IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立パワーソリューションズの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-05
(45)【発行日】2024-06-13
(54)【発明の名称】原因推定システムおよび原因推定方法
(51)【国際特許分類】
   G05B 23/02 20060101AFI20240606BHJP
【FI】
G05B23/02 302Y
G05B23/02 V
【請求項の数】 11
(21)【出願番号】P 2020209719
(22)【出願日】2020-12-17
(65)【公開番号】P2022096546
(43)【公開日】2022-06-29
【審査請求日】2023-05-30
(73)【特許権者】
【識別番号】000233044
【氏名又は名称】株式会社日立パワーソリューションズ
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】韓 露
(72)【発明者】
【氏名】蛭田 智昭
(72)【発明者】
【氏名】湯田 晋也
【審査官】大古 健一
(56)【参考文献】
【文献】特開2019-204302(JP,A)
【文献】特開2010-122847(JP,A)
【文献】特開2009-20787(JP,A)
【文献】特開2000-75923(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 23/00 -23/02
(57)【特許請求の範囲】
【請求項1】
設備の異常事象と当該設備に備わるコンポーネントの故障との関係、および、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワークと、
前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、
前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルと
を用いて情報処理を行うネットワーク生成部を備え、
前記ネットワーク生成部は、
前記異常事象と、当該異常事象が発生した設備の機種とを受け取り、
前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障と、当該故障の発生の当否を確認するためのチェック項目とを特定して、当該異常事象に対応した保守知識ネットワークを生成し、
前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し、
前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去し、
除去されずに残った故障の発生の当否を確認するためのチェック項目とは異なるチェック項目を、さらに除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成する
ことを特徴とする原因推定システム。
【請求項2】
原因推定部を、さらに備え、
前記ネットワーク生成部は、
前記故障が発生する確率と、当該故障が発生したときに当該故障の発生の当否を確認するためのチェック項目が異常となる確率とを含む確率情報を参照して、
前記異常事象および前記設備の機種に対応した保守知識ネットワークに、前記故障が発生する確率と、前記故障が発生したときに当該故障の発生の当否を確認するためのチェック項目が異常となる確率とを付与し、
前記原因推定部は、前記チェック項目の異常の当否を受け取り、前記故障が発生した確率を算出する
ことを特徴とする請求項1に記載の原因推定システム。
【請求項3】
前記異常事象の原因となった前記故障を受け取り、当該故障と前記原因推定部が算出した確率が最大である故障との一致率を算出し、当該一致率が所定値より低い場合に報知する更新検知部を、さらに備える
ことを特徴とする請求項2に記載の原因推定システム。
【請求項4】
更新指示受付部と更新実行部とを、さらに備え、
前記更新指示受付部は、
前記異常事象の原因となった前記故障と、前記原因推定部が算出した確率が最大である故障との比較表を含む更新指示画面を表示し、
前記共通保守知識ネットワーク、前記機種テーブル、前記故障テーブル、および、前記確率情報のなかの何れか少なくとも1つの変更の指示を受け付け、
前記更新実行部は、
前記更新指示受付部が受け付けた変更を行う
ことを特徴とする請求項3に記載の原因推定システム。
【請求項5】
イベント認識部を、さらに備え、
前記チェック項目は、前記設備に備わるセンサから取得されたセンサ値に基づいて前記チェック項目の異常の当否が確認されるチェック項目であり、
前記イベント認識部は、前記センサ値に基づいて前記チェック項目の異常の当否を判断して、前記原因推定部に出力する
ことを特徴とする請求項2に記載の原因推定システム。
【請求項6】
前記イベント認識部は、前記センサ値の特徴量を用いて前記センサ値をデータ群に分類して前記チェック項目の異常の当否を判断する
ことを特徴とする請求項5に記載の原因推定システム。
【請求項7】
更新検知部を、さらに備え、
前記更新検知部は、何れの前記データ群にも分類されないセンサ値が取得された場合に報知する
ことを特徴とする請求項6に記載の原因推定システム。
【請求項8】
更新指示受付部と更新実行部とを、さらに備え、
前記更新指示受付部は、
何れの前記データ群にも分類されないセンサ値が取得された場合に、
新しいデータ群を追加する指示、前記共通保守知識ネットワークを変更する指示、前記機種テーブルを変更する指示、前記故障テーブルを変更する指示、および、前記確率情報を変更する指示のなかの何れか少なくとも1つの指示を受け付け、
前記更新実行部は、
前記更新指示受付部が受け付けた指示を実行する
ことを特徴とする請求項7に記載の原因推定システム。
【請求項9】
前記更新指示受付部は、
前記コンポーネントと前記故障と前記異常事象と前記チェック項目とが関連付けられて記憶されるアセット知識データベースを参照して、
前記共通保守知識ネットワークを変更する指示が、前記アセット知識データベースに含まれていない、前記異常事象と当該異常事象の原因である前記設備のコンポーネントの故障との関係の追加を含む場合、
前記共通保守知識ネットワークを変更する指示が、前記アセット知識データベースに含まれていない、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係の追加を含む場合、
前記故障テーブルを変更する指示が、前記アセット知識データベースに含まれていない、前記コンポーネントの種別と当該コンポーネントの種別で発生する故障との追加を含む場合、および、
前記故障テーブルを変更する指示が、前記アセット知識データベースに含まれる前記コンポーネントの種別と当該コンポーネントの種別で発生する故障との追加を含み、当該指示が当該コンポーネントの種別とは異なる種別のコンポーネントで発生する当該故障の追加を含まず、前記アセット知識データベースが前記異なる種別のコンポーネントで発生する当該故障を含む場合、のなかの何れか少なくとも1つの場合に、警告を報知する
ことを特徴とする請求項4または8に記載の原因推定システム。
【請求項10】
設備の異常事象と当該設備に備わるコンポーネントの故障との関係を示す共通保守知識ネットワークと、
前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、
前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルと
を用いて情報処理を行うネットワーク生成部を備え、
前記ネットワーク生成部は、
前記異常事象と、当該異常事象が発生した設備の機種とを受け取り、
前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障を特定して、当該異常事象に対応した保守知識ネットワークを生成し、
前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し、
前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成する
ことを特徴とする原因推定システム。
【請求項11】
原因推定システムの原因推定方法であって、
前記原因推定システムの記憶部には、
設備の異常事象と当該設備に備わるコンポーネントの故障との関係、および、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワークと、
前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、
前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルとが記憶され、
前記異常事象と、当該異常事象が発生した設備の機種とを受け取るステップと
前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障と、当該故障の発生の当否を確認するためのチェック項目とを特定して、当該異常事象に対応した保守知識ネットワークを生成するステップと
前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定するステップと
前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去するステップと
除去されずに残った故障の発生の当否を確認するためのチェック項目とは異なるチェック項目を、さらに除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成するステップとを実行する
ことを特徴とする原因推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、設備や機器の異常事象の原因を推定する原因推定システムおよび原因推定方法に関する。
【背景技術】
【0002】
プラントや施設などに置かれる設備や機器の正常動作を保つためには保守作業が必須である。また、設備や機器に異常(異常事象、故障)が発生した場合には、その原因を速やかに特定して対処することが求められる。
特許文献1に記載の機器状態監視システムは、プラント計測値から異常パラメータを推定し、異常パラメータから故障機器を推定することを可能としている。当該機器状態監視システムは、プラント機器が正常なときのプラント計測値を格納した正常時計測値データベースと、機器故障時に影響のあるパラメータとの関係をモデル化した機器劣化モデルが格納された機器劣化モデルデータベースと、機器の故障確率が格納された機器故障確率データベースと、機器の故障記録が格納された機器故障記録データベースとを備え、前記データベースから計算される確率を設定して物理モデルを設定し、プラントの計測値と正常時計測値と比較して異常の有無の判定と異常パラメータの推定をして、前記物理モデルを用いて前記異常パラメータから故障機器を推定する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2020-009080号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の機器状態監視システムでは、故障の事前確率と条件付確率とが設定された物理モデル(故障原因推定に用いられるネットワークモデル)は、機器ごとに準備されて、故障機器の推定に用いられる。このため、同様な構成の設備や機器であっても機種が異なると、別の物理モデルを用意する必要がある。また、同様な構成の機器の機種間で共通な物理モデルを作成したとしても、物理モデルの内部の因果関係に機種間での違いが判明した場合には、物理モデルの更新ができなくなる。
