(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-10
(45)【発行日】2024-06-18
(54)【発明の名称】タイヤ用ゴム組成物およびタイヤ
(51)【国際特許分類】
C08L 9/00 20060101AFI20240611BHJP
C08K 3/36 20060101ALI20240611BHJP
C08K 5/548 20060101ALI20240611BHJP
C08L 25/00 20060101ALI20240611BHJP
C08L 45/02 20060101ALI20240611BHJP
C08L 57/02 20060101ALI20240611BHJP
C08L 91/06 20060101ALI20240611BHJP
B60C 1/00 20060101ALI20240611BHJP
B60C 11/00 20060101ALI20240611BHJP
B60C 11/03 20060101ALI20240611BHJP
【FI】
C08L9/00
C08K3/36
C08K5/548
C08L25/00
C08L45/02
C08L57/02
C08L91/06
B60C1/00 A
B60C11/00 D
B60C11/03 Z
(21)【出願番号】P 2019201578
(22)【出願日】2019-11-06
【審査請求日】2022-09-16
【前置審査】
(73)【特許権者】
【識別番号】000183233
【氏名又は名称】住友ゴム工業株式会社
(74)【代理人】
【識別番号】110001896
【氏名又は名称】弁理士法人朝日奈特許事務所
(72)【発明者】
【氏名】山田 亜由子
【審査官】櫛引 智子
(56)【参考文献】
【文献】特開2013-159742(JP,A)
【文献】特開2019-131648(JP,A)
【文献】国際公開第2017/126633(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L,C08K,B60C
(57)【特許請求の範囲】
【請求項1】
ゴム成分、シリカ、ワックス、および樹脂成分を含有
するゴム組成物(ただし、ゴム成分100質量部に対し、シリカ、可塑剤、および、アミノグアニジン酸付加塩を含んでなるゴム組成物であって、可塑剤が樹脂20質量部以上を含むものであるゴム組成物を除く)から構成されるトレッドを備えるタイヤであって、
前記ゴム成分が、イソプレン系ゴムを10~85質量%、スチレンブタジエンゴムを10~85質量%、ブタジエンゴムを5~40質量%含み、
前記ゴム組成物が、前記ゴム成分100質量部に対しシリカを50質量部以上、軟化点が50℃以上の樹脂成分を5質量部以上含有し、
前記ゴム組成物の初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)が、下記式(1)を満た
すタイヤ。
0.10≦|(-20℃tanδ)-(0℃tanδ)|≦0.30 ・・・(1)
【請求項2】
ゴム成分、シリカ、ワックス、および樹脂成分を含有
するゴム組成物(ただし、ゴム成分100質量部に対し、シリカ、可塑剤、および、アミノグアニジン酸付加塩を含んでなるゴム組成物であって、可塑剤が樹脂20質量部以上を含むものであるゴム組成物を除く)から構成されるトレッドを備えるタイヤであって、
前記ゴム成分が、10質量%以上のイソプレン系ゴム、およびスチレン含量が15~60質量%スチレンブタジエンゴムを含み、
前記ゴム組成物が、前記ゴム成分100質量部に対しシリカを50質量部以上、軟化点が50℃以上の樹脂成分を5質量部以上含有し、
前記ゴム組成物の初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)が、下記式(1)を満た
すタイヤ。
0.10≦|(-20℃tanδ)-(0℃tanδ)|≦0.30 ・・・(1)
【請求項3】
前記樹脂成分が、クマロンインデン樹脂、インデン樹脂、芳香族ビニル系樹脂、およびC5C9系石油樹脂からなる群から選ばれる少なくとも1種以上を含む、請求項1または2記載のタイヤ。
【請求項4】
ゴム成分、シリカ、ワックス、および樹脂成分を含有
するゴム組成物(ただし、ゴム成分100質量部に対し、シリカ、可塑剤、および、アミノグアニジン酸付加塩を含んでなるゴム組成物であって、可塑剤が樹脂20質量部以上を含むものであるゴム組成物を除く)から構成されるトレッドを備えるタイヤであって、
前記ゴム成分が、10質量%以上のイソプレン系ゴムを含み、
前記ゴム組成物が、前記ゴム成分100質量部に対しシリカを50質量部以上、軟化点が50℃以上の樹脂成分を5質量部以上含有し、
前記樹脂成分が、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、芳香族ビニル系樹脂、テルペン系樹脂、ロジン系樹脂、およびフェノール系樹脂からなる群から選ばれる少なくとも1種以上を含み、
前記ゴム組成物の初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)が、下記式(1)を満た
すタイヤ。
0.10≦|(-20℃tanδ)-(0℃tanδ)|≦0.30 ・・・(1)
【請求項5】
前記ゴム組成物が、
前記ゴム成分100質量部に対しシリカを50質量部以上
150質量部以下、
軟化点が50℃以上の樹脂成分を
5質量部以上
50質量部以下含有する、請求項2~4のいずれか一項に記載のタイヤ。
【請求項6】
前記ゴム組成物が、イソプレン系ゴムを10~85質量%、スチレンブタジエンゴムを10~85質量%、ブタジエンゴムを5~40質量%含むゴム成分100質量部に対し、シリカを50~150質量部、
軟化点が50℃以上の樹脂成分を
5~50質量部含有する、請求項1~5のいずれか一項に記載のタイヤ。
【請求項7】
前記ゴム組成物がメルカプト基を有するシランカップリング剤を含有する、請求項1~6のいずれか一項に記載のタイヤ。
【請求項8】
前記トレッドがタイヤ周方向に連続して延びる周方向溝と幅方向に延びる横溝とを有し、周方向溝面積/接地面積が0.09~0.16であり、横溝面積/接地面積が0.08~0.14である、請求項1~7のいずれか一項に記載のタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能がバランスよく改善されたタイヤに関する。
【背景技術】
【0002】
タイヤの低燃費性能向上にはヒステリシスロスが小さいこと(すなわち、tanδの値が小さいこと)、ウェットグリップ性能向上にはウェットスキッド抵抗性が高いこと(すなわち、tanδの値が大きいこと)が要求される。このように、低ヒステリシスロスと高いウェットスキッド抵抗性とは相反するものであり、低燃費性能およびウェットグリップ性能をバランス良く改善することは困難である。
【0003】
特許文献1には、特定の樹脂およびシリカを配合することで、低燃費性能、ウェットグリップ性能、および耐摩耗性能を改善したタイヤ用ゴム組成物が開示されている。
【0004】
また、タイヤへの低燃費性能の要求が高まるなか、高速走行時の操縦安定性と低燃費性能とを高い次元で両立することが望まれている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能がバランスよく改善されたタイヤを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者は、鋭意検討した結果、イソプレン系ゴム、シリカ、および樹脂成分を含有し、かつ0℃tanδおよび-20℃tanδが所定の範囲内であるゴム組成物から構成されるトレッドを備えるタイヤが、低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能がバランスよく改善されることを見出した。さらに、トレッドの周方向溝面積/接地面積および横溝面積/接地面積を所定の範囲とすることにより、高速走行時の操縦安定性がより改善されることを見出し、本発明を完成させた。
