IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティーの特許一覧

特許7499566質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング
<>
  • 特許-質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング 図1
  • 特許-質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング 図2
  • 特許-質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング 図3
  • 特許-質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング 図4
  • 特許-質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-06
(45)【発行日】2024-06-14
(54)【発明の名称】質量タグ及び二次イオン質量分析計を用いた組織の多重化イメージング
(51)【国際特許分類】
   G01N 27/62 20210101AFI20240607BHJP
   G01N 33/48 20060101ALI20240607BHJP
【FI】
G01N27/62 B
G01N33/48 M
G01N33/48 P
【請求項の数】 34
(21)【出願番号】P 2019114310
(22)【出願日】2019-06-20
(62)【分割の表示】P 2016542106の分割
【原出願日】2014-09-11
(65)【公開番号】P2019215349
(43)【公開日】2019-12-19
【審査請求日】2019-06-26
【審判番号】
【審判請求日】2022-09-26
(31)【優先権主張番号】61/877,733
(32)【優先日】2013-09-13
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】61/970,803
(32)【優先日】2014-03-26
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503115205
【氏名又は名称】ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー
(74)【代理人】
【識別番号】100149294
【弁理士】
【氏名又は名称】内田 直人
(72)【発明者】
【氏名】ベンドール,ショーン シー.
(72)【発明者】
【氏名】ノーラン,ギャリー ピー.
(72)【発明者】
【氏名】アンジェロ,ロバート エム.
【合議体】
【審判長】樋口 宗彦
【審判官】松本 隆彦
【審判官】渡戸 正義
(56)【参考文献】
【文献】特開2007-46975(JP,A)
【文献】特表2008-542783(JP,A)
【文献】特表2009-526242(JP,A)
【文献】特開2008-96245(JP,A)
【文献】特開2011-13013(JP,A)
【文献】特開2011-7814(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/62-27/70
G01N 33/48-33/98
G01N23/00-23/2276
JSTPlus/JST7580/JMEDPlus(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
試料の分析方法であって、
複数の異なる非生物元を用いて試料中の個別の標的タンパク質を標識することであって、この標識することが、各標的タンパク質を、前記標的タンパク質を特異的に結合し、複数の異なる非生物元に単一分子連結部分を介して結合している捕捉剤を含むプローブと接触させることを含み、前記プローブの少なくとも1つが、少なくとも1つのキレートした非生物元素を含むものである、標識することと、
前記試料の表面にわたって一次イオンビームを走査して、前記試料上の複数の場所の各々で前記非生物元から生じる二次イオンの集団を生成することと、
前記試料上の複数の場所の各々について、前記二次イオンの対応する集団を測定することによって、試料中の前記標的タンパク質の1つまたは複数について存在量の情報を判断することと、
を含む、方法。
【請求項2】
前記非生物元の少なくとも1つが、1つまたは複数の金属原子を含む、請求項1に記載の方法。
【請求項3】
前記1つまたは複数の金属原子が、1つまたは複数のランタニド原子を含む、請求項に記載の方法。
【請求項4】
前記1つまたは複数の金属原子が、1つまたは複数の貴金属原子を含む、請求項に記載の方法。
【請求項5】
前記捕捉剤の少なくとも1つが、染料である、請求項1に記載の方法。
【請求項6】
前記捕捉剤の少なくとも1つが抗体を含む、請求項1に記載の方法。
【請求項7】
前記複数の非生物元が、
各々が第1の標的タンパク質を特異的に結合する第1型の捕捉剤に結合されている、第1群の非生物元と、
各々が、第1の標的タンパク質とは異なる第2の標的タンパク質を特異的に結合する第2型の捕捉剤に結合されている、第2群の非生物元と、
を含む、請求項1に記載の方法。
【請求項8】
前記第1群の非生物元の各メンバーが同じである、請求項に記載の方法。
【請求項9】
前記第2群の非生物元の各メンバーが同じである、請求項に記載の方法。
【請求項10】
前記複数の非生物元が、各々が第3の標的タンパク質を特異的に結合する第3型の捕捉剤に結合されている、第3群の非生物元を含み、前記方法がさらに、前記試料中の領域の1つまたは複数で、前記第1群、第2群および第3群の非生物元から生じる二次イオンの集団を測定することによって試料中の特徴を区別することを含む、請求項に記載の方法。
【請求項11】
前記連結部分の少なくとも1つがポリマーであり、前記ポリマーの複数の単位が少なくとも1つの金属キレート基を含む、請求項1に記載の方法。
【請求項12】
前記金属キレート基の少なくとも1つがポリキラント配位基である、請求項11に記載の方法。
【請求項13】
前記金属キレート基の各々がポリキラント配位基である、請求項12に記載の方法。
【請求項14】
さらに、前記第1および第2の非生物元から生じる二次イオンの集団を測定することによって試料中の特徴を区別することを含む、請求項に記載の方法。
【請求項15】
測定した二次イオンの集団に基づいて、細胞膜、ミトコンドリア、小胞体、ゴルジ体、核膜、およびサイトゾル画分からなる群から選択される少なくとも1つのメンバーを識別することを含む、請求項14に記載の方法。
【請求項16】
さらに、前記試料中の細胞の集団を識別することと、前記集団中の各細胞について、前記細胞に対応する試料中の場所で測定した二次イオンの統合した存在量値を判断することとを含む、請求項1に記載の方法。
【請求項17】
さらに、前記細胞に対応する統合した存在量値に基づいて、前記集団中の少なくとも1つの細胞をカテゴリー分けすることを含む、請求項16に記載の方法。
【請求項18】
試料を分析するためのシステムであって、
パルス状の一次イオン源と
前記パルス状の一次イオン源と同期された飛行時間検出器と
を具備し、
プローブの各々が、標的タンパク質を特異的に結合する捕捉剤に単一分子連結部分を介して結合している複数の異なる非生物元を含む複数のプローブであって、少なくとも1つのプローブが少なくとも1つのキレートした非生物元素を含むものである複数のプローブを用いて標識された試料を受け取り、
前記試料の表面にわたって一次イオン源により生成された一次イオンビームを走査して、前記試料上の複数の場所の各々で前記非生物元から生じる二次イオンの集団を生成し、
前記試料上の複数の場所の各々について、前記飛行時間検出器を用いて前記二次イオンの対応する集団を測定することによって、試料中の1つまたは複数の標的タンパク質について存在量の情報を判断するように構成されている、システム。
【請求項19】
前記非生物元が、1つまたは複数の金属原子を含む、請求項18に記載のシステム。
【請求項20】
前記1つまたは複数の金属原子が、1つまたは複数のランタニド原子を含む、請求項19に記載のシステム。
【請求項21】
前記1つまたは複数の金属原子が、1つまたは複数の貴金属原子を含む、請求項19に記載のシステム。
【請求項22】
前記捕捉剤の少なくとも1つが、染料である、請求項18に記載のシステム。
【請求項23】
前記捕捉剤の少なくとも1つが抗体を含む、請求項18に記載のシステム。
【請求項24】
前記複数の非生物元が、
各々が第1の標的タンパク質を特異的に結合する第1型の捕捉剤に結合されている、第1群の非生物元と、
各々が、第1の標的タンパク質とは異なる第2の標的タンパク質を特異的に結合する第2型の捕捉剤に結合されている、第2群の非生物元と、
を含む、請求項18に記載のシステム。
【請求項25】
前記第1群の非生物元の各メンバーが同じである、請求項24に記載のシステム。
【請求項26】
前記第2群の非生物元の各メンバーが同じである、請求項25に記載のシステム。
【請求項27】
前記複数の非生物元が、各々が第3の標的タンパク質を特異的に結合する第3型の捕捉剤に結合されている、第3群の非生物元を含み、前記システムがさらに、前記試料中の領域の1つまたは複数で、前記第1群、第2群および第3群の非生物元から生じる二次イオンの集団を測定することによって試料中の特徴を区別するように構成されている、請求項24に記載のシステム。
【請求項28】
前記連結部分の少なくとも1つがポリマーであり、前記ポリマーの複数の単位が少なくとも1つの金属キレート基を含む、請求項18に記載のシステム。
【請求項29】
前記金属キレート基の少なくとも1つがポリキラント配位基である、請求項28に記載のシステム。
【請求項30】
前記金属キレート基の各々がポリキラント配位基である、請求項29に記載のシステム。
【請求項31】
さらに、処理装置を具備し、前記飛行時間検出器を用いて前記第1および第2の非生物元から生じる二次イオンの集団を測定するように構成され、前記処理装置が、前記第1および第2の非生物元から生じる測定された二次イオンの集団に基づいて試料中の特徴を区別するように構成されている、請求項24に記載のシステム。
【請求項32】
前記処理装置が、測定した二次イオンの集団に基づいて、細胞膜、ミトコンドリア、小胞体、ゴルジ体、核膜、およびサイトゾル画分からなる群から選択される少なくとも1つのメンバーを識別するように構成されている、請求項31に記載のシステム。
【請求項33】
さらに、処理装置を具備し、前記処理装置が、前記試料中の細胞の集団を識別し、前記集団中の各細胞について、前記細胞に対応する試料中の場所で測定した二次イオンの統合した存在量値を判断するように構成されている、請求項18に記載のシステム。
【請求項34】
前記処理装置が、前記細胞に対応する統合した存在量値に基づいて、前記集団中の少なくとも1つの細胞をカテゴリー分けするように構成されている、請求項33に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2013年9月13日に出願された米国仮特許出願第61/877,733号、及び2014年3月26日に出願された米国仮特許出願第61/970,803号の利益を主張するものであり、これらの出願は、参照によりその全体が本明細書に組み込まれる。
【0002】
政府の権利
本発明は、アメリカ国立衛生研究所により与えられた契約番号CA034233、AI057229、CA130826、EY018228、HHSN272200700038C、1K99 GM104148-01の下での政府支援に基づいてなされたものである。米国政府は、本発明に一定の権利を有するものである。
【背景技術】
【0003】