【0005】
本発明は、このような背景を鑑みてなされたものであり、機種共通のネットワークモデルに基づいて機種に対応した故障原因の推定を可能とする原因推定システムおよび原因推定方法を提供することを課題とする。
【課題を解決するための手段】
【0006】
上記した課題を解決するため、本発明に係る原因推定システムは、設備の異常事象と当該設備に備わるコンポーネントの故障との関係、および、前記故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワークと、前記設備の機種と、当該機種の設備に備わる前記コンポーネントの種別とを関連付けている機種テーブルと、前記コンポーネントの種別と、当該コンポーネントの種別で発生する故障とを関連付けている故障テーブルとを用いて情報処理を行うネットワーク生成部を備え、前記ネットワーク生成部は、前記異常事象と、当該異常事象が発生した設備の機種とを受け取り、前記共通保守知識ネットワークを参照して、前記受け取った異常事象から当該異常事象と関係する前記コンポーネントの故障と、当該故障の発生の当否を確認するためのチェック項目とを特定して、当該異常事象に対応した保守知識ネットワークを生成し、前記機種テーブルを参照して、前記受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し、前記故障テーブルを参照して、前記特定したコンポーネントの種別に関連付けを含まない故障を、前記異常事象に対応した保守知識ネットワークから除去し、除去されずに残った故障の発生の当否を確認するためのチェック項目とは異なるチェック項目を、さらに除去して、当該異常事象および当該設備の機種に対応した保守知識ネットワークを生成する。
【発明の効果】
【0007】
本発明によれば、機種共通のネットワークモデルに基づいて機種に対応した故障原因の推定を可能とする原因推定システムおよび原因推定方法を提供することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0008】
図1】第1の実施形態に係る原因推定システムの全体構成図である。
図2】第1の実施形態に係る保守知識ネットワーク生成装置の機能ブロック図である。
図3】第1の実施形態に係る保守知識テーブルのデータ構成図である。
図4】第1の実施形態に係る機種テーブルのデータ構成図である。
図5】第1の実施形態に係る故障モードテーブルのデータ構成図である。
図6】第1の実施形態に係る故障モード発生確率テーブルのデータ構成図である。
図7】第1の実施形態に係る故障検知確率テーブルのデータ構成図である。
図8】第1の実施形態に係る子ノード異常発生確率テーブルのデータ構成図である。
図9】第1の実施形態に係る案件情報のデータ構成図である。
図10】第1の実施形態に係る異常事象に対応した保守知識ネットワーク生成処理のフローチャートである。
図11】第1の実施形態に係る異常事象に対応した保守知識ネットワークの構成を示す図である。
図12】第1の実施形態に係るノード情報テーブルのデータ構成図である。
図13】第1の実施形態に係るリンク情報テーブルのデータ構成図である。
図14】第1の実施形態に係る機種に対応した保守知識ネットワーク生成処理のフローチャートである。
図15】第1の実施形態に係る原因推定装置の機能ブロックである。
図16】第1の実施形態に係る原因推定処理のフローチャートである。
図17】第1の実施形態に係る故障モードの計算結果テーブルのデータ構成図である。
図18】第1の実施形態に係る推定結果表示画面の画面構成図である。
図19】第1の実施形態に係る保守知識更新装置の機能ブロックである。
図20】第1の実施形態に係る推定結果評価テーブルのデータ構成図である。
図21】第1の実施形態に係る更新指示画面の画面構成図である。
図22】第1の実施形態に係る保守知識の更新指示内容のデータ構成図である。
図23】第1の実施形態に係る機種仕様の更新指示内容のデータ構成図である。
図24】第1の実施形態に係る確率情報の更新指示内容のデータ構成図である。
図25】第1の実施形態に係る更新実行部が行う更新処理のフローチャートである。
図26】第2の実施形態に係る原因推定装置の機能ブロック図である。
図27】第2の実施形態に係るイベント認識モデルを用いたセンサデータの分類を説明するためのグラフである。
図28】第2の実施形態に係るイベント認識モデルを用いたセンサデータの分類を説明するためのテーブルである。
図29】第3の実施形態に係り、グラフに現れた新たなデータ群を説明するための図である。
図30】第3の実施形態に係る保守知識更新装置の機能ブロック図である。
図31】第3の実施形態に係るイベント認識モデル更新処理のフローチャートである。
図32】第3の実施形態に係る更新指示画面の画面構成図である。
図33】第4の実施形態に係る保守知識更新装置の機能ブロック図である。
図34】第4の実施形態に係るアセット知識データベースのデータ構成図である。
【発明を実施するための形態】
【0009】
≪原因推定システムの概要≫
原因推定システムは、設備や機器(以下、単に設備とも記す)の異常事象と当該異常事象の原因となる故障との関係、および、故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す共通保守知識ネットワーク(単に保守知識ネットワークとも記す)を備える。故障とは、設備を構成するコンポーネントの故障(以下、故障モードとも記す)である。
【0010】
原因推定システムは、設備の機種ごとにコンポ―ネットの有無や、同じコンポ―ネットでも機種で異なる種別(型番)のコンポーネントにおける故障モード発生の当否を機種テーブルとして記憶している。また、共通保守知識ネットワークには、故障モードが発生する確率や、故障モードが発生した場合に当該故障モードの発生の当否を確認するためのチェック項目が異常となる確率が付与されている。このため、共通保守知識ネットワークは、異常事象の原因を推定するベイジアンネットワーク(Bayesian Network)と見なすことができる。
【0011】
原因推定システムは、異常事象の発生と異常事象が発生した設備の機種の通知を受け付けて、当該異常事象および当該機種に対応した保守知識ネットワークを生成する。詳しくは、原因推定システムは、発生した異常事象と当該異常事象の原因となる故障との関係、および、当該異常事象の原因となる故障と当該故障の発生の当否を確認するためのチェック項目との関係を示す、異常事象に対応した保守知識ネットワークを生成する。換言すれば、原因推定システムは、共通保守知識ネットワークから、発生した異常事象に関係する部分だけを抜き出して、異常事象に対応した保守知識ネットワークを生成する。
【0012】
次に、原因推定システムは、異常事象に対応した保守知識ネットワークから、当該機種には備わっていないコンポーネントや当該機種に備わる種別のコンポーネントでは発生しない故障モードを取り除いて、当該機種に対応した保守知識ネットワークを生成する。換言すれば、異常事象に対応した保守知識ネットワークから、異常事象が発生した機種に対応した保守知識ネットワークを生成する。これが、異常事象および機種に対応した保守知識ネットワークである。
原因推定システムは、設備の保全員からチェック項目の正常/異常を受け付けて、ベイジアンネットワークの確率算出手法を用いて異常事象の原因となるコンポ―ネットの故障を推定(コンポーネントが故障モードの状態である確率を算出)して、保全員に提示する。また、原因推定システムは、保全員が調査した故障の原因と、推定した原因とを比較して一致率を算出し、さらに共通保守知識ネットワークや確率情報を変更する機能を備える。
【0013】
原因推定システムは、機種共通の異常事象の原因を推定するための共通保守知識ネットワークを備える。このため、機種ごとに保守知識ネットワークを作成する必要がなくなり、作成コストを削減することができる。また、機種テーブルを備え、共通保守知識ネットワークから異常事象および機種に対応した保守知識ネットワークを生成し、これをベイジアンネットワークとして用いて異常事象の原因(故障モードにあるコンポーネント)を推定することができるようになる。
【0014】
機種のコンポーネントを変更したり、機種を追加したりする場合には、機種テーブルを更新することで対応できる。また、共通保守知識ネットワークを見直す際には、機種ごとに見直す必要がない。このため、原因推定に必要な知識データ(機種別の情報や確率情報を含めた保守知識ネットワーク)の保守性が高くなる。
【0015】
≪原因推定ネットワーク生成装置の構成≫
図1は、第1の実施形態に係る原因推定システム10の全体構成図である。原因推定システム10は、相互に通信可能な保守知識ネットワーク生成装置100、原因推定装置200、および保守知識更新装置400を含んで構成される。
【0016】
図2は、第1の実施形態に係る保守知識ネットワーク生成装置100の機能ブロック図である。保守知識ネットワーク生成装置100は、制御部110、記憶部120、通信部130、および入出力部140を含んで構成される。通信部130は、原因推定装置300や保守知識更新装置400を含む他の装置と通信データを送受信する。入出力部140は、ディスプレイやキーボード、マウスなどのユーザインターフェイス機器が接続される。
【0017】
記憶部120は、ROM(Read Only Memory)やRAM(Random Access Memory)、SSD(Solid State Drive)などの記憶機器から構成される。記憶部120には、保守知識データベース121、機種仕様データベース122、確率情報データベース123、およびプログラム128が記憶される。プログラム128は、異常事象に対応した保守知識ネットワーク生成処理(後記する図10参照)や機種に対応した保守知識ネットワーク生成処理(後記する図14参照)の手順の記述を含む。
【0018】
≪原因推定ネットワーク生成装置:保守知識データベース≫
保守知識データベース121は、保守知識テーブル210(後記する図3参照)を含み、保全マニュアルやFT図(Fault Tree Diagram)などの保全知識を格納している。図3は、第1の実施形態に係る保守知識テーブル210のデータ構成図である。保守知識テーブル210は、異常事象や異常事象の原因、原因となる事象が発生しているか否かを判定するためのチェック項目(検査項目)を記憶する。保守知識テーブル210は、表形式のデータであって、1つの行(レコード)は、異常事象211、機能故障212、コンポーネント213、コンポーネント識別情報214(図3ではコンポーネンID(Identifier)と記載)、故障モード215、およびチェック項目216の列(属性)を含む。
【0019】
異常事象211は、設備に発生する異常の症状である。機能故障212は、異常事象211の原因となる機能上の故障である。1つの異常事象211を引き起こす機能故障212は1つに限らない。
コンポーネント213は、機能故障212が発生する設備のコンポーネントである。1つのコンポーネント213で発生する可能性がある機能故障212は1つとは限らない。コンポーネント識別情報214は、コンポーネント213の識別情報である。
【0020】
故障モード215(単に故障とも記す)は、機能故障212が発生するコンポーネント213の故障現象である。1つの機能故障212を引き起こす可能性がある故障モード215は1つとは限らない。
チェック項目216(検査項目)は、設備に備わるセンサデータや環境、コンポーネントの状態など設備の状況をチェック/検査/確認する個所である。チェック項目216の内容は、故障モードが発生する場合に発生しうる現象であって、この現象が発生したかどうかをチェックする個所である。1つの故障モード215に対応するチェック項目216は1つとは限らない。