【0008】
すなわち、本発明は、
〔1〕イソプレン系ゴム、シリカ、および樹脂成分を含有し、初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)が、下記式(1)を満たすゴム組成物から構成されるトレッドを備えるタイヤ、
0.10≦|(-20℃tanδ)-(0℃tanδ)|≦0.30 ・・・(1)
〔2〕前記トレッドがタイヤ周方向に連続して延びる周方向溝と幅方向に延びる横溝とを有し、周方向溝面積/接地面積が0.09~0.16であり、横溝面積/接地面積が0.08~0.14である、〔1〕記載のタイヤ、
〔3〕前記ゴム組成物が、イソプレン系ゴムを10質量%以上含むゴム成分100質量部に対しシリカを50質量部以上、樹脂成分を1質量部以上含有する、〔1〕または〔2〕記載のタイヤ、
〔4〕前記ゴム組成物が、イソプレン系ゴムを10~85質量%、スチレンブタジエンゴムを10~85質量%、ブタジエンゴムを5~50質量%含むゴム成分100質量部に対し、シリカを50~150質量部、樹脂成分を1~50質量部含有する、〔1〕~〔3〕のいずれかに記載のタイヤ、
〔5〕前記樹脂成分が、クマロンインデン樹脂、インデン樹脂、芳香族ビニル系樹脂、およびC5C9系石油樹脂からなる群から選ばれる少なくとも1種以上を含む、〔1〕~〔4〕のいずれかに記載のタイヤ、
〔6〕前記ゴム組成物がメルカプト基を有するシランカップリング剤を含有する、〔1〕~〔5〕のいずれかに記載のタイヤ、に関する。
【発明の効果】
【0009】
イソプレン系ゴム、シリカ、および樹脂成分を含有し、かつ0℃tanδおよび-20℃tanδが所定の範囲内であるゴム組成物から構成されるトレッドを備える本発明のタイヤは、低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能がバランスよく改善される。また、トレッドの周方向溝面積/接地面積および横溝面積/接地面積を所定の範囲とすることにより、高速走行時の操縦安定性がより改善される。
【図面の簡単な説明】
【0010】
【
図1】トレッドを平面に押し付けたときのタイヤの接地面の模式図である。
【発明を実施するための形態】
【0011】
本開示の一実施形態に係るタイヤは、イソプレン系ゴム、シリカ、および樹脂成分を含有し、初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)が、下記式(1):
0.10≦|(-20℃tanδ)-(0℃tanδ)|≦0.30 ・・・(1)
を満たすゴム組成物から構成されるトレッドを備えるタイヤである。
【0012】
前記のトレッドを構成するゴム組成物(トレッド用ゴム組成物)は、イソプレン系ゴムを10~85質量%、スチレンブタジエンゴムを10~85質量%、ブタジエンゴムを5~50質量%含むゴム成分100質量部に対し、シリカを50~150質量部、樹脂成分を1~50質量部含有することが好ましい。
【0013】
前記トレッドは、タイヤ周方向に連続して延びる周方向溝と幅方向に延びる横溝とを有し、周方向溝面積/接地面積が0.09~0.16であり、横溝面積/接地面積が0.08~0.14であることが好ましい。
【0014】
本開示の一実施形態であるトレッド用ゴム組成物を含むタイヤの作製手順について、以下に詳細に説明する。但し、以下の記載は本発明を説明するための例示であり、本発明の技術的範囲をこの記載範囲にのみ限定する趣旨ではない。なお、本明細書において、「~」を用いて数値範囲を示す場合、その両端の数値を含むものとする。
【0015】
[トレッド用ゴム組成物]
本開示に係るタイヤは、イソプレン系ゴム、シリカ、および樹脂成分を含有し、初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)が、下記式(1):
0.10≦|(-20℃tanδ)-(0℃tanδ)|≦0.30 ・・・(1)
を満たすゴム組成物ゴム組成物によってトレッドが構成される。トレッドを構成するゴム組成物(トレッド用ゴム組成物)のtanδが上記式(1)の要件を満たすことで、得られたタイヤは、低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能がバランスよく改善される。その理由については、理論に拘束されることは意図しないが、以下のように考えられる。-20℃tanδは、高速走行時のウェットグリップ指標である。また、0℃tanδは、一般道路走行時のウェットグリップ指標である。これらの温度依存性を小さくしながら、適切な値に設定することで、高速走行時の低燃費性能、ウェットグリップリップ性能、および操縦安定性を確保することができると考えられる。また、イソプレン系ゴムを主成分とし、シリカを高分散させたゴム組成物は、比較的しなやかであり、特に高速走行時の振動の影響を受けやすく、操縦安定性を改善できたと考える。上記式(1)の値は0.12以上が好ましく、0.14以上がより好ましく、0.15以上がさらに好ましく、0.17以上が特に好ましい。また、上記式(1)の値は0.28以下が好ましく、0.26以下がより好ましい。
【0016】
本開示に係るトレッド用ゴム組成物は、イソプレン系ゴム、シリカ、および樹脂成分を含有し、上記物性を満たすゴム組成物であれば特に限定はされないが、イソプレン系ゴムを10質量%以上含むゴム成分100質量部に対しシリカを50質量部以上、樹脂成分を1質量部以上含有するゴム組成物を用いることが好ましい。
【0017】
<ゴム成分>
本開示に係るトレッド用ゴム組成物は、ゴム成分としてイソプレン系ゴムを含有する。また、スチレンブタジエンゴム(SBR)およびブタジエンゴム(BR)を含有することが好ましい。
【0018】
(イソプレン系ゴム)
イソプレン系ゴムとしては、例えば、イソプレンゴム(IR)および天然ゴム等タイヤ工業において一般的なものを使用することができる。天然ゴムには、非改質天然ゴム(NR)の他に、エポキシ化天然ゴム(ENR)、水素化天然ゴム(HNR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)、グラフト化天然ゴム等の改質天然ゴム等も含まれる。これらのゴムは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0019】
NRとしては、特に限定されず、タイヤ業界において一般的なものを用いることができ、例えば、SIR20、RSS#3、TSR20等が挙げられる。
【0020】
イソプレン系のゴム成分中の含有量は、低燃費性能および耐摩耗性能の観点から、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%以上が特に好ましい。一方、イソプレン系のゴム成分中の含有量の上限は特に制限されないが、ウェットグリップ性能の観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下がさらに好ましく、70質量%以下が特に好ましい。
【0021】
(SBR)
SBRとしては特に限定はなく、溶液重合SBR(S-SBR)、乳化重合SBR(E-SBR)、これらの変性SBR(変性S-SBR、変性E-SBR)等が挙げられる。変性SBRとしては、末端および/または主鎖が変性されたSBR、スズ、ケイ素化合物等でカップリングされた変性SBR(縮合物、分岐構造を有するもの等)等が挙げられる。なかでも、低燃費性能および耐摩耗性能を良好に改善できるという点から、S-SBRおよび変性SBRが好ましい。さらに、これらSBRの水素添加物(水素添加SBR)等も使用することができる。これらSBRは、単独で用いてもよいし、2種以上を併用してもよい。