抗体は、生細菌を注入したマウスからの臓器生検中の肺炎球菌抗原を視覚化するために1942年に組織切片分析に初めて用いられた。その時以来、免疫組織化学(IHC)は、臨床診断や、組織切片中の1つまたは2つ(まれにそれ以上)の抗原の空間分布を評価するために主として用いられる基礎研究の中心になっている。多くの抗体が高特異性であるにもかかわらず、ほとんどの抗原の濃度は、信号増幅をしない従来のアッセイによって検出するには不十分である。信号増幅は、通常、一次抗体のFc部分に結合する多価の酵素結合二次抗体を用いて達成される。明視野顕微鏡法では、最も一般的に用いられている酵素レポーターは西洋ワサビペルオキシダーゼであり、通常、3,3’-ジアミノベンジジン(DAB)の酸化に用いられ、茶色の沈殿物の蓄積が得られる。それでもまだ、二次抗体の使用は、非線形染色に起因する一次抗原濃度との相関性が乏しいことと相まって、信頼性の高い多重化及び定量には限界がある。
【0004】
複数の抗原の同時検出は、ヒト臨床試験及び臨床診断における予測バイオマーカー開発のためには既存のIHCベース分析の利用を制限するさらなる制約に直面しうる。4つの抗原の比色検出が複数の酵素結合二次抗体を用いて報告されているが、実際には、このアプローチは、試料調製及びイメージングで遭遇する困難により通常は2つに限定される。蛍光標識は、より高い信号対雑音比を提供することができ、複数の分子標的の同時検出のために、より頻繁に用いられる。実務上では、異なる宿主動物種で生成される一次抗体が必要であることや、重なり合わないレポーター発光スペクトルが必要であることなどの制限がある。したがって、この従来のIHC手法は、分子レベルでの組織微細構造と発現の関係を理解するのに必要な、多重化された定量的データを安定して生成する一助とならない。
【発明の概要】
【0005】
細胞及び細胞外構造を含む試料の高分解能二次元画像の生成方法を提供する。ある特定の実施形態では、本方法は、試料を少なくとも1つの質量タグで標識することで、標識試料を生成することと、試料を二次イオン質量分析計(SIMS)イオンビームで走査して、試料の領域にわたって質量タグの存在量を空間的にアドレス可能な測定値を含むデータセットを生成することと、データセットを出力することとを含む。多くの実施形態では、データセットは、質量タグの識別及び存在量を含む。
【0006】
試料は、種々の異なる方法で少なくとも1つの質量タグにより標識してもよい。例えば、質量タグは、組織化学的染料によりなってもよいし、あるいは捕捉剤、例えば、抗体に結合していてもよい。他の場合では、試料には、生きている間に質量タグが供されていてもよく、質量タグは、代謝によって試料中の他の分子に組み込まれていてもよい。
【0007】
ある特定の実施形態では、標識するステップには、試料を、各々が異なる質量タグを含む少なくとも2つの異なる特異的結合試薬に接触させることを伴ってもよい。これらの実施形態では、試料を走査して、試料の領域にわたって質量タグの各々の存在量を空間的にアドレス可能な測定値を含むデータセットを生成してもよい。
【0008】
特定の実施形態では、標識することは、特異的結合試薬、例えば、質量タグとして機能するキレート原子を含む抗体を用いて行ってもよく、この作製方法は公知である。いくつかの実施形態では、質量タグは、12~238の原子質量単位、例えば、C、O、N、及びF付加物を含む21~238の原子質量単位の範囲で質量を有してもよい。いくつかの実施形態では、質量タグは、21~90の範囲で原子番号を有する元素、例えば、21~29、39~47、57~79または89の原子番号を有する元素の原子であってもよい。場合によっては、元素はランタニドである。
【0009】
場合によっては、本方法は、データセットから試料の画像を構築することを含んでいてもよい。いくつかの実施形態では、画像の分解能は、最大で1nm、5nm、例えば、最大で10nm、最大で50nm、最大で100nm、最大で500nm、または最大で5000nmであってもよい。
【0010】
いくつかの実施形態では、本方法は、画像を分割することで、画像内の個別細胞の境界(かつ、必要に応じて、個別細胞の細胞内特徴または対象となる他の特徴)を規定することをさらに含んでいてもよく、この方法は公知である。これらの実施形態では、本方法は、画像内の各個別細胞またはその細胞内特徴に対応するデータを統合することをさらに含んでいてもよく、これにより、細胞を全体として記述する一連の値(各々は、個別の質量タグに対応する)がもたらされ得る。本方法のこの実施形態は、細胞の各々について得られた統合データに基づいて、個別細胞を(例えば、細胞型または正常または異常などに)カテゴリー分けすることをさらに含んでいてもよい。これらの実施形態では、本方法は、組織試料の画像を表示することをさらに含んでいてもよく、細胞は、それらのカテゴリーによって色分けされる(即ち、第1のカテゴリーの細胞は第1の色で示され、第2のカテゴリーの細胞は第2の色で示され、第3のカテゴリーの細胞は第3の色で示される等)。場合によっては、画像のいずれか1つのピクセルにおいて、ピクセルの色の強度は、走査によって得られたそのピクセルについて得られた信号の統合された大きさと相関していてもよい。
【0011】
いくつかの実施形態では、組織試料は導電性基板にマウントされ、走査はイオンビームを試料にわたってラスタライズすることで行われる。本方法は、植物、動物、及び微生物(例えば、細菌、細胞)を含む切片からのものを含む任意の適切な試料で行なうことができる。特定の実施形態では、試料は、例えば、2~20ミクロン(例えば、3~12ミクロン)の範囲で厚さを有する組織切片、例えば、ホルマリン固定パラフィン包埋(FFPE)切片であってもよい。
【0012】
試料を分析するシステムも提供する。このシステムは、a)試料を含む基板を保持するホルダを含む二次イオン質量分析法(SIMS)システムであって、(i)試料をSIMSイオンビームで走査し、試料に結合されている特異的結合試薬の存在量の測定値を含むデータセットを生成し、(ii)データセットを出力するように構成されるシステム、及び、b)データセットを処理して試料の画像を生成する画像分析モジュールを含むコンピュータを具備していてもよい。ホルダは、走査しやすくするために少なくとも(試料の平面内である)x及びy方向に制御可能に移動する(例えば、段付けされるかまたは連続的に移動する)ことが可能な可動ステージ内にある。画像分析モジュールは、上述の方法の多くのステップを行うようにプログラム化することができる。例えば、いくつかの実施形態では、画像分析モジュールは、画像を分割して、個別細胞の境界、必要に応じて、個別細胞の細胞内特徴を画像内で識別してもよい。場合によっては、画像分析モジュールは、画像内の個別細胞の各々またはその細胞内特徴のデータを統合し、必要に応じて、細胞の各々について得られた統合データに基づいて、個別細胞をカテゴリー分けしてもよい。画像分析モジュールは、試料の画像を表示してもよく、ここで細胞は、それらのカテゴリーによって色分けされる。上述のように、画像のいずれか1つのピクセルにおいて、ピクセルの色の強度は、SIMSシステムによって得られたそのピクセルについて得られた信号の大きさと相関している。
【0013】
以下の詳細な説明のある特定の態様は、添付の図面とともに読むことで最良に理解される。一般的な慣行に従い、図面の種々の特徴は、原寸に比例しないことが強調される。それとは逆に、種々の特徴の大きさは、明確にするために、任意に拡大または縮小される。図面に含まれるのは、以下の図である。
【図面の簡単な説明】
【0014】
図1】多重化イオンビームイメージング(MIBI)のワークフロー概要である。FFPE組織または細胞懸濁液などの生物標本を、インジウムスズ酸化物被覆ガラスまたはシリコンウェーハなどの導電性基板上に固定化する。次に、試料を、特有の遷移元素同位体レポーターに結合させた抗体で染色し、乾燥させ、MIBI分析用に真空下で装填する。試料表面は、試料表面に対してネイティブな抗体特異的同位体レポーターを二次イオンとしてスパッタする一次イオンビーム(O-)でラスタライズする。元素質量スペクトルをピクセルごとに取得する。各細胞の核分画及び細胞質分画を画定する対象領域を統合し、表にし、カテゴリー分けする。偽色したカテゴリー特徴及び定量的な三色オーバーレイからなる合成画像を構築して、多次元発現データをまとめる。
図2】マスサイトメトリー及びMIBIを用いて金属を結合した抗体で染色したPBMCの分析である。(A)7つの抗体で染色したPBMCをシリコンウェーハ上に固定化し、MIBIを用いて画像形成した。対象となる単一細胞領域を、CD45表面発現を用いて分割し、抗体ごとに統合した。(B、C)得られたデータの階層的ゲーティングにより、マスサイトメトリーによって分かったものと比較して7つの細胞集団の比較可能な値が得られた。(D)各細胞集団の相対存在量のピアソン相関により、2つの方法間で強力な一致が実証された(r=0.98、p<0.0001、両側t検定)。
図3】MIBIを用いたヒト乳房腫瘍の10色のイメージングである。(A)一次抗体の親和性は、金属の結合の影響を受けない。抗体親和性に対する金属の結合の効果を評価するため、単一のヒト乳房腫瘍からの連続切片の免疫ペルオキシダーゼ染料を、Ki67またはER-アルファに対する金属を結合した一次抗体または未修飾一次抗体で染色した。同様な強度の陽性染色核が、金属を結合したまたは未修飾一次抗体を用いた場合に同様の数で存在していた。(B)MIBIデータの視覚表示である。単一チャネルイオンデータは、カラーマッピングし、合成して、従来の免疫ペルオキシダーゼまたは免疫蛍光染色にそれぞれ似ている疑似明視野画像または疑似暗視野画像を構築することができる。(C)ヒト乳房腫瘍の10色イメージングである。3人の異なる患者からのFFPE組織切片を、MIBIを用いて分析した。HER2、ER、及びPRは、各標本の公知の免疫表現型に対して適切に発現する。ER、PR、及びKi67は、境界の明瞭な核陽性を示すが、e-カドヘリン、アクチン、HER2、及びケラチン発現は適切に膜性である。
図4】腫瘍免疫表現型の定量分析である。(A)定量的単一細胞分析では、イオン画像を、核分画及び細胞質分画を画定するROIに分割する。(B)従来の2軸散布図を用いて得られたデータの検査により、それぞれの腫瘍の公知の免疫表現型と一致する定量的発現パターンが示される。
図5】カテゴリー及び定量的着色化を用いた多次元MIBIデータの合成表現である。(A)細胞質特徴の定量的着色化である。緑色にコードされたe-カドヘリン、赤色にコードされたアクチン、及び青色にコードされたビメンチンチャネルを合成して、タンパク質発現及び共局在化の定量的表現を生成した。(B)核のカテゴリー着色化である。ER/PR/Ki67陽性またはER/PR陽性核の亜集団を黄色または水色でそれぞれ偽色する。(C)多次元データは、定量的及びカテゴリー発現パターンを示す合成画像にまとめる。
【0015】
定義
本明細書で他に断らない限り、本明細書で使用される全ての技術及び科学上の用語は、本発明が属する分野の当業者により通常理解されるものと同様の意味を持つ。本明細書に記載の方法及び材料と同様のまたは同等の方法及び材料を、本発明の実施または試験のために使用することができるが、好ましい方法及び材料が本明細書に記載される。
【0016】
本明細書で参照される全ての特許及び刊行物は、そのような特許及び刊行物に開示される全ての配列を含み、ここで参照により明確に組み込まれる。
【0017】
数値範囲は、範囲を規定する数値も含むものとする。特に断らない限り、核酸は左から右ヘ、5’末端から3’末端方向に、アミノ酸配列は左から右ヘ、アミノ基からカルボキシ基への方向で各々記載される。
【0018】
本明細書に記載の表題は、本発明の種々の態様または実施形態を限定するものではない。したがって、以下に続けて定義する用語は、明細書を全体として参照することによってより完全に規定される。
【0019】
他に断らない限り、本明細書で使用される全ての技術及び科学上の用語は、本発明が関係する分野の当業者により通常理解されるものと同様の意味を持つ。例えば、Singletonらの「微生物学及び分子生物学辞典」(Dictionary of Microbiology and Molecular Biology)第2版、John Wiley及びSons,New York(1994);及びHale及びMarhamの「Harper Collins生物学辞典」(The Harper Collins Dictionary of Biology), Harper Perennial, ニューヨーク州(1991)は当業者に、本明細書で使用される多くの用語についての一般的意味を提供する。さらに、ある特定の用語は、明確化の目的及び参照の容易さのために以下に規定される。
