硫黄電池は正極添加剤としてテルルを含む。前記テルルはリチウム‐硫黄電池の初期放電段階で負極表面における保護層形成に寄与し、負極表面で向上されたストリッピング/メッキ(stripping/plating)過程を遂行することができる。それによって、負極の効率及び安定性が改善され、リチウム‐硫黄電池の寿命特性を向上させることができる。
【0116】
また、本発明のリチウム‐硫黄電池は、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを含む。前記ビス(2,2,2‐トリフルオロエチル)エーテルは、リチウムポリスルフィドの湧出を抑制し、リチウム‐硫黄電池の初期放電段階で負極表面に保護層を形成することでリチウムポリスルフィドと負極のリチウム金属との間の副反応を効果的に抑制することができて、リチウム‐硫黄電池の寿命特性を向上させることができる。
【0117】
したがって、本発明のリチウム二次電池は寿命特性向上効果を持ち、具体的に放電容量が初期放電容量対比80%に逹するようになるサイクル数を延長させることができる。
【0118】
以下、本発明を理解しやすくするために好ましい実施例を提示するが、下記実施例は本発明を例示するものに過ぎず、本発明の範疇及び技術思想の範囲内で多様な変更及び修正が可能であることは当業者にとって自明であり、このような変形及び修正が添付の特許請求範囲に属することも当然である。
【0119】
<リチウム‐硫黄電池の製造>
実施例1.
正極活物質として硫黄‐炭素(CNT)複合体(S:C=75:25(重量比))及び3重量%のリチウム‐ポリアクリル酸(Li‐PAA)水溶液を混合して混合溶液を製造した。その後、前記混合溶液にテルル(Te)粉末を添加した。この時、硫黄‐炭素複合体、リチウム‐ポリアクリル酸の固形分及びテルルの重量比は90:5:5であった。ここで、さらに水を添加した後、混合して固形分が32重量%の正極スラリーを製造した。
【0120】
前記正極スラリーをアルミニウムホイル集電体上に塗布した後、 Mathis coater(Mathis Switzerland、SV‐M)を利用して一定厚さでコーティングした。その後、50℃の温度で2時間乾燥して正極を製造した。
【0121】
前記正極のローディング量は3.3mAh/cmで、気孔率は73%であった。
【0122】
0.75M LiFSIと4重量%の硝酸リチウム(LiNO)を2‐メチルフラン(2‐methylfuran、2‐MeF)、ビス(2,2,2‐トリフルオロエチル)エーテル(Bis(2,2,2‐trifluoroethyl)ether、BTFE)及び1,2‐ジメトキシエタン(1,2‐dimethoxyethane、DME)を2:1:7の体積で混合した有機溶媒に溶解させて電解液を製造した。この時、前記ビス(2,2,2‐トリフルオロエチル)エーテルは、電解液の総体積に対して10体積%で含まれたものである。
【0123】
前記製造された正極と負極を対面するように位置させ、その間に厚さ16μm、気孔率45%のポリエチレン分離膜を介在した後、これをアルミニウムポーチに入れた後、前記電解液を注入し、密封してリチウム‐硫黄電池を製造した。
【0124】
この時、負極で30μm厚さのリチウム金属薄膜を使用した。
【0125】
実施例2.
硫黄‐炭素複合体、リチウム‐ポリアクリル酸の固形分及びテルルの重量比が85:5:10であることを除いては、前記実施例1と同様に実施してリチウム‐硫黄電池を製造した。
【0126】
実施例3.
硫黄‐炭素複合体、リチウム‐ポリアクリル酸の固形分及びテルルの重量比が80:5:15であることを除いては、前記実施例1と同様に実施してリチウム‐硫黄電池を製造した。
【0127】
実施例4.
2‐メチルフラン(2‐methylfuran、2‐MeF)、ビス(2,2,2‐トリフルオロエチル)エーテル(Bis(2,2,2‐trifluoroethyl)ether、BTFE)及び1,2‐ジメトキシエタン(1,2‐dimethoxyethane、DME)を20:25:55の体積で混合したことを除いては、前記実施例1と同様に実施してリチウム‐硫黄電池を製造した。
【0128】
実施例5.
