IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三安ジャパンテクノロジー株式会社の特許一覧

特許7501889接合ウエハの製造方法と弾性波デバイスの製造方法
<>
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図1
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図2
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図3
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図4
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図5
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図6
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図7
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図8
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図9
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図10
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図11
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図12
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図13
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図14
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図15
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図16
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図17
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図18
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図19
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図20
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図21
  • 特許-接合ウエハの製造方法と弾性波デバイスの製造方法 図22
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-10
(45)【発行日】2024-06-18
(54)【発明の名称】接合ウエハの製造方法と弾性波デバイスの製造方法
(51)【国際特許分類】
   H03H 9/25 20060101AFI20240611BHJP
   H03H 3/08 20060101ALI20240611BHJP
   H10N 30/07 20230101ALI20240611BHJP
   H10N 30/08 20230101ALI20240611BHJP
   H10N 30/063 20230101ALI20240611BHJP
   H10N 30/088 20230101ALI20240611BHJP
   H10N 30/20 20230101ALI20240611BHJP
   H10N 30/30 20230101ALI20240611BHJP
【FI】
H03H9/25 C
H03H3/08
H10N30/07
H10N30/08
H10N30/063
H10N30/088
H10N30/20
H10N30/30
【請求項の数】 4
(21)【出願番号】P 2020055189
(22)【出願日】2020-03-25
(65)【公開番号】P2021158455
(43)【公開日】2021-10-07
【審査請求日】2023-03-10
(73)【特許権者】
【識別番号】518453730
【氏名又は名称】三安ジャパンテクノロジー株式会社
(74)【代理人】
【識別番号】100156018
【弁理士】
【氏名又は名称】若田 充史
(74)【代理人】
【識別番号】100081569
【弁理士】
【氏名又は名称】若田 勝一
(72)【発明者】
【氏名】本山 惠一郎
(72)【発明者】
【氏名】高橋 敦哉
(72)【発明者】
【氏名】川内 治
【審査官】志津木 康
(56)【参考文献】
【文献】特開2010-259011(JP,A)
【文献】特開2015-076549(JP,A)
【文献】特開2010-153961(JP,A)
【文献】特表2013-537711(JP,A)
【文献】国際公開第2011/013553(WO,A1)
【文献】国際公開第2015/012005(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H03H3/007-3/10
H03H9/00-9/76
H10N30/00-39/00
(57)【特許請求の範囲】
【請求項1】
圧電性基板用ウエハと非圧電性基板用ウエハとが接合された接合ウエハの製造方法において、
外周にオリフラを有する非圧電性基板用ウエハを製造する工程と、
前記非圧電性基板用ウエハより狭い面積を有し、外周にオリフラを有する圧電性基板用ウエハを製造する工程と、
