IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックオートモーティブシステムズ株式会社の特許一覧

<>
  • 特許-レーダ装置及びレーダ信号の送受信方法 図1
  • 特許-レーダ装置及びレーダ信号の送受信方法 図2
  • 特許-レーダ装置及びレーダ信号の送受信方法 図3
  • 特許-レーダ装置及びレーダ信号の送受信方法 図4A
  • 特許-レーダ装置及びレーダ信号の送受信方法 図4B
  • 特許-レーダ装置及びレーダ信号の送受信方法 図5
  • 特許-レーダ装置及びレーダ信号の送受信方法 図6
  • 特許-レーダ装置及びレーダ信号の送受信方法 図7
  • 特許-レーダ装置及びレーダ信号の送受信方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-07
(45)【発行日】2024-06-17
(54)【発明の名称】レーダ装置及びレーダ信号の送受信方法
(51)【国際特許分類】
   G01S 7/292 20060101AFI20240610BHJP
   G01S 13/28 20060101ALI20240610BHJP
   G01S 13/58 20060101ALI20240610BHJP
【FI】
G01S7/292 202
G01S13/28 210
G01S13/58 200
【請求項の数】 8
(21)【出願番号】P 2022123226
(22)【出願日】2022-08-02
(62)【分割の表示】P 2021118646の分割
【原出願日】2017-03-07
(65)【公開番号】P2022140620
(43)【公開日】2022-09-26
【審査請求日】2022-08-02
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成28年度、総務省 140GHz帯高精度レーダーの研究開発に係る委託事業、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】322003857
【氏名又は名称】パナソニックオートモーティブシステムズ株式会社
(74)【代理人】
【識別番号】110002952
【氏名又は名称】弁理士法人鷲田国際特許事務所
(72)【発明者】
【氏名】岸上 高明
【審査官】藤脇 昌也
(56)【参考文献】
【文献】特開2014-020970(JP,A)
【文献】特開2017-032522(JP,A)
【文献】国際公開第2013/125174(WO,A1)
【文献】米国特許第4952940(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/42
13/00 - 13/95
(57)【特許請求の範囲】
【請求項1】
複数の異なるレーダ送信信号を生成する送信信号生成部と、
前記複数の異なるレーダ送信信号に多重処理を適用する多重部と、
前記多重処理が適用された複数の異なるレーダ送信信号を送信する複数の送信アンテナを含む送信アレーアンテナと、
を含むレーダ送信部と、
複数の受信アンテナを含む受信アレーアンテナと、
前記複数の受信アンテナを用いて前記複数の異なるレーダ送信信号のうち少なくとも1つのレーダ送信信号がターゲットにおいて反射された1つ以上の反射波信号を受信する受信信号処理部と、
を含むレーダ受信部と、
を具備するレーダ装置であって、
前記送信信号生成部は、
送信信号を生成する符号生成部と、
複数の送信周期毎の要素を有し、複数の互いに異なる位相可変パターンの系列と、前記複数の送信周期毎に2πの2以上の整数倍となる複数の異なる位相回転量とを出力する位相回転制御部と、
前記送信信号に、前記複数の互いに異なる位相可変パターンの系列によって制御された前記複数の異なる位相回転量に基づいた位相回転を前記送信周期毎に付与する送信位相回転部と、
を備え、
前記複数の異なる位相回転量は、前記送信周期毎のシフト量を順次加算した系列であり、
前記複数の互いに異なる位相可変パターンは、前記複数の送信周期毎に、前記位相回転量をさらに変動させるパターンであり、
前記多重部は、前記複数の互いに異なる位相可変パターンの系列によって制御された前記複数の異なる位相回転量が付与された前記送信信号を前記レーダ送信信号として多重する、
レーダ装置。
【請求項2】
前記符号生成部は、前記送信信号を構成する符号系列を出力し、
前記位相回転制御部は、前記符号系列で構成される1つの符号に対して、前記シフト量をゼロとする位相回転量を出力する、
請求項1に記載のレーダ装置。
【請求項3】
前記多重部は、前記複数の送信周期毎に、送信するアンテナを前記複数の送信アンテナから選択することで、時分割多重送信を行う、
請求項1に記載のレーダ装置。
【請求項4】
前記多重部は、前記複数の送信周期毎に、
前記複数の異なるレーダ送信信号を、それぞれ前記複数の送信アンテナから、同時に多重して送信を行う、
請求項1に記載のレーダ装置。
【請求項5】
複数の異なるレーダ送信信号を生成し、
前記複数の異なるレーダ送信信号に多重処理を適用し、
前記多重処理が適用された複数の異なるレーダ送信信号を、複数の送信アンテナを含む送信アレーアンテナを用いて送信し、
複数の受信アンテナを含む受信アレーアンテナを用いて前記複数の異なるレーダ送信信号のうち少なくとも1つのレーダ信号がターゲットにおいて反射された1つ以上の反射波信号を受信するレーダ信号の送受信方法であって、
前記複数の異なるレーダ送信信号は、
複数の送信周期毎の要素を有し、複数の互いに異なる位相可変パターンの系列と、前記複数の送信周期毎に2πの2以上の整数倍となる複数の異なる位相回転量と、に基づいた位相回転が、前記送信周期毎に付与された送信信号であり、
前記複数の異なる位相回転量は、前記送信周期毎のシフト量を順次加算した系列であり、
前記複数の互いに異なる位相可変パターンは、前記複数の送信周期毎に、前記位相回転量をさらに変動させるパターンであり、
前記多重処理が適用された複数の異なるレーダ送信信号は、前記複数の互いに異なる位相可変パターンの系列によって制御された前記複数の異なる位相回転量が付与される、
レーダ信号の送受信方法。
【請求項6】
前記送信信号は、符号系列を有し、
前記複数の異なる位相回転量は、前記符号系列で構成される1つの符号に対して、前記シフト量がゼロとなる位相回転量を含む、
請求項に記載のレーダ信号の送受信方法。
【請求項7】
前記多重処理は、前記複数の送信周期毎に、送信するアンテナを前記複数の送信アンテナから選択することで、時分割多重送信を適用する、
請求項に記載のレーダ信号の送受信方法。
【請求項8】
前記多重処理は、前記複数の送信周期毎に、
前記複数の異なるレーダ送信信号を、それぞれ前記複数の送信アンテナから、同時多重を適用する、
請求項に記載のレーダ信号の送受信方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、レーダ装置及びレーダ信号の送受信方法に関する。
【背景技術】
【0002】
近年、高分解能が得られるマイクロ波又はミリ波を含む波長の短いレーダ送信信号を用いたレーダ装置の検討が進められている。また、屋外での安全性を向上させるために、車両以外にも、歩行者を含む物体(ターゲット)を広角範囲で検知するレーダ装置(広角レーダ装置)の開発が求められている。
【0003】
例えば、レーダ装置として、パルス圧縮レーダ装置が知られている。パルス圧縮レーダ装置において車両/歩行者を検知する際、車両からの反射波と比較して、歩行者からの反射波は微弱である。このため、レーダ送信部では、低いレンジサイドローブとなるパルス圧縮波を送信する送信構成が要求され、レーダ受信部では、広い受信ダイナミックレンジを有する受信構成が要求される。
【0004】
低レンジサイドローブ特性を得るためのパルス圧縮符号として、例えば、Barker符号、PN系列符号又は相補符号等を用いることが知られている。以下では、一例として、相補符号を用いる場合について説明する。相補符号は、ペアを構成する符号(以下、相補符号an、bとする。ここで、n=1,…,L。Lは符号長)からなる。2つの符号の各々の自己相関演算は次式(1)、(2)で表される。
【数1】
【数2】
【0005】
式(1)、(2)において、n>L,n<1ではan=0、b=0である。相補符号は、2つの符号の各々の自己相関演算結果を、それぞれシフト時間τを一致させて加算することにより、次式(3)に示すように、τ=0以外の相関値がゼロとなり、レンジサイドローブがゼロとなる性質を有する。
【数3】
【0006】
このような相補符号an、bを、所定のレーダ送信周期毎に時分割送信するパルス圧縮レーダが知られている。
【0007】
相補符号の生成方法については、非特許文献1に開示されている。非特許文献1によれば、例えば、要素‘1’又は‘-1’からなる相補性を有するA=[a1,a2]=[1 1], B=[b1,b2]=[1 -1]の符号に基づいて、符号長L=4, 8, 16, 32, …, 2Pの相補符号を順次生成することができる。パルス圧縮レーダは、上述したパルス圧縮符号を、レーダ送信周期毎に所定の回数分を繰り返し送信することで、レーダ反射波の受信信号レベルを高めることができる。
【先行技術文献】
【特許文献】
【0008】
【文献】特開平2-243022号公報
【文献】特開2000-338226号公報
【非特許文献】
【0009】
【文献】Budisin, S.Z., "New complementary pairs of sequences," Electron. Lett., 1990, 26, (13), pp.881-883
【文献】江頭他,”OFDMシステムにおけるパイロット信号を用いたIQインバランス補償方式,” 電子情報通信学会論文誌B Vol.J91-B No.5 pp.558-565, 2008
【文献】E. Spano and O. Ghebrebrhan, "Sequences of complementary codes for the optimum decoding of truncated ranges and high sidelobe suppression factors for ST/MST radar systems, " IEEE Transactions on Geoscience and Remote Sensing, Vol.34, No.2, pp.330-345,1996
【発明の概要】
【発明が解決しようとする課題】
【0010】