【0020】
本明細書で用いる場合、「標識化」という用語は、検体の存在及び/または存在量が標識の存在及び/または存在量を評価することで判断することができるように、検出可能な部分を検体に結合させることを指す。「標識化」という用語には、組織染料(この場合、質量タグは染料の一部であってもまたは染料に結合していてもよい)を用いた標識化、並びに質量タグに結合している捕捉剤、例えば、抗体またはオリゴヌクレオチドプローブを用いた標識化が含まれる。代謝されて固定前に試料に組み込まれる質量タグ化合物(例えば、IdUまたはBrdU)を試料に供することで、試料を標識することもできる。
【0021】
本明細書で用いる場合、「対象とする生物学的特徴」という用語は、抗体への結合によって染色するかまたは示すことができる細胞のいずれの一部をも指す。例えば、染料を、バルク組織(例えば、筋繊維または結合組織を強調表示すること)、細胞集団(例えば、異なる血液細胞をカテゴリー分けすること)、または個別細胞内の細胞小器官を規定し検査するのに用いてもよい。染料は、クラス特異的(DNA、タンパク質、脂質、炭水化物)であってもよい。対象とする生物学的特徴の例としては、細胞壁、核、細胞質、膜、ケラチン、筋繊維、コラーゲン、骨、タンパク質、核酸、脂肪などが挙げられる。対象とする生物学的特徴は、免疫組織学的方法によって、例えば、標識に結合した抗体などの捕捉剤を用いて示すこともできる。これらの実施形態では、捕捉剤は、試料中のエピトープ、例えば、タンパク質エピトープに結合する。例示的エピトープとしては、限定的ではないが、がん胎児性抗原(腺がんの同定)、サイトケラチン(がん腫の同定用であるが、いくつかの肉腫でも発現し得る)、CD15及びCD30(ホジキン病)、アルファフェトプロテイン(卵黄嚢腫瘍及び肝細胞がん腫)、CD117(消化管間質腫瘍)、CD10(腎細胞がん腫及び急性リンパ性白血病)、前立腺特異的抗原(前立腺がん)、エストロゲン及びプロゲステロン(腫瘍同定)、CD20(B細胞リンパ腫の同定)、及びCD3(T細胞リンパ腫の同定)が挙げられる。
【0022】
本明細書で用いる場合、「多重化」という用語は、生物活性物質の同時または逐次検出及び測定のために2つ以上の標識を用いることを指す。
【0023】
本明細書で用いる場合、「特異的結合試薬」という用語は、細胞中または細胞上の特異的分子標的(例えば、特異的タンパク質、リン脂質、DNA分子、またはRNA分子)における1つ以上の部位に特異的に結合することができる標識試薬を指す。特異的結合試薬としては、例えば、抗体、核酸、及びアプタマーが挙げられる。本明細書で使用される「アプタマー」は、特異的標的分子に特異的に結合する合成オリゴヌクレオチドまたはペプチド分子である。
【0024】
本明細書で用いる場合、「抗体」及び「免疫グロブリン」という用語は、本明細書中で交換可能に使用され、当業者に十分理解されている。これらの用語は、抗原に特異的に結合する1つ以上のポリペプチドからなるタンパク質を指す。抗体の1つの形態は、抗体の構造の基本単位を構成する。この形態は、四量体であり、2つの同一対の抗体鎖からなり、各対が、1本の軽鎖及び1本の重鎖を有する。各対において、軽鎖及び重鎖可変領域は、一緒に抗原への結合に関与し、定常領域は、抗体のエフェクター機能に関与する。
【0025】
認識される免疫グロブリンポリペプチドは、カッパ及びラムダ軽鎖、並びにアルファ、ガンマ(IgG、IgG、IgG、IgG)、デルタ、イプシロン及びミュー重鎖または他の種における等価物を含む。完全長免疫グロブリンの「軽鎖」(約25kDaまたは約214アミノ酸)は、NH末端に約110アミノ酸の可変領域、及びCOOH末端にカッパまたはラムダ定常領域を含む。完全長免疫グロブリンの「重鎖」(約50kDaまたは約446アミノ酸)も同様に、可変領域(約116アミノ酸)及び上述の重鎖定常領域のうちの1つ、例えば、ガンマ(約330アミノ酸)を含む。
【0026】
「抗体」及び「免疫グロブリン」という用語には、任意のアイソタイプの抗体または免疫グロブリン、限定的ではないが、Fab、Fv、scFv、及びFd断片を含む抗原への特異的結合を保持する抗体の断片、キメラ抗体、ヒト化抗体、ミニボディ、一本鎖抗体、及び抗体の抗原-結合部分と非抗体タンパク質とを含む融合タンパク質が含まれる。この用語には、Fab’、Fv、F(ab’)、及び/または抗原への特異的結合を保持する他の抗体断片、及びモノクローナル抗体も包含される。抗体は、例えば、Fv、Fab、及びF(ab’)と、二機能性(即ち、二重特異性)のハイブリッド抗体(例えば、Lanzavecchiaら、Eur. J. Immunol. 17, 105 (1987))とを含む種々の他の形態と、1本鎖(例えば、参照により本明細書に取り込まれる、Hustonら、Proc. Natl. Acad. Sci. U.S.A.、85、5879-5883(1988)及びBirdら、Science、242、423-426(1988))とで存在する場合がある。(Hoodら、「Immunology」、Benjamin、ニューヨーク州、第2版(1984)と、Hunkapiller及びHood、Nature、323、15-16(1986)とを一般的に参照されたい)。
【0027】
「特異的結合」用語は、結合試薬が、異なる検体の均一な混合物中に存在する特定の検体に優先的に結合できる能力を指す。ある特定の実施形態では、特異的結合の相互作用は、試料中の望ましい検体と望ましくない検体を、いくつかの実施形態では、約10~100倍以上より大きく(例えば、約1000または10,000倍より大きく)区別する。
【0028】
ある特定の実施形態では、結合試薬と検体との間の親和性は、それらが捕捉剤/検体複合体に特異的に結合しているとき、10-6M未満、10-7M未満、10-8M未満、10-9M未満、10-9M未満、10-11M未満、または約10-12M未満、またたそれ未満のK(解離定数)を特徴とする。
【0029】
本明細書で用いる場合、「質量タグ付けされた」用語は、特有の質量または質量プロファイルによって識別可能な単一種の安定同位体かまたはその組み合わせのいずれかでタグ付けされる分子を指し、安定同位体の組み合わせは、識別子をもたらす。安定同位体の組み合わせにより、チャネル圧縮及び/またはバーコーディングすることができる。それらの質量によって識別可能な元素の例としては、貴金属及びランタニドが挙げられるが、他の元素を用いてもよい。元素は1つ以上の同位体として存在してもよく、この用語には正及び負金属の同位体も含まれる。「質量タグ付けされた」及び「元素タグ付けされた」という用語は、本明細書中で交換可能に使用してもよい。
【0030】
本明細書で用いる場合、「質量タグ」という用語は、その質量によって識別可能であり、他の質量タグから区別可能であって、生物活性物質または検体のタグ付けに用いられる任意の元素、例えば、遷移金属、遷移後金属、ハロゲン化物、貴金属またはランタニドの任意の同位体を意味する。質量タグは、分析試料及び対象粒子に存在する原子質量から区別可能な原子質量を有する。「モノアイソトピック」という用語は、タグが単一種の金属同位体(いずれの1つのタグも、同一種の複数の金属原子を含んでもよいが)を含むことを意味する。
【0031】
本明細書で用いる場合、「ランタニド」という用語は、原子番号58~71を有する任意の元素を意味する。ランタニドは、「希土類金属」とも呼ばれる。
【0032】
本明細書で用いる場合、「貴金属」という用語は、電気化学ポテンシャルが標準水素電極のポテンシャルよりもはるかに正であり、したがって酸化に抵抗する元素である、いくつかの金属元素のいずれかのことを意味する。例としては、パラジウム、銀、イリジウム、白金、及び金が挙げられる。
【0033】
本明細書で用いる場合、「元素分析」という用語は、試料の元素の存在及び/または存在量を評価する方法を指す。
【0034】
「複数」は、少なくとも2つのメンバーを含む。特定の場合において、複数は、少なくとも10、少なくとも100、少なくとも100、少なくとも10,000、少なくとも100,000、少なくとも10、少なくとも10、少なくとも10、または少なくとも10、またはそれ以上のメンバーを有してもよい。
【0035】
「細胞を含む試料」は、無傷、例えば、固定細胞を含む生物起源の試料である。いくつかの実施形態では、試料は実質的に平面であってもよい。そのような試料の例としては、組織切片、解離細胞を平面上に成膜することで作製される試料、及び細胞シートを平面上に成長させることで作製される試料が挙げられる。
【0036】
本明細書で用いる場合、「走査」という用語は、実質的に二次元領域がエネルギー源によって照射されるまで、放射源(例えば、レーザー)を表面の上にジグザグ状にするかまたはラスタライズする方法を指す。
【0037】
本明細書で用いる場合、「空間的にアドレス可能な測定値」という用語は、各々が表面上の特定位置に関連付けられている一連の値を指す。空間的にアドレス可能な測定値は、試料中のある位置にマッピングすることができ、試料の画像の再構築に使用することができる。
【0038】
本明細書で用いる場合、試料の領域にわたって質量タグの存在量の空間的にアドレス可能な測定値という文脈における、「領域にわたって」という用語は、試料の表面でまたは表面下(例えば、表面近傍の細胞上または細胞内)にある質量タグの測定値を指す。分析した領域の深度は、イオンビームのエネルギーに応じて変動し得る。
【0039】
本明細書を通して他の用語の定義が記載され得る。
【発明を実施するための形態】
【0040】
本発明をさらに説明するために、以下の具体的な実施例が記載され、本発明を説明するために提供されるものであり、いかなる形でも本発明の範囲を限定するものと解釈されるべきではないことが理解される。
【0041】
本明細書に記載の本方法は、二次イオン質量分析計(SIMS)、例えば、静的または動的SIMSを用いて空間登録された元素組成を定量することが可能な機器で測定された質量タグ、即ち、細胞及び細胞外構造を含む生物学的試料を標識するためにその質量によって識別可能な安定同位体を用いる。
【0042】
質量タグは、染料の一部であってもまたは染料に結合していてもよく、あるいは抗体などの捕捉剤に結合していてもよい。ある特定の実施形態では、質量タグは、単一非生物の同位体の1つ以上の原子にキレートした、エチレンジアミン四酢酸(EDTA)またはジエチレントリアミン5酢酸(DTPA)などの金属キレート剤の繰り返し単位からなるキレートポリマーからなっていてもよい。いくつかの実施形態では、質量タグは、サイズが実質的に均一であり、特異的結合試薬の存在量がタグ原子の数に直接比例するようにしてもよい。次いで、タグ付けされた特異的結合試薬は、生物学的試料と接触させ、洗浄し、空間登録を持つ試料中に存在するタグ原子の数を定量化することが可能なSIMS機器で測定する。検体の存在量は、検出試薬当たりのタグ原子のモル比から類推してもよい。
【0043】
上述の方法は、複数の特異的結合試薬(例えば、2個以上の特異的結合試薬、最大で5個の特異的結合試薬、最大で10個の特異的結合試薬、最大で20個の特異的結合試薬、最大で50個の特異的結合試薬、または最大で100個の特異的結合試薬、またはそれ以上)を用いてアッセイを行うことができるという点で多重化してもよい。各特異的結合試薬は異なる質量タグと結合してもよく、質量タグは二次イオン質量分析法によって互いに区別可能である。あるいはまたはさらに、多重化には、対象となる特異的特徴の染料を用いることを伴ってもよい。
【0044】