前記非圧電性基板用ウエハと前記圧電性基板用ウエハとを、各ウエハに設けたオリフラの向きが一致し、かつ両ウエハの外周弧状円が同心をなすように両ウエハを接合する工程と、
前記接合した圧電性基板用ウエハの弧状をなす外周を、円弧状の研磨面に沿って、オリフラが消滅する以下のウエハサイズになるまで研磨する工程と、を含む接合ウエハの製造方法。
【請求項2】
圧電性基板用ウエハと非圧電性基板用ウエハとが接合された接合ウエハの製造方法において、
外周にオリフラを有する非圧電性基板用ウエハを製造する工程と、
前記非圧電性基板用ウエハより狭い面積を有し、前記非圧電性基板用ウエハとの接合面の反対側である面に、オリフラの代わりにマークを有する圧電性基板用ウエハを製造する工程と、
前記非圧電性基板用ウエハと前記圧電性基板用ウエハとを、2枚のウエハの相対的な向きが予め設定された向きとなり、かつ両ウエハの外周弧状円が同心をなすように接合する工程と、
前記接合した圧電性基板用ウエハの弧状をなす外周を研磨する工程と、を含む接合ウエハの製造方法。
【請求項3】
圧電性基板用ウエハと非圧電性基板用ウエハとが接合された接合ウエハの製造方法において、
外周側にオリフラを有する非圧電性基板用ウエハを製造する工程と、
前記非圧電性基板用ウエハより狭い面積を有し、オリフラの代わりにダブルノッチを有する圧電性基板用ウエハを製造する工程と、
前記非圧電性基板用ウエハと前記圧電性基板用ウエハとを、両ウエハの相対的な向きが予め設定された向きとなり、かつ同心をなすように接合する工程と、
前記接合した圧電性基板用ウエハの弧状をなす外周を、円弧状の研磨面に沿って、前記ダブルノッチが消滅する以下のウエハサイズになるまで研磨する工程と、を含む接合ウエハの製造方法。
【請求項4】
接合ウエハとして、請求項1ないし請求項3のいずれか1項に記載の製造方法により製造された接合ウエハを用いる弾性波デバイスの製造方法であって、
前記接合ウエハの前記圧電性基板用ウエハ上に複数の弾性波デバイス用の電極を形成する工程と、
前記複数の弾性波デバイス用の電極を形成した接合ウエハを個々の弾性波デバイス用のベアチップに分断する工程と、
前記ベアチップを実装基板上に実装する工程と、
前記ベアチップを実装した実装基板を個々の弾性波デバイスに分断する工程と、を含む弾性波デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧電性基板用ウエハと非圧電性基板用ウエハとを接合した接合ウエハの製造方法と弾性波デバイスの製造方法に関する。
【背景技術】
【0002】
弾性表面波デバイス等の弾性波デバイスは、圧電性基板上に櫛型電極やパッド電極などを形成し、圧電性基板と実装基板との間に空隙部を形成して構成される。弾性波デバイスを製造する場合、圧電性基板は、特性改善のため、圧電性基板より熱膨張率の低い非圧電性基板をウエハ状態で接合する。そして、接合したウエハの状態で櫛型電極等の励振電極やパッド電極等の電極形成を行なう。圧電性基板に非圧電性基板を接合する目的の1つに、温度変化に伴う特性変化を防止することがある。すなわち、弾性波デバイスをフィルタとして構成した場合、圧電性基板の温度変化により変形すると、櫛型電極のピッチが変化し、フィルタリングする周波数が変化する。このような周波数変化を抑制するため、圧電性基板に、圧電性基板より熱膨張率が低い非圧電性基板を接合する。これにより、圧電性基板の温度変化による変形を抑制し、フィルタリングする周波数の変化を防止する。
【0003】
弾性波デバイスにおいては、圧電性基板にLT(リチウム酸タンタレート)やLN(リチウム酸ニオブ)を用いる場合、結晶方位により弾性表面波の伝播特性が変化するため、圧電性基板と非圧電性基板との接合に際し、少なくとも圧電性基板の結晶方位について配慮する必要がある。さらには、非圧電性基板が単結晶の場合は、非圧電性基板の結晶方位についても配慮する場合もある。このため、円形をなすウエハの外周の一部にウエハの位置及び方向を示すオリエンテーションフラット(以下オリフラと称す。)が設けられている(例えば特許文献1参照)。
【0004】
図22に特許文献1に示された従来の接合ウエハ70を示す。この従来の接合ウエハ70は、非圧電性基板用ウエハ71と圧電性基板用ウエハ72とを接着剤73により接合している。非圧電性基板用ウエハ71と圧電性基板用ウエハ72の外周には、それぞれオリフラ71a、72aが設けられている。このような接合ウエハ70を製造する際には、まずそれぞれオリフラ71a、72aを有する非圧電性基板用ウエハ71と圧電性基板用ウエハ72とをそれぞれ別々に製造する。そして、接合の際には、それぞれ、オリフラ71aとオリフラ72aの位置と方向が一致するようにして接合を行なう。その後、研磨装置により圧電性基板用ウエハ72の表面を機械的に研磨して圧電性基板用ウエハ72を薄くする。続いて、CMP工程(化学的機械研磨)を行ない、圧電性基板用ウエハ72をさらに薄くすると共に、電極形成面である圧電性基板用ウエハ72の表面72bを平滑化する。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2010-187373号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した従来の接合ウエハ70の場合、これを研磨して圧電性基板用ウエハ72を薄くする工程を経た後に、圧電性基板用ウエハ72において、オリフラ72a近傍の領域の厚さが他の領域の厚さよりも薄くなるということが判明した。このことは、圧電性基板用ウエハ72の厚さの不均一化を招く。このような圧電性基板用ウエハ72の厚さの不均一は、複数個分の弾性波デバイス用の接合ウエハを分断したものから弾性波デバイスを製造する際に、弾性波デバイスの周波数特性の不揃いの原因になる。
【0007】