上述したパルス圧縮レーダをミリ波などの無線周波数帯(RF: Radio Frequency)を用いて実現しようとする場合、レーダ装置のレーダ送信部又はレーダ受信部におけるRF回路、アナログベースバンド回路に回路誤差が混入し、回路誤差の無い場合の理想的な特性と比較してレーダ検出性能(又はレーダ測距性能)が劣化してしまう。
【0011】
本開示の一態様は、回路誤差によるレーダ検出性能の劣化を抑えることができるレーダ装置及びレーダ信号の送受信方法を提供する。
【課題を解決するための手段】
【0012】
本開示の一態様に係るレーダ装置は、複数のレーダ信号が符号分割多重された信号を生成する送信信号生成部と、前記符号分割多重された信号を送信する複数の送信アンテナを含む送信アレーアンテナと、を含むレーダ送信部と、複数の受信アンテナを含む受信アレーアンテナと、前記複数の受信アンテナを用いて前記複数のレーダ信号のうち少なくとも1つのレーダ信号がターゲットにおいて反射された1つ以上の反射波信号を受信する受信信号処理部と、を含むレーダ受信部と、を具備するレーダ装置であって、前記送信信号生成部は、複数の送信周期毎の位相回転のパターンを示す位相可変パターンの系列を用いて、前記複数の送信周期毎に2πの整数倍となる位相回転量を前記送信周期毎に出力する位相回転制御部と、前記複数のレーダ信号のそれぞれに、前記位相回転量を前記送信周期毎に付与する送信位相回転部と、を備える。
【0013】
本開示の一態様に係るレーダの送受信方法は、複数のレーダ信号が符号分割多重された信号を生成し、前記符号分割多重された信号を複数の送信アンテナを含む送信アレーアンテナを用いて送信し、複数の受信アンテナを含む受信アレーアンテナを用いて前記複数のレーダ信号のうち少なくとも1つのレーダ信号がターゲットにおいて反射された1つ以上の反射波信号を受信するレーダ信号の送受信方法であって、前記符号分割多重された信号は、複数の送信周期毎の位相回転のパターンを示す位相可変パターンの系列を用いて、前記複数の送信周期毎に2πの整数倍となる位相回転量が前記複数のレーダ信号のそれぞれに前記送信周期毎に付与された信号である。
【0014】
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
【発明の効果】
【0015】
本開示の一態様によれば、回路誤差によるレーダ検出性能の劣化を抑えることができる。
【0016】
本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
【図面の簡単な説明】
【0017】
図1】本開示の実施の形態1に係るレーダ装置の構成例を示すブロック図
図2】本開示の実施の形態1に係るレーダ送信信号の一例を示す図
図3】本開示の実施の形態1に係るレーダ送信信号生成部の他の構成を示すブロック図
図4A】位相反転を行わない場合のドップラ解析部の出力の計算機シミュレーション結果の一例を示す図
図4B】本開示の実施の形態1に係るドップラ解析部の出力の計算機シミュレーション結果の一例を示す図
図5】本開示の実施の形態1に係るレーダ装置の他の構成例を示す図
図6】本開示の実施の形態2に係るレーダ装置の構成例を示すブロック図
図7】本開示の実施の形態2に係る計算機シミュレーション結果の一例を示す図
図8】本開示の実施の形態3に係るレーダ装置の構成例を示すブロック図
【発明を実施するための形態】
【0018】
レーダ装置では、回路誤差として、直交変調回路/直交復調回路においてIQミスマッチ(Mismatch)、DCオフセット(offset)等が発生し、周波数変換部において位相雑音(Phase Noise)が発生し、AD変換器、DA変換器において量子化雑音(Quantization Noise)が発生する。
【0019】
回路誤差としてDCオフセットが含まれると、誤差が無い場合と比較して、ノイズレベルが上昇する現象が発生する。そのため、レーダ装置において、ターゲットからの反射波がノイズレベルよりも低い場合には、ターゲットが未検出となり、検出率の低下につながり、レーダ検出性能が劣化してしまう。
【0020】
この問題に対して、従来、レーダ送信部又はレーダ受信部の回路構成によってDCオフセットを除去する方法が提案されている。具体的には、特許文献1には、AD変換器から出力される離散データに対して、ハイパスフィルタを配置することでDCオフセットを除去する構成が開示されている。また、特許文献2には、AD変換器の入力段においてバンドパスフィルタを配置することでDCオフセットを除去する構成が開示されている。また、非特許文献2には、IQインバランス回路誤差の補正を行う回路構成が開示されている。
【0021】
しかしながら、従来技術では、DCオフセット除去回路又はIQインバランス回路誤差の補正回路を設ける必要があるため、回路構成が複雑化してしまう。また、DCオフセット除去のためにハイパススフィルタ又はバンドパスフィルタを設ける場合、DCオフセット成分以外の所望のレーダ反射波成分を弱めたり、フィルタ応答により振幅歪み又は位相歪みが生じたりすることがあり、レーダ検出性能が劣化してしまう。
【0022】
また、DCオフセット除去回路を設けた構成でも、DCオフセット成分又はIQインバランス成分を完全に取り除くことができずに回路誤差成分が残留すると、レーダ受信処理におけるコヒーレント積分処理によって回路誤差成分も積算されることから、レーダ検出性能が劣化してしまう。例えば、回路誤差の残留成分が微小でも含まれると、積算効果により30~40dB程度に残留成分が増大するため、高精度な誤差検出機構が必要となり、レーダ装置のハード構成が複雑化してしまう。
【0023】
一方で、非特許文献3には、複数のパルス送信周期間で、位相変調を組み合わせた符号を送信し、反射波をコヒーレント積分処理することで受信DCオフセット成分をキャンセルするレーダ装置が開示されている。
【0024】
一例として、レーダ装置の送信側でパルス圧縮に用いる符号A=[a1, a2, … , aL]と、符号Aに対して180度位相反転した符号-A=[-a1, -a2, … , -aL]とを用いて、2つの送信周期で、符号A,-Aを送信し、受信側で相関処理を行い、コヒーレント積分することで、受信DCオフセット成分がキャンセルされる原理を以下に示す。
【0025】
なお、以下では、雑音成分が無く、符号Aの各要素の和が次式(4)に示すようにゼロではない場合について説明する。
【数4】
【0026】
<例1:レーダ反射波の受信信号に受信DCオフセット成分が含まれる場合>
(1-1)符号A送信時に、受信DCオフセット成分αRxが含まれる符号Aの受信信号(γA+αRx)と、符号Aとの自己相関演算によって得られる自己相関値は次式(5)で表される。
【数5】
【0027】
式(5)においてγはレーダ反射波の複素受信応答を示し、アスタリスク(*)は複素共役演算子である。
【0028】
(1-2)符号-Aの送信時に、受信DCオフセット成分αRxが含まれる符号-Aの受信信号(-γA+αRx)と、符号-Aとの自己相関演算によって得られる自己相関値は次式(6)で表される。
【数6】
【0029】
受信側において、上記(1-1)のみで得られる自己相関値(式(5))をコヒーレント積分処理すると、γがゼロであっても(すなわちレーダ反射波が存在しなくても)、受信DCオフセット成分αRxが含まれる2項目が積算される。このため、全ての距離範囲に渡ってノイズレベル(フロアレベル)が上昇することとなり、レーダ検出性能が劣化してしまう。
【0030】
一方、受信側において、上記(1-1)及び(1-2)で得られる自己相関値(式(5)及び式(6))をコヒーレント積分処理すると、次式(7)のように、受信DCオフセット成分αRxをキャンセルすることができる。
【数7】
【0031】
これにより、ノイズレベルの上昇を防ぎ、レーダ装置のレーダ検出性能の劣化を抑えることができる。また、ドップラ変動が含まれるレーダ反射波の受信信号に対しても、同様に受信DCオフセット成分αRxをキャンセルすることができるので、ノイズレベル(フロアレベル)の上昇を防ぎ、レーダ検出性能の劣化を抑えることができる。
【0032】
<例2:ドップラ変動が含まれないレーダ反射波の受信信号に、送信DCオフセット成分αTxが含まれる場合>
【0033】
(2-1)符号A送信時に、送信DCオフセット成分αTxが含まれる受信信号(γA+αTx)と、符号Aとの自己相関演算によって得られる自己相関値は次式(8)で表される。
【数8】
【0034】
(2-2)符号-A送信時に、送信DCオフセット成分αTxが含まれる符号-Aの受信信号(-γA+αTx)と、符号-Aとの自己相関演算によって得られる自己相関値は次式(9)で表される。
【数9】
【0035】
受信側において、上記(2-1)及び(2-2)で得られる自己相関値(式(8)及び式(9))をコヒーレント積分処理すると、<例1>で示した受信DCオフセット成分αRxが含まれる場合と同様に、送信DCオフセット成分αTxはキャンセルされ、ノイズレベル(フロアレベル)の上昇を防ぎ、レーダ検出性能の劣化を抑えることができる。
【0036】
<例1>及び<例2>で説明したように送信DCオフセット成分又は受信DCオフセット成分をキャンセルすることにより、レーダ検出性能の劣化を抑えることができる。
【0037】
しかしながら、上記方法でも、レーダ送信部に送信DCオフセット成分(キャリアリーク成分も含む)が存在し、レーダ反射波にドップラ変動がある場合には、送信DCオフセット成分が残留してしまう。これは、送信DCオフセット成分がドップラ変動を受けるため、上記方法ではキャンセル誤差が生じるためである。このため、残留した送信DCオフセット成分に含まれるドップラ成分のノイズレベルが上昇し、レーダ検出性能が劣化するという課題がある。
【0038】
以下、レーダ反射波にドップラ変動が含まれる場合について説明する。
【0039】
<例3:ドップラ変動が含まれるレーダ反射波の受信信号に、送信DCオフセット成分αTxが含まれる場合>
【0040】
なお、ここでは、レーダ反射波に含まれるドップラ変動を「exp(j2πfd×Tr)=exp(jΨd)」とする(fd:ドップラ周波数、Tr:レーダ送信周期。ただし、符号内でのドップラ変動が一定とみなせる条件)。
【0041】
(3-1)符号A送信時に、送信DCオフセット成分αTxが含まれる受信信号γ(A+αTx)と、符号Aとの自己相関演算によって得られる自己相関値は次式(10)で表される。
【数10】
【0042】
(3-2)符号-A送信時に、送信DCオフセット成分αTxが含まれる符号-Aの受信信号γ(-A+αTx)exp(jΨd)と、符号-Aとの自己相関演算によって得られる自己相関値は次式(11)で表される。
【数11】
【0043】