1,3‐ジオキソラン(1,3‐dioxolane、DOL)、ビス(2,2,2‐トリフルオロエチル)エーテル(Bis(2,2,2‐trifluoroethyl)ether、BTFE)及び1,2‐ジメトキシエタン(1,2‐dimethoxyethane、DME)を40:10:50の体積で混合したことを除いては、前記実施例1と同様に実施してリチウム‐硫黄電池を製造した。
【0129】
比較例1.
正極活物質で硫黄‐炭素(CNT)複合体(S:C=75:25(重量比))及び3重量%のリチウム‐ポリアクリル酸(Li‐PAA)水溶液を混合して混合溶液を製造した。この時、硫黄‐炭素複合体及びリチウム‐ポリアクリル酸の固形分の重量比は95:5であった。ここで、さらに水を添加した後、混合して固形分が32重量%の正極スラリーを製造した。
【0130】
前記正極スラリーをアルミニウムホイル集電体上に塗布した後、Mathis coater(Mathis Switzerland、SV‐M)を利用して一定厚さでコーティングした。その後、50℃の温度で2時間乾燥して正極を製造した。
【0131】
前記正極のローディング量は3.3mAh/cmで、気孔率は73%であった。
【0132】
0.75M LiFSIと4重量%の硝酸リチウム(LiNO)を2‐メチルフラン(2‐methylfuran、2‐MeF)及び1,2‐ジメトキシエタン(1,2‐dimethoxyethane、DME)を1:4の体積で混合した有機溶媒に溶解させて電解液を製造した。
【0133】
前記製造された正極と負極を対面するように位置させ、その間に厚さ16μm、気孔率45%のポリエチレン分離膜を介在した後、前記電解液を注入してリチウム‐硫黄電池を製造した。
【0134】
この時、負極で30μm厚さのリチウム金属薄膜を使用した。
【0135】
比較例2.
0.75M LiFSIと4重量%の硝酸リチウム(LiNO)を2‐メチルフラン(2‐methylfuran、2‐MeF)及び1,2‐ジメトキシエタン(1,2‐dimethoxyethane、DME)を1:4の体積で混合した有機溶媒に溶解させて電解液を製造したことを除いては、前記実施例1と同様に実施してリチウム‐硫黄電池を製造した。
【0136】
比較例3.
正極活物質で硫黄‐炭素(CNT)複合体(S:C=75:25(重量比))及び3重量%のリチウム‐ポリアクリル酸(Li‐PAA)水溶液を混合して混合溶液を製造した。この時、硫黄‐炭素複合体及びリチウム‐ポリアクリル酸の固形分の重量比は95:5であった。ここで、さらに水を添加した後、混合して固形分が32重量%の正極スラリーを製造した。
【0137】
これを除いては、前記実施例1と同様に実施してリチウム‐硫黄電池を製造した。
【0138】
実験例1.リチウム‐硫黄電池の寿命特性評価
実施例1ないし3及び比較例1ないし3で製造した電池に対し、充・放電測定装置(PESCO5‐0.01、PNE solution韓国)を使用して性能を評価した。
【0139】
初期3サイクルでは0.1C電流密度で2.5から1.8Vまでの充・放電容量を測定し、4回目サイクルからは0.3Cで放電し、0.2Cで充電して充・放電容量を測定した。Capacity retention結果は比較例1のリチウム‐硫黄電池の4回目サイクルの放電容量を100%にして、以後サイクルの相対的な容量を計算し、放電容量が80%に達する(cycle@80%)まで測定した。
【0140】
その結果を下記表1及び図1に示す。
【0141】
【表1】
【0142】
前記結果で、テルルを正極活物質層全体100重量%を基準にして5重量%で含み、ビス(2,2,2‐トリフルオロエチル)エーテルを含む実施例1のリチウム‐硫黄電池は寿命特性がとても向上された結果を示す。また、テルルを正極活物質層全体100重量%を基準にして10重量%で含み、ビス(2,2,2‐トリフルオロエチル)エーテルを含む実施例2のリチウム‐硫黄電池も寿命特性が改善された結果を示す。
【0143】
一方、テルルを正極活物質層全体100重量%を基準にして15重量%で含み、ビス(2,2,2‐トリフルオロエチル)エーテルを含む実施例3のリチウム‐硫黄電池はテルルの好ましい含量範囲である1ないし10重量%を超えた量のテルルを含むことによって寿命特性が減少する結果を示す。また、テルルのみを含む比較例2のリチウム‐硫黄電池は寿命特性が些細に改善された結果を示し、ビス(2,2,2‐トリフルオロエチル)エーテルのみを含む比較例3のリチウム‐硫黄電池は寿命特性向上効果を示すことができなかった。