【0021】
機能故障と異常事象、故障モードと機能故障、および、故障モードとチェック項目は、原因と結果の関係(因果関係)である。この関係をネットワークの形で示したものが保守知識ネットワークである。保守知識テーブル210が示すのは、全ての異常事象および全ての機種に係る保守知識ネットワークである。この全ての異常事象および機種に係る保守知識ネットワークを共通保守知識ネットワークとも記す。また、後記する図11に記載したのは、1つの異常事象である「気温上昇」に限定した保守知識ネットワークであって、異常事象に対応した保守知識ネットワークである。なお、保守知識ネットワークにおいて、原因となるノードを親ノード、結果となるノードを子ノードとも記す。
【0022】
≪原因推定ネットワーク生成装置:機種仕様データベース≫
図2に戻って、機種仕様データベース122は、設備の機種に依存する保全知識を格納している。機種仕様データベース122は、機種テーブル220(後記する図4参照)および故障モードテーブル230(後記する図5参照)を記憶する。
【0023】
図4は、第1の実施形態に係る機種テーブル220のデータ構成図である。機種テーブル220は、設備に備わるコンポ―ネットの型番(種別)を機種別に示す。機種テーブル220は、表形式のデータであって、1つの行(レコード)は、コンポーネント識別情報221(図4ではコンポーネントIDと記載)、コンポーネント222、機種223~225の列(属性)を含む。
【0024】
コンポーネント識別情報221およびコンポーネント222は、それぞれコンポーネント識別情報214(図3参照)およびコンポーネント213にそれぞれ対応し、コンポーネントを示す。機種223~225は、それぞれ機種A、機種B、および機種Cに備わるコンポーネントの型番(種別)を示す。なお、コンポーネントを備えていない機種では「0」とする。コンポーネント識別情報221が「C1」である「熱交換器」のコンポーネントについて、機種Aでは型番は「C1_2」であり、機種Cは搭載していない。
【0025】
図5は、第1の実施形態に係る故障モードテーブル230のデータ構成図である。故障モードテーブル230は、各型番のコンポーネントに故障モードが発生する可能性を示す。故障モードテーブル230は、表形式のデータであって、1つの行(レコード)は、コンポーネント識別情報231(図5ではコンポーネントIDと記載)、コンポーネント232、型番233、および故障モード234~236(図3記載の故障モード215参照)の列(属性)を含む。
【0026】
コンポーネント識別情報231およびコンポーネント232は、それぞれコンポーネント識別情報214(図3参照)およびコンポーネント213にそれぞれ対応し、コンポーネントを示す。型番233は、コンポーネントの型番(図4の機種223~225参照)である。
図5では、故障モード234~236として「熱交換器設計不良」などを含み、「1」は故障モードが発生する可能性があり、「0」は可能性がないことを意味する。例えば、型番233が「C1_2」である「熱交換器」について、熱交換器の汚れ・つまりの故障モードは発生するが、設計不良の故障モードは発生しない。
【0027】
≪原因推定ネットワーク生成装置:確率情報データベース≫
図2に戻って、確率情報データベース123は、保守知識ネットワーク生成に付与される確率情報を格納している。確率情報データベース123は、故障モード発生確率テーブル240(後記する図6参照)、故障検知確率テーブル250(後記する図7参照)、および子ノード異常発生確率テーブル260(後記する図8参照)を記憶する。
【0028】
図6は、第1の実施形態に係る故障モード発生確率テーブル240のデータ構成図である。故障モード発生確率テーブル240は、故障モードが発生する事前確率を記憶する。故障モード発生確率テーブル240は、表形式のデータであって、1つの行(レコード)は、故障モード241、状態242、および確率243の列(属性)を含む。
【0029】
故障モード241は、コンポーネントの故障モード(図3記載の故障モード215参照)に対応する。状態242の「Y」は、コンポーネントが故障モード241(の状態)であり、「N」は故障モード241(の状態)ではないことを示す。確率243は、故障モード241の状態242である確率(事前確率)を示す。図6記載の故障モード発生確率テーブル240には、熱交換器の設計不良が発生する確率が50%であることが示されている。
【0030】
確率243としては、図6に示すように、故障モード241の当否それぞれ50%を設定してもよい。また、実績データに基づいて確率を計算して設定してもよい。例えば、故障履歴において、故障モードの発生件数を総件数で除して、当該故障モードが発生する(状態242が「Y」である)確率と設定してもよい。
【0031】
図7は、第1の実施形態に係る故障検知確率テーブル250のデータ構成図である。故障検知確率テーブル250は、親ノードの状態が発生した場合に、子ノードが異常または正常である確率を記憶する。故障検知確率テーブル250は、表形式のデータであって、1つの行(レコード)は、親ノード251、親ノード状態252、子ノード253、子ノード状態254、および確率255の列(属性)を含む。
【0032】
親ノード状態252は、親ノード251である故障モードが発生している(「Y」)か否(「N」)かを示す。子ノード状態254は、子ノード253であるチェック項目(図3記載のチェック項目216参照)が「正常」であるか「異常」であるかを示す。確率255は、親ノード251が親ノード状態252である場合に、子ノード253が子ノード状態254である確率を示す。
【0033】
確率255としては、図7に示すように、親ノードである故障モードが発生した(親ノードである故障モードのノードの状態が故障モードである)場合に、子ノードのチェック項目が異常となる(子ノードであるチェック項目のノードの状態が異常である)確率を100%であり、正常となる確率を0%であると設定してもよい。また、実績データに基づいて確率を計算して設定してもよい。例えば、故障履歴から、親ノード251となる故障モードが発生した履歴を抜き出し、子ノードあるチェック項目が異常/正常の件数を抜き出した履歴の件数で除して、設定してもよい。
【0034】
図8は、第1の実施形態に係る子ノード異常発生確率テーブル260のデータ構成図である。子ノード異常発生確率テーブル260は、親ノード(故障モード)に異常が発生していないときに、子ノード(チェック項目)が異常/正常である確率を記憶する。子ノード異常発生確率テーブル260は、表形式のデータであって、1つの行(レコード)は、子ノード261、子ノード状態262、および確率263の列(属性)を含む。
子ノード状態262は、子ノード261の状態(正常/異常)を示す。確率263は、子ノード261が子ノード状態262である確率を示す。
【0035】
確率263としては、図8に示すように、それぞれの子ノード261(チェック項目)について、異常となる確率を0%であり、異常となる確率を100%であると設定してもよい。また、実績データに基づいて確率を計算して設定してもよい。例えば、故障履歴から、親ノード251(図7参照)となる故障モードが発生していない履歴を抜き出し、子ノードあるチェック項目が異常/正常の件数を抜き出した履歴の件数で除して、設定してもよい。
【0036】
≪原因推定ネットワーク生成装置:ネットワーク生成部≫
図2に戻って、制御部110には、ネットワーク生成部111が備わる。ネットワーク生成部111は、案件情報(後記する図9参照)を受け取って、案件情報に含まれる異常事象に対応した保守知識ネットワーク(後記する図11参照)を生成する(後記する図10参照)。続いて、ネットワーク生成部111は、異常事象に対応した保守知識ネットワークから、案件情報に含まれる機種に対応した保守知識ネットワークを生成する(後記する図14参照)。機種に対応した保守知識ネットワークは、異常事象にも対応しており、異常事象および機種に対応した保守知識ネットワークである。
【0037】
≪原因推定ネットワーク生成装置:異常事象に対応した保守知識ネットワーク生成処理≫
図9は、第1の実施形態に係る案件情報500のデータ構成図である。案件情報は、案件情報の識別情報(図9では案件IDと記載)、異常事象、および異常事象が発生した設備の機種を含む。
図10は、第1の実施形態に係る異常事象に対応した保守知識ネットワーク生成処理のフローチャートである。ネットワーク生成部111は、案件情報500を受け取るごとに案件情報500に含まれる異常事象に対応した保守知識ネットワーク生成処理を実行し、案件情報に含まれる異常事象に対応した保守知識ネットワークを生成する。換言すれば、ネットワーク生成部111は、記憶部120に記憶される各異常事象に係る保全知識(共通保守知識ネットワーク、図3記載の保守知識テーブル210参照)から、案件情報500に含まれる異常事象に対応した保守知識ネットワークを抽出する。
【0038】
ステップS101においてネットワーク生成部111は、案件情報500(図9参照)を受け取る。案件情報500は、入出力部140(図2参照)に接続されたユーザインターフェイス機器から保全員によって入力されてもよいし、通信データとして通信部130が受信してもよい。
ステップS102においてネットワーク生成部111は、これから生成される異常事象に対応した保守知識ネットワークに割り振るネットワーク識別情報(図10ではネットワークIDと記載)を生成する。
ステップS103においてネットワーク生成部111は、案件情報500に含まれる異常事象に対応した保守知識ネットワーク510(後記する図11参照)を生成する。以下、保守知識ネットワーク510を説明しながら、生成手順を説明する。
【0039】
図11は、第1の実施形態に係る異常事象に対応した保守知識ネットワーク510の構成を示す図である。この異常事象に対応した保守知識ネットワーク510(以下、単に保守知識ネットワーク510とも記す)は、設備の異常事象(図3記載の異常事象211参照)と当該設備に備わるコンポーネントの故障(故障モード215参照)との関係、および、故障と当該故障の発生の当否を確認するためのチェック項目(チェック項目216参照)との関係を示すものである。保守知識テーブル210(図3参照)は、全ての異常事象に対する保守知識ネットワーク(共通保守知識ネットワーク)を示すのに対して、保守知識ネットワーク510は、案件情報500に示される異常事象に対応した保守知識ネットワークである。具体的には、保守知識ネットワーク510は、4つのノード群511~514を含む。
【0040】
ノード群511は、異常事象のノードを含む。案件情報500(図9参照)に含まれる異常事象は、「気温上昇」であり、ノード群511には、「気温上昇」のノードのみが含まれる。案件情報が複数の異常事象を含む場合には、ノード群511は複数の異常事象のノードを含む。ネットワーク生成部111は、案件情報500に含まれる異常事象を保守知識テーブル210(図3参照)の異常事象211を検索して取得し、保守知識ネットワーク510の異常事象のノードとする。
【0041】
ノード群512は、機能故障のノードを含む。機能故障は異常事象の原因であり、機能故障のノード(親ノード)から異常事象のノード(子ノード)に向かう矢印(有向リンク)で結ばれる。1つの異常事象のノードを子ノードとする親ノードの機能故障は複数ある場合がある。ネットワーク生成部111は、保守知識テーブル210(図3参照)のなかで、異常事象211が子ノード(異常事象のノード)となるレコードを検索し、当該レコードに含まれる機能故障212を機能故障のノードとする。なお、複数のレコードに同じ機能故障が含まれても、機能故障のノードとしては、1つとする。
【0042】
