(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-07
(45)【発行日】2024-06-17
(54)【発明の名称】電荷トラッピング層を備えた支持体上に転送された薄層を含む構造物の製造方法
(51)【国際特許分類】
H01L 21/02 20060101AFI20240610BHJP
H01L 27/12 20060101ALI20240610BHJP
H01L 21/322 20060101ALI20240610BHJP
H03H 3/08 20060101ALI20240610BHJP
H03H 9/25 20060101ALI20240610BHJP
【FI】
H01L27/12 B
H01L21/322 P
H03H3/08
H03H9/25 C
(21)【出願番号】P 2022501248
(86)(22)【出願日】2020-03-26
(86)【国際出願番号】 EP2020058462
(87)【国際公開番号】W WO2021008742
(87)【国際公開日】2021-01-21
【審査請求日】2022-12-16
(32)【優先日】2019-07-12
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】507088071
【氏名又は名称】ソイテック
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】イザベル ベルトラン
(72)【発明者】
【氏名】アレクシス ドルーアン
(72)【発明者】
【氏名】イザベル フイエ
(72)【発明者】
【氏名】エリック ビュトー
(72)【発明者】
【氏名】モーガン ロジウ
【審査官】宇多川 勉
(56)【参考文献】
【文献】国際公開第2018/002504(WO,A1)
【文献】特開2009-088498(JP,A)
【文献】特開2017-005078(JP,A)
【文献】米国特許出願公開第2016/0276209(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 27/12
H01L 21/02
H01L 21/322
H03H 3/08
H03H 9/25
(57)【特許請求の範囲】
【請求項1】
電荷トラッピング層(3)を備えた支持体(2)上に転写され、圧電性及び/または強誘電性材料で構成される薄層(5)を含む構造(1)を製造するための方法であって、
ベース基板(6)上に形成されたトラッピング層(3)を含む支持体(2)を調整するステップであって、前記トラッピング層(3)の水素濃度が10
18at/cm
3
未満であるステップと、
前記支持体(2)を、窒素/酸素比が0.01と0.25との間の窒素を有するシリコン酸化物で構成される誘電体層(4)によって、ドナー基板に接合するステップと、
前記ドナー基板の一部を除去して薄層(5)を形成するステップと、を含み、
構造(1)を、少なくとも前記接合するステップの間及び後に、最高温度1000℃未満の温度にさらす製造方法。
【請求項2】
前記トラッピング層(3)は、600℃と950℃との間で堆積され、支持体(2)を調整するステップは、水素が欠乏した雰囲気中、堆積温度と1000℃との間で前記トラッピング層(3)をアニールする第1の段階を含む、請求項1に記載の製造方法。
【請求項3】
前記トラッピング層の堆積は、LPCVD法で実施する、請求項2に記載の製造方法。
【請求項4】
前記トラッピング層(3)は、950℃と1100℃との間の温度で堆積することによって形成される、請求項1に記載の製造方法。
【請求項5】
前記トラッピング層(3)の堆積は、エピタキシーフレーム内で実施される、請求項4に記載の製造方法。
【請求項6】
前記窒素/酸素比は、0.05と0.1との間である、請求項1から5のいずれか一項に記載の製造方法。
【請求項7】
前記接合するステップの以前に、前記ドナー基板内に脆化面を形成するステップを含み、前記除去するステップが、前記ドナー基板を前記脆化面において破砕することによって実施される、請求項1から6のいずれか一項に記載の製造方法。
【請求項8】
前記薄層(5)は、タンタル酸リチウムまたはニオブ酸リチウムでできている、請求項1から7のいずれか一項に記載の製造方法。
【請求項9】
600℃または1000℃を超える温度にさらすことができない構造(1)であって、
ベース基板(6)、
前記ベース基板(6)上に配置され、水素濃度が10
18at/cm
3未満のトラッピング層(3)と、
前記トラッピング層(3)上に配列された誘電体層(4)であって、窒素/酸素比が0.01と0.25との間の窒素を有するシリコン酸化物で構成される前記誘電体層(4)と、
前記誘電体層(4)上に配置され、圧電性及び/または強誘電性材料で構成される薄層(5)と、
を含む、構造(1)。
【請求項10】
前記薄層(5)は、永久分極を有する強誘電体材料で構成され、キュリー温度が600℃と1000℃との間である、請求項9に記載の構造(1)。
【請求項11】
前記誘電体層(4)は、前記トラッピング層(3)及び前記薄層(5)と接触する、請求項9または10に記載の構造(1)。
【請求項12】
前記窒素/酸素比が0.05と0
.1との間である、請求項9から11のいずれか一項に記載の構造(1)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電荷トラッピング層を備えた支持体上に転写された薄層を含む構造を製造するための方法に関する。
【背景技術】
【0002】