【0144】
したがって、正極添加剤でテルルを含み、電解液添加剤でビス(2,2,2‐トリフルオロエチル)エーテルを含み、前記テルルを正極活物質層全体100重量%を基準にして1ないし10重量%で含めば、リチウム‐硫黄電池の寿命特性を向上させることができるということが分かる。
【0145】
また、前記と同様の方法で実施例4及び5のリチウム‐硫黄電池の寿命特性を測定した。
【0146】
実施例4はビス(2,2,2‐トリフルオロエチル)エーテルを25体積%で含む電解液を使用したリチウム‐硫黄電池であって、寿命劣化が加速化する結果を示す(図2)。また、実施例1及び4のリチウム‐硫黄電池の5、15、25及び35回目サイクルの電圧を測定した。実施例1のリチウム‐硫黄電池はサイクル容量が一定に維持される一方(図3)、実施例4のリチウム‐硫黄電池はサイクルが進められるほど容量が減少し、末端部の過電圧が徐々に深化され、容量の退化が加速化する結果を示す(図4)。
【0147】
前記結果より、正極添加剤でテルルを含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを含み、前記ビス(2,2,2‐トリフルオロエチル)エーテルは電解液全体100体積%を基準にして1ないし20体積%で含めば、寿命特性をより向上させることができることが分かる。
【0148】
実施例5は電解液として2‐メチルフランの代わりに1,3‐ジオキソラン(DOL)を使用したリチウム‐硫黄電池、1,3‐ジオキソラン/1,2‐ジメトキシエタンを電解液に基づいて使用したものである。前記実施例5のリチウム‐硫黄電池の寿命特性結果、退化が早く表れることが見られた(図5)。
【0149】
前記結果より、正極添加剤としてテルルを含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを含んでも、電解液として1,3‐ジオキソランを使用すれば、寿命特性改善効果を示すことができないことが分かる。
【0150】
すなわち、正極添加剤でテルルを正極活物質層全体100重量%を基準にして1ないし10重量%で含み、電解液添加剤としてビス(2,2,2‐トリフルオロエチル)エーテルを電解液全体100体積%を基準にして1ないし20体積%で含み、電解液でジオキソラン系化合物を使わないと、リチウム‐硫黄電池の寿命特性改善効果を示すことができる。
【0151】
実験例2.リチウム‐硫黄電池の初期クーロン効率評価
実施例1ないし3及び比較例3で製造した電池に対し、充・放電測定装置(PESCO5‐0.01、PNE solution韓国)を使用し、テルル含量による初期クーロン効率を評価した。
【0152】
初期3サイクルでは0.1C電流密度で2.5から1.8Vまでの充・放電容量を測定し、4回目のサイクルからは0.3Cで放電し、0.2Cで充電して初期クーロン効率を測定し、結果を図6及び図7に示す。
【0153】
テルルを含まない比較例3のリチウム‐硫黄電池は初期クーロン効率が減少しない結果を示す。しかし、テルルを含む実施例1ないし3のリチウム‐硫黄電池は、初期クーロン効率が減少する結果を示す。実施例1及び2のリチウム‐硫黄電池は、テルルを正極活物質層全体100重量%を基準にしてそれぞれ5及び10重量%で含むもので、初期クーロン効率が減少する結果を示しても、前記実験例1の結果のようにリチウム‐硫黄電池の寿命特性は改善される結果を示す。実施例3のリチウム‐硫黄電池はテルルを正極活物質層全体100重量%を基準にして15重量%で含むもので、テルルの含量範囲である1ないし10重量%を超えたものである。それによって、実施例3のリチウム‐硫黄電池は初期クーロン効率が過度に減少する結果を示し、クーロン効率の過度な減少によって前記実験例1の結果のようにリチウム‐硫黄電池の寿命特性が改善されない結果を示す。
【0154】
これより、テルルを正極活物質層全体100重量%を基準にして10重量%を超えて含めばクーロン効率が減少することが分かって、テルルを1ないし10重量%で含むことが好ましいことが分かった。
図1
図2
図3
図4
図5
図6
図7