本発明は、上述した問題点に鑑み、圧電性基板用ウエハがその全域において厚さが均一となる接合ウエハの製造方法と弾性波デバイスの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の接合ウエハの製造方法の一つの態様は、圧電性基板用ウエハと非圧電性基板用ウエハとが接合された接合ウエハの製造方法において、外周にオリフラを有する非圧電性基板用ウエハを製造する工程と、前記非圧電性基板用ウエハより狭い面積を有し、外周にオリフラを有する圧電性基板用ウエハを製造する工程と、前記非圧電性基板用ウエハと前記圧電性基板用ウエハとを、各ウエハに設けたオリフラの向きが一致し、かつ両ウエハの外周弧状円が同心をなすように両ウエハを接合する工程と、前記接合した圧電性基板用ウエハの弧状をなす外周を、円弧状の研磨面に沿って、オリフラが消滅する以下のウエハサイズになるまで研磨する工程と、を含む。
【0009】
この接合ウエハの製造方法では、圧電性基板用ウエハと非圧電性基板用ウエハを接合する前の段階では、両ウエハはその外周側にオリフラを有するため、これらのオリフラを例えば光学的に検出して位置制御を行ない、予め設定された相対位置で両ウエハを接合することができる。その後、圧電性基板用ウエハの外周を、オリフラが無くなるまで削除すると、圧電性基板用ウエハはオリフラが無い状態となる。このため、圧電性基板用ウエハの表面を研磨する際に、圧電性基板用ウエハは全面において非圧電性基板用ウエハに安定的に支持される。その結果、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハの全領域における厚さが均一化される。このため、接合ウエハを構成している圧電性基板用ウエハに、複数個分の弾性波デバイス用の電極を形成し、その接合ウエハを分断したものを用いて弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0010】
本発明の接合ウエハの製造方法の他の態様は、圧電性基板用ウエハと非圧電性基板用ウエハとが接合された接合ウエハの製造方法において、外周にオリフラを有する非圧電性基板用ウエハを製造する工程と、前記非圧電性基板用ウエハより狭い面積を有し、前記非圧電性基板用ウエハとの接合面の反対側である面に、オリフラの代わりにマークを有する圧電性基板用ウエハを製造する工程と、前記非圧電性基板用ウエハと前記圧電性基板用ウエハとを、2枚のウエハの相対的な向きが予め設定された向きとなり、かつ両ウエハの外周弧状円が同心をなすように接合する工程と、前記接合した圧電性基板用ウエハの弧状をなす外周を研磨する工程と、を含む。
【0011】
この接合ウエハの製造方法では、圧電性基板用ウエハと非圧電性基板用ウエハを接合する前段階では、圧電性基板用ウエハはマークを有し、非圧電性基板用ウエハはオリフラを有するため、これらのマーク及びオリフラを例えば光学的に検出して位置制御を行ない、予め設定された相対位置で両ウエハを接合することができる。接合後、圧電性基板用ウエハの表面を研磨する際には、圧電性基板用ウエハはオリフラを有しない。このため、圧電性基板用ウエハの表面研磨の際に、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハの全領域における厚さが均一化される。このため、接合ウエハを構成している圧電性基板用ウエハに、複数個分の弾性波デバイス用の電極を形成し、その接合ウエハを分断したものを用いて弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0012】
本発明の接合ウエハの製造方法のさらに他の一つの態様は、圧電性基板用ウエハと非圧電性基板用ウエハとが接合された接合ウエハの製造方法において、外周側にオリフラを有する非圧電性基板用ウエハを製造する工程と、前記非圧電性基板用ウエハより狭い面積を有し、オリフラの代わりにダブルノッチを有する圧電性基板用ウエハを製造する工程と、前記非圧電性基板用ウエハと前記圧電性基板用ウエハとを、両ウエハの相対的な向きが予め設定された向きとなり、かつ同心をなすように接合する工程と、前記接合した圧電性基板用ウエハの弧状をなす外周を、円弧状の研磨面に沿って、前記ダブルノッチが消滅する以下のウエハサイズになるまで研磨する工程と、を含む。
【0013】
この接合ウエハの製造方法では、圧電性基板用ウエハと非圧電性基板用ウエハを接合する前段階では、両ウエハはそれぞれその外周側にオリフラとダブルノッチを有するため、これらを例えば光学的に検出して位置制御を行ない、予め設定された相対位置で両ウエハを接合することができる。接合後、圧電性基板用ウエハの表面研磨の際に、圧電性基板用ウエハにオリフラが無いため、従来のように、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハの全領域における厚さが均一化される。このため、接合ウエハを構成している圧電性基板用ウエハに、複数個分の弾性波デバイス用の電極を形成し、その接合ウエハを分断したものを用いて弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0014】
本発明の弾性波デバイスの製造方法の一つの態様は、接合ウエハとして、上述した態様の接合ウエハの製造方法のいずれかにより製造された接合ウエハを用い、前記接合ウエハの前記圧電性基板用ウエハ上に複数の弾性波デバイス用の電極を形成する工程と、前記複数の弾性波デバイス用の電極を形成した接合ウエハを個々の弾性波デバイス用のベアチップに分断する工程と、前記ベアチップを実装基板用ウエハ上に実装する工程と、前記ベアチップを実装した実装基板用ウエハを個々の弾性波デバイスに分断する工程とを含む。
【0015】
このように、接合ウエハとして、オリフラの無い圧電性基板用ウエハを、非圧電性基板用ウエハに接合したものを用いることにより、周波数特性が揃った弾性波デバイスが得られる。