受信側において、上記(3-1)及び(3-2)で得られる自己相関値(式(10)及び式(11))をコヒーレント積分処理すると、次式(12)のように、γに依存して送信DCオフセット成分αTxが含まれる2項目が積算される。
【数12】
【0044】
一般的に、ドップラ変動が含まれるレーダ反射波に対する受信処理には、ドップラ周波数解析を用いたコヒーレント積分処理を適用するため、式(12)の2項目に相当するドップラ周波数成分のノイズレベル(フロアレベル)が上昇することになり、レーダ検出性能が劣化する。また、送信DCオフセット成分αTxの受信電力は、|γαTx2に比例するため、レーダ反射波の受信電力が大きいほどノイズレベル(フロアレベル)の上昇も大きくなり、レーダ検出性能の劣化が大きくなってしまう。
【0045】
次に、パルス圧縮レーダにおいて、送信DCオフセット(キャリアリーク)及び受信DCオフセットを含む場合でも、回路誤差補正のために高精度な補正回路を付加することなく、ノイズレベル(フロアレベル)の増加を防ぎ、レーダ検出性能の劣化を抑える方法について説明する。
【0046】
上述した複数のパルス送信周期で位相変調を加えたパルス圧縮符号を送信する方法において、レーダ送信部に送信DCオフセット成分(キャリアリーク成分も含む)が存在する場合に、レーダ反射波にドップラ変動があると、送信DCオフセット成分が残留し、特定ドップラ成分のノイズレベルが上昇するという課題に対して、以下のような方法により送信DCオフセット成分の低減が可能となる。
【0047】
具体的には、レーダ装置が、送信側でパルス圧縮に用いる符号A=[a1, a2, … , aL]と、符号Aに対して位相反転した符号-A=[-a1, -a2, … , -aL]とを用いて4回のレーダ送信周期で、符号A, -A , -A, Aをそれぞれ送信し、受信側で相関処理を行い、コヒーレント積分処理する方法である。
【0048】
以下、この方法について具体的に説明する。なお、以下では、上記同様、雑音成分が無く、符号Aの要素和がゼロでない場合(式(4)を参照)について説明する。
【0049】
<例4:ドップラ変動が含まれるレーダ反射波の受信信号に、送信DCオフセット成分αTxが含まれる場合>
【0050】
なお、ここでは、レーダ反射波に含まれるドップラ変動を「exp(j2πfd×Tr)=exp(jΨd)」とする(fd:ドップラ周波数、Tr:レーダ送信周期。ただし、符号内でのドップラ変動が一定とみなせる条件)。
【0051】
(4-1)符号A送信時に、送信DCオフセット成分αTxが含まれる受信信号γ(A+αTx)と、符号Aとの自己相関演算によって得られる自己相関値は次式(13)で表される。
【数13】
【0052】
(4-2)符号-A送信時に、送信DCオフセット成分αTxが含まれる符号-Aの受信信号γ(-A+αTx) exp(jΨd)と、符号-Aとの自己相関演算によって得られる自己相関値は次式(14)で表される。
【数14】
【0053】
(4-3)符号-A送信時に、送信DCオフセット成分αTxが含まれる受信信号γ(-A+αTx) exp(j2Ψd)と、符号-Aとの自己相関演算によって得られる自己相関値は次式(15)で表される。
【数15】
【0054】
(4-4)符号A送信時に、送信DCオフセット成分αTxが含まれる符号Aの受信信号γ(A+αTx) exp(j3Ψd)と、符号Aとの自己相関演算によって得られる自己相関値は次式(16)で表される。
【数16】
【0055】
受信側において、上記(4-1)~(4-4)で得られる自己相関値(式(13)~式(16))をコヒーレント積分処理すると、次式(17)のように、γに依存して送信DCオフセット成分αTxが含まれる2項目が積算される。
【数17】
【0056】
式(17)において、ドップラ位相変動Ψdがπ/6よりも小さい範囲であれば、「|1-exp(j2Ψd)|<1」となるため、<例3>で示した場合(式(12)を参照)よりも、送信DCオフセットの残留成分を低減できる。ただし、<例4>でも、送信DCオフセットの残留成分を完全にキャンセルすることはできない。
【0057】
上述したように、ドップラ変動が含まれるレーダ反射波に対する受信処理には、ドップラ周波数解析を用いたコヒーレント積分処理を適用する。このため、残留する送信DCオフセット成分(式(17)の2項目)を含むドップラ周波数成分のノイズレベル(フロアレベル)が上昇してしまい、レーダ検出性能が劣化することになる。例えば、<例4>で説明したように、送信側では、4回のレーダ送信周期毎に、符号A, -A , -A, Aを送信し、受信側では、レーダ反射波に対して送信符号による相関受信処理を行い、受信DCオフセットをキャンセルする送信符号(A, -A)を1単位として2回のレーダ送信周期毎にコヒーレント積分処理した出力を、ドップラ周波数解析する。この場合、残留送信DCオフセット成分に含まれるドップラ周波数成分のノイズレベル(フロアレベル)が上昇してしまい、レーダ検出性能が劣化してしまう。
【0058】
ここで、ドップラ周波数解析において、残留送信DCオフセット成分によって特定の周波数成分のノイズレベル(フロアレベル)が上昇するのは、コヒーレント積分処理した出力が固定的な位相変動になるためである。
【0059】
そこで、本開示の一態様では、受信側でのコヒーレント積分処理した出力が固定的な位相変動にならないように、受信DCオフセットをキャンセルする送信符号(A, -A)を1単位として、コヒーレント積分処理した出力に対してランダムな位相変動を与える。
【0060】
具体的には、本開示の一態様に係るレーダ装置は、受信側でドップラ周波数解析を用いたコヒーレント積分処理を行う際に、ドップラ位相変動が定常的な位相シフト量(位相変化量)とならないように、受信DCオフセットをキャンセルする複数の送信符号を1単位(上記の<例1>から<例4>の場合は2つのレーダ送信周期で送信するA, -Aに相当)として、1単位の送信符号毎に位相反転を加えた符号(πの位相変化を加えた符号)にするか否かをランダムに切り替える。
【0061】
これにより、上記1単位の送信符号の各々に対するレーダ反射波に対してコヒーレント積分処理した出力の位相変動にばらつきが生じ、残留した送信DCオフセット成分をドップラ周波数領域で白色化することができる。これにより、特定のドップラ周波数成分のノイズレベル(フロアレベル)の上昇を防ぐことができ、レーダ検出性能の劣化を抑えることができる。
【0062】
以下、本開示の一態様に係る実施の形態について、図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
【0063】
[実施の形態1]
[レーダ装置の構成]
図1は、本実施の形態に係るレーダ装置10の構成を示すブロック図である。
【0064】
レーダ装置10は、レーダ送信部100と、レーダ受信部200と、を有する。
【0065】
レーダ送信部100は、高周波(無線周波数:Radio Frequency)のレーダ信号(レーダ送信信号)を生成する。そして、レーダ送信部100は、所定の送信周期にてレーダ送信信号を送信する。
【0066】
レーダ受信部200は、測定ターゲットにおいて反射したレーダ送信信号である反射波信号を受信する。レーダ受信部200は、例えば、リファレンス信号(図示せず)を用いて、レーダ送信部と同期した処理を行う。また、レーダ受信部200は、受信した反射波信号を信号処理し、例えば、ターゲットの有無検出、方向推定等の処理を行ってもよい。なお、測定ターゲットはレーダ装置10が検出する対象の物体であり、例えば、車両(4輪及び2輪を含む)又は人を含む。
【0067】
[レーダ送信部100の構成]
レーダ送信部100は、レーダ送信信号生成部101と、送信無線部106と、送信アンテナ107と、を有する。
【0068】
レーダ送信信号生成部101は、レーダ送信周期(Tr)毎に、符号長Lの符号を変調したベースバンドのレーダ送信信号(パルス圧縮信号)を生成する。
【0069】
レーダ送信信号生成部101は、リファレンス信号(図示せず)を所定倍した送信基準クロックに基づいて動作する。以下、送信基準クロック周波数をfTxBBとする。ここで、レーダ送信周期(Tr)は、リファレンス信号を所定倍した送信基準クロック周波数(fTxBB)で定まる離散時間間隔(1/fTxBB)の整数Nr倍(Nr×(1/fTxBB))とする。
【0070】
レーダ送信信号生成部101は、符号生成部102と、位相回転制御部103と、送信位相回転部104と、変調部105と、を含む。
【0071】
具体的には、符号生成部102は、レーダ送信周期(Tr)毎に、符号長Lの送信符号を生成する。具体的には、符号生成部102は、第m番目のレーダ送信周期において、符号長Lの送信符号Code(m)を生成する。
【0072】
以下、送信符号Code(m)の各要素をCn(m)と表記する。すなわち、送信符号Code(m)は、L個の要素{ C1(m), C2(m),…,CL(m)}からなる。また、送信符号の要素Cn(m)は、{-1,1}等の2値、又は、{1, -1, -j, j}等の4値からなる。ここで、jは虚数単位である。また、n=1,2,…,Lであり、m=1,2,…, Qである。ここで、Qはレーダ装置10が距離、ドップラ及び到来方位等の測定を行う際に用いるレーダ送信周期の回数を表す。
【0073】
また、送信符号としては、例えば、低レンジサイドローブ特性が得られるBarker符号、相補符号、M系列符号、ゴールド符号等の適用が好適である。また、各レーダ送信周期での送信符号は同一符号でもよく、異なる符号でもよい。または、各レーダ送信周期で複数の送信符号を切り替えてもよい。
【0074】
位相回転制御部103は、複数Ne回のレーダ送信周期(=Ne×Tr)を単位として、複数(Ne回)のレーダ送信周期内で、2πの整数倍(2πNs)となる位相回転を送信符号に付与するための、位相回転量信号を送信位相回転部104及びレーダ受信部200(受信位相回転部206)に出力する。ここで、Neは1より大きい整数であり、Nsは1以上の整数である。
【0075】
位相回転制御部103は、複数(Ne回)のレーダ送信周期の期間(=Ne×Tr)内において、各レーダ送信周期に渡って一定の位相シフト量(位相変化量)となる位相回転量信号を出力する。例えば、位相回転制御部103は、レーダ送信周期(Tr)毎に、位相回転量φ×0, φ×1, φ×2, …, φ(Ne -1)を周期的に付与する位相回転量信号を出力する。ここで、φ=2πNs/Neである。例えば、Ne=4, Ns=1の場合、レーダ送信周期(Tr)毎の位相シフト量φはπ/2となる。この場合、4(=Ne)回のレーダ送信周期(Tr)の各々において出力される位相回転量は、例えば、0, π/2、π、3π/2となる。
【0076】