【0022】
本開示で使用できるS-SBRとしては、JSR(株)、住友化学(株)、宇部興産(株)、旭化成(株)、ZSエラストマー(株)等によって製造販売されるS-SBRが挙げられる。
【0023】
SBRのスチレン含量は、ウェットグリップ性能および耐摩耗性能の観点から、15質量%以上が好ましく、20質量%以上より好ましい。また、グリップ性能の温度依存性および耐摩耗性能の観点からは、60質量%以下が好ましく、50質量%以下がより好ましい。なお、本明細書において、SBRのスチレン含有量は、1H-NMR測定により算出される。
【0024】
SBRのビニル結合量は、シリカとの反応性の担保、ゴム強度や耐摩耗性能の観点から10モル%以上が好ましく、13モル%以上がより好ましく、16モル%以上がさらに好ましい。また、SBRのビニル結合量は、温度依存性の増大防止、ウェットグリップ性能、破断伸び、および耐摩耗性能の観点から、70モル%以下が好ましく、65モル%以下がより好ましく、60モル%以下がさらに好ましい。なお、本明細書において、SBRのビニル結合量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定される。
【0025】
SBRの重量平均分子量(Mw)は、耐摩耗性能の観点から25万以上が好ましく、50万以上がより好ましく、100万以上がさらに好ましい。また、Mwは、架橋均一性等の観点から、250万以下が好ましく、200万以下がより好ましい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製のGPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に、標準ポリスチレン換算により求めることができる。
【0026】
SBRを含有する場合のゴム成分中の含有量は、ウェットグリップ性能の観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上が特に好ましい。また、耐摩耗性能の観点からは、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下がさらに好ましく、70質量%以下が特に好ましい。
【0027】
(BR)
BRとしては特に限定されるものではなく、例えば、シス1,4結合含有率が50%未満のBR(ローシスBR)、シス1,4結合含有率が90%以上のBR(ハイシスBR)、希土類元素系触媒を用いて合成された希土類系ブタジエンゴム(希土類系BR)、シンジオタクチックポリブタジエン結晶を含有するBR(SPB含有BR)、変性BR(ハイシス変性BR、ローシス変性BR)等タイヤ工業において一般的なものを使用することができる。
【0028】
ハイシスBRとしては、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B、BR150L、JSR(株)製のBR730等が挙げられる。ハイシスBRを含有することで低温特性および耐摩耗性能を向上させることができる。希土類系BRとしては、例えば、ランクセス(株)製のBUNA-CB25等が挙げられる。
【0029】
SPB含有BRは、1,2-シンジオタクチックポリブタジエン結晶が、単にBR中に結晶を分散させたものではなく、BRと化学結合したうえで分散しているものが挙げられる。このようなSPB含有BRとしては、宇部興産(株)製のVCR-303、VCR-412、VCR-617等が挙げられる。
【0030】
変性BRとしては、リチウム開始剤により1,3-ブタジエンの重合を行ったのち、スズ化合物を添加することにより得られ、さらに変性BR分子の末端がスズ-炭素結合で結合されているもの(スズ変性BR)や、ブタジエンゴムの活性末端に縮合アルコキシシラン化合物を有するブタジエンゴム(シリカ用変性BR)等が挙げられる。このような変性BRとしては、例えば、ZSエラストマー(株)製のBR1250H(スズ変性)、S変性ポリマー(シリカ用変性)等が挙げられる。
【0031】
BRの重量平均分子量(Mw)は、耐摩耗性およびグリップ性能等の観点から、30万以上が好ましく、35万以上がより好ましく、40万以上がさらに好ましい。また、架橋均一性等の観点からは、200万以下が好ましく、100万以下がより好ましい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製のGPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に、標準ポリスチレン換算により求めることができる。
【0032】
BRを含有する場合のゴム成分中の含有量は、耐摩耗性能の観点から、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。また、ウェットグリップ性能の観点からは、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましく、25質量%以下が特に好ましい。
【0033】
(その他のゴム成分)
本開示に係るゴム成分として、前記のイソプレン系ゴム、SBRおよびBR以外のゴム成分を含有してもよい。他のゴム成分としては、ゴム工業で一般的に用いられる架橋可能なゴム成分を用いることができ、例えば、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエンゴム(NBR)、水素化ニトリルゴム(HNBR)、ブチルゴム(IIR)、エチレンプロピレンゴム、ポリノルボルネンゴム、シリコーンゴム、塩化ポリエチレンゴム、フッ素ゴム(FKM)、アクリルゴム(ACM)、ヒドリンゴム等が挙げられる。これらその他のゴム成分は単独で用いてもよく、2種以上を併用してもよい。
【0034】
<フィラー>
本開示に係るトレッド用ゴム組成物は、フィラーとしてシリカを含有する。また、カーボンブラックを含有することが好ましい。
【0035】
(シリカ)
本開示に係るトレッド用ゴム組成物にシリカを配合することにより、低燃費性能、耐摩耗性能、および高速走行時の操縦安定性を向上させることができる。シリカとしては、特に限定されるものではなく、例えば、乾式法により調製されたシリカ(無水シリカ)、湿式法により調製されたシリカ(含水シリカ)等、タイヤ工業において一般的なものを使用することができる。なかでもシラノール基が多いという理由から、湿式法により調製された含水シリカが好ましい。シリカは単独で用いてもよく、2種以上を併用してもよい。
【0036】
シリカの窒素吸着比表面積(N2SA)は、低燃費性能および耐摩耗性能の観点から、140m2/g以上が好ましく、150m2/g以上がより好ましく、160m2/g以上がさらに好ましく、170m2/g以上が特に好ましい。また、低燃費性能および加工性の観点からは、350m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましい。なお、本明細書におけるシリカのN2SAは、ASTM D3037-93に準じてBET法で測定される値である。
【0037】
シリカの平均一次粒子径は、20nm以下が好ましく、18nm以下がより好ましく、16nm以下がさらに好ましい。該平均一次粒子径の下限は特に限定されないが、1nm以上が好ましく、3nm以上がより好ましく、5nm以上がさらに好ましい。シリカの平均一次粒子径が前期の範囲であることによって、シリカの分散性をより改善でき、補強性、破壊特性、耐摩耗性をさらに改善できる。なお、シリカの平均一次粒子径は、透過型または走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子を400個以上測定し、その平均により求めることができる。
【0038】