【発明の効果】
【0016】
本発明によれば、圧電性基板用ウエハと非圧電性基板用ウエハの接合ウエハにおいて、圧電性基板用ウエハの表面を研磨することにより、圧電性基板用ウエハの厚さを薄くしかつ表面を平滑化する場合、圧電性基板用ウエハの全面にわたり、より均一化された厚さが得られる。このため、接合ウエハの圧電性基板用ウエハ上に複数個の弾性波デバイス分の電極を形成し、接合ウエハを分断して弾性波デバイスを得る場合、周波数特性が揃った弾性波デバイスを得ることができる。
【図面の簡単な説明】
【0017】
図1】本発明の接合ウエハの一実施の形態の接合ウエハを示す斜視図である。
図2図1の接合ウエハの平面図である。
図3図1の接合ウエハの側面図である。
図4】本発明の接合ウエハの製造方法の第1の実施の形態を示す工程図である。
図5図1の接合ウエハの製造工程における圧電性基板用ウエハの外周部分の研磨機構を示す図である。
図6】(a)~(c)は図1の接合ウエハにおける圧電性基板用ウエハの表面の研磨工程による圧電性基板用ウエハの厚さの変化を示す図である。
図7図1の接合ウエハにおける圧電性基板用ウエハの表面の研磨機構を示す図である。
図8】(a)は圧電性基板用ウエハ表面のCMP研磨機構を示す斜視図、(b)はその研磨機構のうち、ウエハを保持するホルダを示す側面図である。
図9】圧電性基板用ウエハがオリフラを有する場合と有しない場合とについて、圧電性基板用ウエハの厚さのばらつきについて対比試験を行なった際の、接合ウエハの平面構造を示す平面図である。
図10】圧電性基板用ウエハの表面研磨後の厚さが1.5μmに設定されている場合、従来例と本発明の各一例における、複数の測定点についての圧電性基板用ウエハの厚みを比較して示すグラフである。
図11】表面研磨後の圧電性基板用ウエハの厚さが3μmに設定されている場合において、図10と同じく各測定点における圧電性基板用ウエハの厚さを比較して示すグラフである。
図12】表面研磨後の圧電性基板用ウエハの厚さが5μmに設定されている場合において、図10と同じく各測定点における圧電性基板用ウエハの厚さを比較して示すグラフである。
図13】弾性表面波デバイスとして構成される共振器における圧電性基板の厚さと共振周波数及び反共振周波数との関係の一例を示すグラフである。
図14】弾性表面波デバイスとして構成されるフィルタの電極構成例を示す平面図である。
図15図14に示すフィルタにおける、周波数と減衰量との関係を、中心周波数と共に示す図である。
図16】従来のようにオリフラがあるウエハと、本発明のようにオリフラが無いウエハの各一例について、図14に示すフィルタを構成した場合の中心周波数の分布を示すグラフである。
図17】本発明の接合ウエハの製造方法の第2の実施の形態を示す工程図である。
図18】本発明の接合ウエハの製造方法の第3の実施の形態を示す工程図である。
図19】本発明の接合ウエハの製造方法の第4の実施の形態に用いる圧電性基板用ウエハと製造方法の工程図である。
図20】本発明による弾性波デバイスの製造方法の一実施の形態の工程の一部を示す工程図である。
図21】本発明による弾性波デバイスの製造方法の一実施の形態の工程の残部を示す工程図である。
図22】従来の接合ウエハの一例を示す斜視図である。
【発明を実施するための形態】
【0018】
<第1の実施の形態>
本発明による接合ウエハの第1の実施の形態を図1図3により説明する。接合ウエハ1は、非圧電性基板用ウエハ2と、圧電性基板用ウエハ3とを接合して構成される。圧電性基板用ウエハ3は、弾性表面波デバイスを構成する場合には、タンタル酸リチウム(LT)又はニオブ酸リチウム(LN)が用いられる。非圧電性基板用ウエハ2は、圧電性基板用ウエハ3より熱膨張率が低い例えばシリコン、サファイア、多結晶アルミナ、多結晶スピネル、水晶又はガラス等が用いられる。しかしながら本発明においては、非圧電性基板用ウエハ2や圧電性基板用ウエハ3としてはこれらの材料に限定されず、他の材料を使用してもよい。また、本発明は、圧電性基板の厚さにより特性の変化が生じる他の弾性波デバイスに適用される。
【0019】
非圧電性基板用ウエハ2は、その外周2aに、直線状をなすオリフラ2a1を有する。非圧電性基板用ウエハ2の外周2aにおけるオリフラ2a1以外の部分は円弧状をなす。圧電性基板用ウエハ3は円形をなし、オリフラを有していない。圧電性基板用ウエハ3は、非圧電性基板用ウエハ2より狭い面積を有する。そして、図2に示すように、オリフラ2a1を含む非圧電性基板用ウエハ2の外周2aは、圧電性基板用ウエハ3の外周3aよりも外側に位置する。圧電性基板用ウエハ3の外周3aで描かれる円は、非圧電性基板用ウエハ2の外周2aで描かれる円と同心をなすように接合される。
【0020】
図3に示すように、圧電性基板用ウエハ3の厚さt1は、非圧電性基板用ウエハ2の厚さt2より薄く(t1<t2)形成される。例えば圧電性基板用ウエハ3の厚さt1は0.2μm以上、20μm以下であり、非圧電性基板用ウエハ2の厚さt2は80μm以上、500μm以下である。しかし本発明においては、各ウエハ2、3の厚さはこれらの値に限定されない。
【0021】
この接合ウエハ1の製造工程は、図4(a)に示す非圧電性基板用ウエハ2を製造する工程と、図4(b)に示す圧電性基板用ウエハ3Xを製造する工程と、図4(c)に示すようにウエハ2、3Xを接合して接合ウエハ1Xを得る工程と、接合ウエハ1Xの圧電性基板用ウエハ3Xの外周を研磨して図4(d)に示すように、外径を縮小させた圧電性基板用ウエハ3を有する接合ウエハ1を得る工程とを含む。
【0022】