ノード群513は、故障モードのノードを含む。故障モードは機能故障の原因であり、故障モードのノード(親ノード)から機能故障のノード(子ノード)に向かう矢印で結ばれる。1つの機能故障のノードを子ノードとする親ノードの故障モードが複数ある場合がある。ネットワーク生成部111は、保守知識テーブル210(図3参照)のなかで、機能故障212が子ノード(機能故障のノード)となるレコードを検索し、当該レコードに含まれる故障モード215を故障モードのノードとする。なお、複数のレコードに同じ故障モードが含まれても、故障モードのノードとしては、1つとする。
【0043】
ノード群514は、チェック項目のノードを含む。チェック項目は故障モードの結果であり、故障モードのノード(親ノード)からチェック項目のノード(子ノード)に向かう矢印で結ばれる。1つのチェック項目のノードを子ノードとする親ノードの故障モードは複数ある場合がある。1つの故障モードのノードを親ノードとする子ノードのチェック項目は複数ある場合がある。ネットワーク生成部111は、保守知識テーブル210(図3参照)のなかで、故障モード215が親ノード(故障モードのノード)となるレコードを検索し、当該レコードに含まれるチェック項目216をチェック項目のノードとする。なお、複数のレコードに同じチェック項目が含まれても、チェック項目のノードとしては、1つとする。
【0044】
各ノードには、当該ノードの状態、例えば故障モード発生の当否やチェック項目の正常/異常が設定可能となっている。現時点では、異常事象のノードについてのみ当否が判明して、発生したことが設定されている(気温上昇のノードに含まれる「No」の二重取り消し線参照)。
【0045】
図10に戻って、ステップS104においてネットワーク生成部111は、保守知識ネットワーク510のネットワーク構成情報を生成する。ネットワーク構成情報は、ノード情報テーブル520(後記する図12参照)およびリンク情報テーブル530(後記する図13参照)を含む。
図12は、第1の実施形態に係るノード情報テーブル520のデータ構成図である。ノード情報テーブル520は、保守知識ネットワーク510(図11参照)を構成するノードに係る情報を記憶する。ノード情報テーブル520は、表形式のデータであって、1つの行(レコード)は、ノード情報521、種類522、コンポーネント識別情報523、および状態524の列(属性)を含む。
【0046】
ノード情報521は、ノードの内容(名前、ラベル)である。種類522は、ノードの種類であって、「異常事象」、「機能故障」、「故障モード」、「チェック項目」の何れかである。コンポーネント識別情報523は、種類522が「機能故障」または「故障モード」の場合に、当該故障モードが発生したコンポーネントの識別情報(図3のコンポーネント識別情報214参照)を示す。状態524は、ノードの状態を示し、例えば、チェック項目が「正常」か「異常」かを示す。
【0047】
図13は、第1の実施形態に係るリンク情報テーブル530のデータ構成図である。リンク情報テーブル530は、保守知識ネットワーク510を構成するリンク(矢印、有向リンク)に係る情報を記憶する。リンク情報テーブル530は、表形式のデータであって、1つの行(レコード)は、親ノード531を親ノード、子ノード532を子ノードとするリンクを示す。
【0048】
図3記載の保守知識テーブル210は、様々な異常事象211を含んだ共有保守知識ネットワークを示す。これに対して、図12記載のノード情報テーブル520および図13記載のリンク情報テーブル530は、案件情報500(図9参照)に示される発生した異常事象に対応した保守知識ネットワークを示す。
【0049】
以上に説明したように、異常事象に対応した保守知識ネットワーク生成処理では、共通保守知識ネットワーク(図3記載の保守知識テーブル210)を参照して、受け取った異常事象(図9記載の案件情報500参照)から当該異常事象(異常事象211参照)と関係するコンポーネントの故障(故障モード215参照)と、当該故障の発生の当否を確認するためのチェック項目(チェック項目216参照)とを特定して、異常事象に対応した保守知識ネットワークを生成する。
【0050】
図10では、ネットワーク生成部111は、ステップS103において異常事象に対応した保守知識ネットワーク510(図11参照)を生成した後に、ステップS104においてこの異常事象に対応した保守知識ネットワーク510のネットワーク構成情報を生成する。ネットワーク生成部111は、ステップS103,S104を並行して実行してもよい。詳しくは、ネットワーク生成部111は、保守知識ネットワーク510にノードを追加するたびに、ノード情報テーブル520に対応するノードの情報のレコードを、リンク情報テーブル530に既存のノードとのリンク情報を追加するようにしてもよい。
【0051】
≪原因推定ネットワーク生成装置:機種に対応した保守知識ネットワーク生成処理≫
図14は、第1の実施形態に係る機種に対応した保守知識ネットワーク生成処理のフローチャートである。図14を参照しながら、機種共通の異常事象に対応した保守知識ネットワーク510を異常事象が発生した機種に対応した保守知識ネットワークに変更(更新)する処理を説明する。この(異常事象が発生した)機種に対応した保守知識ネットワークは、異常事象にも対応しているので、異常事象および機種に対応した保守知識ネットワークとも記す。
【0052】
機種テーブル220(図4参照)に示すように、機種によっては設備がコンポーネントを搭載していない。また、故障モードテーブル230(図5参照)に示すようにコンポーネントの種別(型番)によってはコンポーネントで故障モードが発生しない場合がある。ネットワーク生成部111は、案件情報500(図9参照)の機種情報を参照して、当該機種に対応した保守知識ネットワークに変更する。
【0053】
ステップS131においてネットワーク生成部111は、ノード群512(図11参照)に含まれる機能故障のノードごとにステップS132~S137を実行する。
ステップS132においてネットワーク生成部111は、機種が機能故障を発生するコンポーネントを備えているか否かを判断する。ネットワーク生成部111は、備えていれば(ステップS132→有)ステップS134に進み、備えていなければ(ステップS132→無)ステップS133に進む。機能故障が発生するコンポーネントは、保守知識テーブル210(図3参照)のレコードで機能故障212が機能故障であるレコードのコンポーネント識別情報214を参照すれば取得できる。また、機種がコンポーネントを備えているか否かは、機種テーブル220(図4参照)を参照すれば判断できる。
【0054】
ステップS133においてネットワーク生成部111は、機能故障のノード、および機能故障のノードの親ノードである故障モードのノードに係る情報をノード情報テーブル520から削除する。また、ネットワーク生成部111は、削除されたノードに係るリンク情報をリンク情報テーブル530から削除する。
ステップS134においてネットワーク生成部111は、機能故障のノードの親ノードである故障ノードごとにステップS135~S136を実行する。なお、ステップS133で機能故障のノードが削除された場合には、ステップS134~S137の処理は実行されないことになる。
【0055】
ステップS135においてネットワーク生成部111は、当該機種に備わる型番のコンポーネントにおいて、故障モードが発生するか否かを判断する。ネットワーク生成部111は、発生すれば(ステップS135→有)ステップS137に進み、発生しなければ(ステップS135→無)ステップS136に進む。故障モードが発生するか否かは、故障モードテーブル230(図5参照)のレコードで型番233が機種に備わるコンポーネントの型番のレコードにおける故障モード234~236を参照すれば判断できる。
【0056】
ステップS136においてネットワーク生成部111は、故障モードのノードに係る情報をノード情報テーブル520から削除する。また、ネットワーク生成部111は、削除されたノードに係るリンク情報をリンク情報テーブル530から削除する。
ステップS137においてネットワーク生成部111は、機能故障のノードの親ノードである全ての故障モードのノードについてステップS135~S136の処理を実行したならば、ステップS138に進む。ネットワーク生成部111は、未処理の故障モードのノードがあれば、当該故障モードのノードに対してステップS135~S136の処理を実行する。
【0057】
ステップS138においてネットワーク生成部111は、ノード群512(図11参照)に含まれる全ての機能故障のノードについてステップS132~S137の処理を実行したならば、ステップS139に進む。ネットワーク生成部111は、未処理の機能故障のノードがあれば、当該機能故障のノードに対してステップS132~S137の処理を実行する。
ここまでに説明したように、ステップS131~S138において、ネットワーク生成部111は、機種テーブル220(図4参照)を参照して、受け取った設備の機種から当該設備の機種に備わるコンポーネントの種別を特定し(ステップS132参照)、故障モードテーブル230(図5参照)を参照して、特定したコンポーネントの種別に関連付けを含まない故障(故障モード234~236参照)を異常事象に対応した保守知識ネットワークから除去する。
【0058】
ステップS139においてネットワーク生成部111は、機能故障や故障モードのノードが削除され、リンクされていないチェック項目のノードに係る情報をノード情報テーブル520から削除する。換言すれば、除去されずに残った故障(故障モード)の発生の当否を確認するためのチェック項目とは異なるチェック項目(リンクされていないチェック項目)を、さらに除去して、異常事象および当該設備の機種に対応した保守知識ネットワークを生成する。
【0059】
この時点において、ノード情報テーブル520およびリンク情報テーブル530は、異常事象が発生した機種に対応した保守知識ネットワークを示すことになる。本処理が始まる前のノード情報テーブル520およびリンク情報テーブル530は、案件情報500に示される異常事象に対応した保守知識ネットワークを示していた。案件情報500に示される機種に搭載されるコンポーネント、および当該コンポーネントで発生する故障を抜き出した結果が、機種に対応した保守知識ネットワークである。ステップS139終了時点でのノード情報テーブル520およびリンク情報テーブル530が、この機種に対応した保守知識ネットワークを示しており、異常事象および機種に対応した保守知識ネットワークを示している。
【0060】
ステップS140においてネットワーク生成部111は、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、および子ノード異常発生確率テーブル260(図8参照)から関連するレコードを取得する。詳しくは、ネットワーク生成部111は、故障モード発生確率テーブル240のレコードで、故障モード241が、ノード情報テーブル520において削除されずに残っている故障モードに含まれるレコードを取得する。また、ネットワーク生成部111は、故障検知確率テーブル250のレコードで、親ノード251が、削除されずに残っている故障モードに含まれ、子ノード253が、削除されずに残っているチェック項目に含まれるレコードを取得する。さらに、ネットワーク生成部111は、子ノード異常発生確率テーブル260のレコードで、子ノード261が、削除されずに残っているチェック項目に含まれるレコードを取得する。
【0061】
ステップS141においてネットワーク生成部111は、案件情報500(図9参照)と、異常事象および機種に対応した保守知識ネットワークと、ステップS140で取得した確率情報と、ステップS102(図10参照)で生成したネットワーク識別情報とを原因推定装置300に送信する。