シリカのゴム成分100質量部に対する含有量は、低燃費性能および高速走行時の操縦安定性を向上させる観点から、50質量部以上が好ましく、55質量部以上がより好ましく、60質量部以上がさらに好ましい。また、シリカのゴムへの分散性の悪化により、低燃費性能および耐摩耗性能が低下することを抑制する観点からは、150質量部以下が好ましく、130質量部以下がより好ましく、110質量部以下がさらに好ましい。
【0039】
(カーボンブラック)
カーボンブラックとしては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、具体的にはN110、N115、N120、N125、N134、N135、N219、N220、N231、N234、N293、N299、N326、N330、N339、N343、N347、N351、N356、N358、N375、N539、N550、N582、N630、N642、N650、N660、N683、N754、N762、N765、N772、N774、N787、N907、N908、N990、N991等を好適に用いることができ、これ以外にも自社合成品等も好適に用いることができる。これらは単独で用いても、2種以上を併用してもよい。
【0040】
カーボンブラックの窒素吸着比表面積(N2SA)は、耐候性や補強性の観点から、50m2/g以上が好ましく、80m2/g以上がより好ましく、100m2/g以上がさらに好ましい。また、分散性、低燃費性能、破壊特性および耐久性の観点からは、250m2/g以下が好ましく、220m2/g以下がより好ましい。なお、本明細書におけるカーボンブラックのN2SAは、JIS K 6217-2「ゴム用カーボンブラック基本特性-第2部:比表面積の求め方-窒素吸着法-単点法」のA法に準じて測定される値である。
【0041】
カーボンブラックを含有する場合のゴム成分100質量部に対する含有量は、耐候性や補強性の観点から、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましい。また、低燃費性能の観点からは、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましい。
【0042】
(その他のフィラー)
シリカおよびカーボンブラック以外の補強用充填剤としては、水酸化アルミニウム、炭酸カルシウム、アルミナ、クレー、タルク等、従来からゴム工業において一般的に用いられているものを配合することができる。
【0043】
シリカおよびカーボンブラックの合計100質量%中のシリカの含有率は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましい。また、該シリカの含有率は、99質量%以下が好ましく、97質量%以下がより好ましく、95質量%以下がさらに好ましい。
【0044】
シリカとカーボンブラックのゴム成分100質量部に対する合計含有量は、耐摩耗性能の観点から、60質量部以上が好ましく、70質量部以上がより好ましく、80質量部以上がさらに好ましい。また、低燃費性能および耐摩耗性能が低下することを抑制する観点からは、180質量部以下が好ましく、160質量部以下がより好ましく、140質量部以下がさらに好ましい。
【0045】
(シランカップリング剤)
シリカは、シランカップリング剤と併用することが好ましい。シランカップリング剤としては、特に限定されず、ゴム工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができるが、メルカプト基を有するシランカップリング剤を含有することが好ましい。
【0046】
メルカプト基を有するシランカップリング剤は、下記式(1)で表される化合物、および/または下記式(2)で表される結合単位Aと下記式(3)で表される結合単位Bとを含む化合物であることが好ましい。
【化1】
(式中、R
101、R
102、およびR
103は、それぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、または-O-(R
111-O)
z-R
112(z個のR
111は、それぞれ独立して、炭素数1~30の2価の炭化水素基を表し;R
112は、炭素数1~30のアルキル、炭素数2~30のアルケニル、炭素数6~30のアリール、または炭素数7~30のアラルキルを表し;zは、1~30の整数を表す)で表される基を表し;R
104は、炭素数1~6のアルキレンを表す。)
【化2】
【化3】
(式中、xは0以上の整数を表し;yは1以上の整数を表し;R
201は、水素原子、ハロゲン原子、ヒドロキシルもしくはカルボキシルで置換されていてもよい炭素数1~30のアルキル、炭素数2~30のアルケニル、または炭素数2~30のアルキニルを表し;R
202は、炭素数1~30のアルキレン、炭素数2~30のアルケニレン、または炭素数2~30のアルキニレンを表し;ここにおいて、R
201とR
202とで環構造を形成してもよい。)
【0047】
式(1)で表される化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記化学式(4)で表される化合物(
エボニックデグサ社製のSi363)等が挙げられ、下記化学式(4)で表される化合物を好適に使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
【化4】
【0048】
式(2)で表される結合単位Aと上記式(3)で表される結合単位Bとを含む化合物は、ビス-(3-トリエトキシシリルプロピル)テトラスルフィド等のスルフィド系シランカップリング剤に比べ、加工中の粘度上昇が抑制される。そのため、シリカの分散性がより良好となり、低燃費性能、ウェットグリップ性能、および破断伸びがより向上する傾向がある。これは結合単位Aのスルフィド部分がC-S-C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
【0049】
結合単位Aの含有量は、加工中の粘度上昇を抑制する観点から、30~99モル%が好ましく、50~90モル%がより好ましい。また、結合単位Bの含有量は、1~70モル%が好ましく、5~65モル%がより好ましく、10~55モル%がさらに好ましい。また、結合単位AおよびBの合計含有量は、95モル%以上が好ましく、98モル%以上がより好ましく、100モル%が特に好ましい。なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2)、(3)と対応するユニットを形成していればよい。
【0050】
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3~300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの-C7H15が覆うため、スコーチ時間が短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
【0051】
式(2)で示される結合単位Aと式(3)で示される結合単位Bとを含む化合物としては、例えば、モメンティブ社製のNXT-Z30、NXT-Z45、NXT-Z60、NXT-Z100等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
【0052】