図4(a)に示す非圧電性基板用ウエハ2の製造は、従来と同様の工程で行なう。例えば円柱形で得られるインゴットからインゴットの両端をスライサーにより切除する工程と、インゴットの外周の研削等により、インゴットの全長について直径を揃える工程と、直径を揃えたインゴットの側面をスライス又は研削することにより、ウエハのオリフラ2a1となる平面部分を形成する工程と、インゴットをスライサーによりウエハ状に切断する工程と、切断により得られたウエハを研磨する工程である。ただし、オリフラ2a1の形成は、ウエハとして得られた後に研削等により形成してもよい。図4(a)に示す圧電性基板用ウエハ3Xの製造も同様の工程により行なわれる。ただし、圧電性基板用ウエハ3Xは、その外周円の直径が、非圧電性基板用ウエハ2の外周円の直径よりも小さくなるように形成する。すなわち、圧電性基板用ウエハ3Xの面積は、非圧電性基板用ウエハ2の面積より狭い。
【0023】
非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xとの接合は、非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xとを、それぞれのウエハに設けたオリフラ2a1とオリフラ3b1の向きが一致するようにして行なう。また、この接合は、非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xの外周弧状円が同心をなすようにして行なう。
【0024】
非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xの接合は、接着剤により行なうこともできる。しかしながら本実施の形態においては、この接合を常温接合により行なっている。この常温接合を行なう場合、アルゴン等の原子ビームを、非圧電性基板用ウエハ2の接合面と、圧電性基板用ウエハ3Xの接合面に照射して接合面を活性化する。そして、圧電性基板用ウエハ3Xと非圧電性基板用ウエハ2とを、両ウエハの接合面に存在する原子どうしの原子間力によって接合するものである。このため、接合するウエハを加熱する必要がなく、接合後に接合面にストレスが残留せず、接合ウエハの歪みや反りの発生を防止できる。
【0025】
図4(c)に示すように非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xとを接合した後は、図4(d)に示すように、二点点線で示す圧電性基板用ウエハ3Xの外周3bが、実線で示す外周3aにまで縮小した円となるように研磨する。すなわち、圧電性基板用ウエハ3Xの外周3bの研磨により、円弧状の研磨面に沿って、オリフラ3b1が消滅する以下のウエハサイズとし、圧電性基板用ウエハ3を得る。なお、ここで、オリフラ3b1が消滅する以下のウエハサイズの意味するところは、厳密な意味でオリフラ3b1が消滅するという意味ではなく、実質的にオリフラ3b1が消滅する程度に外周が研磨されればよい。
【0026】
このような圧電性基板用ウエハ3Xの外周3bの研磨は、例えば図5に示す機構の研磨装置を用いて行なう。すなわち非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xとを接合した接合ウエハ1Xを不図示の回転テーブル上に固定する。一方、回転テーブルに対して回転軸5xが例えば回転テーブルの半径方向に向いた回転砥石5を設ける。回転砥石5は、円盤状の砥石本体5aと、砥石本体5aを保持する砥石ホルダ5bとを備える。圧電性基板用ウエハ3Xの外周3bの研磨は、回転テーブルと共に接合ウエハ1Xを矢印6に示すように回転させると同時に、砥石本体5aを圧電性基板用ウエハ3Xの外周3bに接触させ、かつ矢印7に示すように回転させて行なう。圧電性基板用ウエハ3Xの外周3bの研磨の進行に伴い、砥石本体5aが次第に接合ウエハ1Xの回転中心に近づく方向に、接合ウエハ1Xをセットしている回転テーブルと回転砥石5の少なくともいずれか一方を移動させる。
【0027】
このような圧電性基板用ウエハ3Xの外周3bの研磨を行なった後、続いて圧電性基板用ウエハ3の表面の研磨を行なう。すなわち図6(a)に示すように、厚さtaの未研磨状態から、圧電性基板用ウエハ3の表面3c1の機械研磨により、図6(b)に示す厚さtbと、厚さが大幅に減少するように研磨を行なう。続いて図6(b)に示す圧電性基板用ウエハ3の表面3c2を、化学的機械研磨により、図6(c)に示す厚さtcに厚さを減少させると共に、表面3cの平滑化を行なう。
【0028】
図6(a)から図6(b)に至るように、圧電性基板用ウエハ3の厚さを大幅に減少させる機械研磨は、例えば図7に示すような研磨機構により行なう。この機械研磨機構は、不図示の回転テーブルにセットされる接合ウエハ1に対し、その上面、すなわち圧電性基板用ウエハ3の表面3c1を研磨するための研磨ホイール9を備える。この研磨ホイール9は、円盤状をなし、下面に接合ウエハ1の圧電性基板用ウエハ3を研磨する複数の研磨ピース9aがリング状に配置されている。研磨ホイール9は、回転駆動軸9bを有する。
【0029】
この研磨機構においては、接合ウエハ1を研磨するに当たり、研磨ホイール9の研磨ピース9aが、その研磨ピース9aの集合体で接合ウエハ1の回転中心から外周に亘る範囲について接触するように、研磨ホイール9を位置決めする。そして、接合ウエハ1を不図示の回転テーブルと共に矢印10に示すように回転させると同時に、研磨ホイール9を矢印11に示すように回転させて接合ウエハ1の表面、すなわち圧電性基板用ウエハ3の表面3c1を研磨する。
【0030】
その後の図6(b)から図6(c)に至る化学的機械研磨においては、研磨による圧電性基板用ウエハ3の厚さの減少度合が少なく、精度良くかつ表面を平滑に研磨する。この化学的機械研磨は、例えば図8に示すような研磨機構により行なう。この化学的機械研磨装置は、不図示の回転テーブル上に固定される研磨パッド14を有する。研磨パッド14上には、スラリー供給装置15により、圧電性基板用ウエハ3に対して化学的研磨作用を果たすスラリー状の研磨剤16が供給される。一方、接合ウエハ1は、円形のホルダ17の下面に、圧電性基板用ウエハ3を下向きにして保持される。そして、ホルダ17の位置決め機構により、接合ウエハ1を研磨パッド14に加圧状態で接触させ、研磨パッド14を矢印18に示すように回転させて圧電性基板用ウエハ3の表面の化学的機械研磨を行なう。