なお、送信符号として、相補符号を用いる場合(Spano符号のように、複数の相補符号を組み合わせて送信する場合も含む)、相補符号を構成する符号のペアに対する位相シフト量をゼロとする。すなわち、相補符号を構成する符号のペアに対して同じ位相回転を付与する。これにより、相補符号の高サイドローブ抑圧特性を保つ効果が得られる。
【0077】
例えば、位相回転制御部103は、相補符号を用いる場合、偶数となるNe回のレーダ送信周期(Tr)毎に、位相回転量φ×0, φ×0, φ×1, φ×1, φ×2, φ×2, …, φ(Ne -1), φ(Ne -1)を周期的に付与する位相回転量信号を出力する。ここでφ=2πNs/(Ne/2)= 4πNs/Neである。例えば、Ne=8, Ns=1の場合、位相シフト量φはπ/2となる。この場合、8(=Ne)回のレーダ送信周期(Tr)の各々において出力される位相回転量は、例えば、0, 0, π/2, π/2、π、π、3π/2、3π/2となる。
【0078】
また、位相シフト量φをπ/2とする場合は、位相回転はI信号成分,Q信号成分の入れ替え(正負の符号の変換を伴う)で実現できるので、送信位相回転部104において乗算器を不要とすることができる。
【0079】
また、Ne/Ns>2(相補符号の場合は、Ne/Ns>4)とすることで、DCオフセット成分がI信号及びQ成分を有する場合もキャンセルすることができる効果が得られる。
【0080】
さらに、位相回転制御部103は、複数Ne回のレーダ送信周期(=Ne×Tr)を単位として、所定の位相可変パターンに従って、位相回転量を制御する位相回転量可変信号を送信位相回転部104及びレーダ受信部200(受信位相回転部206)に出力する。つまり、位相回転制御部103は、複数Ne回のレーダ送信周期に相当する期間(=Ne×Tr)内のレーダ送信信号に対する位相回転量のパターンを期間(Ne×Tr)毎に変化させる。
【0081】
ここで、位相可変パターンとして、位相回転を変動させるランダムなパターンを用いてもよい。例えば、位相回転制御部103は、擬似ランダム符号(PN符号)、M系列符号、Gold符号を位相可変パターンとして用いて、位相可変パターンの各符号の符号極性に従って位相回転量を制御する。
【0082】
一例として、位相可変パターンは、NPP個の要素からなり、各要素は{-1,1}の2値からなる。以下では、位相可変パターンの各要素をPP(q)と表記する。ここで、q=1,2,…, NPPである。位相回転制御部103は、位相可変パターンの各要素PP(q)を順に読み出し、Ne回のレーダ送信周期(=Ne×Tr)に渡って、同じ要素の値を繰り返し出力する。すなわち、第m番目のレーダ送信周期における位相回転制御部103から出力される位相回転量可変信号PC(m)は次式(18)で表される。
【数18】
【0083】
ここで、m=1,…,Ne×Ndである。なお、Ndは後述するドップラ解析部208において定義されるパラメータである。なお、位相可変パターンの要素数NPPが、レーダ送信周期の回数Q(=Ne×Nd)より少ない場合、位相回転制御部103は、Q回のレーダ送信周期において位相可変パターンを巡回的に読み出す。
【0084】
すなわち、位相可変パターンは、複数Ne回のレーダ送信周期(Tr)の度に各要素PP(q)がランダムに変わるように設定される。
【0085】
送信位相回転部104は、位相回転制御部103が指示する位相回転量信号及び位相回転量可変信号に基づいて、符号生成部102から出力される送信符号に対して位相回転を付与する。送信位相回転部104は、位相回転を付与した送信符号を変調部105に出力する。例えば、送信位相回転部104は、次式(19)に示すように、第m番目のレーダ送信周期において、符号生成部102から出力される送信符号Code(m)に対して位相回転を付与して得られた信号GP(m)を出力する。
【数19】
【0086】
このように、送信位相回転部104は、送信符号(レーダ送信信号)に対して、位相可変パターン(PC(m))に従って位相回転を付与する。
【0087】
なお、上述したように、送信符号が相補符号の場合、相補符号のペアを構成する符号間で位相シフトさせない(同じ位相回転を付与する)ことで、相補符号のペアを構成する符号間で距離サイドローブをキャンセルする特性(高サイドローブ抑圧特性)を保つ効果が得られる。すなわち、送信位相回転部104は、次式(20)に示すように、送信符号が相補符号の場合、相補符号のペアを構成する符号が送信される2つの送信周期内の位相シフトがゼロとなるように、送信符号Code(m)に対して位相回転を付与して得られた信号GP(m)を出力する。
【数20】
【0088】
変調部105は、送信位相回転部104から出力される送信符号に対してパルス変調(振幅変調(ASK:Amplitude Shift Keying)または位相変調(PSK:Phase Shift Keying))を行い、変調信号(レーダ送信信号)を送信無線部106へ出力する。
【0089】
例えば、変調部105が位相変調(PSK)を用いる場合、送信符号が{-1, 1}等の2値である位相変調はBPSKとなり、送信符号が{1,-1, -j, j}等の4値である位相変調はQPSK又は4相PSKとなり、IQ位相平面上における所定の変調シンボルが割り当てられる。
【0090】
また、変調部105は、送信符号に変調を施した変調信号に対して帯域制限フィルタ(図示せず)を通すことで、所定の帯域内で制限した変調信号を出力する。
【0091】
ここで、変調信号の同相成分(In-phase成分)をI(n)と表し、直交成分(Quadrature成分)をQ(n)と表すと、変調信号G(n)は次式(21)のように表すことができる。
【数21】
【0092】
ここで、nは自然数であり、離散時間を表す。また、離散時間間隔は(1/fTxBB)であり、fTxBBは、リファレンス信号を所定倍した送信基準クロック周波数である。
【0093】
また、変調部105は、送信位相回転部104から出力される送信符号に対する1つの符号あたり、送信基準クロックのNo個のサンプルを用いた変調を施す。これにより、符号長Lの送信符号に対し、レーダ信号区間Twにおいて、Nw=No×Lのサンプルが含まれる。また、レーダ送信周期(Tr)における無信号区間(Tr-Tw)は、送信基準クロックNu個(=Nr-Nw)分のサンプルが含まれる(例えば、図2を参照)。従って、第m番目のレーダ送信周期における変調信号は次式(22)のように表せる。
【数22】
【0094】
送信無線部106は、変調部105から出力される信号を直交変調し、周波数変換を施してキャリア周波数(Radio Frequency:RF)帯のレーダ送信信号を生成し、送信増幅器により所定の送信電力に増幅して送信アンテナ107に出力する。送信アンテナ107は、送信無線部106から出力されるレーダ送信信号を空間に放射する。
【0095】
なお、送信無線部106及び後述する受信無線部202の局部発振器には、共通のリファレンス信号が加えられる。これにより、送信無線部106及び受信無線部202の局部発振器間の同期を取ることができる。
【0096】
また、レーダ送信部100は、レーダ送信信号生成部101の代わりに、図3に示すレーダ送信信号生成部101aを備えてもよい。レーダ送信信号生成部101aは、図1に示す符号生成部102、位相回転制御部103、送信位相回転部104及び変調部105を有さず、代わりに符号記憶部111及びDA変換部112を備える。符号記憶部111は、符号生成部102(図1)において生成される符号系列を予め記憶し、記憶している符号系列を巡回的に順次読み出す。DA変換部112は、符号記憶部111から出力される符号系列(デジタル信号)をアナログ信号に変換する。
【0097】
[レーダ受信部200の構成]
図1において、レーダ受信部200は、受信アンテナ201と、受信無線部202と、信号処理部203と、を有する。
【0098】
受信アンテナ201は、レーダ送信部100から送信されるRF帯のレーダ送信信号が測定ターゲットを含む反射物体に反射した信号(反射波信号)を受信し、受信した反射波信号を受信信号として受信無線部202に出力する。
【0099】
受信無線部202は、受信アンテナ201から出力される受信信号を所定レベルに増幅し、高周波帯域の受信信号をベースバンド帯域に周波数変換し、ベースバンド帯域の受信信号を、I信号(In-Phase信号成分)及びQ信号(Quadrature信号成分)を含むベースバンド帯域の受信信号に変換する。
【0100】
信号処理部203は、AD変換部204、相関演算部205と、受信位相回転部206と、コヒーレント積分部207と、ドップラ解析部208と、を有する。
【0101】
なお、信号処理部203内の各部は、リファレンス信号(図示せず)を所定倍した受信基準クロックに基づいて動作する。以下では、受信基準クロック周波数をfRxBBとする。ここで、レーダ送信周期(T)は、リファレンス信号を所定倍した受信基準クロック周波数(fRxBB)で定まる離散時間間隔(1/fRxBB)の整数Nv倍(Nv×(1/fRxBB))とする。また以下では、送信基準クロック周波数fTxBBは、受信基準クロック周波数fRxBBの整数倍NTRの関係fTxBB=fRxBB×NTRにあるものとする。
【0102】
AD変換部204は、受信無線部202から出力されるI信号及びQ信号を含むベースバンド信号に対して、受信基準クロック周波数fRxBBに基づいて離散時間(1/fRxBB)でのサンプリングを行うことにより、I信号及びQ信号をデジタルデータに変換する。
【0103】
以下の説明では、離散時間kにおけるI信号及びQ信号を含むベースバンドの受信信号を複素数信号x(k)=Ir(k)+j Qr(k)と表す。また、以下では、離散時刻kは、第m番目のレーダ送信周期(Tr)の開始するタイミングを基準(k=1)とし、信号処理部203は、レーダ送信周期Trが終了するまでの計測を周期的に行う。すなわち、k=1,…,Nvとなる。ここで、jは虚数単位である。
【0104】
従って、第m番目のレーダ送信周期におけるAD変換部204の出力信号は次式(23)のように表せる。以下、X(k)を複素ベースバンド信号と呼ぶ。
【数23】
【0105】
相関演算部205は、レーダ送信周期Tr毎に、AD変換部204から出力される複素ベースバンド信号X(Nv(m-1)+k)と、レーダ送信部100において送信される送信符号Cn(m)との相関演算を行う。ここで、n=1,…,Lである。例えば、第m番目のレーダ送信周期における離散時刻kのスライディング相関演算の相関演算値AC(k, m)は、次式(24)に基づき算出される。
【数24】
【0106】