なお、異常事象および機種に対応した保守知識ネットワークとは、ノード情報テーブル520(図12参照)およびリンク情報テーブル530(図13参照)で示される保守知識ネットワークのことである。この保守知識ネットワークは、案件情報500に示しされる異常事象に対応し、さらに、案件情報500に示される機種に対応した保守知識ネットワークである。さらに確率情報が付与されることにより、この保守知識ネットワークは、ベイジアンネットワークとなる。
【0062】
≪保守知識ネットワーク生成装置の特徴≫
保守知識テーブル210(図3参照、共通保守知識ネットワーク)には、機種に依存しない保全知識として、故障モードと機能故障、機能故障と異常事象、および、故障モードとチェック項目の因果関係が記憶される。ネットワーク生成部111は、保守知識テーブル210を参照して、受け取った案件情報500(図9参照)に含まれる異常事象に対応した機種共通の保守知識ネットワークを生成する(図10参照)。
【0063】
機種テーブル220(図4参照)には、機種に備わるコンポーネントの型番が記憶される。故障モードテーブル230(図5参照)には、型番別にコンポーネントで発生する故障モードが記憶される。ネットワーク生成部111は、機種テーブル220および故障モードテーブル230を参照して、生成した異常事象に対応した機種共通の保守知識ネットワークからノードやリンクを削除しながら、案件情報500に含まれる機種に対応した保守知識ネットワークを生成する。この保守知識ネットワークは、異常事象および機種に対応した保守知識ネットワークである。
【0064】
故障モード発生確率テーブル240(図6参照)には、故障モードが発生する事前確率が記憶される。故障検知確率テーブル250(図7参照)には、親ノードの状態が発生した場合に、子ノードが異常または正常である確率が記憶される。子ノード異常発生確率テーブル260(図8参照)には、親ノード(故障モード)に異常が発生していないときに、子ノード(チェック項目)が異常/正常である確率が記憶される。ネットワーク生成部111は、機種に対応した保守知識ネットワークに関連する確率情報を、故障モード発生確率テーブル240、故障検知確率テーブル250および子ノード異常発生確率テーブル260から取得して、異常事象および機種に対応した保守知識ネットワークとともに原因推定装置300(図1参照)に送信する。
【0065】
保守知識ネットワーク生成装置100は、機種共通の異常事象の原因を推定するための共通保守知識ネットワークを備えるため、機種ごとに保守知識ネットワークの基となる保全知識(保守知識テーブル210)を準備する必要がない。このため、保全員は、保全知識を準備するコストを削減することができる。機種のコンポーネントを変更したり、機種を追加したりする場合には、機種テーブル220(図4参照)を更新することで対応できるようになる。また、保守知識ネットワークを見直す際には、機種ごとに見直す必要がない。このため、原因推定に必要な知識データの保守性が高くなる。
【0066】
≪原因推定装置の概要≫
原因推定装置300(図1参照)は、保守知識ネットワーク生成装置100から確率情報が付与された機種に対応した保守知識ネットワークを受信する。原因推定装置300は、保守知識ネットワークに含まれるチェック項目の状態(正常/異常)を保全員から取得して、コンポーネントの故障モードの発生確率を算出することで、異常事象の原因を推定する。
【0067】
≪原因推定装置の構成≫
図15は、第1の実施形態に係る原因推定装置300の機能ブロックである。原因推定装置300は、制御部310、記憶部320、通信部330、および入出力部340を含んで構成される。通信部330は、保守知識ネットワーク生成装置100や保守知識更新装置400を含む他の装置と通信データを送受信する。入出力部340は、ディスプレイやキーボード、マウスなどのユーザインターフェイス機器が接続される。
【0068】
記憶部320は、ROMやRAM、SSDなどの記憶機器から構成される。記憶部320には、保守知識ネットワークデータベース350、およびプログラム328が記憶される。プログラム328は、原因推定処理(後記する図16参照)の手順の記述を含む。保守知識ネットワークデータベース350には、保守知識ネットワーク生成装置100から受信した案件情報や案件情報に含まれる異常事象および機種に対応した保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報が格納される。
【0069】
以下の説明では、保守知識ネットワーク生成装置100からは、保守知識ネットワーク510(図11参照)が出力されたという前提(仮定)で説明を続ける。この前提は、図11を参照して、原因推定装置300を説明しやするための前提である。
詳しくは、機種に対応した保守知識ネットワーク生成処理(図14参照)では、受け取った機種では、全てのコンポーネントが搭載されていて、当該コンポーネントで故障モードが発生するという前提である。この前提のため、機種に対応した保守知識ネットワーク生成処理で、ノードは除去されず、異常事象に対応した保守知識ネットワーク510が、異常事象および機種に対応した保守知識ネットワークとなる。保守知識ネットワークデータベース350にある保守知識ネットワーク510には、ステップS140(図14参照)で取得された確率情報が付与されており、ベイジアンネットワークと見なすことができる。
【0070】
制御部310は、確率計算部311、原因推定部312、推定結果表示部313、およびチェック結果取得部314を備える。確率計算部311は、ベイジアンネットワークの確率計算を行う。詳しくは、確率計算部311は、保守知識ネットワークデータベース350に記憶される保守知識ネットワーク510のネットワーク構成情報(図14記載のステップS139参照)や確率情報(ステップS140参照)を参照して、ベイジアンネットワークのノードの確率計算を行う。
【0071】
原因推定部312は、保全員に問い合わせて、保守知識ネットワーク510のノード群514に含まれるチャック項目の状態(正常/異常)を取得する。続いて、原因推定部312は、確率計算部311に依頼して、故障モードの発生確率を取得する。
推定結果表示部313は、故障モードの発生確率に応じてノードの表示容態を変えた保守知識ネットワークを含む推定結果表示画面620(後記する図18参照)を表示する。
チェック結果取得部314は、保全員が選定した原因となる故障モードを取得して、保守知識更新装置400(図1参照)へ送信する。
【0072】
≪原因推定装置:原因推定処理≫
図16は、第1の実施形態に係る原因推定処理のフローチャートである。
ステップS201において原因推定部312は、保守知識ネットワークデータベース350にある保守知識ネットワークのチェック項目を取得する。続いて、原因推定部312は、入出力部340に接続されるディスプレイにチェック項目を表示して、保全員に対して、チェック項目をチェックして、結果を入力するように促す。保全員は、チェック項目にあるセンサのデータやコンポーネントの状況をチェック(検査、点検)して、結果を入力する。
【0073】
ステップS202において原因推定部312は、保全員が入力したチェックの結果を取得する。
ステップS203において原因推定部312は、チェックの結果からチェック項目の確率を設定して、原因推定用のベイジアンネットワークを生成する。例えば、「センサ1」のデータが異常値を示した場合、原因推定部312は、センサ1のノード情報(図12記載のノード情報テーブル520参照)において「異常」の状態の確率を100%、「正常」の状態の確率を0%と設定する。
【0074】
ステップS204において原因推定部312は、確率計算部311に依頼して故障モードのノード(図12記載のノード情報テーブル520参照)における故障発生(状態524が「Y」)の確率を取得する。確率計算部311は、故障モードのノードの確率を計算し、計算結果を計算結果テーブル610(後記する図17参照)の形式で出力する。また、原因推定部312は、ステップS202で取得したチェック結果や計算結果テーブル610に対して推定結果識別情報を割り振る。
【0075】
図17は、第1の実施形態に係る故障モードの計算結果テーブル610のデータ構成図である。計算結果テーブル610は、表形式のデータであって、1つの行は、ノードの状態別の確率を示し、故障モード611、状態612、および確率613の列(属性)を含む。故障モード611と状態612とは、ノード情報テーブル520(図12参照)における種類522が「故障モード」であるノード情報521と状態524にそれぞれ対応する。確率613は、故障モード611が状態612である確率を示す。
【0076】
図16に戻って、ステップS205において推定結果表示部313は、推定結果表示画面620(後記する図18参照)に計算の結果の確率に応じて保守知識ネットワークを表示する。
図18は、第1の実施形態に係る推定結果表示画面620の画面構成図である。推定結果表示画面620中央には、保守知識ネットワーク510(図11参照)とほぼ同様のネットワークが表示される。以下に保守知識ネットワーク510との違いについて説明する。
チェック項目のノードにおいて、保全員が入力したチェックの結果(図16記載のステップS202参照)が表示されている。詳しくは、結果が正常であればノードの「正常/異常」のうち異常が二重取り消し線で消され、結果が異常であれば「正常/異常」のうち正常が消されている。また、異常であったチェック項目のノードがハイライト表示(図18ではノードをハッチングして記載)されている。
【0077】
故障モードのノードにおいて、故障モードの確率の計算結果(図17参照)に基づいてノードがハイライト表示されている。詳しくは、故障モードの発生確率(図17記載の計算結果テーブル610のなかで状態612が「Y」であるレコードの確率613)が高いほど、より目立つようにハイライト表示される。また、故障発生の確率が高い機能故障のノードもハイライト表示される。
保全員は、自身が異常事象の原因と考える故障モードを選択し、当該故障モードのノードに配置された選択ボタン621を押下する。選択ボタン621の替わりに、推定結果表示画面620の下側に配置される「選定結果入力」ボタン622を押下し、表示される選択結果入力画面(不図示)から故障モードを入力してもよい。保全員が選択する故障モードは、1つに限らず、複数であってもよい。
【0078】
図16に戻って、ステップS206においてチェック結果取得部314は、保全員が選択した故障モードを取得する。次に、チェック結果取得部314は、選択された故障モードとともに、案件情報、保守知識ネットワークデータベース350(図15参照)に記憶される異常事象および機種に対応した保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報、ステップS202で取得したチェック結果、計算結果テーブル610(図17参照)、および推定結果識別情報を保守知識更新装置400へ送信する。保守知識更新装置400は、案件情報、選択された故障モード、異常事象および機種に対応した保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報、チェック結果、計算結果テーブル610、および推定結果識別情報を保守作業報告データベース450(後記する図19参照)に格納する。
【0079】
≪原因推定装置の特徴≫
原因推定装置300は、異常事象および機種に対応した保守知識ネットワークに含まれるチェック項目のチェック結果を取得する。次に、原因推定装置300は、取得したチェック結果とベイジアンネットワークとして保守知識ネットワークとを用いて、故障モードのノードの確率を計算する。原因推定装置300は、推定結果表示画面620(図18参照)において、保守知識ネットワークのノードのなかで計算結果の確率が高いノードほど、より強調して表示する。