【0031】
このように圧電性基板用ウエハ3のオリフラを無くしたことによる圧電性基板用ウエハ3の厚さ均一化の効果を確認するため、オリフラの有る圧電性基板用ウエハ3との対比試験を行なった。対比試験は、図9に点線で示すように、オリフラ3b1を残した場合と、オリフラ3b1を残さない実線で示す場合とについて、機械研磨と化学的機械研磨後の圧電性基板用ウエハ3の厚さの分布を調べた。非圧電性基板用ウエハ2にはサファイアを用い、厚さを400μmとした。圧電性基板用ウエハ3にはタンタル酸リチウム(LT)を用い、目標厚さを1.5μm、3μm、5μmとしてそれぞれの厚さで対比試験を行なった。
【0032】
また、非圧電性基板用ウエハ2の外周2aの円弧部分の直径は100mmとした。また、オリフラ3b1が有る場合における、圧電性基板用ウエハ3Xの外周3bの円弧部分の直径は95mmとした。また、オリフラ3b1の無い圧電性基板用ウエハ3の外周3aの一部を、外周3bを研磨する前のオリフラ3b1と一致させた。
【0033】
図9に、圧電性基板用ウエハ3、3Xにおける研磨後の厚さの測定点50を示す。測定点50は、圧電性基板用ウエハ3、3Xの中心からオリフラ(OF)3b1側に離れる方向に5mmごとの間隔に設定した。圧電性基板用ウエハ3の厚さの測定はレーザビームを用いる厚さ測定装置により行なった。
【0034】
図10図12に示されるように、目標の厚さ1.5μm、3μm、5μmのいずれの場合であっても、オリフラ3b1が有る場合に、圧電性基板用ウエハ3Xのオリフラ(OF)3b1側の測定点(図10図12における-5mm~-40mmの測定点)では、オリフラ3b1の反対側の測定点より、圧電性基板用ウエハ3Xの厚さは狭くなった。一方、オリフラ3b1の無い圧電性基板用ウエハ3の場合、外周研磨前に存在したオリフラ3b1側とその反対側の厚さの差は小さくなった。表1はこのような厚さ測定における厚さの最大値と最小値との差R(μm)と標準偏差(μm)とを示す。表1から、オリフラ3b1を無くしたことにより、圧電性基板用ウエハ3全体における厚さのばらつきが大幅に改善されることが分かる。
【0035】
【表1】
【0036】
図13はタンタル酸リチウム(LT)を圧電性基板に用い、非圧電性基板にシリコンを用いて弾性表面波デバイスで共振器を構成した場合における、圧電性基板の厚さと共振周波数Fr及び反共振周波数Faとの関係を示す。この関係を調べるため、圧電性基板用ウエハ3の表面に櫛型電極を形成して共振器を構成し、圧電性基板の厚さ0.5μm~10μmの範囲で変えて共振周波数Frと反共振周波数Faの測定を行なった。
【0037】
図13から理解されるように、圧電性基板の厚さが約3μm以下になると、圧電性基板の厚さが共振周波数Fr及び反共振周波数Faに影響を与え、特に2μm以下になると、その影響が甚大になることが分かる。そのため、圧電性基板を薄型化して共振器の高周波化とQ値の向上を計る場合に、圧電性基板用ウエハ3の全面における厚さの均一化は重要な課題であることが分かる。
【0038】
図14は圧電性基板用ウエハ3の表面に形成される複数個のフィルタ20の電極パターンの一例を示す。このフィルタ20は、それぞれ反射器21を並設した共振器19A~19Eをラダー構造に組んで構成される。一部の共振器19A~19Cは、入力ポート22と出力ポート23との間のライン24に挿入される。他の共振器19D,19Eは、ライン24とグランドポート25a、25bとの間にそれぞれ挿入される。このフィルタは、各共振器19A~19Eをそれぞれラダー構造の基本単位として構成されるもので、各共振器19A~19Cのインピーダンスと各共振器19D、19Eのインピーダンスとで決定される通過帯域を持つ。図15図14に示すフィルタの通過帯域と中心周波数Foの概略を示す。
【0039】
図14の電極パターンを有するフィルタの試作を、圧電性基板用ウエハ3にオリフラ3b1を有するものと、有しないもので行ない、中心周波数Foのばらつきについて比較した。この試作において、圧電性基板用ウエハ3にタンタル酸リチウム(LT)を用い、その設定厚さを3μmとした。また、非圧電性基板用ウエハ2にサファイアを用い、その厚さを400μmとした。また、共振器19A~19E及び反射器21の電極ピッチを2.10μmとした。
【0040】
図16は圧電性基板用ウエハ3にオリフラ3b1を有するものと、これを有しないものを用い、図14に示す構成のフィルタを構成した場合の中心周波数Foの分布を示す。この中心周波数の測定は、オリフラ3b1を有するウエハから得たフィルタと、オリフラ3b1を有しないもののサンプルをそれぞれ45個ずつとり行なった。そして測定値から、中心周波数の最大値Rmaxと最小値Rminの差であるレンジ(Rmax-Rmin)(MHz)と標準偏差σ(MHz)を求めた。表2にその結果を示す。
【0041】
【表2】
【0042】
表2から分かるように、図14に示したフィルタを構成した場合、オリフラを無くした圧電性基板用ウエハから得たフィルタの場合、オリフラが有る圧電性基板用ウエハから得たフィルタよりも中心周波数のレンジが狭く、標準偏差σの値も小さくなった。すなわち、オリフラを無くした圧電性基板用ウエハから得たフィルタの場合、周波数特性が揃ったフィルタが得られた。
【0043】
<第2の実施の形態>