多くの元素は、複数の安定同位体として自然界に存在する。例えば、153Euは、地球上のユーロピウムの52%を占めており、151Euは、残りの48%のほとんどを構成しているが、ユーロピウムの不安定な放射性同位体は、1%未満を構成している。多くの安定同位体は、99%(2N)、99.9%(3N)、99.99%(4N)、99.999%(5N)、及び99.9999%(6N)純度を含む純度を変えた粉末または塩調製物として市販されている。いくつかの実施形態では、金属キレート剤タグは、濃縮同位体を用いて合成してもよい。例えば、質量ドットは、151Eu(例えば、酸化ユーロピウム151、99.999%純度、American Elements社)を用いて合成してもよい。質量ドットは、米国特許出願公開第2012/0178183Al号に記載されており、参照により本明細書に組み込まれる。濃縮同位体を用いることで、多重化分析で同時に検出することができる同位体タグの特有の種の数を最大限にする。さらに、対象となる空間的に明確な特徴は、分析をさらに多重化するために同じ金属タグで標識してもよい。そのような空間的に明確な特徴は、1つ以上の他の金属タグとの共局在化に基づいて区別してもよい。例えば、同じ金属タグを用いたHer2膜染料及びER核染料は、ER染料と共局在化する異なる金属タグを用いるdsDNAまたはヒストンH3染料に基づいて互いに区別し得る。
【0045】
質量タグは、染料の一部であってもまたは染料に結合していてもよい。これらの実施形態では、染色は、ファロイジン、ガドジアミド、アクリジンオレンジ、ビスマルクブラウン、カーミン、クーマシーブルー、クレジルバイオレット、クリスタルバイオレット、DAPI、ヘマトキシリン、エオシン、臭化エチジウム、酸性フクシン、ヘマトキシリン、ヘキスト染料、ヨウ素、マラカイトグリーン、メチルグリーン、メチレンブルー、ニュートラルレッド、ナイルブルー、ナイルレッド、四酸化オスミウム(正式名:四酸化オスミウム)、ローダミン、サフラニン、リンタングステン酸、四酸化オスミウム、四酸化ルテニウム、モリブデン酸アンモニウム、ヨウ化カドミウム、カルボジヒドラジド、塩化第二鉄、ヘキサミン、三塩化インジウム、硝酸ランタン、酢酸鉛、クエン酸鉛、硝酸鉛(II)、過ヨウ素酸、リンモリブデン酸、フェリシアン化カリウム、フェロシアン化カリウム、ルテニウムレッド、硝酸銀、銀タンパク化合物、塩化金酸ナトリウム、硝酸タリウム、チオセミカルバジド、酢酸ウラニル、硝酸ウラニル、硫酸バナジル、またはその任意の誘導体であってもよい。染料は、対象となる任意の特徴、例えば、タンパク質またはタンパク質のクラス、リン脂質、DNA(例えば、dsDNA、ssDNA)、RNA、細胞小器官(例えば、細胞膜、ミトコンドリア、小胞体、ゴルジ体、核膜など)、細胞の分画(例えば、サイトゾル、核画分など)に特異的であってもよい。染料は、細胞内または細胞外構造のコントラストまたはイメージングを高めてもよい。
【0046】
ある特定の実施形態では、染料は、生きた対象への投与に適していてもよい。染料は、摂取、注射(例えば、血液循環内)、または局所投与(例えば、手術中)などの任意の適切な手段によって対象に投与してもよい。そのような染料は、対象となる組織、生体構造(例えば、血管、病変)、または細胞型に特異的であってもよい。染料は、グルコース取り込みなどの細胞過程の対象の細胞に組み込んでもよい。そのような染料の例としては、限定的ではないが、ガドリニウム、シスプラチン、ハロゲン化炭水化物(例えば、フッ素化、塩素化、臭素化、ヨウ化された炭水化物)などが挙げられる。イメージング技術(例えば、MRI、PETスキャン、CTスキャンなど)で用いられる他の注入可能な染料は、質量タグに本質的に関連付けられていない場合、質量タグに結合させ、生きた対象に投与してもよい。本明細書に記載の本方法に使用される試料は、投与後に対象から入手してもよい。
【0047】
他の実施形態では、以下により詳細に記載されるように、質量タグは、捕捉剤、例えば、試料上のエピトープを認識する抗体に結合していてもよい。多重化アッセイでは、捕捉剤と染料の組み合わせを用いてもよい。
【0048】
本方法で用いられる質量タグは、分析下で試料中には通常見られない任意の安定同位体であってもよい。これらには、限定的ではないが、遷移金属(例えば、Rh、Ir、Cd、Au)、遷移後金属(例えば、Al、Ga、In、Tl)、半金属(例えば、Te、Bi)、アルカリ金属、ハロゲン、及びアクチニドの高分子量メンバーが含まれるが、他のものも環境によっては使用してもよい。質量タグは、21~238原子質量単位の範囲で質量を有してもよい。ある特定の実施形態では、ランタニドを用いてもよい。周期表のランタニド系列は15個の元素を含み、そのうちの14個(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)は、安定同位体を有する。ランタニドは、生物圏での希少性のため容易に使用することができる。1~238AMUの元素に、100を超える非生物の安定同位体が存在する。いくつかの実施形態では、タグ付けする同位体には、本明細書に記載の用途に対して安定金属キレート剤タグを形成することができる非ランタニド元素を含んでいてもよい。SIMSベースの測定様式では、いくつかのICP-MSベースの様式は異なり、元素レポーターは、生物マトリクスにおいて一般的ではない低分子量の遷移元素(例えば、Al、W、及びHg)からなってもよい。
【0049】
ある特定の実施形態における本方法での使用に適している元素としては、限定的ではないが、ランタニド及び貴金属が挙げられる。ある特定の場合において、元素タグは、21~90の原子番号を有してもよい。特定の実施形態では、元素タグは、遷移金属、即ち、以下の原子番号、21~29、39~47、57~79、及び89を有する元素を含んでもよい。遷移元素には、ランタニド及び貴金属が含まれる。例えば、Cotton and Wilkinson、1972、528~530ページを参照されたい。本明細書で使用される元素タグは、体外から提供されない限り、人工で、通常の生物学的試料、例えば、細胞中に存在しない非生物性である。
【0050】
特定の実施形態では、結合試薬と結合される質量タグは、式:R-MTであり得、ここで、Rは特異的結合試薬上の反応基との結合を形成することができる反応基であり、MTは質量タグである。化合物は、RとMTの間のスペーサーも含み得る。特定の実施形態では、Rは、例えば、スルフヒドリル反応性であるマレイミドまたはハロゲン含有基、アミン反応性であるN-ヒドロキシスクシンイミド(NHS)カーボネート、またはヒドロキシル反応性であるN,N-ジイソプロピル-2-シアノエチルホスホロアミダイトであってもよい。そのような基は、特異的結合試薬上の他の基、(例えば、抗体のシステインまたは他の残基、またはオリゴヌクレオチドのスルフヒドリル基)と反応する。多くの実施形態では、反応基と質量タグの結合は、選択的に開裂可能ではなく、例えば、光開裂可能ではない。
【0051】
特定の実施形態では、MTは、例えば、10~500単位のポリマーであってもよく、ポリマーの各単位は、配位遷移金属を含む。DOTA及びDTPAベースポリキラントを含む、配位基を含有する適切な反応基及びポリマーは、環状無水物法を用いてポリ-L-リシンバックボーン上に最大で105個のDTPA残基を結合させ、また2-ピリジルジスルフィドリンカーを用いてモノクローナル抗体(抗HLA IgG)上にポリリシン-ポリ-DTPAポリキラントも結合させ、部位特異的マクロ分子当たりで最大で約42.5個のキラント(DTPA残基)の置換を達成することを記載しているManabeら(Biochemicaら、Biophysica Acta 883:460-467(1986));一般式の抗体反応性ランタニドキレート化合物を含む抗体を標識する一般法を記載しているTorchilin(米国特許第6203775号);タンパク質と結合しているポリリシンバックボーンを含有するDOTAベースポリキラントを記載する要約書に記載しているSieving(米国特許第5364614号)を含む種々の刊行物に記載されている。そのような部分のさらなる説明は、例えば、米国公開特許20080003616(ポリマーバックボーン元素タグ)、米国特許第6203775号(タンパク質を標識するキレートポリマー)、米国特許第7267994号(元素コード親和性タグ)、米国特許第6274713号(ポリキラント)及び米国特許第5364613号(大環状キラント部分を含有するポリキラント)、並びに多くの他の特許に記載されている。これらの刊行物は、配位基を含有する反応基及びポリマーのそれらの包括的及び具体的な教示、並びにこのような化合物を作製することができる方法に関して参照により組み込まれる。上に引用した参考文献に記載される方法に加えて、ポリマーベース元素タグの作製方法は、Zhangら(Agnew Chem.Int.Ed.Engl.2007 46:6111-6114)にも詳細に記載されている。さらに、金属タグに結合することができる任意のキレート剤を用いることができる。これらには、EDTA、EGTA、及びHemeが含まれる。これらのキレート剤は、金属タグの+1、+2、+3、+4イオンに結合することができる。そのようなタグを結合試薬に結合させる方法は、当業界において周知である。例えば、DVS Sciences社によって製造されるMAXPAR試薬は、30モノマーの平均長を持つDTPAのマレイミド官能化ポリマーである。MAXPARプロトコルを用いて、典型的なIgG抗体を6個または7個のポリマーと結合させることで、抗体当たり平均で200個のタグ付け同位体原子を結合させることができる。
【0052】
質量ベースの元素分析を用いる場合、実質的に重複しないで同時に測定することができる21~238原子質量単位(amu)で利用可能な100個を超える非生物元素同位体質量が存在する。これらの希土類金属は生物単離物中に通常は存在しない、唯一の検出限界は、結合される試薬の感度、及び測定を行う機器の感度である。
【0053】
特定の実施形態では、上述の方法は、細胞の不均一集団が複数の区別可能に質量タグ付けされた結合試薬(例えば、いくつかの異なる抗体)で標識される多重アッセイで用いることができる。200個を超える安定同位体を有する80個超える天然元素があるので、細胞の集団を、各々が異なる質量にタグ付けされる少なくとも5個、少なくとも10個、少なくとも20個、少なくとも30個、少なくとも50個、または少なくとも100個、最大で150個またはそれ以上の異なる結合試薬(例えば、異なる細胞表面マーカーに結合する)を用いて標識してもよい。細胞の集団を標識した後、上述の方法を用いて分析する。
【0054】
上述のように、本方法で用いられる特異的結合試薬は、細胞中または細胞上の結合パートナーに特異的に結合することができる任意の種類の分子(例えば、抗体、ペプチド-MHC四量体、核酸(例えば、ssRNAまたはssDNA)、アプタマー、細胞表面レセプターに特異的なリガンドなど)であってもよい。結合パートナーは、タンパク質、核酸、または別の種類の細胞マクロ分子(例えば、炭水化物)であってもよい。結合パートナーは、細胞表面上であってもよく、または細胞外または細胞内(例えば、核、または別の細胞小器官、または細胞質に関連付けられた)であってもよい。
【0055】
ある特定の態様では、特異的結合試薬は、特異的RNA及び/またはDNA配列にハイブリダイズする核酸に結合されたMTであってもよい。MTが結合した核酸は、標準インサイチュハイブリダイゼーション、分枝DNAプローブ(例えば、Affymetrixにより提供された)を利用するインサイツハイブリダイゼーション、近接ライゲーション(PLA)、及びローリングサークル増幅(例えば、Olink bioscienceにより提供された)などの、標的(例えば、RNA、DNA、タンパク質またはタンパク質複合体)を検出する任意の適切な技術と組み合わせて用いてもよい。インサイチュハイブリダイゼーション技術、例えば、分枝DNAプローブを用いるものは、Mo血球発現a Bakerらに記載されている(Nature Methods 9、787-790(2012))。簡単に言えば、分枝DNAプローブを用いるインサイチュハイブリダイゼーションは一連のssDNAプローブを利用し、ここで、第1のセットのDNAプローブは、標的DNAまたはRNA配列に特異的にハイブリダイズし、第2のセットのDNAプローブは、第1のセットのDNAプローブの一部にハイブリダイズして、したがって単一のDNAまたはRNA分子に(間接的に)結合することができるDNAプローブの数が拡張される。第3のセットが、第2のセットのDNAプローブに同様の方法で結合するなどである。DNAプローブの1つ以上のセットを、標的DNAまたはRNA分子を標識するために金属タグに結合させてもよい。単一RNA分子、DNA分子、及びタンパク質複合体の検出を含む近接ライゲーション技術は、参照により本明細書に組み込まれるWeibrechtら(Nature Methods 9、787-790(2012))に記載されている。ローリングサークル増幅は、参照により本明細書に組み込まれるLarssonら(Nat.Methods 1、227-232(2004))に記載されている。簡単に言えば、近接ライゲーションとその後のローリングサークル増幅において、核酸を2本の近接RNAまたはDNA鎖にハイブリダイズさせ、その後核酸をライゲートし、増殖して、核酸に相補的な配列の多くのコピーが得られる。したがって、相補配列は、元の近接RNAまたはDNA鎖よりも高いコピー数で存在し、(例えば、相補配列にハイブリダイズするMTが結合した核酸によって)より簡単に検出することができる。近接RNAまたはDNA鎖の各々は、異なる抗体に結合させもよい(例えば、異なる抗体の各々は、タンパク質複合体の異なるタンパク質に特異的であってもよい)。