式(24)において、アスタリスク(*)は複素共役演算子を表す。また、k=1,…,Nvである。
【0107】
なお、相関演算部205は、k=1,…,Nvに対して相関演算を行う場合に限定されず、レーダ装置10の測定対象となるターゲットの存在範囲に応じて、測定レンジ(すなわち、kの範囲)を限定してもよい。これにより、レーダ装置10では、相関演算部205の演算処理量の低減が可能となる。例えば、相関演算部205は、k=Nw/NTR+1,…, (Nu - Nw)/NTRに測定レンジを限定してもよい。この場合、レーダ装置10は、符号送信区間Twに相当する時間区間では測定を行わない。
【0108】
これにより、レーダ装置10は、レーダ送信信号がレーダ受信部200に直接的に回り込むような場合でも、レーダ送信信号が回り込む期間では相関演算部205による処理が行われないので、回り込みの影響を排除した測定が可能となる。また、測定レンジ(kの範囲)を限定する場合、以下で説明する受信位相回転部206、コヒーレント積分部207及びドップラ解析部208の処理に対しても、同様に測定レンジ(kの範囲)を限定した処理を適用すればよい。これにより、各構成部での処理量を削減でき、レーダ受信部200における消費電力を低減できる。
【0109】
受信位相回転部206は、レーダ送信周期(T)毎に、レーダ送信部100の送信位相回転部104で付与された位相回転と逆方向(打ち消す方向)の位相回転PC(m)exp[-j{(m-1)modNe}φ]を、相関演算部205から出力される信号(相関演算値)に付与する。すなわち、第m番目のレーダ送信周期(T)において、受信位相回転部206は、次式(25)に示すように、相関演算部205の出力AC(k, m)に対して位相回転を付与した信号ACP(k, m)を出力する。
【数25】
【0110】
すなわち、受信位相回転部206は、相関演算部205の出力AC(k, m)(反射波信号)に対して、位相可変パターン(PC(m))に従って、送信位相回転部104の位相回転と逆方向の位相回転を付与する。
【0111】
例えば、Ne=4, Ns=1, PC(m)=1の場合、レーダ送信周期(T)毎の位相シフト量-φは-π/2である。この場合、4(=Ne)回のレーダ送信周期(T)の各々において出力される位相回転量は、例えば、0, -π/2、-π、-3π/2となる。また、Ne=4, Ns=1, PC(m)=-1の場合、レーダ送信周期(T)毎の位相シフト量-φは-π/2である。ただし、PC(m)=-1の場合、exp(jπ)=-1の関係より、4(=Ne)回のレーダ送信周期(T)の各々において出力される位相回転量は、例えば、π, π/2、0、-π/2となる。つまり、異なる位相可変パターン(PC(m)=1,-1)間の対応する位相回転量-φ(ここでは{0, -π/2、-π、-3π/2}と{π, π/2、0、-π/2})の差はそれぞれπである。
【0112】
なお、送信符号として相補符号を用いる場合、相補符号を構成する符号のペアで同じ位相とするため、受信位相回転部206は、次式(26)に示すように、相補符号を構成する2つの符号の送信周期内の位相シフトがゼロとなるように、相関演算部205の出力AC(k, m)に対して位相回転を付与して得られた信号ACP(k, m)を出力する。
【数26】
【0113】
例えば、Ne=8, Ns=1, PC(m)=1の場合、位相シフト量-φは-π/2となる。8(=Ne)回のレーダ送信周期(T)の各々において出力される位相回転量は、例えば、0, 0, -π/2, -π/2、-π、-π、-3π/2、-3π/2となる。また、Ne=8, Ns=1, PC(m)=-1の場合、位相シフト量-φは-π/2となる。ただし、PC(m)=-1の場合、exp(jπ)=-1の関係より、8(=Ne)回のレーダ送信周期(T)の各々において出力される位相回転量は、例えば、π, π, π/2, π/2、0、0、-π/2, -π/2となる。
【0114】
コヒーレント積分部207は、第m番目のレーダ送信周期の離散時刻k毎に受信位相回転部206から出力される相関演算値ACP(k,m)を用いて、所定回数Neのレーダ送信周期の期間に渡って、相関演算値ACP(k,m)を離散時刻k毎に加算(コヒーレント積分)し、離散時刻k毎のコヒーレント積分値ACC(k,v)を算出する。ここで、k=1,…, Nvである。
【0115】
具体的には、第v番目のコヒーレント積分値ACC(k,v)は次式(27)のように算出される。
【数27】
【0116】
ここで、コヒーレント積分部207において相関演算値ACP(k,v)を離散時刻k毎に加算するレーダ送信周期の期間(つまり、コヒーレント積分部207の積算区間)を所定回数Neに設定することで、相関演算値ACP(k,v)に受信DCオフセットが含まれる場合でも、以下のような原理により、受信DCオフセット成分をキャンセルすることができ、雑音成分の抑圧とともに、受信DCオフセットよるレーダ検出性能の劣化を防ぐことができる。
【0117】
すなわち、受信DCオフセット成分αRx、及び、ドップラ周波数変動fdTxが含まれる送信DCオフセット成分αTxexp(j2πfdTx×Tr)が含まれる場合、相関演算部205の出力AC(k,m)には、k、mに依らず、次式(28)に示す成分が含まれる。
【数28】
【0118】
また、受信位相回転部206の出力ACP(k,m)には、kに依らず、次式(29)に示す成分が含まれる。
【数29】
【0119】
従って、コヒーレント積分部207の出力ACC(k,v)には、kに依らず、次式(30)に示す成分が含まれる。
【数30】
【0120】
式(30)に示すように、コヒーレント積分部207の積算区間において、
【数31】
が一定であれば、
【数32】
となる。このため、式(30)に示す受信DCオフセット成分(αRxを含む成分)はキャンセルされる。また、式(30)において、ドップラ周波数変動fdTxがゼロであれば送信DCオフセット成分(αTxを含む成分)も受信DCオフセット成分と同様にキャンセルされる。
【0121】
一方、ドップラ周波数変動fdTxがゼロでない場合、つまり、反射波信号にドップラ周波数変動が含まれる場合、コヒーレント積分部207の出力ACC(k,v)には、kに依らず、次式(31)に示す送信DCオフセット成分が含まれる。
【数33】
【0122】
位相回転制御部103は、所定回数Ne(つまり、コヒーレント積分部207の積算区間)毎に、位相回転の位相可変パターンPC(Ne(v-1)+m)を1又は-1にランダムに変化させる制御を行う。これにより、ドップラ解析部208の出力では、式(31)に示すコヒーレント積分部207の出力ACC(k,v)に含まれる残留した送信DCオフセット成分がドップラ周波数領域で白色化することになる。よって、特定のドップラ周波数成分のノイズレベル(フロアレベル)の上昇を防ぐことができ、レーダ検出性能の劣化を抑えることができる。
【0123】
ドップラ解析部208は、コヒーレント積分部207の出力信号に対してドップラ周波数解析を行う。具体的には、ドップラ解析部208は、離散時刻k毎に得られたコヒーレント積分部207のNd個の出力ACC(k, 1)~ACC(k,Nd)を一単位として、離散時刻kのタイミングを揃えてドップラ周波数解析を行う。なお、上述したように、コヒーレント積分部207のNd個の出力ACC(k, 1)~ACC(k,Nd)の各々に含まれる残留した送信DCオフセット成分はドップラ周波数領域で白色化されるので、ドップラ解析部208によるドップラ周波数解析において、送信DCオフセット成分に起因して特定周波数成分のノイズレベル(フロアレベル)が上昇することを抑えることができる。
【0124】
具体的には、ドップラ解析部208は、次式(32)に示すように、2Nf個の異なるドップラ周波数fsΔΨに応じた位相変動Ψ(fs)=2πfs(Tr×Ne)ΔΨを補正した後に、コヒーレント積分を行う。
【数34】
【0125】
ここで、FT_CI(k, fs)は、ドップラ解析部208の離散時刻kでのドップラ周波数fsΔΨのコヒーレント積分結果を示す。なお、fs=-Nf+1,…,0,…,Nfであり、k=1,…, (Nr+Nu)Ns/Noであり、ΔΨは位相回転単位である。
【0126】
これにより、信号処理部203は、離散時刻k毎の2Nf個のドップラ周波数成分に応じたコヒーレント積分結果であるFT_CI(k, -Nf+1),…, FT_CI(k, Nf-1)を、レーダ送信周期間Trの複数回Ne×Ndの期間(Tr×Ne×Nd=Tr×Q)毎に得る。なお、jは虚数単位である。
【0127】
ΔΨ=1/Ndとした場合、ドップラ解析部208の処理は、サンプリング間隔(Tr×Ne)、サンプリング周波数1/(Tr×Ne)でコヒーレント積分部207の出力を離散フーリエ変換(DFT)処理していることと等価である。
【0128】
また、Nfを2のべき乗の数に設定することで、ドップラ解析部208では、高速フーリエ変換(FFT:Fast Fourier Transform)処理を適用でき、演算処理量を削減できる。なお、Nf>Ndでは、q>Ndとなる領域においてACC(k、Nd(w-1)+q+1)=0とするゼロ埋め処理を行うことで、同様にFFT処理を適用でき、演算処理量を削減できる。
【0129】
レーダ装置10は、ドップラ解析部208の出力FT_CI(k, fs)に基づいて、レーダ測定ターゲットの距離/ドップラ周波数(相対速度)を推定する。
【0130】
すなわち、ドップラ解析部208の出力FT_CI(k, fs)の絶対値の自乗値|FT_CI(k, fs)|は、離散時刻k毎、ドップラ周波数fs毎のターゲットからの反射波受信レベルに相当する。このことから、レーダ装置10は、雑音レベルから所定以上のピーク電力値となる離散時刻k、ドップラfに基づいて、ターゲットまでの距離R(k)を、ドップラ周波数に基づく相対速度vd(fs)を次のように推定することができる。なお、fs=-Nf+1,..,0,...,Nfでありk=1,…, (Nr+Nu)Ns/Noである。
【0131】
時刻情報kを距離情報R(k)に変換する際には次式(33)を用いる。ここで、Twは符号送信区間、Lはパルス符号長、C0は光速度を表す。
【数35】
【0132】
また、ドップラ周波数情報fsを相対速度成分vd(fs)に変換する際には次式(34)を用いる。ここで、λは送信無線部106から出力されるRF帯のレーダ送信信号のキャリア周波数の波長である。
【数36】
【0133】
以上説明した位相回転制御部103、送信位相回転部104及び受信位相回転部206の動作による効果を、計算機シミュレーションを用いて確認した結果を以下に示す。
【0134】