本発明による接合ウエハの製造方法の第2の実施の形態を図17により説明する。この実施の形態は、圧電性基板用ウエハ3Xとして、オリフラ3b1の代わりに、オリフラ3b1と同位置となるウエハ表面にマーク3dを印したものである。このマーク3dは、レーザ又は色つきインクの印刷等により印すことができる。また、このマーク3dは、線状ではなく、3dで示す線状部分よりも外周側に、他の領域と異なる色の物質を着けたものであってもよい。また、このマーク3dは、接合のための位置合わせの際に、撮像装置により光学的に検出されるためのものであるため、非圧電性基板用ウエハ2との接合面の反対側の面に設ける。
【0044】
この第2の実施の形態により接合ウエハを製造する場合、図17(a)に示すように、外周にオリフラ2a1を有する非圧電性基板用ウエハ2を製造する。また、図17(b)に示すように、非圧電性基板用ウエハ2より狭い面積を有し、非圧電性基板用ウエハとの接合面の反対側である表面に、オリフラの代わりにマーク3dを有する圧電性基板用ウエハ3Xを製造する。続いて図17(c)に示すように、非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xとを、2枚のウエハの相対的な向きが予め設定された向きとなり、かつ両ウエハの外周弧状円が同心をなすように、オリフラ2a1及びマーク3dの位置を光学的に検出して、その位置情報に基づき、非圧電性基板用ウエハ2と圧電性基板用ウエハ3Xの相対位置を調整して接合する。この例においては、オリフラ2a1とマーク3dとが平行をなすようにして接合しているが、必ずしも平行である必要がなく、オリフラ2a1に対する圧電性基板用ウエハ3Xの結晶方位が予め定められた方位になればよい。両ウエハ2、3Xの接合後は、接合した圧電性基板用ウエハ3Xが非圧電性基板用ウエハ2から剥がれ難くするため、圧電性基板用ウエハ3Xの弧状をなす外周3bを、図17(d)に実線で示すように、円弧状の外周3bに沿って研磨する。
【0045】
この第2の実施の形態の製造方法においては、圧電性基板用ウエハ3Xは、上述の態様と同様に、圧電性基板用ウエハ3はオリフラ3b1を有しない。このため、圧電性基板用ウエハ3の表面研磨の際に、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハ3の全領域における厚さが均一化される。その結果、接合ウエハを分断したものから弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0046】
この第2の実施の形態の製造方法においては、圧電性基板用ウエハ3Xはオリフラ3b1を有しない。このため、圧電性基板用ウエハ3の表面研磨の際に、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハ3の全領域における厚さが均一化される。また、圧電性基板用ウエハ3の表面3cを研磨した後は、マーク3dは消滅している。その結果、接合ウエハを分断したものから弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0047】
<第3の実施の形態>
本発明による接合ウエハの製造方法の第3の実施の形態を図18により説明する。この実施の形態は、圧電性基板用ウエハ3Xとして、第1の実施の形態におけるオリフラ3b1の代わりに、オリフラ3b1と同位置となるウエハ表面にマーク3dを印したものである。また、非圧電性基板用ウエハ2Xについても同様に、圧電性基板用ウエハ3Xとの接合面の反対側の面に、オリフラ2a1の代わりに、オリフラ2a1と同位置にマーク2bを設けたものである。これらのマーク2b、3dは、レーザ又は色つきインクの印刷等により印すことができる。また、これらの2b、3dは、線状ではなく、2b、3dで示す線状部分よりも外周側に、他の領域と異なる色の物質を着けたものであってもよい。
【0048】
この第3の実施の形態により接合ウエハを製造する場合、図18(a)に示すように、外周にオリフラの代わりにマーク2bを有する非圧電性基板用ウエハ2Xを製造する。また、図18(b)に示すように、非圧電性基板用ウエハ2より狭い面積を有し、非圧電性基板用ウエハとの接合面の反対側である表面に、オリフラの代わりにマーク3dを有する圧電性基板用ウエハ3Xを製造する。続いて図18(c)に示すように、非圧電性基板用ウエハ2Xと圧電性基板用ウエハ3Xとを、2枚のウエハの相対的な向きが予め設定された向きとなり、かつ両ウエハ2X、3Xの外周弧状円が同心をなすように、マーク2b及びマーク3dの位置を光学的に検出して、その位置情報に基づき、非圧電性基板用ウエハ2Xと圧電性基板用ウエハ3Xの相対位置を調整して接合する。この例においては、マーク2bとマーク3dとが平行をなすようにして接合しているが、必ずしも平行である必要がなく、結果として、マーク2bに対する圧電性基板用ウエハ3Xの結晶方位等が予め定められた方位になればよい。
【0049】
この実施の形態においても、圧電性基板用ウエハ3Xの表面を研磨する前に、接合後の圧電性基板用ウエハ3Xの剥がれが生じにくくするため、図18(d)に示すように、圧電性基板用ウエハ3Xの外周3bを研磨する。
【0050】
この第3の実施の形態の製造方法においても、圧電性基板用ウエハ3Xは、オリフラを有しない。このため、圧電性基板用ウエハ3Xの表面3cを研磨する際に、従来のように、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハ3Xの全領域における厚さが均一化される。その結果、接合ウエハを分断したものから弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0051】
<第4の実施の形態>