集積デバイスは通常、ウェハの形で基板上に確立され、主にそれらの製造のサポートとして機能する。しかしながら、これらのデバイスから期待される集積の程度及び性能レベルの上昇は、それらの性能レベルとそれらが形成される基板の特性との間のますます重要な関連をもたらした。これは特に、約3kHzから300GHzの間の周波数の信号を処理する高周波(RF)デバイスの場合に当てはまり、特に、電気通信(電話、Wi-Fi、Bluetooth等)の分野に特に当てはまる。
【0003】
デバイス/基板の結合の例を使用すると、デバイス内を伝播する高周波信号から発生する電磁界が基板の深さまで浸透し、そこにある荷電可能な粒子と相互作用する。この結果、挿入損失によって信号のエネルギーの一部が不必要に消費され、クロストークによりコンポーネント間に影響が生じる可能性がある。
【0004】
フィルタ、スイッチ、アンテナアダプタ等の無線周波数デバイス、及びパワーアンプは、これらの現象を考慮に入れてパフォーマンスレベルを向上させるように特別に適合された基板上に確立できる。
【0005】
したがって、1kオーム・cmを超える抵抗率を有するシリコン支持基板、支持基板上の誘電体層、及び絶縁層上に配置されたシリコンの表面薄層を含む高抵抗率シリコンオンインシュレータ(HR SOI)基板が知られている。基板はまた、支持基板と誘電体層との間に配置された電荷トラッピング層を含むことができる。トラッピング層は、ドープされていない多結晶シリコンを含むことができる。このタイプの基板の製造は、例えば、FR2860341、FR2933233、FR2953640、US2015/115480、US7268060またはUS6544656に記載されている。一般に、その意図は、その高周波性能レベルを低下させるトラッピング層の再結晶化を回避するために、そのような基板に適用される熱処理の温度及び/または期間を制限することである。
【0006】
特定の半導体構造が、製造中または使用中に、例えば600℃または1000℃を超える高温にさらあうことができない理由は他にもある。これは、熱膨張係数が異なる2つの基板のアセンブリから形成された構造の場合である。基板の1つは、他の基板から取られた薄層が転写される構造の支持体を形成する。
【0007】
薄層の性質は、例えば、強誘電体材料で構成されている場合、構造の処理温度を、そのキュリー温度、つまり、それを超えると材料が永久分極を失う温度に制限することもできる。
【0008】
また、半導体構造体の薄層に成分が含まれる場合、露光温度を制限する誘因となることがある。これらのコンポーネントは、構造上(または構造内)に直接形成されているか、この構造を形成するために支持体に転写されている可能性がある。400℃または600℃以上の露光温度は、コンポーネントを構成するドーパントまたは金属の拡散により、コンポーネントが機能しなくなるリスクがある。
【0009】
構造の要素がさらされる温度を意図的に制限することを選択することも可能である。これは、特に、電荷トラッピング層または誘電体層がLPCVD(「low-pressure chemical vapor deposition」)またはPECVD(「plasma-enhanced chemical vapor deposition」)技術によって形成される場合である。これらの安価な技術は、複数の基板に合わせて適用可能であり、約600度の中程度の温度で実行される。
【0010】
しかし、出願人は、電荷トラッピング層と誘電体層とを含む構造体を、適度な熱処理しか行わない(すなわち、1000℃以上の温度にさらさない)製造方法によって製造することが、予想よりもはるかに低い高周波(RF)性能レベルを有する構造体になることを観測した。
【0011】
ソイテックによって発行された2015年1月付けの出版物「White paper - RF SOI Characterization」に記載されているように、基板のRF性能は、2次高調波歪み測定HD2によって特徴づけられる。電荷トラッピング層を含み、適度な熱処理のみを実施する半導体構造の場合、出願人は、このHD2特性が期待値の55%から75%の間である可能性があることを観測した。
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は、少なくとも部分的に、この問題に対処することを目的としている。より特別には、電荷をトラップするための層を備えた支持体上に薄層を転写することを含む半導体構造を製造する方法を提案することを目的とし、この方法は、構造を高温にさらす熱処理を使用せず、それにもかかわらず、RF性能レベルの規格を伴う構造になる。
【課題を解決するための手段】
【0013】
この目的を達成するために、本発明の目的は、電荷トラッピング層を備えた支持体上に転写された薄層を含む構造を製造するための方法を提案する。この方法は、以下のステップを含む。
-ベース基板上に形成されたトラッピング層を含む支持体を調整し、トラッピング層は1018at/cm3未満の水素濃度を有する、
-水素濃度が1020at/cm3未満の誘電体層、またはトラッピング層への水素の拡散を防止するバリア、または水素拡散係数の低い誘電体層を使用して、支持体をドナー基板に接合する、
-ドナー基板の一部を除去して薄層を形成する。
-製造方法は、構造物(1)を最高温度1000℃未満の温度にさらす。
【0014】
支持体調製工程中に低水素濃度を有するトラッピング層を形成することは、この層の電荷トラップを過度に中和することを回避する。水素濃度も低い、またはこの水素の拡散を防ぐ誘電体層を形成することは、特に製造方法中及び接合ステップ後にこの誘電体層がさらされる熱処理中に、トラッピング層への拡散を回避または制限する。あるいは、誘電体層からトラッピング層への水素の拡散を防ぐバリアを誘電体層に設けることができる。
【0015】
本発明の他の有利で非限定的な特徴によれば、以下が、単独でまたは技術的に実現可能な任意の組み合わせで、選択される。