【0056】
上記の技術のいずれも、単一分子標的(例えば、個別のRNA分子、DNA分子、タンパク質、またはタンパク質複合体)を分解するのに使用してもよい。単一分子標的は明確に異なる点として分解可能であるので、金属同位体の組み合わせを用いて、分子標的を特異的に標識してもよい。一例では、特異的結合試薬は、核酸であってもよく、金属同位体の特有の組み合わせに結合されていてもよい。別の例では、MTと結合した核酸(例えば、各々は、異なる質量タグに結合)の組み合わせを一緒に用いて、分子標的を金属同位体の特有の組み合わせで標識してもよい。したがって、分子標的が空間的に区別可能であるならば、n個の質量タグを2個の異なる分子標的を標識するために組み合わせで用いることができる。本明細書に記載の方法を用いて、ある特定の成分(例えば、タンパク質、核酸、または他の分子)の量を決める必要がある細胞を含む生物起源の試料を評価してもよい。いくつかの実施形態では、この分析は、SIMS機器(例えば、Cameca製のNanoSIMS、Physical Electronics製のNanoTOF)を用いて行ってもよい。二次イオン質量分析は、試料表面の化学組成を検出及び局在化を可能にする表面高感度技術である。機器は、微細に集束されたパルス状の一次イオンビームを用いて、試料表面から分子種を脱離し、イオン化することができる。得られた二次イオンを質量分析計に移し、ここで、標準の質量分析器(例えば、飛行時間、磁場型、四重極、イオントラップ、またはその組み合わせ)を用いて、質量分析し、定量する。試料表面から収集した質量スペクトルを表示することで、化学画像を生成する。得られた画像の各ピクセルは、実質的に質量スペクトルを表す。特に、この機器では、「単位分解能」、すなわち1AMUまたはそれ以上で分離された質量レポーターを区別する能力のみを要する。NanoTOFは、TOF検出器と同期する低強度のパルス光源を用いる。Camecaは、DC(即ち、連続であって非パルス)ビームを用いる。
【0057】
高速パルスまたは連続イオンビーム(一次イオン)を高真空で固体試料の表面上に照射すると、表面の成分が、脱離-イオン化現象によって真空中に放出される。生成された正または負に帯電したイオン(二次イオン)を電場によって一方向に焦点を合わせて、遠隔位置で検出を行う。パルス状の一次イオンを固体表面上に照射すると、種々の質量を有する二次イオンが、試料の表面の組成に応じて生成される。二次イオンのうち、より軽い質量を持つイオンは、TOF管中で、より重い質量を持つイオンよりも速く飛ぶ。したがって、二次イオンの生成と検出の間の時間(飛行時間)を測定することで、生成された二次イオンの質量を分析することができる。一次イオンを照射すると、固体試料の最表面で生成された二次イオンのみが真空中に放出され、その結果、試料の最表面(例えば、深度1nm未満、2nm未満、5nm未満、10nm未満、20nm未満、50nm未満、100nm未満、または100nm以上)の情報を得ることができる。TOF-SIMSでは、照射した一次イオンの量は著しく少量であり、有機化合物がその化学構造を維持しながらイオン化され、有機化合物の構造を質量スペクトルから特定することができるようになる。二次イオン質量分析法の原理は、例えば、Beluら(Biomaterials.2003 24:3635-53)、Polら(Histochem Cell Biol.2010 134:423-43)及びKlitzing(Methods Mol Biol.2013 950:483-501)に記載されている。
【0058】
上述のように、初期データを得た後、データを用いて試料の画像を構築する。この画像を分析して、個別細胞の境界、及び/または個別細胞の細胞内特徴を画像内で識別することができる。細胞の画像を分割するコンピュータ実装方法は、当業界において周知であり、比較的単純な閾値化技術(例えば、Kordeら、Anal Quant Cytol Histol.2009 31,83-89及びTuominenら、Breast Cancer Res 2010 12,R56を参照されたい)からより高度な方法、例えば、最大細胞径(Koら、J Digit Imaging 2009 22,259-274)または勾配フロートラッキング(Liら、J Microsc 2008 231,47-58)により規定された適応注目ウィンドウまでの範囲に及ぶ。いくつかの適切な画像分割方法が、Koら(J Digit Imaging.2009 22:259-74)及びOng(Comput Biol Med.1996 26:269-79)で考察することができる。次に、個別細胞の各々またはその細胞内特徴に対応し、分割することで規定されているデータを統合して、各細胞の境界内の質量タグの各々の量を表す値を細胞ごとに提供する。本方法のこのステップにより、細胞に関連付けられている質量タグの各々の量の測定値を細胞ごとに含むデータセットが得られる。この概念を以下に示す表に示す。
【0059】
このデータにより試料中の細胞をカテゴリー分けすることができる。例えば、上の表に示す例では、3個の細胞は、異なるプロファイルの質量タグ(ここで、プロファイルがカテゴリーを識別する)を有するので、異なる種類の細胞である可能性が高い。特定の場合では、この情報を用いて、細胞の各々がそれらのカテゴリーにより色分けされる偽色画像を生成してもよい。したがって、本方法は、細胞がそれらのカテゴリーにより色分けされる試料の画像を表示することを含んでもよい。特定の実施形態では、画像のいずれの1つのピクセルにおいても、ピクセルの色の強度は、最初の走査によって得られたそのピクセルについて得られた信号の大きさと相関している。これらの実施形態では、得られた偽色画像は色分け細胞を示すことができ、細胞の任意の単一ピクセルの色の強度は、試料中の対応する領域に関連付けられている特異的結合試薬の量と相関している。
【0060】
最初の走査は、試料の部分除去(例えば、ナノメートル規模の深度で)しかもたらさないので、試料を再走査して、最初に走査された領域にわたって1つ以上の質量タグの存在量の測定値を有する追加のデータセットを生成してもよい。例えば、最初の走査を用いて、試料中の対象となる領域(単数または複数)を特定してもよい。そのような走査は、低分解能でより速やかであるため、一度により広い領域の質量タグ存在量を測定することができ、及び/または試料の除去はより少なくなり得る。再走査は、対象となる領域(単数または複数)の金属タグの存在量の高分解能走査であってもよい。あるいはまたはさらに、同じ領域にわたって複数の走査を用いて、(例えば、個別の二次元データセットから集約された)三次元画像を生成してもよい。ある特定の態様では、最初の走査により同定された対象となる領域は、例えば、レーザーキャプチャーマイクロダイセクションによって対象となる領域を試料から単離後にさらに分析してもよい。
【0061】
本明細書に記載の方法は、(例えば、定量的試料間比較を可能にするため)試料及び/または時点にわたって得られたデータを標準化する手段として正規化を含んでもよい。ある特定の態様では、イオン化及び/または全測定効率の正規化を、試料中に存在する標準化された金属粒子または懸濁液を用いて行ってもよい。標準化された金属粒子または懸濁液は、公知の量の1つ以上の質量タグを有してもよく、1つ以上の質量タグの得られた測定を用いて、試料中の他の質量タグの測定値を正規化してもよい。例えば、正規化ビーズを用いて、システムを較正するかまたは対象方法によって得られたデータを正規化してもよい。ビーズ標準を用いたマスサイトメトリーデータの正規化は、Rachel Finkら(Cytometry A.83(5):483-94(2013))に記載されており、これは、参照により本明細書に組み込まれ、飛行時間質量分析法も利用する対象方法に適用可能である。
【0062】
あるいはまたはさらに、イオン化及び/または測定効率は、上述の染料のいずれかにしたがって正規化してもよい。例えば、ERの染料に用いた質量タグの測定値は、所与の領域の、細胞の、または試料中の複数の細胞にわたる質量タグの全体強度に対して正規化してもよい。
【0063】
また、正規化を用いて、例えば、組織固定の度合い、タンパク質の保持、特異的結合試薬による染色効率の効果を考慮してもよい。広範囲の細胞型にわたって安定的に発現した分子標的に結合するよく特徴付けられた抗体に結合した質量タグを用いて正規化してもよい。そのような抗体としては、限定的ではないが、ハウスキーピングタンパク質(GAPDH、HSP90、ベータアクチン、及びベータチューブリンなど)、dsDNA、及びヒストンH3に対する抗体が挙げられる。
【0064】
上述のように、本発明の方法により、多重化アプローチが可能になる。複数の質量タグを測定して、複数の分子標的(例えば、特異的タンパク質、DNA、RNAなど)の存在量、並びに試料(例えば、細胞または組織構造、細胞細胞小器官、細胞分画など)中の対象となる生物学的特徴を判断することができる。さらに、質量タグ測定値は、上述の実施形態のいずれかにしたがって正規化してもよい。多数の別個の質量タグにより、単一領域で2つ以上、5、10、20、30、40、50、60、70、80、100またはそれ以上の異なる質量タグを多重化することができる。特異的分子標的の測定における信頼性を増すように、複数の質量タグ(例えば、同じ分子標的の相補エピトープに対する抗体に結合した)を重複して用いてもよい。さらに、多重化は、2つ以上の空間的に明確に異なる標的または対象となる特徴を標識するために同一質量タグを用いることで達成される。あるいはまたはさらに、金属タグの特有の組み合わせを用いて、空間的に明確に異なる標的または対象となる特徴を特定してもよい。
【0065】
システム
試料を分析するシステムも提供する。このシステムは、a)試料を含む基板を保持するホルダを含む二次イオン質量分析法(SIMS)システムであって、(i)試料を一次イオンビーム(例えば、酸素、セシウム、金、アルゴン、ビスマス、キセノン、C60、SF、またはガリウムイオン、またはその任意の混合物、例えば、酸素とキセノンイオンの混合物ビーム)で走査し、試料に結合されている特異的結合試薬の質量特異的存在量の測定値を含むデータセットを生成し、(ii)データセットを出力するように構成さるシステム、及び、b)データセットを処理して試料の画像を生成する画像分析モジュールを含むコンピュータを具備していてもよい。ホルダは、走査しやすくするために少なくともx及びy方向(試料の平面内である)に制御可能に移動する(例えば、段付けされるかまたは連続的に移動する)ことが可能な可動ステージ内にある。画像分析モジュールは、上述の方法の多くのステップを行うようにプログラミングすることができる。例えば、いくつかの実施形態では、画像分析モジュールは、画像を分割して、個別細胞の境界、必要に応じて、個別細胞の細胞内特徴を画像内で識別してもよい。場合によっては、画像分析モジュールは、画像内の個別細胞の各々またはその細胞内特徴のデータを統合し、必要に応じて、細胞の各々について得られた統合データに基づいて、個別細胞をカテゴリー分けしてもよい。画像分析モジュールは、組織試料の画像を表示してもよく、細胞及び/またはその細胞内特徴は、それらのカテゴリーによって色分けされる。上述したように、画像のいずれの1つのピクセルにおいても、ピクセルの色の強度は、SIMSシステムによって得られたそのピクセルについて得られた信号の大きさと相関している。特定の実施形態では、システムは、四重極、次いでイオンパルサー、次いで飛行時間(TOF)管と結合しているDCイオン源(即ち、動的ソース)を含んでいてもよい。SIMSシステムは、動的または静的であってもよい。NanoSIMSは、高出力のDC一次イオン源を用いるので動的とみなされ、NanoTOFは、低出力パルス源を用いるので静的とみなされる。