本発明による接合ウエハの製造方法の第4の実施の形態を図19により説明する。この実施の形態は、圧電性基板用ウエハ3Yの外周3bに、図19(a)に示すように、それぞれV字形をなす切欠きであるノッチ3f、3f(以下ダブルノッチと称す。)を設ける。このダブルノッチ3f、3fは、第1の実施の形態におけるオリフラ3b1の代わりに設けられる。このダブルノッチ3f、3fは、オリフラ3b1の円周方向の両端とほぼ同位置となるウエハ3Yの外周3bに設けられる。非圧電性基板用ウエハ2については、オリフラ2a1を設ける。
【0052】
この第4の実施の形態により接合ウエハを製造する場合、図19(b)に示すように、外周にオリフラ2a1を有する非圧電性基板用ウエハ2を製造する。また、図19(c)に示すように、非圧電性基板用ウエハ2より狭い面積を有し、オリフラの代わりにダブルノッチ3f、3fを有する圧電性基板用ウエハ3Yを製造する。続いて図19(d)に示すように、非圧電性基板用ウエハ2と圧電性基板用ウエハ3Yとを、2枚のウエハの相対的な向きが予め設定された向きとなり、かつ両ウエハ2、3Yの外周弧状円が同心をなすように、オリフラ2a1及びダブルノッチ3f、3fの位置を光学的に検出して、その位置情報に基づき、非圧電性基板用ウエハ2と圧電性基板用ウエハ3Yの相対位置を調整して接合する。
【0053】
図19の実施の形態においても、圧電性基板用ウエハ3Yの表面を研磨する前に、図19(d)に示すように、圧電性基板用ウエハ3Yの外周3bを研磨する。この場合、外周3bのウエハ半径方向についての研磨の深さは、圧電性基板用ウエハ3Yのダブルノッチ3f、3fが消滅するウエハサイズ3までとする。
【0054】
この第4の実施の形態の製造方法においても、圧電性基板用ウエハ3Yは、オリフラを有しない。このため、圧電性基板用ウエハ3Yの表面3c1を研磨する際に、従来のように、オリフラ領域側が他の領域よりも研磨深さが深くなることが無くなり、圧電性基板用ウエハ3Yの全領域における厚さが均一化される。その結果、接合ウエハを分断したものから弾性波デバイスを製造する際に、周波数特性が揃ったものが得られる。
【0055】
<第5の実施の形態>
接合ウエハの製造方法の第5の実施の形態は、非圧電性基板用ウエハ2に、オリフラ2a1の代わりに、図18(a)に示したマーク2bを設け、図19に示すように、圧電性基板用ウエハ3Yについては、ダブルノッチ3f、3fを設けて接合する。この場合も、図19について説明したように、圧電性基板用ウエハ3Yの外周3bを、ダブルノッチ3fがなくなるまで研磨する。
【0056】
この実施の形態においても、圧電性基板用ウエハ3Yはオリフラを有しないため、圧電性基板用ウエハ3Yの表面3c1を研磨する際に、圧電性基板用ウエハ3Yの表面3c1を均一な厚さに研磨することができる。
【0057】
次に前述した接合ウエハ1を用いて弾性波デバイスを製造する方法の一実施の形態を、図20及び図21により説明する。図20(a)は、第1の実施の形態ないし第3の実施の形態のいずれかの方法で製造された接合ウエハ1上に、例えば図14に示すフィルタの複数個分の電極パターンを形成した例を模式的に示す。すなわち接合ウエハ1を構成している圧電性基板用ウエハ3上に、弾性表面波により共振器用の電極31及びパッド電極32を形成している。ここで、共振器用の電極31は、櫛型電極及び反射器を意味している。これらの共振器用の電極31及びパッド電極32は、圧電性基板用ウエハ3の表面に、フォトリソグラフィ技術を用いて形成されたものである。これらの電極31、32等を圧電性基板用ウエハ3に形成した接合ウエハ1は、ブレードダイシングやレーザ等によって、縦横の分断線33により、図20(b)に示すように、非圧電性基板2Eと圧電性基板3Eとを有する個々のベアチップ35に分断する。
【0058】
一方、ベアチップ35の製造工程とは別の工程で、図20(c)の下段に示すように、セラミック、ガラス、樹脂等の絶縁材でなる分断前の実装基板40を準備する。実装基板40は、内部に配線や素子形成用の導体層43を設ける場合には、導体層43を形成した実装基板の素材と、別の1枚または複数枚の実装基板の素材とを重ねて接合したものを用いる。実装基板40の表裏面に、パッド電極41、42を形成する。表裏面のパッド電極41、42の間は、導体層43等を介して直接電気的に接続するか、又は内部に形成した不図示の素子を介して電気的に接続する。
【0059】
このようにしてパッド電極41、42を設けた実装基板40に、図20(c)に示すように、弾性波デバイスのベアチップ35をフリップチップ実装する。すなわち、実装基板40のパッド電極41に対し、ベアチップ35のパッド電極32を、バンプ44を介して接合する。
【0060】
続いて図21(a)に示すように、ベアチップ35を実装した実装基板40を硬化性の樹脂層45で覆う。この樹脂層45を設けるため、熱硬化性樹脂又は光硬化性樹脂フィルムを接着するか、あるいはフィルムを接着する代わりに、熱硬化性樹脂又は光硬化性樹脂を塗布する。その後、これらの樹脂層45を加熱するか又は光照射することにより、樹脂を硬化させる。そして、縦横の分断線46に沿ってブレードダイシングあるいはレーザにより、図21(b)に示すように、個々のチップに分断して弾性波デバイス47とする。
【0061】
このように、圧電性基板用ウエハの厚みが揃った接合ウエハ1を用い、弾性波デバイス47を製造することにより、周波数特性が揃った弾性波デバイスを得ることができる。
【0062】
以上本発明を実施の形態により説明したが、本発明を実施する場合、本発明の範囲において、上記例以外の種々の変更、付加が可能である。
【符号の説明】
【0063】
1、1X 接合ウエハ
2、2X 非圧電性基板用ウエハ
2a 外周
2a1 オリフラ
2b マーク
2E 非圧電性基板
3、3X、3Y 圧電性基板用ウエハ
3a、3b 外周
3b1 オリフラ
3c 表面
3d マーク
3E 圧電性基板
3f ダブルノッチ
19A~19E 共振器
20 フィルタ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22