・トラッピング層は、600℃と950℃との間の堆積温度で堆積され、支持体を調整するステップは、水素が欠乏した雰囲気及び堆積温度と1000℃との間の温度でトラッピング層をアニーリングする第1のステージを含む、
【0016】
・トラッピング層の堆積は、LPCVD法を実施する、
【0017】
・トラッピング層は、950℃と1100℃との温度での堆積によって形成される。
【0018】
・トラッピング層の堆積は、エピタキシーフレームで実行される、
【0019】
・誘電体層は、水素濃度が1020at/cm3を超える材料を堆積させた後、水素が欠乏した雰囲気で第2のアニーリングステージを適用することによって生成される、
【0020】
・第2のアニーリングステージは、中性雰囲気で少なくとも1時間800℃と900℃との間である、
【0021】
・誘電体層は、第1のアニーリングステージを適用する前に、水素濃度が1020at/cm3を超える材料をトラッピング層に堆積させることによって生成される、
【0022】
誘電体層は、800℃と1000℃との間の温度でトラッピング層を熱酸化することによって生成される、
【0023】
・誘電体層はバリアを構成し、バリアはトラッピング層と直接接触する、
【0024】
バリアは、SiNまたはAlNの層で構成される、
【0025】
・低水素拡散率を有する誘電体層は、0.01または0.05以上の窒素/酸素比の窒素を有する酸化物を含む、
【0026】
低水素拡散率を有する誘電体層は、0.01と0.25との間、または0.05と0.1との間の窒素/酸素比の窒素を有するシリコン酸化物を含む、
【0027】
・製造方法は、接合ステップの前に、ドナー基板内に脆化面を形成するステップを含み、除去ステップは、脆化面でドナー基板を破砕することによって実行される、
【0028】
・薄層は、圧電性及び/または強誘電性材料で構成される、
【0029】
・薄層は、タンタル酸リチウムまたはニオブ酸リチウムで作られる。
【0030】
別の態様によれば、本発明は、高温、例えば、600℃または1000℃を超える高温にさらすことができない構造を提案し、その構造は、以下を含む。
-ベース基板、
-ベース基板上に配置され、水素濃度が1018atm/cm3未満のトラッピング層、
-トラッピング層上に配置された誘電体層、水素濃度が1020atm/cm3未満またはトラッピング層への水素の拡散を防止するバリアを備えているか、水素拡散率が低い誘電体層、
-誘電体層に配置された薄層。
【0031】
本発明の他の有利で非限定的なこの態様の特徴によれば、以下が、単独でまたは技術的に実現可能な任意の組み合わせで選択される。
【0032】
・薄層は、永久分極とキュリー温度が600℃と1000℃との間の強誘電体材料で構成される、
【0033】
・誘電体層は、トラッピング層及び薄層と接触している、
【0034】
・低水素拡散率を有する誘電体層は、0.01または0.05以上の窒素/酸素比の窒素を有する酸化物を含む、
【0035】
・拡散性の低い誘電体層は、窒素/酸素比が0.01と0.25との間、または0.05と0.1との間の窒素を有するシリコン酸化物を含む。
【図面の簡単な説明】
【0036】
本発明の他の特徴及び利点は、以下の本発明の詳細な説明から明らかになり、その説明は添付の図面を参照して与えられる、
【0037】
【
図1】
図1は、製造方法がこの説明の対象となる構造を示す図である。
【発明を実施するための形態】
【0038】
図1は、その製造方法がこの説明の対象である構造1を示している。構造1は、薄い表面層5、誘電体層4、例えば、酸化シリコン等の酸化物及び支持体2を有する。支持体2は、ベース基板6上に配置された電荷トラッピング層3を備えている。トラッピング層3は、誘電体層4とベース基板6との間に挿入される。好ましくは、誘電体層4は、トラッピング層3及び薄層5と接触している。
【0039】
通常、構造体1は、100、200、300、あるいは450mmとすることができる直径を有する円形ウェハの形状とすることができる。
【0040】
プリアンブルに提示された先行技術を形成する文書に記載されているように、構造1は多くの方法で製造することができる。一般的な原則として、構造1は、支持体2とドナー基板とを接合し、誘電体層をこれら2つの要素の間に挿入し、続いてドナー基板の一部を除去して薄層5を形成するステップを含む製造方法によって製造することができる。ドナー基板の一部を除去するステップは、この基板を化学的機械的に薄くすることによって実行することができる。好ましくは、構造1は、スマートカット(商標)技術を適用することによって製造され、それによれば、薄層5を形成することを意図した層は、ドナー基板への光種の注入によって形成される脆化面によって区切られる。次に、この層は、脆化面で破砕することによってドナー基板から除去され、支持体2とドナー基板との間に挿入された誘電体層4を介して、トラッピング層3を備えた支持体2に転写される。
【0041】
ベース基板6は、通常、数百μmの厚さである。好ましくは、ベース基板は、1000オーム・cmよりも大きい、さらにより好ましくは2000オーム・cmよりも大きい高抵抗率を有する。したがって、これにより、ベース基板内を移動する可能性のある電荷、正孔、または電子の密度が制限される。しかしながら、本発明は、そのような抵抗率を有するベース基板6に限定されず、ベース基板が、例えば、約数百オーム・cm、1000オーム・cm未満、または500オーム・cm未満、さらには10オーム・cm未満のより順応性のある抵抗率を有する場合、RF性能の利点も提供する。
【0042】