シランカップリング剤として、上記メルカプト基を有するシランカップリング剤以外のシランカップリング剤を使用してもよい。その他のシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド等のスルフィド基を有するシランカップリング剤;ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル基を有するシランカップリング剤;3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン等のアミノ基を有するシランカップリング剤;γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のグリシドキシ系のシランカップリング剤;3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系のシランカップリング剤;3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロ系のシランカップリング剤;等が挙げられる。これらのシランカップリング剤は、1種単独で用いてもよく、2種以上を併用してもよい。
【0053】
シランカップリング剤(好ましくは、メルカプト基を有するシランカップリング剤)を含有する場合のゴム成分100質量部に対する含有量は、シリカの分散性を高める観点から、0.5質量部以上が好ましく、1.0質量部以上がより好ましく、2.0質量部以上がさらに好ましく、4.0質量部以上が特に好ましい。また、耐摩耗性能の低下を防止する観点からは、20質量部以下が好ましく、12質量部以下がより好ましく、10質量部以下がさらに好ましく、9.0質量部以下が特に好ましい。
【0054】
<樹脂成分>
本開示に係るトレッド用ゴム組成物は、樹脂成分を含有する。樹脂成分としては、特に限定されないが、タイヤ工業で慣用される石油樹脂、テルペン系樹脂、ロジン系樹脂、フェノール系樹脂等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。
【0055】
石油樹脂としては、例えば、C5系石油樹脂、芳香族系石油樹脂、C5C9系石油樹脂が挙げられる。
【0056】
本明細書において「C5系石油樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。
【0057】
本明細書において「芳香族系石油樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。芳香族系石油樹脂の具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、および芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、ウェットグリップ性能に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体またはα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、アリゾナケミカル社製のSYLVARES SA85、SA100、SA120、SA140、イーストマンケミカル社製のR2336等の市販品が好適に用いられる。
【0058】
本明細書において「C5C9系石油樹脂」とは、前記C5留分と前記C9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5C9系石油樹脂としては、例えば、LUHUA社製のPRG-80、PRG-140、Qilong社製のG-100、東ソー(株)製のペトロタック(登録商標)60、ペトロタック70、ペトロタック90、ペトロタック100、ペトロタック100V、ペトロタック90HM等の市販品が好適に用いられる。
【0059】
テルペン系樹脂としては、特に限定されないが、例えば、ポリテルペン樹脂、テルペンフェノール樹脂、テルペンスチレン樹脂等が挙げられる。ポリテルペン樹脂は、α-ピネン、β-ピネン、リモネン、ジペンテン等のテルペン化合物から選ばれる少なくとも1種を原料とする樹脂である。テルペンフェノール樹脂は、前記テルペン化合物およびフェノール系化合物を原料とする樹脂である。テルペンスチレン樹脂は、前記テルペン化合物およびスチレンを原料とする樹脂である。ポリテルペン樹脂およびテルペンスチレン樹脂は、水素添加処理を行った樹脂(水添ポリテルペン樹脂、水添テルペンスチレン樹脂)であってもよい。テルペン系樹脂への水素添加処理は、公知の方法で行うことができ、また市販の水添樹脂を使用することもできる。
【0060】
ロジン系樹脂としては、特に限定されないが、例えば天然樹脂ロジン、それを水素添加、不均化、二量化、エステル化等で変性したロジン変性樹脂等が挙げられる。
【0061】
フェノール系樹脂としては、特に限定されないが、フェノールホルムアルデヒド樹脂、アルキルフェノールホルムアルデヒド樹脂、アルキルフェノールアセチレン樹脂、オイル変性フェノールホルムアルデヒド樹脂等が挙げられる。
【0062】
樹脂成分としては、低燃費性能およびウェットグリップ性能がバランスよく得られる観点から、クマロンインデン樹脂、インデン樹脂、芳香族ビニル系樹脂、およびC5C9系石油樹脂からなる群から選ばれる少なくとも1種以上を使用することが好ましい。
【0063】
樹脂成分の軟化点は、耐摩耗性能の観点から、160℃以下が好ましく、145℃以下がより好ましく、130℃以下がさらに好ましい。また、軟化点は、ウェットグリップ性能の観点から、50℃以上が好ましく、60℃以上がより好ましく、70℃以上がさらに好ましい。また、樹脂成分は、軟化点が-20~45℃の液状樹脂を実質的に含まない(例えば、ゴム成分100質量部に対して0.5質量部未満、好ましくは0.1質量部未満)ものとしてもよく、軟化点が-20~45℃の液状樹脂を含まないもの(すなわち0質量部)としてもよい。なお、本開示において、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
【0064】
樹脂成分のゴム成分100質量部に対する含有量は、ウェットグリップ性能の観点から、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましく、7質量部以上が特に好ましく。また、低燃費性能および耐摩耗性能の観点からは、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、25質量部以下が特に好ましい。樹脂成分の含有量を増やすと0℃tanδの値が大きくなる傾向がある。
【0065】
<その他の配合剤>
本開示に係るトレッド用ゴム組成物には、前記成分以外にも、従来タイヤ工業で一般に使用される配合剤、例えば、オイル、ワックス、加工助剤、老化防止剤、ステアリン酸、酸化亜鉛、硫黄等の加硫剤、加硫促進剤等を適宜含有することができる。
【0066】
オイルとしては、例えば、アロマチックオイル、プロセスオイル、パラフィンオイル等の鉱物油等が挙げられる。なかでも、環境への負荷低減という理由からプロセスオイルを使用することが好ましい。
【0067】
オイルを含有する場合のゴム成分100質量部に対する含有量は、ウェットグリップ性能の観点から、10質量部以上が好ましく、15質量部以上がより好ましく、20質量部以上がさらに好ましい。また、低燃費性能および高速走行時の操縦安定性の観点からは、80質量部以下が好ましく、70質量部以下がより好ましく、60質量部以下がさらに好ましい。オイルの含有量を増やすと0℃tanδの値が大きくなる傾向がある。なお、本明細書において、オイルの含有量には、油展ゴムに含まれるオイル量も含まれる。
【0068】
ワックスを含有する場合のゴム成分100質量部に対する含有量は、ゴムの耐候性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、ブルームによるタイヤの白色化防止の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
【0069】