図4A及び図4Bは、1つの測定ターゲットが距離5m地点に時速20km/hでレーダ装置10から離れる方向に移動する条件における、ドップラ解析部208の出力(受信レベル)を示す。
【0135】
なお、図4A及び図4Bでは、送信無線部106に送信DCオフセット(キャリアリーク)が存在する条件とする。また、図4A及び図4Bは、レーダ送信符号として、相補符号(符号長L=64)、コヒーレント積分部207の加算回数Ne=32、ドップラ解析部208におけるサンプル数Nd=512を用いて計算機シミュレーションを行った結果を示す。
【0136】
また、図4Aは、本実施の形態に係るレーダ装置10の動作とは異なり、従来のように位相反転(PC(m))をランダムに切り替えない場合の結果を示す。一方、図4Bは、位相回転制御部103において、上述したように位相可変パターンPC(m)によって位相反転をランダムに切り替える場合の結果を示す。
【0137】
図4A及び図4Bの双方とも、距離5mで時速20km/hとなる座標において、鋭いピークが現れており、所望の測定ターゲットが検出されていることが分かる。
【0138】
しかしながら、図4Aでは、距離5mで時速20km/hの所望の測定ターゲットのピーク以外に、時速20km/hのドップラ周波数成分において全ての距離範囲(0 ~200m)で弱い受信レベルのピークが一様に現れている。これらの弱い受信レベルのピークは本来存在していない周波数成分であり、誤検出の要因となるものである。
【0139】
一方、本実施の形態に係る動作に基づく結果を示す図4Bでは、距離5mで時速20km/hの所望の測定ターゲットのピーク以外に、図4Aで検出されたような、特定のドップラ周波数成分で全ての距離範囲に弱い受信レベルのピークが一様に現れる現象はない。つまり、本実施の形態によれば、送信無線部106での送信DCオフセット(キャリアリーク)が存在する条件でも、誤検出の要因となるレーダ性能の劣化が無いことが確認できる。
【0140】
以上のように、レーダ装置10は、複数Ne回のレーダ送信周期(Tr)に相当する期間(Ne×Tr)内のレーダ送信信号(送信符号)に対する位相回転量の位相可変パターンPC(m)を期間(Ne×Tr)毎に変化させる位相回転制御部103と、レーダ送信信号に対して、位相可変パターンに従って位相回転(第1の位相回転)を付与する送信位相回転部104と、反射波信号(図1では相関演算値ACC(k,m))に対して、位相可変パターンに従って上記第1の位相回転と逆方向の位相回転を付与する受信位相回転部206と、を備える。
【0141】
すなわち、上記位相回転制御部103、送信位相回転部104及び受信位相回転部206の動作により、レーダ装置10は、期間(Ne×Tr)内の受信DCオフセットをキャンセルする複数の送信符号を1単位として、1単位の送信符号毎に位相反転を加えた符号(πの位相変化を加えた符号)にするか否かをランダムに切り替える。
【0142】
これにより、レーダ装置10のコヒーレント積分部207において、コヒーレント積分処理した出力が固定的な位相変動にならず、残留した送信DCオフセット成分がドップラ周波数領域で白色化される。よって、ドップラ解析部208における出力において、特定のドップラ周波数成分のノイズレベル(フロアレベル)が上昇することを防ぐことができ、レーダ検出性能の劣化を抑えることができる。
【0143】
よって、本実施の形態によれば、回路誤差によるレーダ検出性能の劣化を抑えることができる。
【0144】
また、本実施の形態によれば、レーダ装置10は、送信DCオフセット(キャリアリーク)を高精度に補正する回路構成を備えることなく、送信DCオフセットに起因するレーダ検出性能の劣化を防ぐことができるので、レーダ装置10の構成を簡易化することができる。
【0145】
なお、図1では、レーダ装置10の受信位相回転部206が相関演算部205の後段に配置される場合を示すが、図5に示すように、受信位相回転部206は、相関演算部205の前段に配置されても、上記実施の形態と同様の結果を得ることができる。
【0146】
[実施の形態2]
本実施の形態に係るレーダ装置は、実施の形態1に係るレーダ装置10と基本構成が共通するので、図1を援用して説明する。
【0147】
本実施の形態では、図6に示すように、実施の形態1に係るレーダ装置10(図1)を複数個備える場合について説明する。以下では、一例として、図6に示す2つのレーダ装置A,Bを備える場合について説明する。
【0148】
本実施の形態では、複数のレーダ装置10において、各レーダ装置10の位相回転制御部103で制御される位相可変パターンを互いに異ならせる。例えば、図6に示すレーダ装置Aでは、位相可変パターンPP(1)(q)(ただし、q=1,2,…,Npp)が設定され、レーダ装置Bでは、PP(1)(q)とは異なる位相可変パターンPP(2)(q)(ただし、q=1,2,…,Npp)が設定される。
【0149】
一例として、各レーダ装置10の位相回転制御部103は、同一のM系列符号の送出タイミングずらすことにより、異なる位相可変パターンを設定してもよい。例えば、レーダ装置Aの位相可変パターンPP(1)(q)は、符号長511のM系列符号を用いたパターンとする(ただし、q=1,…, 511)。この場合、レーダ装置Bの位相可変パターンPP(2)(q)は、レーダ装置Aで用いたM系列符号をNshiftだけ送出タイミングをずらしたパターンとしてもよい。すなわち、PP(2)(q)=PP(1)(q+Nshift)である。
【0150】
例えば、図6では、レーダ装置Aのレーダ受信部200が、レーダ装置Aが送信したレーダ送信信号の反射波である受信信号(所望信号)と、レーダ装置Bが送信したレーダ送信信号の反射波(干渉信号)とを受信する例を示している。
【0151】
この場合でも、上述したように、レーダ装置A,B間の位相可変パターンを異ならせることにより、実施の形態1と同様、各レーダ装置A,Bからの受信信号に残留した送信DCオフセット成分がドップラ周波数領域で白色化される。よって、特定のドップラ周波数成分のノイズレベル(フロアレベル)が上昇することを防ぐことができ、レーダ装置Aのレーダ検出性能の劣化を抑えることができる。つまり、同一周波数帯又は一部の周波数帯が重複する複数のレーダ装置10間の相互干渉を低減する効果が得られる。
【0152】
図7は、レーダ装置A及びレーダ装置Bが異なる位相可変パターンを用いてレーダ送信信号を送信した場合の相互干渉量に関して計算機シミュレーションで評価した結果を示す。
【0153】
図7では、レーダ装置A及びレーダ装置Bは、送信符号として相補符号を用いて、位相回転制御部103における位相シフトを、Ne=16, Ns=2とした。また、レーダ装置A及びレーダ装置Bのドップラ解析部208においてNd=512を用いた。
【0154】
図7の横軸は、レーダ送信周期(Tr)を単位とした、位相可変パターンの送出タイミングの時間シフト量を示し、縦軸は、レーダ装置Aの受信電力(Desired Power[黒丸印でプロット])と、レーダ装置Bの受信電力(Undesired Power[×印でプロット])と、レーダ装置Aの信号対干渉電力比(SIR[白丸でプロット])とを示している。
【0155】
図7に示すシミュレーション結果より、レーダ装置A及びレーダ装置Bの位相可変パターンとして、M系列符号の送出タイミングにおいて、16(=Ne)回のレーダ送信周期以上の送出タイミングの時間シフトがあれば、レーダ装置AのSIRが20dB程度改善することが確認できる。
【0156】
位相回転制御部103は、位相可変パターンの各要素PP(q)を順に読み出し、Ne回のレーダ送信周期(=Ne×Tr)に渡って、同じ要素の値を繰り返し出力する。このことから、Nshift≧1であれば、異なる位相可変パターン間で16(=Ne)回のレーダ送信周期以上の送出タイミングの時間シフトがあることになり、干渉抑圧効果を高められることが分かる。なお、SIRの改善量は位相可変パターンで用いる符号の符号長Nppと、ドップラ解析部208で用いるパラメータNd(例えば、Nd=512)に依存する。このため、許容の測定時間内で、できるだけ長いNp及びNdを用いることがSIR改善の観点でより好適である。
【0157】
以上のように、本実施の形態では、位相可変パターンは、複数のレーダ装置10間で互いに異なる。例えば、複数のレーダ装置10の各々の位相可変パターンで用いる同一のM系列符号の送出タイミングをシフトする。こうすることで、複数のレーダ装置10間の相互干渉を低減することができる。
【0158】
なお、上記の場合、複数のレーダ装置10の送出タイミングが偶然一致することもあるため、確率的に相互干渉を抑圧できないケースが発生する可能性がある。これに対して、以下の方法により、確率的に相互干渉を低減することができる。
【0159】
具体的には、複数のレーダ装置10において、符号長NppのM系列符号のうち、相互相関が低いPreferred pairを各々の位相可変パターンで用いる。
【0160】
または、符号長NppのM系列符号のうち、相互相関が低いPreferred pairから、Npp個の異なるGold符号が生成可能であることが知られている。よって、複数のレーダ装置10において、相互相関が低いPreferred pairから生成されるGold符号を各々の位相可変パターンに用いてもよい。
【0161】
または、複数のレーダ装置10において、各々の位相可変パターンをレーダ測定毎(又は所定の測定回数毎)にランダムに可変することにより、確率的に相互干渉を低減させてもよい。
【0162】
[実施の形態3]
実施の形態2では、位相可変パターンを複数のレーダ装置10間で異ならせることで、複数のレーダ装置10間の相互干渉を低減する方法について説明した。これに対して、本実施の形態では、複数のレーダ装置10の代わりに、複数の送受信アンテナを用いるMIMO(Multiple Input Multiple Output)レーダの構成について説明する。
【0163】
つまり、本実施の形態では、位相可変パターンは、複数の送信アンテナ間(つまり、MIMOのストリーム間)で互いに異なる。
【0164】
図8は、本実施の形態に係るレーダ装置20の構成例を示すブロック図である。なお、図8において、実施の形態1(図1)と同様の構成には同一の符号を付し、その説明を省略する。
【0165】
図8に示すレーダ装置20は、複数の送信アンテナを時分割で切り替えて、時分割多重される異なるレーダ送信信号を送信し、各レーダ送信信号を分離して受信処理を行う時分割MIMOレーダの構成を示す。なお、レーダ装置の構成は、これに限定されず、レーダ装置20は、複数の送信アンテナから周波数分割多重又は符号分割多重された異なる送信信号を送出し、各送信信号を分離して受信処理を行う構成でもよい。