保全員は、推定結果表示画面620を見ることで、どの故障モードが故障している確率が高いかを確認することができる。また、保全員は、故障モードが発生したことによって、どのような機能故障が発生して異常事象に至ったかを理解することができる。
【0080】
≪保守知識更新装置の概要≫
保守知識更新装置400(図1参照)は、原因推定装置300からベイジアンネットワークとして(確率情報が付与された)異常事象および機種に対応した保守知識ネットワークやステップS202(図16参照)で取得されたチェック項目の状態、算出された確率(図17に記載の計算結果テーブル610)などを受信する。保守知識更新装置400は、異常事象の原因を調査した保全員から確定した原因(どのコンポーネントが何の故障(故障モード)だったか)を取得する。保守知識更新装置400は、所定のタイミングで推定された原因と確定した原因とを比較し、更新指示画面640(後記する図21参照)を表示して、保全知識や確率情報の更新指示を受け付け、更新を実行する。
【0081】
≪保守知識更新装置の構成≫
図19は、第1の実施形態に係る保守知識更新装置400の機能ブロックである。保守知識更新装置400は、制御部410、記憶部420、通信部430、および入出力部440を含んで構成される。通信部430は、保守知識ネットワーク生成装置100や原因推定装置300を含む他の装置と通信データを送受信する。入出力部440は、ディスプレイやキーボード、マウスなどのユーザインターフェイス機器が接続される。
【0082】
記憶部420は、ROMやRAM、SSDなどの記憶機器から構成される。記憶部420には、保守作業報告データベース450、およびプログラム428が記憶される。プログラム428は、保守知識更新処理(後記する図25参照)の手順の記述を含む。保守作業報告データベース450には、案件情報、異常事象および機種に対応した保守知識ネットワーク、ネットワーク識別情報、ベイジアンネットワークとして異常事象および機種に対応した保守知識ネットワークに付与された確率情報、保全員が入力したチェック結果、チェック結果とベイジアンネットワークとから算出された確率情報(図17参照)、推定結果識別情報、および保全員が原因として選択した故障モードが関連付けられて記憶される(図16記載のステップS206参照)。保守作業報告データベース450には、さらに後記する異常原因取得部411が取得する異常原因が記憶される。
【0083】
制御部410は、異常原因取得部411、更新検知部412、更新指示受付部413、および更新実行部414を備える。異常原因取得部411は、保全員が保全業務を行い、最終的に確定した(最終確定した)異常原因を取得して、案件情報や推定結果識別情報などと関連付けられて保守作業報告データベース450に保存する。
更新検知部412は、所定長の期間の保守作業報告データベース450にあるデータを監視し、原因推定装置300が推定した原因(故障モード)と最終確定した異常原因とを比較して、推定結果評価テーブル630(後記する図20参照)を生成する。更新検知部412は、一致率(推定結果評価テーブル630において結果635が「一致」である割合)を算出して、後記する更新指示受付部413に出力する。
【0084】
図20は、第1の実施形態に係る推定結果評価テーブル630のデータ構成図である。推定結果評価テーブル630は、案件情報ごとに生成された異常事象および機種に対応した保守知識ネットワークを用いて推定された異常事象の原因(故障モード)と、最終確定した原因とを比較するためのデータである。推定結果評価テーブル630は、表形式のデータであって、1つの行(レコード)は、ネットワーク識別情報631、推定結果識別情報632(図20では推定結果IDと記載)、推定原因633、最終確定原因634、および結果635の列(属性)を含む。
【0085】
ネットワーク識別情報631は、異常事象および機種に対応した保守知識ネットワークに割り振られた識別情報(図10記載のステップS102参照)である。ネットワーク識別情報631は、保守作業報告データベース450のなかで所定長の期間に格納された識別情報である。
推定結果識別情報632は、保守作業報告データベース450のなかでネットワーク識別情報631に関連付けられて記憶された推定結果識別情報である。推定結果識別情報632は、原因推定装置300が推定した異常事象の原因となる故障モードの確率計算結果に割り振られた識別情報(図16のステップS204参照)である。
【0086】
推定原因633は、保守作業報告データベース450のなかで推定結果識別情報632に関連付けられた計算結果テーブル610(図17参照)のなかで状態612が「Y」で確率613が最大の故障モード611である。
最終確定原因634は、保守作業報告データベース450のなかで推定結果識別情報632に関連付けられた最終確定した異常原因(図19記載の異常原因取得部411参照)である。
結果635は、推定原因633と最終確定原因634とが一致するか否かを示す。結果635が「一致」であることは、原因推定装置300の推定が正しく、ベイジアンネットワークとしての保守知識ネットワークのネットワーク構成や付与された確率情報が適切であることを意味している。
【0087】
図19に戻って、更新指示受付部413は、推定結果評価テーブル630(図20参照)を含む更新指示画面640(後記する図21参照)を表示して、保全員から更新指示を受け付ける。なお、更新指示を出す保全員は、設備に詳しいベテラン保全員であることが望ましい。
【0088】
図21は、第1の実施形態に係る更新指示画面640の画面構成図である。更新指示画面640には、一致率や推定結果評価テーブル630が表示される。「履歴表示」ボタンが押下されると、推定結果が表示される。推定結果とは、ステップS202(図16参照)で取得したチェック結果や計算結果テーブル610(図17参照)を含むベイジアンネットワークの確率計算に係る情報である。
【0089】
「保守知識表示」ボダンが押下されると、保守知識テーブル210(図3参照)を含む保守知識が表示される。「機種仕様表示」ボタンが押下されると、機種テーブル220(図4参照)や故障モードテーブル230(図5参照)を含む機種別の仕様情報が表示される。「確率情報表示」ボタンが押下されると、故障モード発生確率テーブル240(図6参照)や故障検知確率テーブル250(図7参照)、子ノード異常発生確率テーブル260(図8参照)を含む確率情報が表示される。
【0090】
(ベテラン)保全員は、保守知識、機種別の仕様情報、確率情報を見ながら、更新内容を検討する。保全員は、保守知識を更新する場合には、「保守知識更新」ボタンを押下し、表示される保守知識更新画面(不図示)に更新指示内容を入力する。保全員は、機種別の仕様情報を更新する場合には、「機種仕様更新」ボタンを押下し、表示される機種仕様更新画面(不図示)に更新指示内容を入力する。保全員は、確率情報を更新する場合には、「確率情報更新」ボタンを押下し、表示される確率情報更新画面(不図示)に更新指示内容を入力する。
【0091】
「更新申請」ボタンが押下されると、管理者などの承認者に更新指示内容を含む更新申請が送付される。承認者が更新申請を承認すると更新指示内容に含まれる更新が実行される。確率情報の更新の場合、承認なしに更新が実行される。
図19に戻って、更新指示受付部413は、保全員が入力し承認を得た更新指示内容を更新実行部414に出力する。以下、保守知識、機種仕様、および確率情報それぞれの更新指示内容の形式を説明する。
【0092】
図22は、第1の実施形態に係る保守知識の更新指示内容650のデータ構成図である。更新指示内容650は、保守知識テーブル210(図3参照)の更新指示内容を含む。更新指示内容650は、表形式のデータであって、1つの行(レコード)は、処理651、位置652、および内容653の列(属性)を含む。
処理651は、処理の種類を示し、「追加」、「更新」、「削除」がある。位置652は、保守知識テーブル210内の更新対象の位置を示す。内容653は、処理651が「追加」である場合には追加する内容であり、「更新」である場合には更新(書き換え)する内容である。
【0093】
処理651が「追加」であるレコードは、保守知識テーブル210の1行目にレコードを追加する更新を示す。当該レコードの異常事象211、機能故障212、コンポーネント213、コンポーネント識別情報214、故障モード215、およびチェック項目216は、それぞれ「気温上昇」、「熱交換器能力不足」、「熱交換器」、「C1」、「熱交換器設計不良」および「外観破損状況」である。
【0094】
図23は、第1の実施形態に係る機種仕様の更新指示内容660のデータ構成図である。更新指示内容660は、機種テーブル220(図4参照)または故障モードテーブル230(図5参照)の更新指示内容を含む。更新指示内容660は、表形式のデータであって、1つの行(レコード)は、処理661、テーブル662、位置663、および内容664の列(属性)を含む。テーブル662は、更新対象のテーブルを示し、機種テーブル220を示す「機種」、または故障モードテーブル230を示す「故障モード」である。処理661、位置663、および内容664は、更新指示内容650(図22参照)の処理651、位置652、および内容653とそれぞれ同様である。
【0095】
図24は、第1の実施形態に係る確率情報の更新指示内容670のデータ構成図である。更新指示内容670は、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、または子ノード異常発生確率テーブル260(図8参照)を更新するときに用いるデータを示す。後記する更新実行部414は、示されたデータに基づいて、故障モード発生確率テーブル240、故障検知確率テーブル250、または子ノード異常発生確率テーブル260を更新する。
【0096】
更新指示内容670は、表形式のデータであって、1つの行(レコード)は、選択671、ネットワーク識別情報672(図24ではネットワークIDと記載)、推定結果識別情報673(図24では推定結果IDと記載)、推定原因674、最終確定原因675、および結果676の列(属性)を含む。ネットワーク識別情報672、推定結果識別情報673、推定原因674、最終確定原因675、および結果676は、推定結果評価テーブル630(図20参照)のネットワーク識別情報631、推定結果識別情報632、推定原因633、最終確定原因634、および結果635とそれぞれ同様である。選択671は、更新に当該レコードを用いる(「Y」)か否(「N」)かを示す。
【0097】
図19に戻って、更新実行部414は、更新指示内容650,660,670に基づいて、保守知識テーブル210(図3参照)、機種テーブル220(図4参照)、故障モードテーブル230(図5参照)、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、または子ノード異常発生確率テーブル260(図8参照)を更新する。更新実行部414は、保守知識テーブル210、機種テーブル220、故障モードテーブル230については、更新指示内容650,660にある指示に直接基づいて更新する。更新実行部414は、例えば、テーブルの行を追加したり、位置652,663に示された項目の内容を更新したりする。
【0098】