加工助剤としては、例えば、脂肪酸金属塩、脂肪酸アミド、アミドエステル、シリカ表面活性剤、脂肪酸エステル、脂肪酸金属塩とアミドエステルとの混合物、脂肪酸金属塩と脂肪酸アミドとの混合物等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、脂肪酸金属塩、アミドエステル、脂肪酸金属塩とアミドエステル若しくは脂肪酸アミドとの混合物が好ましく、脂肪酸金属塩と脂肪酸アミドとの混合物が特に好ましい。具体的には、例えば、Schill+Seilacher社製のEF44、WB16等の脂肪酸石鹸系加工助剤が挙げられる。
【0070】
加工助剤を含有する場合のゴム成分100質量部に対する含有量は、加工性の改善効果を発揮させる観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性および破壊強度の観点からは、10質量部以下が好ましく、8質量部以下がより好ましい。
【0071】
老化防止剤としては、特に限定されるものではないが、例えば、アミン系、キノリン系、キノン系、フェノール系、イミダゾール系の各化合物や、カルバミン酸金属塩などの老化防止剤が挙げられ、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N’-フェニル-p-フェニレンジアミン、N,N’-ビス(1-メチルヘプチル)-p-フェニレンジアミン、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、N,N’-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N-4-メチル-2-ペンチル-N’-フェニル-p-フェニレンジアミン、N,N’-ジアリール-p-フェニレンジアミン、ヒンダードジアリール-p-フェニレンジアミン、フェニルヘキシル-p-フェニレンジアミン、フェニルオクチル-p-フェニレンジアミン等のフェニレンジアミン系老化防止剤、および2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン等のキノリン系老化防止剤が好ましい。これらの老化防止剤は、単独で使用してもよく、2種以上を併用してもよい。
【0072】
老化防止剤を含有する場合のゴム成分100質量部に対する含有量は、ゴムの耐オゾンクラック性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性能やウェットグリップ性能の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
【0073】
ステアリン酸を含有する場合のゴム成分100質量部に対する含有量は、加工性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、加硫速度の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
【0074】
酸化亜鉛を含有する場合のゴム成分100質量部に対する含有量は、加工性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性能の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
【0075】
加硫剤としては硫黄が好適に用いられる。硫黄としては、粉末硫黄、油処理硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄等を用いることができる。
【0076】
加硫剤として硫黄を含有する場合のゴム成分100質量部に対する含有量は、十分な加硫反応を確保し、良好なグリップ性能および耐摩耗性能を得るという観点から、0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また、劣化防止の観点からは、3.0質量部以下が好ましく、2.5質量部以下がより好ましく、2.0質量部以下がさらに好ましい。
【0077】
硫黄以外の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物)、ランクセス(株)製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等の硫黄原子を含む加硫剤や、ジクミルパーオキサイド等の有機過酸化物等が挙げられる。
【0078】
加硫促進剤としては、特に限定されるものではないが、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系もしくはアルデヒド-アンモニア系、イミダゾリン系、キサンテート系加硫促進剤が挙げられ、なかでも、所望の効果がより好適に得られる点から、スルフェンアミド系加硫促進剤およびグアニジン系加硫促進剤が好ましく、これら2種を併用することがより好ましい。
【0079】
スルフェンアミド系加硫促進剤としては、CBS(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)、TBBS(N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド)、N-オキシエチレン-2-ベンゾチアゾリルスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド等が挙げられる。チアゾール系加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアゾリルジスルフィド等が挙げられる。チウラム系加硫促進剤としては、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド(TBzTD)等が挙げられる。グアニジン系加硫促進剤としては、ジフェニルグアニジン(DPG)、ジオルトトリルグアニジン、オルトトリルビグアニジン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0080】
加硫促進剤を含有する場合のゴム成分100質量部に対する含有量は、1質量部以上が好ましく、2質量部以上がより好ましい。また、加硫促進剤のゴム成分100質量部に対する含有量は、8質量部以下が好ましく、7質量部以下がより好ましく、6質量部以下がさらに好ましい。加硫促進剤の含有量を上記範囲内とすることにより、破壊強度および伸びが確保できる傾向がある。
【0081】
本開示に係るゴム組成物は、公知の方法により製造することができる例えば、バンバリーミキサーやニーダー、オープンロールなどの一般的なゴム工業で使用される公知の混練機で、前記各成分のうち、加硫剤および加硫促進剤以外の成分を混練りした後、これに、加硫剤および加硫促進剤を加えてさらに混練りし、その後加硫する方法などにより製造できる。
【0082】
[タイヤ]
本開示に係るタイヤは、上記トレッド用ゴム組成物により構成されるトレッドを備えるものであり、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤ等が挙げられる。なお、本明細書における高性能タイヤとは、グリップ性能に特に優れたタイヤであり、競技車両に使用する競技用タイヤをも含む概念である。
【0083】
上記トレッド用ゴム組成物から構成されるトレッドを備えたタイヤは、上記トレッド用ゴム組成物を用いて、通常の方法により製造できる。すなわち、ゴム成分に対して上記各成分を必要に応じて配合した未加硫のゴム組成物を、トレッドの形状にあわせて押出し加工し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成型することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、タイヤを製造することができる。
【0084】