入手可能性及びコスト上の理由から、ベース基板3は、好ましくは単結晶シリコンでできている。それは、例えば、6ppmと10ppmとの間の低い侵入型酸素含有量を有するCZシリコン基板、または特に自然に非常に低い侵入型酸素含有量を有するFZシリコン基板であってもよい。また、26ppmを超える大量の侵入型酸素(「High Oi」という表現で示される)を持つCZシリコン基板にすることもできる。あるいは、ベース基板は、例えば、サファイア、ガラス、石英、炭化ケイ素等の別の材料から形成することもできる。特定の状況において、特にトラッピング層3が十分に厚い場合、例えば、30μmを超える厚さである場合、ベース基板6は、1kオーム・cm未満の標準抵抗率を有するものであってもよい。
【0043】
トラッピング層3は、先行技術を形成する文書に記録されているように、本質的に大きく変化する可能性がある。一般的に言えば、それは転位、粒界、アモルファス領域、隙間、介在物、細孔等のような構造的欠陥を有する非結晶層である。これらの構造上の欠陥は、例えば不完全な化学結合やペンダント化学結合等で、材料内を循環しやすい電荷のトラップを形成する。これにより、トラッピング層での伝導が防止され、その結果、抵抗率が高くなる。
【0044】
有利なこと、及び実施を単純化するために、このトラッピング層3は、多結晶シリコンの層で形成されている。その厚さは、特に抵抗層ベース基板6上に形成された場合、0.3μmと3μmとの間の範囲とすることができる。しかしながら、構造1から期待されるRF性能のレベルに応じて、この範囲より下または上の他の厚さも考えられる。
【0045】
構造1に適用することができる熱処理中にこの層の多結晶品質を得ようとするため、例えば二酸化シリコンでできたアモルファス層を、電荷トラッピング層3の堆積前にベース基板6上に有利に提供することができる。
【0046】
あるいは、トラッピング層3は、電気的な構造的欠陥をそこに形成するために、ベース基板6の表面厚さにアルゴン等の比較的重い種を注入することによって形成されてもよい。この層3は、また、ベース基板6の表面厚さの多孔化によって、またはベース基板6の表面厚さに構造欠陥を形成することができる任意の他の方法によって形成することができ、これらの構造欠陥は、電荷をトラップすることができる。
【0047】
薄い表面層5は、任意の適切なタイプのものとすることができる。したがって、構造1が集積半導体部品を受け入れることを意図している場合、薄層5は、単結晶シリコン、またはゲルマニウム、シリコンゲルマニウム、炭化シリコン素等の他の任意の半導体材料で構成することができる。構造1が弾性表面波フィルタを受け取ることを意図している場合、薄層5は、タンタル酸リチウムまたはニオブ酸リチウム等の圧電性及び/または強誘電性材料から構成することができる。薄層5はまた、構造1を製造するステップの間にドナー基板上に形成され、支持体2上に転写された、完成または半完成の一体型構成要素を含むことができる。一般に、薄層は10nmと10μmとの間の厚さにすることができる。
【0048】
次に、
図1に示すような構造物の製造方法について説明する。この方法は、本発明に至った予備実験を構成する。この実験方法によれば、多結晶シリコンの電荷トラッピング層3は、600℃と650℃のとの間で行われるLPCVD法を使用し、堆積によってシリコンベース基板6上に形成された。トラッピング層3は約1μmの厚さであった。
【0049】
構造1の誘電体層4を形成する300nmから1000nmの厚さのシリコン酸化層が、600℃の温度で実行されるPECVD法を使用して、トラッピング層3上に堆積された。この堆積に続いて、中性または酸化性雰囲気中で、600℃、約1時間の緻密化アニーリングを行った。次に、この層を化学機械研磨(CMP)ステップで研磨し、酸化物を約200~800nm除去して、5×5μmのフィールドで0.3nmRMS未満の粗さの表面を提供した。
【0050】
タンタル酸リチウム強誘電体ドナー基板には、埋め込み脆化面を形成するために、その面の第1の面を通る水素イオンによって注入がされた。したがって、この脆化面とのドナー基板の第1の面との間に第1の層が定義された。ドナー基板は、支持体2上に配置されたシリコン酸化層4に接合され、次いで、ドナー基板は、約400℃の中程度の熱処理を使用して、脆化面で破砕された。ドナー基板の第1の層は、この層の自由面を露出させるために解放され、したがって、結晶品質及び表面状態を改善するために調整された。この調整には、化学機械研磨によって第1の層を薄くするステップと、中性雰囲気中で500℃、1時間熱処理するステップが含まれる。
【0051】
このように生成された構造から期待されるRF性能のレベルは、したがって、US2015/0168326に教示されているようにHQF(高調波品質係数)の値を決定することによって推定された。このHQF値は、トラッピング層4とベース基板6の深さ抵抗率プロファイルから推定することができる。
【0052】
次に、「第2高調波歪み」(HD2)と呼ばれる特性測定は、このように調整された構造1で実行される。この測定は900MHzで実行され、イントロダクションで提供した文献「White paper - RF SOI wafer characterization」に記載されている。より具体的には、コプレーナガイドは、タンタル酸リチウムの薄い表面層の自由面にアルミニウム線を堆積させることによって形成された。次に、900MHzの周波数の信号がガイドの一方の端に適用され、2次高調波信号HD2がもう一方の端で測定される。2次高調波信号が弱いほど、構造の性能レベルは高くなる。
【0053】
HD2の測定とHQFの推定は、構造1に特に関連する特性であり、これらは、この構造上に形成される統合RFデバイスの性能をよく表しているためである。
【0054】
