(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-12
(45)【発行日】2024-06-20
(54)【発明の名称】撮像装置
(51)【国際特許分類】
H04N 25/69 20230101AFI20240613BHJP
H04N 25/779 20230101ALI20240613BHJP
H04N 25/76 20230101ALI20240613BHJP
【FI】
H04N25/69
H04N25/779
H04N25/76
(21)【出願番号】P 2020559825
(86)(22)【出願日】2019-11-07
(86)【国際出願番号】 JP2019043625
(87)【国際公開番号】W WO2020121699
(87)【国際公開日】2020-06-18
【審査請求日】2022-10-31
(31)【優先権主張番号】P 2018231796
(32)【優先日】2018-12-11
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】110001357
【氏名又は名称】弁理士法人つばさ国際特許事務所
(72)【発明者】
【氏名】松浦 知宏
(72)【発明者】
【氏名】河津 直樹
【審査官】鈴木 明
(56)【参考文献】
【文献】特開2012-253740(JP,A)
【文献】特開2009-118427(JP,A)
【文献】国際公開第2018/142707(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 25/00-25/79
(57)【特許請求の範囲】
【請求項1】
第1の電圧供給線と、
第2の電圧供給線と、
第1の受光素子と、
それぞれが、電荷を蓄積可能な蓄積部と、第1の端子および前記蓄積部に接続された第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第1のトランジスタと、第1の端子および前記蓄積部に接続可能な第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第2のトランジスタと、前記蓄積部に蓄積された電荷に応じた電圧を出力可能な出力部とを有し、撮像画素回路、第1のダミー画素回路、および第2のダミー画素回路を含む複数の画素回路と
を備え、
前記撮像画素回路において、前記第1のトランジスタの前記第1の端子は前記第1の受光素子に接続され、前記第2のトランジスタの前記第1の端子は前記第1の電圧供給線に接続され、
前記第1のダミー画素回路において、前記第1のトランジスタの前記第1の端子は前記第1の電圧供給線に接続され、前記第2のトランジスタの前記第1の端子は前記第2の電圧供給線に接続され、
前記第2のダミー画素回路において、前記第1のトランジスタの前記第1の端子は前記第2の電圧供給線に接続され、前記第2のトランジスタの前記第1の端子は前記第1の電圧供給線に接続されている
撮像装置。
【請求項2】
前記複数の画素回路のそれぞれにおける前記第2のトランジスタの前記第2の端子は前記蓄積部に接続された
請求項1に記載の撮像装置。
【請求項3】
第2の受光素子をさらに備え、
前記複数の画素回路のそれぞれは、第1の端子および前記蓄積部に接続可能な第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第3のトランジスタをさらに有し、
前記撮像画素回路における前記第3のトランジスタの前記第1の端子は、前記第2の受光素子に接続され、
前記第1のダミー画素回路における前記第3のトランジスタの前記第1の端子は、前記第1の電圧供給線に接続され、
前記第2のダミー画素回路における前記第3のトランジスタの前記第1の端子は、前記第2の電圧供給線に接続されている
請求項1に記載の撮像装置。
【請求項4】
前記複数の画素回路のそれぞれは、前記第3のトランジスタの前記第2の端子に接続された容量素子と、オン状態になることにより前記容量素子および接続ノードを接続可能な第4のトランジスタと、オン状態になることにより前記接続ノードおよび前記蓄積部を接続可能な第5のトランジスタとをさらに有し、