【0066】
画像分析モジュールは、複数の走査領域から得られたデータセットを単一のデータセットに組み合わせることができ、複数の走査領域の各々は、互いにずれている。画像分析モジュールは、隣接する走査領域の縁端付近に同様の質量タグ強度を持つピクセルの重なりを増すように、隣接する走査領域間のオフセットを調整することができる。
【0067】
画像分析モジュールは、データセットを1つ以上の偽色画像(例えば、疑似色、疑似明視野、疑似免疫蛍光)に変換してもよい。画像は、任意の適切な画像ファイル形式(例えば、JPEG、Exif、TIFF、GIF、PNG、ImageJなどの画像分析ソフトウェアによって読み取り可能な形式等)であってもよい。ある特定の実施形態では、画像分析モジュールは、1つ以上の質量タグの存在量(例えば、測定した強度)を、画像内の個別のピクセルでの1つ以上の偽色の強度に変換することで画像を生成してもよい。質量タグの強度と対応する偽色の強度の関係は、線形であっても非線形(例えば、対数、指数など)であってもよい。
【0068】
ある特定の実施形態では、システムは、試料の領域に結合している複数の質量タグの存在量の空間的にアドレス可能な測定値を含む多重化データセットを生成するように構成される。画像分析モジュールは、複数の質量タグ測定値を変換して、複数の偽色画像を生成してもよい。画像分析モジュールは、多重化偽色画像を得るために複数の偽色画像を重ねてもよい(例えば、各ピクセルで偽色を重ね合わせる)。複数の質量タグ測定値(例えば、非加重または加重)は、例えば、複数の質量タグの各々に関連付けられている特異的結合試薬の結合によって特徴付けられる対象とする生物学的特徴を表すように単一偽色に変換してもよい。偽色は、ユーザからの手動入力に基づいて質量タグまたは質量タグの組み合わせに割り当ててもよい。あるいはまたはさらに、教師なしアプローチを用いて、単一偽色によって表される質量タグの群を決定してもよい。教師なしアプローチは、(例えば、主成分分析(PCA)を介して)群の数を最小にしながら分散を最大にし、(例えば、任意の適切なクラスタリングアルゴリズムによって)共局在化する及び/または近接の質量タグを群化する質量タグの群を特定してもよく、または単一偽色によって表される質量タグを群化する任意の他の適切な方法を用いてもよい。ある特定の態様では、画像は、対象となる特徴に関連付けられた質量タグ、例えば、核分画(例えば、dsDNA特異的質量タグと共局在化した)の質量タグの強度にのみ関連する偽色を含んでいてもよい。
【0069】
画像分析モジュールはさらに、質量タグ強度または偽色の強度及び/またはコントラストを調整し(例えば、正規化する)、畳み込み演算(例えば、前記質量タグ強度または偽色のぼかしまたは鮮明化)を行い、または画像を向上するために任意の他の適切な動作を行うように構成される。ある特定の態様では、画像分析モジュールは、複数の2D走査から生成されたデータセットを集約し、細胞の3Dモデルである画像を生成してもよい。画像分析モジュールは、上記の動作のいずれかを行い、連続2D走査から得られたピクセルを整合させ、及び/または連続2D走査から得られたピクセルにわたって質量タグ強度または偽色をぼやけさせるかまたは平滑化して、3Dモデルを生成してもよい。
【0070】
画像分析法は、コンピュータ上に実装してもよい。ある特定の実施形態では、汎用コンピュータを、本明細書に開示される方法及びプログラムのための機能的配置に構成することができる。そのようなコンピュータのハードウェアアーキテクチャは当業者に周知であり、1つ以上の処理装置(CPU)と、ランダムアクセスメモリ(RAM)と、読み取り専用メモリ(ROM)と、内部または外部データ記憶媒体(例えば、ハードディスクドライブ)とを含むハードウェア構成要素を含むことができる。コンピュータシステムはまた、グラフィカル情報を加工及び表示手段に出力するための1つ以上のグラフィックボードを含むことができる。上記構成要素は、コンピュータ内部のバスを介して適切に相互接続することができる。コンピュータは、汎用の外部構成要素、例えば、モニタ、キーボード、マウス、ネットワーク等と通信するために適したインターフェースをさらに含むことができる。いくつかの実施形態では、本方法及びプログラムのための処理能力を増加させるために、コンピュータは並列処理することができる、または並列もしくは分散計算用に構成されたネットワークの一部となり得る。いくつかの実施形態では、記憶媒体から読み出されたプログラムコードを、コンピュータに挿入された拡張ボード、またはコンピュータに接続された拡張ユニットに提供されるメモリーに書き込むことができ、拡張ボードまたは拡張ユニットに提供されるCPUなどが以下に記載される機能を果たすためにプログラムコードの命令にしたがって動作の一部または全部を実際に実行することができる。他の実施形態では、クラウドコンピューティングシステムを用いて本方法を行うことができる。これらの実施形態では、データファイル及びプログラミングをクラウドコンピュータにエクスポートし、クラウドコンピュータがプログラムを実行して出力をユーザに戻す。
【0071】
システムは、ある特定の実施形態では、a)中央処理装置と、b)ソフトウェア及びデータを記憶するための1つ以上のハードドライブを含むことができる主要不揮発性記憶ドライブであって、ディスクコントローラによって制御される記憶ドライブと、c)不揮発性記憶ドライブからロードされたプログラム及びデータを含むシステム制御プログラム、データ、及びアプリケーションプログラムを記憶するためのシステムメモリー、例えば、高速ランダムアクセスメモリー(RAM)と、d)システムメモリーはまた、読み取り専用メモリ(ROM)を含み、マウス、キーパッド及びディスプレイなどの1つ以上の入力または出力デバイスを含むユーザインターフェースと、e)任意の有線または無線通信ネットワーク、例えば、プリンターと接続するための任意のネットワークインターフェースカードと、f)システムの上記要素を相互接続するための内部バスとを含むコンピュータを含むことができる。
【0072】
コンピュータシステムのメモリーは、処理装置による読み出しのための情報を記憶することができる任意のデバイスであり得、磁気もしくは光学デバイス、または固体メモリーデバイス(揮発性もしくは不揮発性RAMなど)を含むことができる。メモリーまたはメモリーユニットは、同じまたは異なる型の2つ以上の物理メモリーデバイスを有することができる(例えば、メモリーは、複数のドライブ、カードもしくは複数の固体メモリーデバイスまたはこれらのある組み合わせなどの複数のメモリーデバイスを有することができる)。コンピュータ可読媒体に関して、「永久メモリー」とは、永久であるメモリーを指す。永久メモリーは、コンピュータまたは処理装置への給電の終了によって消去されない。コンピュータハードドライブ、ROM(即ち、仮想メモリーとして使用されないROM)、CD-ROM、フロッピーディスク、及びDVDは、全て永久メモリーの例である。ランダムアクセスメモリー(RAM)は、非永久(即ち、揮発性)メモリーの例である。永久メモリーのファイルは、編集可能及び書き換え可能であり得る。
【0073】
コンピュータの動作は、中央処理装置によって実行されるオペレーティングシステムによって主に制御される。オペレーティングシステムは、システムメモリーに記憶することができる。いくつかの実施形態では、オペレーティングシステムは、ファイルシステムを含むことができる。オペレーティングシステムに加えて、システムメモリーの1つの可能な実装は、以下に記載される方法を実施するための種々のプログラミングファイル及びデータファイルを含む。ある特定の場合において、プログラミングはプログラムを含むことができ、プログラムは、種々のモジュール、及びユーザがユーザインターフェースでプログラミングによって使用される入力またはパラメータを手動で選択または変更することを可能にするユーザインターフェースモジュールで構成され得る。データファイルは、プログラミングのための種々の入力を含むことができる。
【0074】
ある特定の実施形態では、本明細書に記載の方法による命令を、「プログラミング」の形態でコンピュータ可読媒体にコード化することができ、本明細書で使用される「コンピュータ可読媒体」という用語は、実行及び/または処理のために命令及び/またはデータをコンピュータに供給することに関与する任意の記憶または伝送媒体を指す。記憶媒体の例としては、コンピュータの内部または外部にあろうとなかろうとフロッピーディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性メモリーカード、ROM、DVD-ROM、ブルーレイディスク、固体ディスク、及びネットワーク接続ストレージ(NAS)が挙げられる。情報を含むファイルをコンピュータ可読媒体に「記憶」することができ、「記憶すること」とは、情報がコンピュータによって後日アクセス可能及び検索可能となるように情報を記録することを意味する。
【0075】
本明細書に記載されるコンピュータにより実現される方法は、任意の数のコンピュータプログラミング言語の1つ以上で書き込まれ得るプログラミングを用いて実行することができる。このような言語には、例えば、Java(Sun Microsystems,Inc.、サンタクララ、カリフォルニア州)、Visual Basic(Microsoft Corp.、レドモンド、ワシントン州)、及びC++(AT&T Corp.、ベドミンスター、ニュージャージー州)ならびに任意の多数が含まれる。
【0076】
有用性
上述の方法を用いて、対象からの細胞を分析し、例えば、細胞が正常であるかどうかを判定し、または細胞が治療に応答しているかどうか判定することができる。一実施形態では、本方法を用いて、がん細胞の異形成の度合いを判定してもよい。これらの実施形態では、細胞は、多細胞生物または微生物からの試料であってもよい。生物学的試料は、個体(例えば軟組織もしくは体液)から、またはインビトロで増殖された細胞培養物から単離してもよい。生物学的試料は、脳、副腎、皮膚、肺、脾臓、腎臓、肝臓、脾臓、リンパ節、骨髄、膀胱、胃、小腸、大腸また筋肉等などの軟組織から作ることができる。体液には、血液、血漿、唾液、粘液、痰、脳脊髄液、胸膜液、涙液、乳糜管液、リンパ液、喀痰、脳脊髄液、滑液、尿、羊水、及び精液等が含まれる。生物学的試料には、インビトロでの培養下で増殖された細胞が含まれる。細胞は、組織生検、擦り取った細胞または洗浄細胞の細胞であってもよい。特定の実施形態では、細胞は、ホルマリン固定パラフィン包埋(FFPE)試料中の細胞であってもよい。特定の場合では、本方法を用いて、FFPE試料中の異なる種類のがん細胞を区別してもよい。
【0077】
上述の方法は、抗体のパネルを用いて組織切片を検査するのに特定の有用性が見られ、その例を以下の表に示す。
【0078】
【0079】
いくつかの実施形態では、本方法は、上述のように画像を(この電子的形態は、遠隔場所から送られたものでもよい)得ることを伴ってもよいし、医師または他の医療専門家によって分析し、患者が異常細胞(例えば、がん性細胞)を有するかどうかまたはどの種類の異常細胞が存在するか判断してもよい。画像を診断として用いて、対象が疾患または病態、例えば、がんを有するかどうか判定してもよい。ある特定の実施形態では、本方法を用いて、例えば、がんのステージを判定するか、転移した細胞を特定するか、または治療への患者の応答を監視してもよい。
【0080】