予期せぬことに、今説明した方法の最後の構造1のHD2特性の値は、HQF推定によって提供される期待される結果の約50%から75%にしか対応していない。
【0055】
追加の研究により、出願人は、この低い性能レベルが、電荷トラッピング層3及び誘電体層4における過剰な水素の存在に関連していることを理解することができた。誘電体層、この場合SiO2は、誘電体層、この場合SiO2には1020at/cm3、トラッピング層3には1018at/cm3を超える水素が含まれていた。
【0056】
特に水素リッチの誘電体層4は、一種のリザーバーを形成し、誘電体層4とトラッピング層との水素濃度の差が過剰になると、構造1に適用される熱処理を考慮して、この層4に保持された水素は、トラッピング層3に向かって拡散することができる。その結果、トラッピング層には、誘電体層4によって水素が供給される。次に、水素は、特に誘電体層4との界面において、トラッピング層3の電気トラップを中和することができる。1000℃を超える温度にさらされる従来の構造では、例えば、構造を仕上げる最終段階で、誘電体層4またはトラッピング層3に含まれる水素が、拡散中に除去されることに留意されたく、したがって、熱処理、及びHD2測定値とHQF推定値のこのような差は、有意に生じない。
【0057】
次に、出願人は、これらのメカニズムの発見を利用して、構造を高温にさらす熱処理を使用しないが、それにもかかわらず、RF性能レベルに準拠した構造をもたらす製造方法を開発した。「準拠」とは、HD2測定値がHQF推定値から20%を超えて逸脱しないことを意味する。
【0058】
一般に、この方法は、電荷トラップを過度に中和することを回避するために、比較的低い水素濃度を有するトラッピング層3を形成することを目的としている。目的はまた、構造に適用される熱処理を考慮に入れて、この水素のトラッピング層への移動を回避または制限するために、低水素濃度を有する誘電体層4を形成するか、またはこの水素の拡散を制限することである。
【0059】
より具体的には、この方法は、支持体2を調整するステップ、この支持体2をドナー基板に接合するステップ、及び今説明されたドナー基板の一部を除去するステップを繰り返す。このアプリケーションのイントロダクションに記載されているすべての理由により、構造1は、製造中、接合ステップ中、またはこのステップの後に、1000℃を超える温度にさらされることはできない。ただし、この方法は、支持体を準備する間に、この層3のトラップを過度に中和することを回避するために、1018at/cm3未満の低水素濃度を持つトラッピング層3を形成することを目的とする。同時に、水素濃度が1020at/cm3未満の低水素濃度の誘電体層4を形成するか、または、この水素の拡散を制限し、トラッピング層3に向かって、またはこの層との界面で拡散可能な水素リザーバーの形成を回避することを目的とする。あるいは、トラッピング層への水素の拡散を防ぐバリアを誘電体層中に設けることができる。有利なことに、誘電体層にバリア層がない場合、または誘電体層に含まれる水素のトラップが許容できない場合、目的は、誘電体層内の水素の濃度を1019at/cm3未満、または1018at/cm3未満にさえ制限することになる。
【0060】
そのようなトラッピング3及び誘電体4層を生成するための、いくつかの実施形態が考えられる。
【0061】
したがって、トラッピング層3の第1の実施形態によれば、それは、適度な温度、例えば厳密に600℃と950℃との間での堆積によって形成することができる。これは、堆積炉で実施されたLPCVD法によって形成された多結晶シリコン層の堆積で実現できる。このような堆積は、1018at/cm3を超え、通常はこの値と1019at/cm3との間の濃度の水素を含むトラッピング層3の形成につながることが見いだされた。
【0062】
この濃度を低減するために、この第1の実施形態によれば、堆積温度と1000℃との間の温度で、水素が欠乏した雰囲気(すなわち5ppm未満)におけるトラッピング層の第1のアニーリング段階が存在する。有利には、第1のアニーリング段階の温度は、少なくとも1時間、好ましくは数時間、620℃より高く、好ましくは900℃未満である。トラッピング層3に存在する水素は、再結晶効果によって、トラッピング層の多結晶性を損なうことなく、その濃度を閾値1018at/cm3未満に低減するために、これらの優先的アニーリング条件下で効果的に浸出される。
【0063】
第1のアニーリング段階は、トラッピング層3の堆積の直後に実行、または、この説明の残りの部分で明示されるように、少なくとも部分的にトラッピング層3上に堆積される誘電体層4の形成後に実行することができる。
【0064】
トラッピング層3の第2の実施形態によれば、それは、高温、例えば、950℃と1100℃の間の温度で、ベース基板6上に堆積される。これは、エピタキシー反応器で生成された多結晶シリコンの堆積で可能になる。このような堆積条件下で、トラッピング層3は、しばしばLPCVD法によって形成された層の水素濃度よりも数倍低い水素濃度を有する。すべての場合において、この濃度が1018at/cm3未満になるように注意する必要がある。トラッピング層3が低水素濃度を有するように直接形成されるこの第2の実施形態では、水素を流出させるために前の実施形態で提供された第1のアニーリング段階は必要ではない。
【0065】
誘電体層4は、その一部について、トラッピング層3上に堆積することによって形成することができる。あるいは、またはさらに、それは、ドナー基板の第1の面への堆積によって全体的または部分的に形成することができる。それらを比較的高温にさらすことが可能であるかどうかに応じて、支持体またはドナー基板上に誘電体層4を形成することを選択することが可能である。
【0066】