前記複数の画素回路のそれぞれにおける前記第2のトランジスタの前記第2の端子は、前記複数の画素回路のそれぞれの前記接続ノードに接続された
請求項3に記載の撮像装置。
【請求項5】
前記撮像画素回路は、前記撮像装置の有効画素領域に配置され、
前記第1のダミー画素回路および前記第2のダミー画素回路は、前記有効画素領域の領域外に配置された
請求項1に記載の撮像装置。
【請求項6】
アドレス信号を生成可能なアドレス生成部と、
前記アドレス信号に基づいて、前記第1のトランジスタの動作を制御可能な駆動制御部と、
前記アドレス信号、前記第1のダミー画素回路の前記出力部から出力された第1の信号、および前記第2のダミー画素回路の前記出力部から出力された第2の信号に基づいて診断処理を行うことが可能な診断部と
をさらに備えた
請求項1に記載の撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、撮像動作を行う撮像装置に関する。
【背景技術】
【0002】
一般に、撮像装置では、フォトダイオードを含む画素がマトリクス状に配置され、各画素が、受光量に応じた電気信号を生成する。そして、例えば、AD変換回路(Analog to Digital Converter)が、各画素において生成された電気信号(アナログ信号)をデジタル信号に変換する。このような撮像装置には、BIST(Built-in self test)機能を有するものがある(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許出願公開第2005/0231620号明細書
【発明の概要】
【0004】
このように、撮像装置では、BIST機能により自己診断を行い、不具合の有無を診断することが望まれている。
【0005】
自己診断を行うことができる撮像装置を提供することが望ましい。
【0008】
本開示の一実施の形態における撮像装置は、第1の電圧供給線と、第2の電圧供給線と、第1の受光素子と、複数の画素回路とを備えている。複数の画素回路は、撮像画素回路、第1のダミー画素回路、および第2のダミー画素回路を含む。複数の画素回路のそれぞれは、電荷を蓄積可能な蓄積部と、第1の端子および蓄積部に接続された第2の端子を有しオン状態になることにより第1の端子および第2の端子を接続可能な第1のトランジスタと、第1の端子および蓄積部に接続可能な第2の端子を有しオン状態になることにより第1の端子および第2の端子を接続可能な第2のトランジスタと、蓄積部に蓄積された電荷に応じた電圧を出力可能な出力部とを有する。上記撮像画素回路において、第1のトランジスタの第1の端子は第1の受光素子に接続され、第2のトランジスタの第1の端子は第1の電圧供給線に接続される。上記第1のダミー画素回路において、第1のトランジスタの第1の端子は第1の電圧供給線に接続され、第2のトランジスタの第1の端子は第2の電圧供給線に接続される。上記第2のダミー画素回路において、第1のトランジスタの第1の端子は第2の電圧供給線に接続され、第2のトランジスタの第1の端子は第1の電圧供給線に接続される。
ここで、「撮像装置」とは、いわゆるイメージセンサ単体に限定されず、イメージセンサを用いて構成された撮像システムを含むとともに、デジタルカメラやスマートフォンなど撮像機能を有する電子機器を含む。
【0011】
本開示の一実施の形態における撮像装置では、複数の画素回路のそれぞれにおいて、蓄積部、第1のトランジスタ、第2のトランジスタ、および出力部が設けられている。複数の画素回路は、撮像画素回路、第1のダミー画素回路、および第2のダミー画素回路を含む。撮像画素回路において、第1のトランジスタの第1の端子は第1の受光素子に接続され、第2のトランジスタの第1の端子は第1の電圧供給線に接続される。第1のダミー画素回路において、第1のトランジスタの第1の端子は第1の電圧供給線に接続され、第2のトランジスタの第1の端子は第2の電圧供給線に接続される。第2のダミー画素回路において、第1のトランジスタの第1の端子は第2の電圧供給線に接続され、第2のトランジスタの第1の端子は第1の電圧供給線に接続される。
【図面の簡単な説明】
【0013】
【
図1】本開示の第1の実施の形態に係る撮像装置の一構成例を表すブロック図である。