図1に、トレッドを平面に押し付けたときの接地面の模式図を示す。本開示に係るタイヤを構成するトレッド1は、
図1に示すように、タイヤ周方向Cに連続して延びる(
図1の例では、タイヤ周方向に沿って直線状に延びる)周方向溝11、12、13と幅方向に延びる横溝(サイプおよびラグ溝)21~28とを有し、正規リムにリム組みされ、かつ正規内圧が充填された無負荷の正規状態において、正規荷重を負荷してトレッドを平面に押し付けたときの、トレッド1の接地面積に対する周方向溝の接地面積の比率(周方向溝面積/接地面積)が0.09~0.16であることが好ましく、トレッド1の接地面積に対する横溝の接地面積の比率(横溝面積/接地面積)が0.08~0.14であることが好ましい。
【0085】
接地面積に対する周方向溝面積および横溝面積の割合を上記範囲とすることにより、トレッドの陸部剛性を大きくすることができ、かつ本開示に係るトレッド用ゴム組成物の有するゴムのしなやかさとの相乗効果により、高速走行時において、高い操縦安定性を発揮しつつ、転がり抵抗を改善することができる。周方向溝面積/接地面積が0.09未満の場合や、横溝面積/接地面積が0.08未満の場合には、陸部の割合が多くなりすぎるため、排水性やグリップ性が低下する傾向がある。一方、周方向溝面積/接地面積が0.16を超える場合や、横溝面積/接地面積が0.14を超える場合には、充分なトレッドの陸部剛性を得ることができないために、操縦安定性が低下する傾向がある。周方向溝面積/接地面積は、0.10~0.14であることがより好ましく、横溝面積/接地面積は、0.09~0.12であることがより好ましい。
【0086】
「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、ETRTOであれば“Measuring Rim”とする。
【0087】
「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”とする。
【0088】
「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”とする。
【0089】
トレッド1は、周方向Cに連続して延びる複数の周方向溝11、12、13を有している。
図1においては、周方向溝11、12、13は3つ設けられている。しかし、周方向溝の数は特に限定されず、例えば2~5つであってもよい。また、周方向溝11、12、13は、本開示では、周方向Cに沿って直線状に延びているが、周方向Cに沿ってジグザグ状に延びていてもよい。
【0090】
トレッド1は、幅方向Wで、周方向溝11、12、13によって仕切られた、一対のショルダー陸部16、17および一対のショルダー陸部16、17の間に位置するセンター陸部18、19を有している。
【0091】
ショルダー陸部16、17は、トレッド部2のうち、幅方向Wの両端に設けられた陸部である。本開示では、幅方向Wで車両の外側に外側ショルダー陸部16が設けられ、幅方向Wで車両の内側に内側ショルダー陸部17が設けられている。本開示では、外側ショルダー陸部16は、車両装着時に最外側に位置する周方向主溝12と外側トレッド端Toとの間に形成された陸部である。内側ショルダー陸部17は、車両装着時に最内側に位置する周方向主溝11と内側トレッド端Tiとの間に形成された陸部である。
【0092】
ショルダー陸部16、17には、ショルダー陸部16、17を横切る方向に延びる複数のショルダーラグ溝21、22と、複数のショルダーサイプ23、24とが設けられている。複数のショルダーラグ溝21、22および、複数のショルダーサイプ23、24は、一対のショルダー陸部16、17のそれぞれに設けられている。なお、本明細書において、外側ショルダー陸部16に設けられたショルダーラグ溝、ショルダーサイプをそれぞれ、外側ショルダーラグ溝21、外側ショルダーサイプ23と呼ぶ。また、内側ショルダー陸部17に設けられたショルダーラグ溝、ショルダーサイプをそれぞれ、内側ショルダーラグ溝22、内側ショルダーサイプ24と呼ぶ。
【0093】
なお、本明細書において、ラグ溝を含め「溝」は、少なくとも2.0mmよりも大きい幅の凹みをいう。一方、本明細書において、「サイプ」は、幅が2.0mm以下、好ましくは0.5~2.0mmの細い切り込みをいう。
【0094】
センター陸部18、19は、トレッド部2の幅方向Wで中央部に設けられた陸部である。本開示では、外側ショルダー陸部16と内側ショルダー陸部17との間(周方向主溝12と周方向主溝11との間)に2つのセンター陸部18、19が設けられている。なお、センター陸部の数は特に限定されず、1つであっても複数であってもよい。本開示では、トレッド部2の中央部において、車両の外側に外側センター陸部18が設けられ、車両の内側に内側センター陸部19が設けられている。本開示では、外側センター陸部18は、タイヤ赤道Cに沿って設けられた周方向主溝13と車両装着時に最外側に位置する周方向主溝12との間に形成された陸部である。内側センター陸部19は、タイヤ赤道Cに沿って設けられた周方向主溝13と車両装着時に最内側に位置する周方向主溝11との間に形成された陸部である。
【0095】
センター陸部18、19には、センター陸部18、19を横切る方向に延びる複数のセンターラグ溝25、26と、複数のセンターサイプ27、28とが設けられている。複数のセンターラグ溝25、26および、複数のセンターサイプ27、28は、センター陸部18、19のそれぞれに設けられている。なお、本明細書において、外側センター陸部18に設けられたセンターラグ溝、センターサイプをそれぞれ、外側センターラグ溝25、外側センターサイプ27と呼ぶ。また、内側センター陸部19に設けられたセンターラグ溝、センターサイプをそれぞれ、内側センターラグ溝26、内側センターサイプ28と呼ぶ。
【0096】
また、本開示では、図1に示されるように、センター陸部18、19のサイプ27、28は、センター陸部18、19の幅方向Wでの両縁部を結ぶように延びている。センター陸部18、19のサイプ27、28の角度は特に限定されないが、例えば、センター陸部18、19のサイプ27、28の幅方向Wの両端を結ぶ直線と、周方向主溝12とがなす角θが60~80度の範囲であることが好ましい。この場合、センター陸部18、19において水膜を掻き出すことができ、ウェット路面での制動性能を向上させることができる。
【0097】
センター陸部18、19のラグ溝25、26の角度は特に限定されないが、例えば、センター陸部18、19のラグ溝25、26の幅方向Wの両端を結ぶ直線と、周方向主溝12とがなす角θが60~80度の範囲であることが好ましい。また、ショルダーラグ溝21、22およびショルダーサイプ23、24の角度は特に限定されないが、例えば、周方向Cに対して0~20度の角度で形成されていることが好ましい。
【実施例】
【0098】
以下、本発明を実施例に基づいて説明するが、本発明はこれら実施例のみに限定されるものではない。
【0099】
以下、実施例および比較例において用いた各種薬品をまとめて示す。
NR:TSR20
SBR1:後述の製造例1で製造した変性溶液重合SBR(スチレン含量:30質量%、ビニル結合量:52モル%、Mw:25万、非油展品)
SBR2:後述の製造例2で製造した変性溶液重合SBR(スチレン含量:35質量%、ビニル結合量:50モル%、Mw:70万、非油展品)
BR:宇部興産(株)製のUBEPOL BR(登録商標)150B(ビニル結合量:1.5モル%、シス1,4-含有率97%、Mw:44万)
カーボンブラック:三菱ケミカル(株)製のダイヤブラックN220(N2SA:115m2/g)
シリカ1:エボニックデグサ社製のULTRASIL(登録商標)VN3(N2SA:175m2/g、平均一次粒子径:17nm)
シリカ2:エボニックデグサ社製のULTRASIL(登録商標)9000GR(N2SA:210m2/g、平均一次粒子径:16nm)