更新実行部414は、更新指示内容670のレコードで選択671が「Y」であるレコードに従って、故障モード発生確率テーブル240、故障検知確率テーブル250、または子ノード異常発生確率テーブル260を更新する。更新実行部414は、例えば、故障検知確率テーブル250(図7参照)のレコードが示す関係と、選択されたレコードが示す関係とが整合するように更新する。ここで、故障検知確率テーブル250のレコードが示す関係とは、確率255が高いレコードに示される故障モードとチェック項目との間の因果関係のことである。選択されたレコードが示す関係とは、当該レコードに係る故障モード(最終確定原因675)と異常であるチェック項目(図16記載のステップS202参照)との関係であり、最終確定原因675によりチェック項目の異常が発生したという因果関係である。更新実行部414は、例えば、選択されたレコードに基づいて、例えばベイズ更新の手法を用いて確率情報を更新してもよい。
【0099】
図25は、第1の実施形態に係る更新実行部414が行う更新処理のフローチャートである。
ステップS301において更新実行部414は、更新指示内容が確率情報を更新する指示であれば(ステップS301→YES)ステップS302に進み、確率情報でなければ(ステップS301→NO)ステップS303に進む。確率情報とは、故障モード発生確率テーブル240(図6参照)、故障検知確率テーブル250(図7参照)、または子ノード異常発生確率テーブル260(図8参照)である。
ステップS302において更新実行部414は、更新指示内容670(図24参照)に基づいて確率情報を更新する。
【0100】
ステップS303において更新実行部414は、更新指示内容650,660に承認者の承認があれば(ステップS303→YES)ステップS304に進み、承認がなければ(ステップS303→NO)更新処理を終える。
ステップS304において更新実行部414は、更新指示内容が保守知識の更新指示内容650であれば(ステップS304→YES)ステップS305に進み、保守知識の更新指示内容650でなければ(ステップS304→NO)ステップS306に進む。
ステップS305において更新実行部414は、更新指示内容650に基づいて保守知識テーブル210を更新する。
ステップS306において更新実行部414は、更新指示内容660に基づいて機種テーブル220、または故障モードテーブル230を更新する。
【0101】
≪保守知識更新装置の特徴≫
保守知識更新装置400は、原因推定装置300の原因推定結果(確率が最大の故障モード)と最終確定の原因との一致率を算出し、一致/不一致の状況と合わせて表示する(図21記載の更新指示画面640参照)。
保全員は、一致/不一致の状況を参照することで、保守知識や機種仕様、確率情報のどこに問題があるか検討することができるようになり、延いては、これらの情報の更新を指示することができるようになる。
保守知識は、機種共通の保守知識テーブル210(図3参照)と、機種依存の保守知識である機種テーブル220(図4参照)および故障モードテーブル230(図5参照)とに分かれている。このため、機種共通の更新と、個々の機種に係る更新とに分けて、保守知識を更新することができるようになる。結果として、保守知識の保守性が向上する。
確率情報は、最終確定した異常事象の原因(コンポーネントの故障モード)に基づいて更新される。現実に発生した異常事象とその最終確定した事実としての原因を反映することで、確率情報が現実に合った数値に変更され、延いては原因推定の精度が向上するようになる。
【0102】
≪第2の実施形態≫
第1の実施形態では、保全員がチェック項目をチェック/検査/点検して、原因推定装置300に入力している(図16記載のステップS202参照)。第2の実施形態では、原因推定装置300A(後記する図26参照)がセンサデータを受信してチェック項目の正常/異常を判定する。
【0103】
≪第2の実施形態:原因推定装置の構成≫
図26は、第2の実施形態に係る原因推定装置300Aの機能ブロック図である。第1の実施形態の原因推定装置300(図15参照)と比較して、記憶部320にイベント認識モデル360が追加され、制御部310にイベント認識部315が追加される。また、通信部330は、設備の状態(温度や圧力、流量などの物理量)を取得するセンサからセンサデータ(取得した値、センサ値)を受信する。
【0104】
イベント認識モデル360は、センサデータを分類するための機械学習モデルであって、例えばk-meansなどのクラスタリング手法などの分類手法を用いる機械学習モデルである。イベント認識モデル360は、例えば、1つまたは複数のセンサデータを、正常の状態、または、異常の状態に分類するモデルである。センサデータは、値そのものの他に、例えば一定幅の期間におけるセンサデータの最大値や変化量などの特徴量に基づいて分類される。
【0105】
図27は、第2の実施形態に係るイベント認識モデル360を用いたセンサデータの分類を説明するためのグラフ710である。グラフ710の軸は、チェック項目の1つである「チェック項目1」(後記する図28参照)に係る1つまたは複数のセンサの特徴量である。グラフ710は、2つの軸(特徴量)のグラフであるが、1つまたは3つ以上の軸があるグラフであってもよい。データ群711(グループ)は、特徴量が近いセンサデータの集まり(クラスタ)であり、「チェック項目1」が正常状態であるときのセンサデータの集まりである。データ群712は、特徴量が近いセンサデータの集まりであり、「チェック項目1」が異常状態であるときのセンサデータの集まりである。
【0106】
図28は、第2の実施形態に係るイベント認識モデル360を用いたセンサデータの分類を説明するためのテーブル720である。テーブル720の1つの行(レコード)は、グラフ710(図27参照)上の1つのデータ群を示し、グループ識別情報721、チェック項目722、状態723、および特徴データ724の列(属性)を含む。
グループ識別情報721は、データ群の識別情報である。チェック項目722は、センサデータが係るチェック項目である。状態723は、データ群がチェック項目722について「正常」か「異常」かを示す。特徴データ724は、データ群の特徴であって例えば、データ群のグラフ710における範囲(領域、例えば中心の座標と半径)を示す。グループ識別情報721が「1」であるレコードは、データ群711に対応し、「チェック項目1」が「正常」であるデータ群を示すレコードである。
【0107】
図26に戻って、イベント認識部315は、センサデータを受け取って、イベント認識モデル360を用いて、チェック項目が正常か異常かを判断する。詳しくは、イベント認識部315は、センサデータを受信して特徴量を算出する。次に、イベント認識部315は、算出した特徴量がテーブル720(図28参照)のどの特徴データ724に対応するか探索し、対応するレコードのチェック項目722と状態723とを出力する。出力されたチェック項目722と状態723とは、原因推定処理(図16参照)において、保全員によって入力されるチェック結果(ステップS202参照)の替わりとして用いられる。
【0108】
≪第2の実施形態の特徴≫
原因推定装置300Aは、保全員に替わってセンサデータを取得して、チェック項目の正常/異常を判断する。保全員は、チェック項目のチェック/検査やチェック結果を入力する必要がなくなる。このため、異常事象が発生した場合に、手間をかけず、短時間で、正確にチェック結果が入力され、異常事象の原因の推定結果を得ることができるようになる。
【0109】
≪第3の実施形態≫
第2の実施形態では、イベント認識部315は、イベント認識モデル360を用いてセンサデータからチェック項目の正常/異常を判断する。換言すれば、イベント認識部315は、センサデータがデータ群711,712(図27参照)の何れに含まれるかを判断して、チェック項目の正常/異常を判断する。しかしながら、設備の運用にともない、データ群711,712の何れにも含まれていないセンサデータ(新たなデータ群)が出現することが想定される。
【0110】
図29は、第3の実施形態に係り、グラフ710Bに現れた新たなデータ群713を説明するための図である。データ群713に含まれるセンサデータは、既存の正常な状態に相当するデータ群711にも、異常な状態に相当するデータ群712にも含まれていない。このため、第2の実施形態におけるイベント認識部315は、正常/異常を判断できず、イベント認識モデル360の更新が必要となる。第3の実施形態では、新たなデータ群が出現した場合に、これを検知し、保全員の指示により保守知識を更新する。
第3の実施形態に係る原因推定装置300B(不図示)は、第2の実施形態に係る原因推定装置300Aと同様である。但し、原因推定装置300Bは、保守知識更新装置400B(後記する図30参照)の指示を受けてテーブル720(図28参照)を更新する。
【0111】
≪第3の実施形態:保守知識更新装置の構成≫
図30は、第3の実施形態に係る保守知識更新装置400Bの機能ブロック図である。以下、第1の実施形態に係る保守知識更新装置400(図19参照)と比較して追加される情報や機能を説明する。
【0112】
保守作業報告データベース450Bには、第1の実施形態で説明した情報に加えて、原因推定装置300Bから受け取ったイベント認識モデル360(図28記載のテーブル720参照)、イベント認識部315の出力データであるチェック結果(チェック項目の正常/異常)が記憶される。保守作業報告データベース450Bには、さらに、原因推定装置300Bから受け取った正常でも異常とも判断されたかったセンサデータ(新データ群候補データとも記す)が記憶される。
【0113】
更新検知部412Bは、新たなデータ群を検知して、更新指示受付部413Bへ通知する。更新指示受付部413Bは、更新指示画面640B(後記する図32)を表示して、保全員からの保守知識やイベント認識モデル360の更新指示を受け付ける。更新実行部414Bは、更新指示に従って、イベント認識モデル360の更新指示を原因推定装置300Bに送信する。
【0114】
図31は、第3の実施形態に係るイベント認識モデル更新処理のフローチャートである。イベント認識モデル更新処理は、所定のタイミング、例えば、定期的に実行される。
ステップS301において更新検知部412Bは、新データ群候補データの特徴量を算出する。以下では、新データ群候補データは、グラフ710B(図29参照)に示される黒い三角形であるとして説明を続ける。
【0115】
ステップS302において更新検知部412Bは、新データ群候補データに新たなデータ群が含まれるか判断する。更新検知部412Bは、新しいデータ群が含まれれば(ステップS302→YES)ステップS303に進み、含まれていなければ(ステップS302→NO)イベント認識モデル更新処理を終える。更新検知部412Bは、例えば、グラフ710Bにおいて所定の大きさの範囲(領域)内に所定数以上の新データ群候補データが含まれ、他のデータ群との距離が所定値以上であれば新しいデータ群が含まると判断する。以下では、データ群713が新しいデータ群であるとして説明を続ける。
【0116】
ステップS303において更新検知部412Bは、関連情報として、データ群713が取得された時点における異常事象(案件情報)や当該異常事象および機種に対応する保守知識ネットワーク、当該保守知識ネットワークに係る確率情報、ネットワーク識別情報、保全員が入力した(センサデータから得られない)チェック結果、計算結果テーブル、推定結果識別情報、最終確定した異常原因などを取得する。
ステップS304において更新検知部412Bは、ステップS303で取得した関連情報から推定結果評価テーブル630(図20参照)を生成し、一致率を算出して、更新指示受付部413Bに出力する。
ステップS305において更新指示受付部413Bは、更新指示画面640B(後記する図32)を表示して、保全員からの保守知識やイベント認識モデル360の更新指示を受け付ける。
【0117】