したがって、誘電体層4の第1の実施形態によれば、それは、PECVD法を使用して堆積炉内にシリコン酸化物を堆積することによって生成される。この堆積は、通常600℃と800℃との間の適度な温度で実行される。この場合、誘電体層4は、1020at/cm3を超える有意な水素濃度を有する。
【0067】
この濃度を減らすため、上記の第1のアニーリング段階と同様に、「緻密化」と呼ばれる第2のアニーリング段階が適用される。したがって、それは水素が欠乏した雰囲気(すなわち、5ppm未満)でのアニーリングと、層4をその堆積温度よりも高い温度にさらすことを含む。これは、中性または酸化性雰囲気で実行できる。好ましくは、この温度は800℃より高く、典型的には800℃と900℃との間である。アニーリングは、最終的に水素が誘電体層4から、あるいはトラッピング層3から浸出するように、少なくとも1時間、好ましくは数時間続けられる。この緻密化アニーリングの終わりに、誘電体層4の水素濃度は1020at/cm3未満であり、トラッピング層3の水素濃度は1018at/cm3未満である。
【0068】
第2の緻密化アニーリング段階は、その水素濃度以外の誘電体層の特性を変更する可能性があることに留意されたい。これは、特に水素の拡散性の低下、つまり、この種が誘電体層を構成する材料に拡散する能力を低下に導き、そのため、比較的高濃度(約1020at/cm3)の水素であってもトラッピング層3に向かって拡散する可能性を小さくすることができる。
【0069】
一般に、誘電体層4をドナー基板上よりも支持体2上に配置することが好ましい。実際に、この支持体2を第1及び/または第2のアニーリング段階の温度で熱処理することは一般に可能であり、これはドナー基板の場合に常には当てはまらない。例えば、この基板は、脆化面を有するか、または比較的低いキュリー温度を有する強誘電性材料で構成されるか、またはこれらの場合のそれぞれにおいて、それに適用可能な熱収支を比較的短時間、すなわち1時間未満、数百度に制限する成分を含んでもよい。しかしながら、本発明は、いくつかの好ましい場合において、誘電体層4がドナー基板上に少なくとも部分的に形成され得ることを排除するものではない。
【0070】
誘電体層4がトラッピング層3上に形成され、これらの2つの層が今説明したように比較的低温で堆積された場合、各堆積ステップの後にそれぞれ第1及び第2のアニーリング段階を適用する必要はない。すでに簡単に述べたように、低温でトラッピング層3上に誘電体層4が形成された後、第1及び第2のアニーリング段階と同様の条件下で、単一のアニーリング段階を実行することが可能である。言い換えれば、この場合、誘電体層4の堆積の前に、トラッピング層3の特定のアニーリングを適用する必要はない。
【0071】
誘電体層4の第2の実施形態によれば、それは、トラッピング層3を熱酸化することによって生成することができる。そのような処理は、トラッピング層3を備えた支持体2を、厳密に800℃と1000℃との間の温度で酸素リッチな雰囲気酸化炉に曝すことによって実施することができる。これは、乾燥した雰囲気でも湿った雰囲気でも可能である。それ自体がよく知られているように、この曝露の持続時間は、誘電体層4の所望の厚さに応じて選択される。トラッピング層3の再結晶のリスクを回避するために、酸化温度を1000℃に制限することが一般に好ましい。さらに、そのような誘電体層3は、上記のこの層の第2の実施形態に従って、高温で形成されたトラッピング層3の酸化によって生成されることが好ましいであろう。実際に、そのような層は、再結晶のリスクに関してより大きな温度安定性を持っている。
【0072】
トラッピング層3がシリコンでできている場合(これはしばしばそうである)、シリコン酸化物でできているトラッピング層の熱酸化によって形成された誘電体層4は、水素濃度が特に低く、従来の測定方法の検出限界の約1017at/cm3である。オプションにより、このように酸化されたトラッピング層3の表面を研磨するステップを導入して、後続の接合ステップと互換性を持たせることができる。
【0073】
誘電体層4はまた、第3の実施形態に従って調整することができ、これは、誘電体層4を比較的高温、例えば800℃よりも高い温度に曝すことができない場合に特に興味深い。この場合、誘電体層4は、例えば、この層の第1の実施形態に従って、比較的低温で形成することができ、誘電体層4にトラッピング層中の水素の拡散を防止する障壁を含めるように注意が払われる。
【0074】
したがって、誘電体層4は1020at/cm3を超える水素濃度を有することができるが、誘電体層4に含まれる水素のトラッピング層3への拡散が防止され、トラッピング層は次に1018at/cm3未満の濃度に転化する。したがって、これは、この層3の電荷トラップを中和することを回避する。変形例では、誘電体層4は、全体的にバリアで構成され、その中に含まれ得る多少の水素を保持する。
【0075】
バリアは、厚さが10nmを超え、通常は10と100nmとの間の厚さの窒化シリコンまたは窒化アルミニウムの層で構成される、または含むことができる。バリアは、例えば二酸化シリコン及び水素リッチの誘電体層4の残りの部分が形成される前に、例えばPECVD技術によってトラッピング層3上に直接堆積させることができる。あるいは、このバリアはドナー基板上に形成することができ、この場合、誘電体層4の残りが形成された後、ドナーを支持体2に接合する次のステップの間にバリアをトラッピング層3と接触させることができる。
【0076】