シランカップリング剤:モメンティブ社製のNXT-Z45(メルカプト基を有するシランカップリング剤、結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%)))
樹脂1:アリゾナケミカル社製のSylvares SA85(α-メチルスチレンとスチレンとの共重合体、軟化点:85℃)
樹脂2:東ソー(株)製のペトロタック100V(C5C9系石油樹脂、軟化点:96℃)
樹脂3:日塗化学(株)製のクマロンV-120(クマロンインデン樹脂、軟化点:120℃)
オイル:三共油化工業(株)製のプロセスオイルA/Oミックス
ワックス:日本精蝋(株)製のオゾエース0355
老化防止剤1:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
老化防止剤2:大内新興化学工業(株)製のノクラックRD(ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン))
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:細井化学工業(株)製のHK-200-5(5%オイル含有粉末硫黄)
加硫促進剤1:大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS))
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(1,3-ジフェニルグアニジン(DPG))
【0100】
製造例1:SBR1の合成
窒素置換されたオートクレーブ反応器に、シクロヘキサン、テトラヒドロフラン、スチレン、および1,3-ブタジエンを仕込んだ。反応器の内容物の温度を20℃に調整した後、n-ブチルリチウムを添加して重合を開始した。断熱条件で重合し、最高温度は85℃に達した。重合転化率が99%に達した時点で1,3-ブタジエンを追加し、さらに5分重合させた後、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシランを変性剤として加えて反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥し、SBR1を得た。
【0101】
製造例2:SBR2の合成
窒素置換されたオートクレーブ反応器に、シクロヘキサン、テトラヒドロフラン、スチレン、およびエチレングリコールジエチルエーテルを投入した。反応器の内容物の温度を20℃に調整した後、ビス(ジエチルアミノ)メチルビニルシランおよびn-ブチルリチウムを、それぞれ、シクロヘキサン溶液およびn-ヘキサン溶液として投入し、重合を開始した。撹拌速度を130rpm、反応器内温度を65℃とし、単量体を反応器内に連続的に供給しながら、1,3-ブタジエンとスチレンの共重合を3時間行った。次に、得られた重合体溶液を130rpmの撹拌速度で撹拌し、N-(3-ジメチルアミノプロピル)アクリルアミドを添加し、15分間反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥し、SBR2を得た。
【0102】
(実施例および比較例)
表1に示す配合処方にしたがい、1.7Lの密閉型バンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を排出温度150~160℃になるまで1~10分間混練りし、混練物を得た。次に、2軸オープンロールを用いて、得られた混練物に硫黄および加硫促進剤を添加し、4分間、105℃になるまで練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間プレス加硫することで、試験用ゴム組成物を作製した。
【0103】
また、前記未加硫ゴム組成物を所定の形状の口金を備えた押し出し機でタイヤトレッドの形状に押し出し成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃の条件下で12分間プレス加硫することにより、試験用タイヤ(サイズ:155/65R14、リム:14×4.5J、内圧:220kPa)を製造、準備した。
【0104】
得られた試験用ゴム組成物および試験用タイヤについて下記の評価を行った。評価結果を表1に示す。
【0105】
<低燃費性能>
シート状の加硫ゴム組成物から幅4mm、長さ20mm、厚さ2mmの短冊状試験片を打ち抜き、試験に供した。(株)上島製作所製のスペクトロメーターを用いて、初期歪2%、動歪1%、周波数50Hzの条件下で、0℃におけるtanδ(0℃tanδ)と-20℃におけるtanδ(-20℃tanδ)を測定した。また、0℃tanδの逆数の値について比較例4を100として指数表示した(低燃費性能指数)。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示す。なお、90以上を性能目標値とし、92以上が好ましく、95以上がより好ましい。
(低燃費性指数)=(比較例4の0℃tanδ)/(各配合の0℃tanδ)×100
【0106】
<高速操縦安定性>
各試験用タイヤを排気量660ccの国産FF車の全輪に装着し、ドライアスファルト面のテストコースにて実車走行を行った。テストドライバーによる120km/hでの走行時の、直進、車線変更、加減速時の各々のフィーリングに基づき、ハンドリング特性を評価した。対照タイヤ(比較例4)のハンドリング特性を100とし、下記の基準により指数表示して、上記3つの場合における平均値を算出し、その指数値を表1~4の「高速操縦安定性」の欄に示した。指数値が大きいほど、ハンドリング特性が良好で、高速走行時の操縦安定性が優れることを示す。
(ハンドリング特性の基準)
120:これまでに見られなかったほど良好なレベルであったもの
110:明らかに性能が向上したとテストドライバーが判断したもの
105:テストドライバーがやや良好と感じたもの
100:基準
【0107】
<高速走行時のウェットグリップ性能>
各試験用タイヤを排気量660ccの国産FF車の全輪に装着し、湿潤路面において初速度120km/hからの制動距離を測定した。下記の式により比較例4を100として指数表示した。指数が大きいほどウェットグリップ性能に優れることを示す。なお、80以上を性能目標値とし、85以上が好ましく、90以上がより好ましく、100以上がさらに好ましい。
(ウェットグリップ性能指数)=
(比較例4のタイヤの制動距離)/(各試験用タイヤの制動距離)×100
【0108】
低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能の総合性能(低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能の平均値)は、101以上を性能目標値とし、102以上が好ましく、103以上がより好ましい。
【0109】
【0110】
表1の結果より、イソプレン系ゴム、シリカおよび樹脂成分を含有し、かつ0℃tanδおよび-20℃tanδが所定の範囲内であるゴム組成物から構成されるトレッドを備える本開示のタイヤは、低燃費性能、高速走行時の操縦安定性、および高速走行時のウェットグリップ性能の総合性能が改善されていることがわかる。
【符号の説明】
【0111】
1 トレッド
11、12、13 周方向溝(周方向主溝)
16 外側ショルダー陸部
17 内側ショルダー陸部
18 外側センター陸部
19 内側センター陸部
21 外側ショルダーラグ溝
22 内側ショルダーラグ溝
23 外側ショルダーサイプ
24 内側ショルダーサイプ
25 外側センターラグ溝
26 内側センターラグ溝
27 外側センターサイプ
28 内側センターサイプ
C タイヤ周方向
To 外側トレッド端
Ti 内側トレッド端
W タイヤ幅方向