図32は、第3の実施形態に係る更新指示画面640Bの画面構成図である。第1の実施形態に係る更新指示画面640(図21参照)と比較して、「イベント認識モデル表示」ボタンおよび「イベント認識モデル更新」ボタンが追加される。
「イベント認識モデル表示」ボダンが押下されると、新しいデータ群713を含むグラフ710B(図29参照)やテーブル720(図28参照)が表示される。なお、新しいデータ群713に対応するテーブル720のレコードのチェック項目722および状態723は空欄である。グループ識別情報721には新しいグループ識別情報が含まれ、特徴データ724にはデータ群713に対応する特徴データが含まれている。
【0118】
保全員は、保守知識、機種別の仕様情報、確率情報、イベント認識モデルを見ながら、更新内容を検討する。保全員は、イベント認識モデルを更新する場合には、「イベント認識モデル更新」ボタンを押下し、表示されるテーブル720のチェック項目722および状態723に入力する。
【0119】
図31に戻って、ステップS306において更新実行部414Bは、第1の実施形態の更新実行部414と同様に更新指示に従って保守知識、機種仕様、確率情報を更新する。イベント認識モデルについては、ステップS305で更新されたテーブル720を原因推定装置300Bに送信し、原因推定装置300Bは、自身が記憶するテーブル720を更新する。
【0120】
≪第3の実施形態:保守知識更新装置の特徴≫
設備の運用にともない、新しいデータ群が現れた場合に、保守知識更新装置400Bは、このデータ群を検知して、関連する異常事象の原因推定に係る推定結果評価テーブルを含む更新指示画面640B(図32参照)を表示する。保全員は、新しいデータ群をチェック項目の状態に加えるか否か、また、保守知識や確率情報を更新するか否かを検討して、指示を入力する。このようにして、新しいデータ群が現れても異常事象の原因推定の精度を維持、向上することができる。
【0121】
≪第4の実施形態≫
第1の実施形態では、保全員が保守知識や機種仕様、確率情報の更新内容を検討して、指示を入力している。人による指示なので、更新/変更の漏れや矛盾が生じることが考えられる。第4の実施形態では、アセット知識を利用することで、このような漏れや矛盾を削減する。
【0122】
図33は、第4の実施形態に係る保守知識更新装置400Cの機能ブロック図である。第1の実施形態の保守知識更新装置400(図19参照)と比較して、記憶部420にアセット知識データベース460が追加される。
図34は、第4の実施形態に係るアセット知識データベース460のデータ構成図である。アセット知識データベース460は、保守知識分析結果などのデータを格納している。アセット知識データベース460は、例えば、FMEA(Failure Mode and Effects Analysis)シートであって、故障モード、機能故障、影響などの情報を含み、情報の因果関係が明確である。
【0123】
アセット知識データベース460は、表形式のデータであって、1つの行(レコード)は、因果関係のあるコンポーネント461、機能故障462、故障モード463、故障影響464、原因465、および検査項目466の列(属性)を含む。コンポーネント461、機能故障462、故障モード463、故障影響464、および検査項目466は、それぞれ保守知識テーブル210(図3参照)のコンポーネント213、機能故障212、故障モード215、異常事象211、チェック項目216に対応している。1つのレコードは、異常事象、機能故障、故障モード、およびチェック項目の因果関係と見なすことも可能である。
【0124】
図33に戻って、更新指示受付部413Cは、保全員が、保守知識ネットワークにノードやリンクを追加するときに、アセット知識データベース460を参照して漏れや矛盾がないか検査する。
例えば、コンポーネントに故障モードを追加する指示を受け付けると、更新指示受付部413Cは、同種類の他のコンポーネントにも故障モードを追加されているかを検査する。検査した結果、追加されていないコンポーネントがある場合には、更新指示受付部413Cは、警告を表示する。または、更新指示受付部413Cは、追加を提示するメッセージを表示してもよい。
【0125】
また、例えば、機能故障や故障モード、当該2つの因果関係を更新する指示を受け付けると、更新指示受付部413Cは、アセット知識データベース460に含まれる機能故障462および故障モード463の関係と矛盾しないか検査する。検査した結果、矛盾を発見すると、更新指示受付部413Cは、矛盾の内容を含む警告を表示する。
また、更新指示受付部413Cは、アセット知識データベース460に含まれていない異常事象と機能故障との因果関係、機能故障と故障モードとの因果関係、異常事象と故障モードとの因果関係、故障モードとチェック項目との因果関係、コンポーネントの種別(型番)と当該コンポーネントの種別で発生する故障との関係を追加する指示を受けると、警告するようにしてもよい。
なお、更新指示受付部413Cが表示する更新指示画面には、アセット知識データベース460の内容を表示する「アセット知識表示」ボタンが含まれる。
【0126】
≪保守知識更新装置の特徴≫
保全員が入力した保守知識や機種仕様の更新内容について、アセット知識データベース460(図34参照)と照合することで、保守知識更新装置400Cは、更新内容の漏れや矛盾を検知できる。延いては、保全員は、更新作業の判断をしやすくなり、矛盾や漏れを含んだ更新を減少させることができる。また、コンポーネントの故障モード追加の提示メッセージを表示できるため、更新の必要性がある可能性を持つ内容を提示できるため、更新指示を効率的にサポートする。
【0127】
≪変形例:更新検知部≫
更新検知部は、一致率(図20の結果635参照)が所定値より低いことや新しいデータ群(図29のデータ群713参照)を検知した場合には、これを保全員に報知するようにしてもよい。
【0128】
≪変形例:チェック項目≫
上記した実施形態では、チェック項目は正常/異常の2値であったが、これに限るものではない。例えば、コンポーネントの破損状況のチェック項目について、「なし」、「5mm以内」、「10mm以内」、「10mm超」などの3段階以上であってもよいし、数値であってもよい。
【0129】
≪変形例:機種に対応した保守知識ネットワークの生成≫
上記した実施形態では、保守知識ネットワーク生成装置100は、異常事象に対応した保守知識ネットワークを生成(図10参照)した後に、異常事象および機種に対応した保守知識ネットワークを生成(図14参照)している。保守知識ネットワーク生成装置100は、異常事象に対応した保守知識ネットワークを生成することなしに、異常事象および機種に対応した保守知識ネットワークを生成するようにしてもよい。例えば、保守知識ネットワーク生成装置100は、機種に備えられていないコンポーネントのレコードや、機種に備わるコンポーネントでは発生しない故障モードを含んだレコードを除いた保守知識テーブル210(図3参照)を参照しながら機種に対応した保守知識ネットワークを生成して、異常事象および機種に対応した保守知識ネットワークを生成するようにしてもよい。
【0130】
≪変形例:保守知識ネットワーク≫
上記した保守知識ネットワークは、コンポーネントの故障モードの状態を確認するためのチェック項目を含む。原因推定システムは、チェック項目、およびチェック項目とコンポーネントとの関係(リンク)を含まない保守知識ネットワークを用いるようにしてもよい。換言すれば、機種に応じて異常事象の原因となるコンポーネントを故障の可能性の大小とあわせて提示するようにしてもよい。設備の構成が単純であり、コンポーネントの故障の有無が簡単に判明する場合には、チェック項目がなくても、故障の可能性の高いコンポーネントを提示すること、保全員の対応作業を効率化できる。
また、上記した保守知識ネットワークは、異常事象の原因は機能故障であり、機能故障の原因は故障モードであるという因果関係を示す。機能故障がなく、異常事象の原因は故障モードであるという保守知識ネットワークであってもよい。
【0131】
≪変形例:更新指示画面≫
更新指示画面640Bは、推定結果評価テーブル630(図20参照)を含んでいるが、含まなくてもよい。推定結果評価テーブル630を参照するまでもなく、イベント認識モデル360(図26参照)を示すテーブル720(図28参照)の更新や保守知識テーブル210などの更新が明らかな場合も想定される。推定結果評価テーブル630を含まない更新指示画面640Bであってもよい。
【0132】
≪その他変形例≫
以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。例えば、原因推定システム10は、保守知識ネットワーク生成装置100、原因推定装置300、および保守知識更新装置400から構成されているが、1つの装置であってもよい。原因推定システム10は、プラントや施設に置かれる設備や機器、機械の他に、事務機器や家電などにおける故障の原因推定に用いられてもよい。
【0133】
上記した実施形態では、故障モードと異常事象とは、間に機能故障を挟んだ因果関係である。機能故障がなく、故障モードと異常事象とが直接に結び付く因果関係であってもよい。
保守知識ネットワークは確率情報が付与されたベイジアンネットワークであるが、確率情報がなくてもよい。この場合、原因推定システムは、異常事象に対して、原因の可能性のある全てのコンポーネントの故障モードを、可能性の大小を問わずに推定することになる。
【0134】
本発明はその他の様々な実施形態を取ることが可能であり、さらに、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができる。これら実施形態やその変形は、本明細書等に記載された発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0135】
10 原因推定システム
100 保守知識ネットワーク生成装置
111 ネットワーク生成部
121 保守知識データベース
122 機種仕様データベース
123 確率情報データベース
210 保守知識テーブル(共通保守知識ネットワーク)
211 異常事象
215 故障モード(コンポーネントの故障)
216 チェック項目
220 機種テーブル
222 コンポーネント
223,224,225 機種(機種に設備に備わるコンポーネント222の型番(種別))
230 故障モードテーブル(故障テーブル)
233 型番(種別)
234,235,236 故障モード(発生する故障)
240 故障モード発生確率テーブル
250 故障検知確率テーブル
260 子ノード異常発生確率テーブル
300,300A 原因推定装置
311 確率計算部
312 原因推定部
313 推定結果表示部
314 チェック結果取得部
315 イベント認識部
350 保守知識ネットワークデータベース
360 イベント認識モデル
400,400B,400C 保守知識更新装置
411 異常原因取得部
412 更新検知部
413 更新指示受付部
414 更新実行部
450 保守作業報告データベース
460 アセット知識データベース
500 案件情報
510 保守知識ネットワーク(異常事象に対応した保守知識ネットワーク)
520 ノード情報テーブル(リンク情報テーブル530と合わせて異常事象に対応した保守知識ネットワーク、図14記載の機種に対応した保守知識ネットワーク生成処理後は異常事象および機種に対応した保守知識ネットワーク)
530 リンク情報テーブル(ノード情報テーブル520と合わせて異常事象に対応した保守知識ネットワーク、図14記載の機種に対応した保守知識ネットワーク生成処理後は異常事象および機種に対応した保守知識ネットワーク)
640,640B 更新指示画面
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34