【0166】
[レーダ送信部300の構成]
レーダ装置20のレーダ送信部300は、レーダ送信信号生成部101-1~101-Ntと、切替制御部301と、送信切替部302と、送信アレーアンテナ部303と、を有する。
【0167】
送信アレーアンテナ部303は、Nt個の送信アンテナ(Tx#1~Tx#Nt)から構成される。
【0168】
レーダ送信信号生成部101-1~101-Ntは、Nt個の送信アンテナ(Tx#1~Tx#Nt)にそれぞれ対応して備えられる。各レーダ送信信号生成部101は、実施の形態1(図1)と同様の動作を行う。ただし、各レーダ送信信号生成部101に設定される位相可変パターンは互いに異なる。
【0169】
例えば、Nt個のレーダ送信信号生成部101の各々における位相可変パターンは、同一のM系列符号の送出タイミングを1符号要素以上シフトして設定される。
【0170】
具体的には、レーダ送信信号生成部101-1における位相可変パターンをPP(1)(q)(ただし、q=1,…, Npp)とする。この場合、レーダ送信信号生成部101-2における位相可変パターンをPP(2)(q+Nshift)とし、レーダ送信信号生成部101-3における位相可変パターンをPP(3)(q+2Nshift))とし、以下同様に、レーダ送信信号生成部101-Ntにおける位相可変パターンをPP(Nt)(q+(Nt-1)Nshift)としてもよい。ただし、Nshift≧1とする。
【0171】
なお、Nt個のレーダ送信信号生成部101における各々の位相可変パターンとして、符号長NppのM系列符号のうち、相互相関が低いPreferred pairを用いてもよい。または、符号長NppのM系列符号のうち、相互相関が低いPreferred pairから、Npp個の異なるGold符号が生成可能であることが知られている。よって、相互相関が低いPreferred pairから生成されるGold符号をNt個のレーダ送信信号生成部101における各々の位相可変パターンに用いてもよい。または、Nt個のレーダ送信信号生成部101における各々の位相可変パターンをレーダ測定毎(又は所定の測定回数毎)にランダムに可変することにより、確率的に相互干渉を低減させてもよい。
【0172】
切替制御部301は、送信アレーアンテナ部303の送信アンテナ(Tx#1~Tx#Nt)の切替タイミング(つまり、レーダ送信信号の出力切替)を指示する制御信号(以下、切替制御信号と呼ぶ)を、送信切替部302、及びレーダ受信部400(相関演算部205及び出力切替部403)に出力する。
【0173】
送信切替部302は、切替制御部301からの切替制御信号に基づいて、送信アレーアンテナ部303のNt個の送信アンテナのうち一つを選択して、Nt個のレーダ送信信号生成部101の出力のうち、選択した送信アンテナに対応するレーダ送信信号生成部101の出力信号を、選択した送信アンテナへの入力とする。送信切替部302は、選択したレーダ送信信号生成部101の出力信号(ベースバンドのレーダ送信信号)を、所定の無線周波数帯に周波数変換して、選択(接続)された送信アンテナに出力する。
【0174】
送信アレーアンテナ部303は、送信切替部302から出力されるレーダ送信信号を、送信切替部302に選択(接続)された送信アンテナから空間に放射する。
【0175】
以下、切替制御部301による送信切替部302に対する制御動作について説明する。なお、切替制御部301によるレーダ受信部400に対する制御動作についてはレーダ受信部400の動作説明において後述する。
【0176】
切替制御部301は、Ne回のレーダ送信周期毎に、レーダ送信信号生成部101と送信アンテナとを順次切り替える切替制御信号を送信切替部302に出力する。
【0177】
例えば、切替制御部301は、最初のNe回のレーダ送信周期(Ne×Tr)において、レーダ送信信号生成部101-1の出力信号を送信切替部302の入力とし、高周波信号に変換した信号を送信アレーアンテナ部303の送信アンテナ(Tx#1)に出力させる。
【0178】
切替制御部301は、次のNe回のレーダ送信周期(Ne×Tr)において、レーダ送信信号生成部101-2の出力信号を送信切替部302の入力とし、高周波信号に変換した信号を送信アレーアンテナ部303の送信アンテナ(Tx#2)に出力させる。
【0179】
切替制御部301は、同様の動作を繰り返し、レーダ送信信号生成部101-Ntの出力信号を送信切替部302の入力とし、高周波信号に変換した信号を送信アレーアンテナ部303の送信アンテナ(Tx#Nt)に出力させる。
【0180】
また、切替制御部301は、次のNe回のレーダ送信周期(Ne×Tr)では、再び、レーダ送信信号生成部101-1の出力信号を送信切替部302の入力とし、高周波信号に変換した信号を送信アレーアンテナ部303の送信アンテナ(Tx#1)に出力させる。
【0181】
切替制御部301は、以上の動作を所定の回数(Nd×Nt回)繰り返す。
【0182】
以上の動作において、レーダ送信部300は、各レーダ送信信号生成部101で生成される信号として、実施の形態1で説明したGP(m)(例えば、式(19)又は式(20)を参照)を順次読み出すように動作する。ここで、m=1,…,Ne×Ndである。
【0183】
[レーダ受信部400の構成]
レーダ装置20のレーダ受信部400は、受信アレーアンテナ部401と、アンテナ系統処理部402と、方向推定部404と、を有する。
【0184】
受信アレーアンテナ部401は、Na個の受信アンテナ(Rx#1~Rx#Na)から構成される。Na個の受信アンテナは、レーダ送信部300から送信されるレーダ送信信号がレーダ測定ターゲットを含む反射物体に反射した信号(反射波信号)をそれぞれ受信する。Na個の受信アンテナで受信された各信号は、各受信アンテナ(Rx#1~Rx#Na)に対応するアンテナ系統処理部402へ受信信号として入力される。
【0185】
各アンテナ系統処理部402は、受信無線部202と、信号処理部203とを有する。
【0186】
第z番目のアンテナ系統処理部402-zの受信無線部202は、第z番目の受信アンテナ(Rx#z)からの受信信号を所定レベルに増幅し、高周波帯域の受信信号をベースバンド帯域に周波数変換し、ベースバンド帯域の受信信号を、I信号及びQ信号を含むベースバンド帯域の受信信号に変換する。ここでz=1,…,Naである。
【0187】
第z番目のアンテナ系統処理部402-zの信号処理部203は、A/D変換部204、相関演算部205、受信位相回転部206、出力切替部403、コヒーレント積分部207及びドップラ解析部208から構成される。なお、信号処理部203は、送信アンテナ(Tx#1~Tx#Nt)にそれぞれ対応するNt個のコヒーレント積分部207及びドップラ解析部208を備える。
【0188】
以下、第z番目のアンテナ系統処理部402-zの信号処理部203の各構成部について、主に、実施の形態1と異なる動作の説明を行う。
【0189】
相関演算部205は、AD変換部204から出力される複素ベースバンド信号X(Nv(m-1)+k)(例えば、式(23)を参照)と、切替制御部301によってNe回のレーダ送信周期(Ne×Tr)毎に選択されたレーダ送信信号生成部101において生成された送信符号との相関演算を行う。
【0190】
受信位相回転部206は、Ne回のレーダ送信周期(Ne×Tr)毎に、切替制御部301で選択されたレーダ送信信号生成部101の送信位相回転部103で付与した位相回転と逆方向(打ち消す方向)の位相回転を、相関演算部205から出力される信号(相関演算値)に付与する。
【0191】
出力切替部403は、切替制御部301においてNe回のレーダ送信周期(Ne×Tr)毎に選択された送信アンテナ番号(#1~#Nt)にそれぞれ対応するコヒーレント積分部207-1~207-Ntに出力を切り替える。
【0192】
例えば、切替制御部301で送信アンテナ(Tx#1)が選択された場合、出力切替部403は、受信位相回転部206からの信号を、送信アンテナ(Tx#1)に対応するコヒーレント積分部207-1に切り替えて出力する。
【0193】
また、切替制御部301で送信アンテナ(Tx#2)が選択された場合、出力切替部403は、受信位相回転部206からの信号を、送信アンテナ(Tx#2)に対応するコヒーレント積分部207-2に切り替えて出力する。
【0194】
出力切替部403は、同様の動作を繰り返し、切替制御部301で送信アンテナ(Tx#Nt)が選択された場合、受信位相回転部206からの信号を、送信アンテナ(Tx#Nt)に対応するコヒーレント積分部207-Ntに切り替えて出力する。
【0195】
第ND番目のコヒーレント積分部207-Nは、切替制御部301においてNe回のレーダ送信周期(Ne×Tr)毎に選択された受信位相回転部206の出力に対して、複数Ne回の期間(Tr×Ne)を単位としてコヒーレント積分処理を行う。ここで、ND=1,…,Ntである。
【0196】
ドップラ解析部208は、コヒーレント積分部207の出力信号に対してドップラ周波数解析を行う。すなわち、ドップラ解析部208は、離散時刻k毎に得られたコヒーレント積分部207からのNd個の出力を用いて、離散時刻kのタイミングを揃えてドップラ周波数解析を行う。
【0197】
上述したように、レーダ装置20では、所定回数Ne(つまり、コヒーレント積分部207の積算区間)毎に切替制御部301によって送信アンテナが切り替えられ、送信アンテナ間で異なる位相可変パターンPC(m)が設定される。これにより、各送信アンテナに対応するドップラ解析部208の出力では、実施の形態1と同様、各送信アンテナから送信されたレーダ送信信号に対するコヒーレント積分部207の出力ACC(k,v)(式(31)を参照)に含まれる残留した送信DCオフセット成分がドップラ周波数領域で白色化することになる。よって、特定のドップラ周波数成分のノイズレベル(フロアレベル)の上昇を防ぐことができ、レーダ検出性能の劣化を抑えることができる。さらに、送信アンテナ間で異なる位相可変パターンが設定されることで、各送信アンテナで送信されるレーダ送信信号間の相互干渉低減を図ることができる。
【0198】
以下の説明では、アンテナ系統処理部402-1からアンテナ系統処理部402-Naの各々において同様の処理を施して得られた、ドップラ解析部208からの離散時刻k毎のw番目の出力FT_CI(z) (1)(k,fs, w),…, FT_CI(z) (Na)(k, fs, w)をまとめて次式(35)、(36)に示すように仮想受信アレー相関ベクトルh(k、fs, w)として表記する。仮想受信アレー相関ベクトルh(k、fs, w)は、送信アンテナ数Ntと受信アンテナ数Naとの積であるNt×Na個の要素を含む。仮想受信アレー相関ベクトルh(k、fs, w)は、後述する、ターゲットからの反射波信号に対して受信アンテナ間の位相差に基づく方向推定を行う処理の説明に用いる。ここで、z=1,…,Nt、ND=1,..,, Naである。なお、fs=-Nf+1,..,0,...,Nfである。