いずれの実施形態においても、データを「遠隔場所」に送ることができ、ここで「遠隔場所」は、画像を検査する場所以外の場所を意味する。例えば、遠隔場所は、同じ市内の別の場所(例えば、オフィス、実験室等)、異なる市内の別の場所、異なる州内の別の場所、異なる国内の別の場所等とすることが可能である。したがって、ある物が、別の物から「遠隔」であると表わされる場合、その意味するところは、2つの物が、少なくとも、異なる室内または異なる建物内にあり、少なくとも、1マイル、10マイル、または、少なくとも、100マイル離れている可能性があるということである。情報を「通信する」は、適切な通信チャネル(例えば、プライベート・ネットワークまたは公衆通信回線)を介して、電気信号としてその情報を表わしたデータを伝送することを表す。物を「送る」は、その物を物理的に運ぶか、別様に運ぶか(それが可能な場合)にかかわらず、ある場所から次の場所へその物を運ぶことを表わしており、少なくとも、データの場合、データを納めた媒体を物理的に運ぶか、あるいは、データを通信することが含まれる。通信媒体の例としては、無線または赤外線伝送チャネル、並びに別のコンピュータまたはネットワークデバイスへのネットワーク接続、電子メール送信を含むインターネット、またはウェブサイトに記録された情報などが挙げられる。ある特定の実施形態では、画像は、医師または他の有資格医療専門家によって分析してもよいし、画像の分析結果に基づくレポートを、試料を得た患者に送ってもよい。
【0081】
場合によっては、本方法は、限定的ではないが、疾患または病態の診断または監視(画像は、疾患または病態のマーカーを特定する)、創薬標的の発見(画像のマーカーは、薬物療法の標的であってもよい)、薬剤スクリーニング(薬剤の効果が、画像に示すマーカーにより監視される)、薬剤感受性の判断(薬剤感受性が、マーカーに関連付けられる)、及び基礎研究(試料中の細胞間の差を測定するのが望まれる)を含む種々の診断、創薬、及び研究用途で用いてもよい。
【0082】
ある特定の実施形態では、2つの異なる試料を、上記の方法を用いて比較してもよい。異なる試料は、「実験」試料、即ち、対象となる試料と、実験試料と比較することができる「対照」試料とからなっていてもよい。多くの実施形態では、異なる試料は、細胞型対またはその分画対であり、一方の細胞型は、対象となる細胞型、例えば、異常細胞であり、他方のものは、対照、例えば、正常細胞である。細胞の2分画を比較する場合、分画は、通常、2つの細胞の各々からの同じ分画である。しかしながら、ある特定の実施形態では、同じ細胞の2分画を比較してもよい。例示的な細胞型対としては、例えば、組織生検から単離された細胞(例えば、結腸、乳房、前立腺、肺、皮膚がんなどの疾患を有する組織、または病原体などで感染した組織由来)及び同じ組織、通常、同じ患者からの正常細胞;組織培養で増殖した不死の細胞(例えば、増殖性変異または不死化導入遺伝子を持つ細胞)、病原体で感染した細胞、または(例えば、ペプチド、ホルモン、温度変化、成長条件、身体的ストレス、細胞形質転換などの環境または化学薬剤)で処理した細胞、及び正常細胞(例えば、不死ではなく、感染しておらず、または処理などされていない以外は、実験細胞と同一の細胞である細胞);がん、疾患を持つ哺乳動物、老齢哺乳動物、または病態に曝された哺乳動物から単離された細胞、及び同じ種の哺乳動物、好ましくは、同じ家族からの健康で若い哺乳動物からの細胞;及び同じ哺乳動物からの分化細胞及び未分化細胞(例えば、一方の細胞は、哺乳動物の他方の前駆細胞である)。一実施形態では、異なる型の細胞、例えば、神経及び非神経細胞、または異なる状態(例えば、細胞の刺激前後)の細胞を用いてもよい。本発明の別の実施形態では、実験材料は、ウイルス、例えば、ヒト免疫不全ウイルス(HIV)などの病原体に感染しやすい細胞であり、対照材料は、病原体による感染に耐性を持つ細胞である。別の実施形態では、試料対は、未分化細胞、例えば、幹細胞と、分化細胞とによって表される。
【0083】
例えば、バクテリア、酵母、植物及び動物(例えば、魚類、鳥類、爬虫類、両生類及び哺乳類)からの任意の生物からの細胞を対象方法で用いてもよい。ある特定の実施形態では、哺乳動物細胞、即ち、マウス、ウサギ、霊長類、またはヒトからの細胞、またはその培養誘導体を用いてもよい。
【0084】
本発明をさらに説明するために、以下の具体的な実施例が、本発明の例示のために提供されており、本発明の範囲を何ら限定すると解釈すべきではないことを理解した上で記載される。
【実施例
【0085】
同位体に関して純粋な元素金属レポーターを介して抗体をイメージングするために二次イオン質量分析法を用いる方法が以下に記載される。多重化イオンビームイメージング(MIBI)は、5logのダイナミックレンジにわたって50nm横方向分解能で同時に最大で100個またはそれ以上の標的を分析することができる。ここで、MIBIを用い、10個の標識を同時に用いてホルマリン固定パラフィン包埋(FFPE)ヒト乳房腫瘍組織切片を分析する。得られたデータにより、MIBIが組織微細構造に関する新たな洞察と、臨床診断、基礎研究、及び創薬に関する高多重化タンパク質発現パターンとをもたらすことが示唆される。
【0086】
この方法は、従来の光ベースの染色法に伴ういくつかの制限を解消する。この方法は、FFPE組織を含む実質的に任意の真空に対応できる標本に用いることができる。本方法の妥当性の確認において、より従来のアプローチと比較してPBMCのほぼ定量的に同一の免疫表現型分析(図2)、並びに同時に分析した10個またはそれ以上のマーカーのさらなる利点を伴う異なる免疫表現型を持つ3つのFFPE乳房腫瘍の等価(染料パターン及び強度)イメージング(図3)を示すことができた。さらに、マーカー多重化及び画像分割により、細胞発現及び細胞内発現を記述する定量的特徴抽出が可能になり、全体として、組織の元の臨床病理学に戻って関連させることができる細胞亜集団の免疫表現型が明らかになった(図4)。最後に、画像の偽色(または疑似色)と組み合わせた新規のアプローチにより、高次元分析を迅速に解釈可能な単一画像へと抽出することができ、ここで、複数の表現型を、教師なしの方法で単一色によって表すことができた(図5)。そのような表現は、MIBI様アプローチを用いて容易に入手可能かつ解釈可能な高次元情報を活用することで顕微鏡ベース診断を大幅に改善する機会を与える。
【0087】
MIBIは、従来のIHC技術を超える利点を有する。自己蛍光によるバックグラウンド信号が無く、ここに示されるダイナミックレンジはすでに、免疫蛍光及び発色IHCをそれぞれ100倍及び1000倍上回る10である。質量分解能は1ダルトンの1/100未満であるので、異なる金属結合一次抗体間でスペクトルの重なりは観察されず、チャネル補償する必要がなくなる。二次標識も増幅検出も必要としないので、アッセイ線形性は、発色IHC及びIFの両方に対して改善される。一方、比較的従来の方法を免疫反応に使用し、質量タグは劣化しないため、試料は無制限に安定であり、遠隔調製を、集中読取施設とともに可能とすることができる。
【0088】
MIBIの機能を他の領域に拡張し、インサイチュハイブリダイゼーション及び細胞内代謝分析など、抗体ベース分析から離れて拡張する試薬を開発することができる。まとめると、既存の分析システムを比較的若干修正することで可能となるMIBIの拡張機能は、組織構造、タンパク質発現、遺伝子発現、及び細胞内レベルの代謝を統合する実用的な多重化イメージングプラットフォームの可能性への道を開く。
【0089】
方法
基板調製:シリコンウェーハ(Silicon Valley Microelectronics)を18mm片に角切りにし、メタノールで2回濯ぎ、綿先端アプリケーターで研磨した。次いで、洗浄した基板を2%ポリ-l-リシン溶液(Sigma-Aldrich)に10分間浸し、60℃で1時間焼成した。
抗体:抗体、レポーター同位体、及び濃度の要約が、下の表S1に見出される。製造者推奨のプロトコルに従って、MaxPAR抗体結合キット(DVS Sciences、Toronto、Canada)を用いて金属結合一次抗体を一度につき100μgで調製した。標識後、抗体をCandor PBS抗体安定化溶液(Candor Bioscience GmbH、Wangen、Germa血球発現)で0.4mg/mLに希釈し、4℃で長期保存した。
【0090】
表S1
【0091】
細胞:IRB承認プロトコルに従ってスタンフォード血液銀行から不適合ヒト末梢血を購入した。全ての血液試料をヘパリン硫酸塩抗凝固剤中に収集し、室温で4~6時間保存し、Accuspin管(Sigma-Aldrich、St.Louis、MO)を用いてフィコールパックプラス(Amersham Biosciences)の上に分離し、赤血球、血小板、及び顆粒球を除去した。細胞をFCS中で10%DMSOとともに凍結させた。細胞をRPMI中で10%FCS(凍結試料に場合には、2mM EDTAを補充した)、1×L-グルタミン、及び1×ペニシリン/ストレプトマイシン(Invitrogen)とともに37℃、5%CO2で1時間静置した。
【0092】
末梢血単核細胞の染色:細胞染色プロトコルは、前述した手順に基づいた。簡単に言えば、細胞を1時間静置した後、表面マーカー抗体を追加して、100μLの最終反応液量をもたらし、室温で30分間インキュベートした。インキュベーション後、細胞を細胞染色媒体で2回洗浄し、2つのアリコートに分けた。マスサイトメトリー分析では、細胞を4℃メタノールで10分間4℃にて透過処理し、細胞染色媒体で2回洗浄し、残量メタノールを除去した後、1.6%PFAとともにPBSで希釈した1mLの1:4000の191/193Ir DNA挿入剤で20分間室温にて染色した。次いで、細胞を細胞染色媒体で1回洗浄し、PBSで1回洗浄した後、分析前におおよそ106個の細胞/mLにdHOで希釈した。MIBI分析では、おおよそ10個の細胞/mLにPBSで希釈した50μLの細胞をシリコン基板上に載置し、20分間付着させた。その後、基板をPBSで穏やかに濯ぎ、2%グルタルアルデヒドでPBS中5分間固定し、dHOで2回濯いだ。最後に、試料を一連の勾配エタノールを介して脱水し、室温で空気乾燥させ、分析前に少なくとも24時間真空デシケーター中で保存した。
【0093】
乳房腫瘍組織切片:ミクロトームを用いて、ヒト乳房腫瘍のFFPE組織ブロックから組織切片(4μm厚さ)を切除し、MIBI分析用にポリ-l-リシン被膜シリコン基板上に、または免疫ペルオキシダーゼ(IPOX)染色用にスライドガラス上にマウントした。シリコンにマウントした切片を65℃で15分間焼成し、キシレンで脱パラフィンし、一連の勾配エタノールを介して再水和した。次いで、切片をエピトープ回収緩衝液(10mMクエン酸ナトリウム、pH6)中に浸し、圧力鍋に30分間載置した(Electron Microscopy Sciences、Hatfield、PA)。次いで、切片をdHOで2回濯ぎ、洗浄緩衝液(TBS、0.1%Tween、pH7.2)で1回濯いだ。表面を繊維非放出性薄織物で穏やかに接触させることで残存緩衝液を除去した後、ブロッキング緩衝液で30分間(TBS、0.1%Tween、3%BSA、10%ロバ血清、pH7.2)インキュベートした。次に、ブロッキング緩衝液を除去し、切片を加湿チャンバ中で4℃にて一晩染色した。翌朝、切片を洗浄緩衝液中で2回濯ぎ、5分間(PBS、2%グルタルアルデヒド)後固定した後、dHOで濯ぎ、Harrisヘマトキシリンで10秒間染色した。最後に、切片を一連の勾配エタノールを介して脱水し、室温で空気乾燥させ、イメージング前に少なくとも24時間真空デシケーター中で保存した。pH6.0の125℃でのクエン酸緩衝液とともに圧力を15psiにした状態でデクローキングチャンバ(Biocare Medical、Concord、CA)を用いて抗原回収を行った。スライドがチャンバ中にあった総時間は45分であった。一次抗体でのインキュベーションを、加湿チャンバ中で室温にて一晩行った。正常なヤギ血清をブロッキングに用いた。ビオチニル化ヤギ抗ウサギ(1:1000)は、それぞれ、信号の増幅及び視覚化に用いたベクタスタチンABCキットエリート及びペルオキシダーゼ基板キットDAB(Vector Labs、Burlingame、CA)で用いた二次抗体であった。各評価抗原を含むことが知られている組織を陽性対照として用いた。