【
図2】
図1に示した撮像画素の一構成例を表す回路図である。
【
図3】
図1に示した画素アレイの一構成例を表す説明図である。
【
図4A】
図1に示したダミー画素の一構成例を表す回路図である。
【
図4B】
図1に示したダミー画素の一構成例を表す他の回路図である。
【
図5】
図4A,4Bに示したダミー画素の配置例を表す表である。
【
図6】
図4A,4Bに示したダミー画素の配置例を表す他の表である。
【
図7】
図1に示した読出部の一構成例を表す回路図である。
【
図8】
図1に示した撮像装置の一実装例を表す説明図である。
【
図9】
図1に示した撮像装置の他の実装例を表す説明図である。
【
図10】
図1に示した撮像装置の一動作例を表すタイミング図である。
【
図11】
図1に示した撮像装置の一動作例を表すタイミング波形図である。
【
図12A】
図1に示した撮像装置の一動作例を表すタイミング波形図である。
【
図12B】
図1に示した撮像装置の一動作例を表すタイミング波形図である。
【
図13A】
図1に示した撮像装置の一動作状態を表す説明図である。
【
図13B】
図1に示した撮像装置の他の動作状態を表す説明図である。
【
図13C】
図1に示した撮像装置の他の動作状態を表す説明図である。
【
図14】
図1に示した撮像装置における画像合成処理の一例を表す説明図である。
【
図15】
図1に示した診断処理部の一動作例を表す説明図である。
【
図16】比較例に係るダミー画素の一構成例を表す回路図である。
【
図17】第1の実施の形態の変形例に係る撮像装置の一構成例を表すブロック図である。
【
図18】
図17に示した撮像画素の一構成例を表す回路図である。
【
図19B】
図17に示したダミー画素の一構成例を表す他の回路図である。
【
図20】第1の実施の形態の他の変形例に係るダミー画素の一構成例を表す他の回路図である。
【
図21】第1の実施の形態の他の変形例に係るダミー画素の一構成例を表す他の回路図である。
【
図22】第1の実施の形態の他の変形例に係るダミー画素の一構成例を表す他の回路図である。
【
図23】第2の実施の形態に係る撮像装置の一構成例を表すブロック図である。
【
図24】
図23に示した撮像画素の一構成例を表す回路図である。
【
図25】
図23に示した画素アレイの一構成例を表す説明図である。
【
図26B】
図23に示したダミー画素の一構成例を表す他の回路図である。
【
図27】
図23に示した撮像装置の一動作例を表すタイミング波形図である。
【
図28】第2の実施の形態の他の変形例に係るダミー画素の一構成例を表す他の回路図である。
【
図29】第2の実施の形態の他の変形例に係るダミー画素の一構成例を表す他の回路図である。
【
図30】第2の実施の形態の他の変形例に係るダミー画素の一構成例を表す他の回路図である。
【
図32】車両制御システムの概略的な構成の一例を示すブロック図である。
【
図33】車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
【発明を実施するための形態】
【0014】
以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(各画素に1つの受光素子を設けた例)
2.第2の実施の形態(各画素に複数の受光素子を設けた例)
3.撮像装置の使用例
4.移動体への応用例
【0015】
<1.第1の実施の形態>
[構成例]
図1は、一実施の形態に係る撮像装置(撮像装置1)の一構成例を表すものである。撮像装置1は、画素アレイ10と、2つの走査部20L,20Rと、読出部30と、コントローラ40とを備えている。
【0016】
画素アレイ10は、マトリックス状に配置された複数の撮像画素P1を有している。撮像画素P1は、フォトダイオードPD(後述)を有し、受光量に応じた画素電圧VPを生成するように構成される。この複数の撮像画素P1は、撮像画素領域R1に配置されている。撮像画素領域R1は、被写体が撮像される画素領域であり、いわゆる有効画素領域である。
【0017】