別の変形例では、バリア層は、水素濃度が約1017at/cm3と非常に低いシリコン酸化層から形成される。この場合、バリアは、誘電体層から水素を吸収するバッファを形成し、したがって、トラッピング層3への水素の拡散を防ぐ。この場合、誘電体層の厚さとその水素濃度を考慮して、バリア層の十分な厚さが提供され、この水素がバリア層に拡散した後、その水素濃度は1020at/cm3を超えないようにする。この変形例は、誘電体層がドナー基板の側面への堆積によって形成され、バリア層が、この誘電体層4の第2の実施形態に関連して説明されたように、トラッピング層3の熱酸化によって形成される場合に実施することができる。
【0077】
さらに別のアプローチによれば、任意の濃度の水素を有する誘電体層4の提供ができるが、この層4はこの水素の拡散性が低く、したがって、トラッッピング層3に向かって著しく拡散しないように十分にトラップされたままである。この場合、誘電体層4は、全体的に、それが含む水素の拡散を防ぐ材料から形成された層で構成することができる。したがって、それは、0.01以上または有利には0.05以上の窒素/酸素比の窒素を有する堆積酸化物、例えばシリコン酸化物SiONを含むことができる。誘電体層4が非常に一般的であるシリコン酸化物に基づく場合、この材料の特性を過度に変更せず、単純なシリコン酸化物SiO2と同等またはそれに近い挙動を維持するために、0.1または0.25を超えない窒素/酸素比を超えないことを選択することができる。そのような窒素リッチな酸化物層は、堆積技術、例えば、PECVDによって容易に形成することができ、そのキャリアガスの少なくとも1つに窒素を選択することができ、制御された方式で酸化膜中に取り込まれることに留意されたい。窒素/酸化物比は、EDX(「energy-dispersive X-ray spectroscopy」を表す)として知られる手法で測定するか、酸化物層4でのSIMS(secondary ion mass spectrometry)測定によって決定された窒素及び酸素測定から確立できる。
【0078】
一般に、誘電体層4は、以下を含む構造の場合、それが含む水素の拡散性が低いと言われ、
-少なくとも1020at/cm3の水素濃度を含み、この層と接触して配置された誘電体層、
-1018at/cm3以下の水素濃度を含み、1μmの多結晶シリコンのトラッピング層、
500℃で1時間の熱処理を行い、熱処理終了時においてトラッピング層で1018at/cm3未満の水素濃度の測定に導く。
【0079】
誘電体層4は、その厚さ全体にわたって、拡散性の低い材料、例えば、上記の比率で窒素を含む堆積酸化物で構成することができる。あるいは、前の代替案で提示された構成において、低拡散性でこの材料によって形成されるトラッピング層3への水素の拡散を防止する1つのバリア層のみを備えてもよい。
【0080】
接合ステップの前に、接触させる面の少なくともいくつか、特に堆積したトラッピング層及び/または誘電体層の露出面に対応する面を研磨してもよい。さらに、これまで見てきたように、この接合ステップの後に、薄層層5を形成するためにドナー基板の一部を除去する。この除去は、ドナー基板を薄くするか、または破砕することによって達成することができる。薄層5の特性を改善するために、転写された層を調整するステップ、例えば、研磨及び/または熱アニーリングステップが提供されてもよい。
【0081】
接合、ドナー基板の一部の除去、及び転写層の準備のステップは、適度な温度で実行され、構造1を常に1000℃未満、好ましくは800℃または600℃未満の温度にさらす。より一般的には、製造方法中の少なくとも接合ステップの間及びその後に、誘電体層4の露出温度を制限し、それによってこの層からトラッピング層3への水素の拡散を制限することを目的としている。原則として、誘電体層の濃度が高いほど(1020atcm3のしきい値を下回っている間)、誘電体層4と構造1が晒される最高温度が制限される。
【0082】
選択された実施形態のトラッピング層3及び誘電体層4に関係なく、構造1は、
図1に示されるように、今説明された製造方法の最後に利用可能であり、以下を含む、
-ベース基板6、
-ベース基板6上に配置され、水素濃度が10
18atm/cm
3未満のトラッピング層3、
-トラッピング層3上に配置され、有利にはこの層と接触している誘電体層4。誘電体層4は、水素濃度が10
20at/cm
3未満であるか、またはトラッピング層3への水素の拡散を防止するバリアを含むか、または任意の水素濃度を有するが、水素拡散係数は非常に低い。
-薄層5は、誘電体層4上に配置され、好ましくはこの層と接触している。この薄層5は、シリコンのような半導体材料、強誘電体材料等の絶縁体、または統合された半導体部品を含む層から構成されることができる。
【0083】
有利なことに、誘電体層の水素濃度は、1019at/cm3未満、または1018at/cm3でさえある。
【0084】
誘電体層は、0.01または0.05以上の窒素/酸素比の窒素を有する酸化物を含むことができる。この場合、その水素濃度は任意である。それは、0.01と0.25との間または0.05と0.1との間の窒素/酸素比の窒素を有するシリコン酸化物からなるか、またはそれを含むことができる。
【0085】
キュリー温度が1000℃未満、通常は600℃と1000℃との間の強誘電体材料で薄層が構成されている場合、この薄層をこのキュリー温度よりも高い温度にさらすことなく構造を製造することができ、したがって、その永久分極が維持される
【0086】
例えば、複数の支持体2は、3000オーム・cmの抵抗率を有するシリコンベース基板6の上に、厚さが1μmでLPCVD法により形成された多結晶シリコンからなるトラッピング層3と、厚さが300nmでPECVD法により形成されたシリコン酸化物からなる誘電体層とを順次設けて製造された。
【0087】
スタックの緻密化アニーリング段階は、このようにして製造された支持体の第1のバッチに、酸素リッチで水素が5ppm未満の雰囲気中、600℃の温度で1時間適用される。