【数37】
【数38】
【0199】
以上、アンテナ系統処理部402-zの信号処理部203の各構成部における処理について説明した。
【0200】
方向推定部404は、アンテナ系統処理部402-1~アンテナ系統処理部402-Naから出力される離散時刻k毎のw番目のドップラ解析部208からの仮想アレー相関ベクトルh(k、fs, w)に対して、送信アレーアンテナ部303の送信アンテナ間及び受信アレーアンテナ部401の受信アンテナ間の移相偏差及び振幅偏差を補正するアレー補正値h_cal[b]を乗算することで、アンテナ間偏差を補正した仮想受信アレー相関ベクトルh_after_cal(k、fs, w)を算出する。仮想受信アレー相関ベクトルh_after_cal(k, fs, w)は次式(37)で表される。なお、b=1,.., (Nt×Na)である。
【数39】
【0201】
アンテナ間偏差を補正した仮想受信アレー相関ベクトルh_after_cal(k, fs, w)は、Na×Nr個の要素からなる列ベクトルである。以下では、仮想受信アレー相関ベクトルh_after_cal(k, fs, w)の各要素をh1(k, fs, w),…,hNa×Nr(k, fs, w)と表記して、方向推定処理の説明に用いる。
【0202】
そして、方向推定部404は、仮想受信アレー相関ベクトルh_after_cal(k, fs, w)を用いて、受信アンテナ間の反射波信号の位相差に基づいて方向推定処理を行う。
【0203】
方向推定部404は、方向推定評価関数値PH(θ, k, fs, w)における方位方向θを所定の角度範囲内で可変として空間プロファイルを算出し、算出した空間プロファイルの極大ピークを大きい順に所定数抽出し、極大ピークの方位方向を到来方向推定値とする。
【0204】
なお、評価関数値PH(θ, k, fs, w)は、到来方向推定アルゴリズムによって各種のものがある。例えば参考非特許文献1に開示されているアレーアンテナを用いた推定方法を用いてもよい。
【0205】
(参考非特許文献1)Direction-of-arrival estimation using signal subspace modeling Cadzow, J.A.; Aerospace and Electronic Systems, IEEE Transactions on Volume: 28 , Issue: 1 Publication Year: 1992 , Page(s): 64 - 79
【0206】
例えばビームフォーマ法は次式(38)、(39)のように表すことができる。他にも、Capon, MUSICといった手法も同様に適用可能である。
【数40】
【数41】
【0207】
ここで、上付き添え字Hはエルミート転置演算子である。また、aHu)は、方位方向θuの到来波に対する仮想受信アレーの方向ベクトルを示すまた、θuは到来方向推定を行う方位範囲内を所定の方位間隔β1で変化させたものである。例えば、θuは以下のように設定される。
θu=θmin + uβ1、u=0,…, NU
NU=floor[(θmax-θmin)/β1]+1
【0208】
ここでfloor(x)は、実数xを超えない最大の整数値を返す関数である。
【0209】
以上、レーダ受信部400の構成について説明した。
【0210】
以上のように、本実施の形態では、MIMOレーダであるレーダ装置20において、各々の送信アンテナで送信されるレーダ送信信号に対する位相可変パターンを異ならせることで、複数の送信アンテナを切り替えて送信されるレーダ送信信号間の相互干渉低減を図ることができる。
【0211】
また、本実施の形態では、複数の送信アンテナを切り替えて送信されるレーダ送信信号間の相互干渉が低減できる分、複数の送信アンテナを切り替える時間間隔を狭めることができ、検出時間の短縮化を図ることもできる。
【0212】
以上、本開示の一態様に係る実施の形態について説明した。
【0213】
なお、上記実施の形態、及び、各バリエーションに係る動作を適宜組み合わせて実施してもよい。
【0214】
[他の実施の形態]
(1)上記実施の形態において、レーダ装置10,20は、送信DCオフセットを簡易的に補正する回路構成を備えてもよい。これにより、レーダ装置10,20は、上述した位相可変パターンを制御する構成と、送信DCオフセット成分を補正する構成とを併用することにより、送信DCオフセットに起因するノイズレベルの上昇をさらに抑えることができる。
【0215】
(2)上記実施の形態では、符号化パルスレーダを用いる場合について説明したが、本開示は、チャープ(Chirp)パルスレーダのような周波数変調したパルス波を用いたレーダ方式についても適用可能である。
【0216】
(3)図1図5図6図8に示すレーダ装置10,20において、レーダ送信部100,300及びレーダ受信部200,400は、物理的に離れた場所に個別に配置されてもよい。
【0217】
(4)レーダ装置10,20は、図示しないが、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、およびRAM(Random Access Memory)等の作業用メモリを有する。この場合、上記した各部の機能は、CPUが制御プログラムを実行することにより実現される。
【0218】
以上、図面を参照しながら各種の実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施形態における各構成要素を任意に組み合わせてもよい。
【0219】
上記各実施形態では、本開示はハードウェアを用いて構成する例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアでも実現することも可能である。
【0220】
また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力端子と出力端子を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
【0221】
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサを用いて実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、LSI内部の回路セルの接続又は設定を再構成可能なリコンフィギュラブル プロセッサ(Reconfigurable Processor)を利用してもよい。
【0222】
さらには、半導体技術の進歩又は派生する別技術により、LSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックを集積化してもよい。バイオ技術の適用等が可能性としてありえる。
【0223】
<本開示のまとめ>
本開示のレーダ装置は、所定の送信周期にてレーダ信号を送信するレーダ送信部と、前記レーダ信号がターゲットにおいて反射された反射波信号を受信するレーダ受信部と、を具備するレーダ装置であって、前記レーダ送信部は、複数回Ne(Neは1より大きい整数)の前記送信周期に相当する期間内の前記レーダ信号に付与する位相回転量のパターンを前記期間毎に変化させる、前記位相回転量は、2πの整数倍を複数回Neで除算して求められ、前記位相回転量のパターンは、前記位相回転量に所定の符号系列の符号極性を乗算して得られる、位相回転制御部と、前記レーダ信号に対して、前記位相回転量のパターンに従って第1の位相回転を付与する送信位相回転部と、を備え、前記レーダ受信部は、前記反射波信号に対して、前記位相回転量のパターンに従って前記第1の位相回転と逆方向の第2の位相回転を付与する受信位相回転部、を備える。
【0224】
本開示のレーダ装置において、前記所定の符号系列の符号極性が+1である場合、前記位相回転量の位相変化は0であり、前記所定の符号系列の符号極性が-1である場合、前記位相回転量の位相変化は、πである。
【0225】
本開示のレーダ装置において、前記所定の符号系列は、擬似ランダム符号、M系列符号、または、Gold符号に基づく。
【0226】
本開示のレーダ装置において、相補符号を用いて前記レーダ信号を生成する場合、前記送信位相回転部は、前記相補符号を構成するペアの符号を送信する2回の送信周期内で同じ前記位相回転量を付与し、2回の送信周期毎に変化した前記位相回転量を付与する。
【0227】
本開示のレーダ装置において、所定の符号系列は、複数のレーダ装置間で互いに異なる。
【0228】
本開示のレーダ装置において、レーダ送信部は、複数の送信アンテナを具備し、前記所定の符号系列は、送信アンテナ間で互いに異なる。
【0229】
本開示のレーダ方法は、複数回Ne(Neは1より大きい整数)の送信周期に相当する期間内のレーダ信号に付与する位相回転量のパターンを期間毎に変化させ、レーダ信号に対して、位相回転量のパターンに従って第1の位相回転を付与し、前記送信周期にて前記第1の位相回転が付与されたレーダ信号を送信し、前記第1の位相回転が付与されたレーダ信号がターゲットにおいて反射された反射波信号を受信し、反射波信号に対して、位相回転量のパターンに従って第1の位相回転と逆方向の第2の位相回転を付与する、レーダ方法であって、前記位相回転量は、2πの整数倍を複数回Neで除算して求められ、前記位相回転量のパターンは、前記位相回転量に所定の符号系列の符号極性を乗算して得られる。
【産業上の利用可能性】
【0230】
本開示は、広角範囲を検知するレーダ装置として好適である。
【符号の説明】
【0231】
10,20 レーダ装置
100,300 レーダ送信部
101 レーダ送信信号生成部
102 符号生成部
103 位相回転制御部
104 送信位相回転部
105 変調部
106 送信無線部
107 送信アンテナ
111 符号記憶部
112 DA変換部
200,400 レーダ受信部
201 受信アンテナ
202 受信無線部
203 信号処理部
204 AD変換部
205 相関演算部
206 受信位相回転部
207 コヒーレント積分部
208 ドップラ解析部
301 切替制御部
302 送信切替部
303 送信アレーアンテナ部
401 受信アレーアンテナ部
402 アンテナ系統処理部
403 出力切替部
404 方向推定部
図1
図2
図3
図4A
図4B
図5
図6
図7
図8