【0094】
MIBI分析:酸素デュオプラズマトロン源によって供給されたO一次イオンビームを用いたNanoSIMS 50L質量分析計(Cameca)でMIBI分析を行った。一次光学系、二次光学系、及び質量分析計を各実験前に調整した。シリコン上に埋め込んだ金属結合抗体標準を用いて7台の検出器のトロリーを較正した。まず、検出器のトロリーを焦点面に沿って各抗体に対応している金属の質量ピークに移動させた。次いで、高質量分解能(HMR)走査を行い、各トロリーの検出器電圧を調整することで、質量ピークを検出器に集中させた。水平及び垂直ビームの位置合わせを調整し、質量分析計の入射スリットを介する二次イオン透過を最大限にした。次いで、油浸レンズ(E0S)の第3の電極の電圧がおおよそ7150Vである際に二次イオン信号が最大になるように試料ステージのz位置を調整した。レンズであるLduo、L0、及びL1を調整して、一次イオンビームを対象領域(ROI)に集中させた。D1開口2、D0開口0または3、おおよそ1500VのL1電圧、入射スリット0、及び開口スリット0を用いて陽性イオンモードで全てのデータを取った。7つを超えるチャネルを含む画像を、同じ視野の反復走査間に検出器のトロリーを再較正することで取得した。明視野顕微鏡を用いて連続切片上で特定したROIを、CCDカメラを用いてNanoSIMS分析チャンバに配置した。二次イオン収率が定常状態に到達するまで、試料を高一次イオン電流でO-に埋め込んだ。スティグメータ八重極のOct-90電圧及びOct-45電圧を手動で調整し、周期的なアルミニウムグリッドのリアルタイムイオン画像(RTI)を見ながら画像歪みを最小限にした。各画像取得の前に、RTIを見ながら油浸レンズ(E0P)の第2の電極の電圧を調整することで、視野に手動で焦点を合わせた。2~10msのピクセル滞留時間と単一領域において最大で10回の反復走査で50~100μm視野にわたるイオン画像を取得した。単一視野の全走査時間は、5~25分の範囲であった。複数の隣接視野を単一モザイクに一緒につなぐことでより大きな領域を構築した。
【0095】
マスサイトメトリー測定:前述のように、細胞イベントをCyTOFマスサイトメーター上に収集した。「データ」較正を用いた二重計数モードによる検出では、畳み込み閾値を100にした状態で、細胞長を10~75の範囲に設定した。検出器が安定するまでの20秒の遅れを用いて、取得率が1秒当たり500個未満の細胞となるように全ての試料を希釈した。
【0096】
PBMCモザイクの縫い合わせ:40×30長方形で配置された一連の1200個の個別の四方50μm(128ピクセル)タイルにおけるMIBI PBMCデータを収集した。タイルの相対位置は、対数変換されたCD45画像を用いて決定した。隣接タイル間で報告されたオフセットは、x方向及びy方向の両方で40μmであったが、実際のオフセットは、ステージの位置が不正確であることにより変わることが観察された。これを考慮して、各タイルを、報告されたオフセットに従って最初に載置し、その後、x方向及びy方向の両方に複数の異なる位置に1~20ピクセルほど動かした。各場所で、新しいタイルと前のタイルの間の重なり領域の相関を算出した。次に、重なり領域の相関が最大になった位置にタイルを割り当てた。
【0097】
PBMC画像分割:CD45タイルの対数変換モザイクを二次元ガウシアンカーネルにより3ピクセルの標準偏差で畳み込んだ後、1の密度で閾値化した。この閾値を超える密度の各連続領域は、個別細胞として予め標識した。次のステップは、単一細胞として最初に標識するのに十分に近い任意のセットの複数の細胞をそれらの構成一重項に分離することであった。これをするため、予備細胞ごとに、境界に沿った互いの距離のユークリッド距離(「ピンチポイント」)に対する比率が最大であった境界上の2点を特定した。この比率が0.42(ヒューリスティックカットオフ)を超えた場合、予備細胞を、ピンチポイント間の新しい境界線分を持つ2個の細胞に分割した。この処理を全ての細胞にわたって繰り返し、この分離基準を超えるピンチポイントを持つ細胞がなくなるまで、新しい各予備細胞を生成しながら繰り返した。
【0098】
細胞境界を決定すると、測定した各チャネルの生値を各境界内で合計し、細胞1個当たりに基づく全イオン強度の表を生成した。各細胞内のピクセル数も、細胞サイズの1つの尺度として算出した。この表は、標準マスサイトメトリー実験からなどの.fcsファイルと等価であった。
【0099】
データ分析:二重項及び細片を除去するために、DNAによる標準細胞長、次いで、CD45ゲートによる細胞長を適用することで、一重項をマスサイトメトリーPBMCからゲーティングし、CD45による細胞面積を用いた一重ゲートをMIBI PBMCに適用した。MIBI及びCyTOFの両方で処理したPBMCに対する後続のゲーティングスキームを図2B及び図2Cにそれぞれ示す。
【0100】
結果
MIBIの性能評価:MIBIのワークフローは、免疫蛍光(IF)及び発色IHCアッセイと比較可能である(図1)。フルオロフォアまたは酵素結合試薬の代わりに、生物学的標本を、同位体的に純粋で安定的なランタニドに結合した一次抗体とともにインキュベートする(図1)。一次抗体は、標本との同時インキュベーションのために、溶液中で混合される。MIBI用に調製した標本を試料ホルダにマウントし、ラスタライズ化された酸素デュオプラズマトロン一次イオンビームに曝した。このイオンビームが試料に衝突することで、結合抗体のランタニド付加物を二次イオンとして遊離させる。この試験では、二次イオンを複数の光電子増倍管を備えた磁場型質量分析計を介して次に分析し、複数のランタニド同位体(質量ベースレポーター)を並列検出させる。得られたデータは、各ランタニドの元素分布、したがって、各抗体とその対応しているエピトープの二次元マップを生成する。
【0101】
7つの金属同位体結合した一次抗体(CD3、CD4、CD8、CD14、CD19、CD45、HLA-DR)で染色した末梢血単核細胞(PBMC)を、マスサイトメトリー及びMIBIを用いて並列で評価した(図2)。前述のように、PBMC懸濁液でマスサイトメトリーを行った。MIBIでは、細胞をポリ-l-リシン被膜シリコンウェーハ上に固定化し、真空下で乾燥させ、NanoSIMS 50L(商標)質量分析計を用いて分析した。順次50-□m領域を画像形成し、抗体ごとに合成モザイクに構築した(図2A)。得られたモザイクを、CD45チャネルを用いて対象となる単一細胞領域(ROI)に分割した。抗体ごとに単一細胞発現データを抽出するため、チャネルごとのイオン計数を細胞ROIごとに統合した。
【0102】
マスサイトメトリー及びMIBIは、105のダイナミックレンジを有するMIBIのマーカー強度による従来の2軸プロット(図2B)を介して分析した場合、同様な結果と、発現の定性的なパターンとを生成した。さらに、両方のプラットフォームでは、7つの手動でゲーティングされた細胞集団に対して定量的に同様の頻度が得られ(図2C)、これらの3つの集団は、プラットフォーム(B-細胞、CD8+T-細胞、CD4+T-細胞)間で1%未満の違いであった。全体として、PBMCをテストケースとして用いると、MIBIは、空間情報のさらなる利点を持った状態で、従来の分析プラットフォームと定性的及び定量的に等価の結果を得ることができた。
【0103】
ヒト乳房腫瘍組織切片の10色イメージング:診断用設定で取得した組織切片の分析にMIBIを利用するために、金属結合一次抗体と未修飾一次抗体を比較することで従来のIHC染色で用いた金属結合試薬の活性を確認しようとした。Ki67またはエストロゲンレセプターアルファ(ER)の金属結合一次抗体または未修飾一次抗体で処理した単一FFPEヒト乳房腫瘍組織ブロックからの連続切片の二次染色により、同様な強度の陽性核染色と同様なレベルのバックグラウンド染色とが示され(図3A)、金属結合が特異的及び非特異的染色挙動に実質的に影響を及ぼさないことを示している。
【0104】
最後に、診断イメージング用途におけるMIBIの全体の性能を評価するため、3人の異なる患者からのFFPE乳房腫瘍組織切片を分析した。ER、プロゲステロンレセプター(PR)、及びHER2陽性は、有効試薬を用いて臨床IHCラボで確認した。MIBIでは、腫瘍切片をポリ-l-リシン被膜シリコンウェーハ上にマウントし、脱パラフィンし、熱誘導エピトープ回収を施した後、dsDNA、ER、プロゲステロンレセプター(PR)、e-カドヘリン、Ki67、ビメンチン、アクチン、ケラチン、及びHER2の金属結合抗体で一晩染色した。都合のよいことに、ヘマトキシリン対比染色は、その元素アルミニウム含有量を測定することで容易に検出することができる。翌日、切片を洗浄し、ヘマトキシリンで対比染色し、一連の勾配エタノールを介して脱水した。
【0105】
MIBI分析を用いて、FFPE組織の従来の高分解能の画像を構築することができる。所望のマーカーを白色から茶色スケールで置きながらヘマトキシリンを白色から青色スケールでコードすることで、従来のDAB染料を模倣する疑似明視野画像を構築した(図3B、上部)。赤色にコードされたdsDNAチャネル、青色にコードされたヘマトキシリンチャネル、及び緑色にコードされたマーカーチャネルを用いて、三色免疫蛍光を模倣する疑似蛍光画像を構築した(図3B、下部)。単一視野内の抗体ごとの疑似明視野と疑似蛍光の合成画像を、図3Cで3つの組織切片ごとに示す。3つの標本にわたるHER2、ER、及びPR陽性の比較により、従来のIHC染色により構築された免疫表現型に対する適切な発現が示される。ER及びPRを発現する切片は、境界の明瞭な核染色、散乱したKi67陽性核、及び間葉細胞中のビメンチンに対する強い陽性染色を示す。HER2陽性切片は、強い膜染色を示す。Eカドヘリン、アクチン、及びケラチンも適切な細胞内染色パターンを示す。
【0106】
同時に取得したマーカーからの画像分割及び特徴抽出:この試験における定量的に多重化された画像に固有の情報の性質をフルに活用するために、画像分割を行い、その結果、細胞特徴を分析し、比較することができた。細胞内発現を記述する概要統計を抽出するために、CellProfilerを用いてヘマトキシリン及びdsDNAチャネルを腫瘍ごとに分割した(図4A)。平均のピクセル強度を核細胞質内のマーカーごとに定量化し、細胞ROIを細胞ごとに定量した。2軸散布図は、腫瘍ごとの公知の免疫表現型に一致するマーカー共発現を示す(図4B)。三重陽性の腫瘍及びER-PR二重陽性の腫瘍は、HER2陽性の腫瘍にないER及びPRの核共発現を示す。三重陽性の腫瘍及びHER2陽性の腫瘍は、ER-PR二重陽性の腫瘍にない細胞質HER2陽性を示す。ケラチン、e-カドヘリン-陽性導管細胞の亜集団は、ビメンチン陽性の間葉細胞から明確に分離されている。
【0107】
多次元MIBIデータの組織及び免疫表現型の統合された特徴は、定量的(連続的)な細胞質及びカテゴリー(陽性または陰性)の核発現パターン(図5)を組み合わせる合成画像を生成することで視覚化することができる。アクチン(赤色)及びe-カドヘリン(緑色)の可変無核発現を示す、上皮分画内のホルモン-レセプター-陽性領域は、アクチン(赤色)及びビメンチン(青色)を共発現している散在した間葉細胞から区別することができる。おおよそ8%の細胞が、Ki67陽性のように見える。複数のマーカーの共局在化を検出するのにあまり適していない従来の発色IHCとは異なり、MIBI分析は、ER-PR二重陽性(水色)またはER-PR-Ki67三重陽性(黄色)の亜集団を容易に示す。この例では、低存在量の増殖性細胞集団が、ERとPRを共発現した。特に複数の核抗原発現プロファイルをクエリする場合には、分子表現型の詳細な細胞ごとの分析は、実際の臨床的意義を有することが判明し得、巨大な腫瘍集団よりも治療に異なる応答を有し得る悪性細胞のサブセットを特定すると考えられる。これらの観察は、MIBIのような質量分析アプローチの定量的ダイナミックレンジと相まって、潜在的な診断用途に適するものとし、そのような共局在化や相互作用は、今や教師なしの方法で特定することができ得る。
図1
図2
図3
図4
図5