【0088】
第2及び第3のバッチは、本発明による緻密化アニーリング段階に曝され、これは酸素リッチで水素が5ppm未満であり、少なくとも1時間、それぞれ800℃及び900℃の温度であった。
【0089】
緻密化アニーリング段階の後、トラッピング層(「Hトラップ-Post dense」)と誘電体層(「H dielectric」)の水素濃度が測定された。
【0090】
タンタル酸リチウムの薄層5は、SmartCut(商標)法を使用して、これらの各バッチの支持体2に転写された。この層は、最終的に600nmの厚さになるように調整された。構造の製造のこのステップは、600℃を超えない適度なアニールを含む。このようにして調整した3つのバッチの構造について、品質係数(HQF)を決定するために、トラッピング層3の水素濃度(「Hトラッピング-Structure」)、第2高調波(「HD2」-印加信号15dBmの場合)及び支持体2の抵抗プロファイルの測定が行われた。このHQF値により、構造のRF性能の期待される準拠値を推定できることに留意されたい。
【0091】
第1、第2及び第3の各々の平均の結果が以下の表に示される。
【0092】
【0093】
従来技術からの処理を受けた第1のバッチの構造のRF性能レベルは、予想をはるかに下回っていると見ることができる(HD2/HQF比は65%である)。異なる層の水素濃度は、限界値、特に緻密化アニーリング段階直後(「Post dense」)のトラッピング層3の水素濃度、及び最終構造(「Structure」)を超えていると見ることができる。
【0094】
対照的に、本発明に従って処理を受けた第2のバッチ及び第3のバッチの構造のRF性能レベルは、明らかに期待されるレベルである(それぞれ、83%及び100%のHD2/HQF比)。
【0095】
構造の完全な製造後に測定されたトラッピング層3の水素濃度は、緻密化アニーリング段階の直後に測定された濃度よりも高いことが見てとれる。ただし、この濃度は1018at/cm3のしきい値以下のままであるため、RF性能は規格のままである。誘電体層に存在する水素は、製造中の構造1が熱処理された後でもトラッピング層に向かって大幅に移動しなかった。
【0096】
誘電体層4の下にトラッピング層3を有する構造1の磁化率は、トラッピング層が薄いほど、この層に含まれる水素に対してより敏感であることに留意されたい。実際に、誘電体層4からトラッピング層3に拡散された同じ量の水素について、このトラッピング層中の水素の濃度は、比較的厚いトラッピング層よりも比較的薄いトラッピング層の方が高くなるであろう。このように、本発明のアプローチは、トラッピング層が1μm、または750nm未満の厚さであるか、または500nm以下の厚さである場合に特に有利である。1μm未満の比較的薄いトラッピング層のそのような構成は、水素の拡散を制限するトラッピング層、バリア層、またはSiON層に可能な限り近い誘電体層4中に統合することが可能であり、その厚さは、例えば20から50nmとすることができる。例えば、トラッピング層上にシリコン酸化層を形成することができ、この層は、ドナー基板の側に配置された誘電体層4の別の部分に接合する前に、窒素ベースのプラズマを使用してこの窒素を表面的に取り込むように調製することができる。したがって、窒素リッチSiOのバリア層が酸化層厚の表面上に形成され、これは、誘電体層4の残りの部分に含まれる水素がトラッピング層に向かって拡散するのを防ぐ。
【0097】
因みに、構造のRF性能は、この構造上に形成される構成の品質係数に決定的な影響を及ぼす。したがって、出願人は、追加の観察において、本発明による方法を使用して製造された構造上に形成された共振器の反共振コンダクタンスが、構造のRF性能に直接関連していることを確認した。そのような共振器は、上記のバッチ1または2のものと同一または類似の基板上に形成された交互嵌合コームによって形成することができる。このような共振器の品質係数は、一般に、反共振周波数での電気抵抗と、この抵抗の中間の帯域幅との比率として決定される。この品質係数は、本発明に従ってバッチ2及び3の構造で製造された共振器について、バッチ1の構造で製造された共振器の品質係数よりもはるかに高いと評価された。
【0098】
もちろん、本発明は、記載された実施形態に限定されず、特許請求の範囲によって定義される本発明の範囲から逸脱することなく、変形を追加することが可能である。
【0099】
特に、薄層5は、強誘電性材料、例えば、LiTaO3、LiNbO3、LiAlO3、BaTiO3、PbZrTiO3、KNbO3、BaZrO3、CaTiO3、PbTiO3またはKTaO3を含むか、またはそれによって形成することができる。
【0100】
薄層5が取り出されるドナー基板は、標準化されたサイズ、例えば、直径150mmまたは200mmの円形ウェハの形態をとることができる。しかしながら、本発明は、決してこれらの寸法またはこの形状に限定されない。ドナー基板は、強誘電体材料のインゴットから切り出されてもよく、この切り出しは、ドナー基板が所定の結晶配向を有するように行われるか、またはドナー基板は、基板支持体に接合された強誘電体材料の層を含んでもよい。
【0101】
強誘電体材料の薄層の結晶配向は、実際の用途に応じて選択してもよい。したがって、LiTaO3材料に関しては、特に薄膜の特性の優位性をとって表面弾性波(SAW)フィルタを形成することを意図する場合には、30°と60°XYとの間、または40°と50°XYとの間の方向を選択することが一般的である。LiNbO3材料に関しては、約128°XYの配向を選択するのが一般的な方法である。しかしながら、本発明は決して特定の結晶配向に限定されない。