また、画素アレイ10は、これらの複数の撮像画素P1に加え、複数のダミー画素P2,P3とを有している。ダミー画素P2,P3は、フォトダイオードPDを有しない画素である。複数のダミー画素P2は、ダミー画素領域R21,R22に配置され、複数のダミー画素P3は、ダミー画素領域R31,R32に配置される。この例では、画素アレイ10において、水平方向(
図1における横方向)の左から右に向かって、ダミー画素領域R31、ダミー画素領域R21、撮像画素領域R1、ダミー画素領域R22、およびダミー画素領域R32が、この順に設けられている。水平方向に並設された1行分の複数のダミー画素P3、複数のダミー画素P2、複数の撮像画素P1、複数のダミー画素P2、および複数のダミー画素P3は、画素ラインLを構成する。
【0018】
以下に、撮像画素P1およびダミー画素P2,P3について、詳細に説明する。
【0019】
図2は、撮像画素P1の一構成例を表すものである。画素アレイ10は、複数の制御線TGLLと、複数の制御線FDGLと、複数の制御線RSTLと、複数の制御線FCGLと、複数の制御線TGSLと、複数の制御線SELLと、複数の電源線PLと、複数の信号線SGLとを有している。
【0020】
制御線TGLLは、水平方向(
図1における横方向)に延伸するように構成され、制御線TGLLの一端は走査部20Lに接続され、他端は走査部20Rに接続されている。すなわち、制御線TGLLは、ダミー画素領域R31、ダミー画素領域R21、撮像画素領域R1、ダミー画素領域R22、およびダミー画素領域R32を貫くように配置される。制御線TGLLには、走査部20L,20Rにより信号STGLが印加される。
【0021】
制御線FDGLは、水平方向に延伸するように構成され、制御線FDGLの一端は走査部20Lに接続され、他端は走査部20Rに接続されている。制御線FDGLには、走査部20L,20Rにより信号SFDGが印加される。
【0022】
制御線RSTLは、水平方向に延伸するように構成され、制御線RSTLの一端は走査部20Lに接続され、他端は走査部20Rに接続されている。制御線RSTLには、走査部20L,20Rにより信号SRSTが印加される。
【0023】
制御線FCGLは、水平方向に延伸するように構成され、制御線FCGLの一端は走査部20Lに接続され、他端は走査部20Rに接続されている。制御線FCGLには、走査部20L,20Rにより信号SFCGが印加される。
【0024】
制御線TGSLは、水平方向に延伸するように構成され、制御線TGSLの一端は走査部20Lに接続され、他端は走査部20Rに接続されている。制御線TGSLには、走査部20L,20Rにより信号STGSが印加される。
【0025】
制御線SELLは、水平方向に延伸するように構成され、制御線SELLの一端は走査部20Lに接続され、他端は走査部20Rに接続されている。制御線SELLには、走査部20L,20Rにより信号SSELが印加される。
【0026】
電源線PLは、コントローラ40の電圧生成部42(後述)に接続されている。この電源線PLには、電圧生成部42により電源電圧VDDが印加される。
【0027】
信号線SGLは、垂直方向(
図1における縦方向)に延伸するように構成され、一端が読出部30に接続される。
【0028】
撮像画素P1は、フォトダイオードPD1,PD2と、画素回路CKTとを有している。画素回路CKTは、トランジスタTGLと、トランジスタTGSと、容量素子FCと、トランジスタFCG,RST,FDGと、フローティングディフュージョンFDと、トランジスタAMP,SELとを有している。トランジスタTGL,TGS,FCG,RST,FDG,AMP,SELは、この例ではN型のMOS(Metal Oxide Semiconductor)トランジスタである。
【0029】
フォトダイオードPD1は、受光量に応じた量の電荷を生成して内部に蓄積する光電変換素子である。フォトダイオードPD1が光を受光可能な受光領域は、フォトダイオードPD2が光を受光可能な受光領域よりも広く構成されている。フォトダイオードPD1のアノードは接地され、カソードはトランジスタTGLのソースに接続される。
【0030】
トランジスタTGLのゲートは制御線TGLLに接続され、ソースはフォトダイオードPD1のカソードに接続され、ドレインはフローティングディフュージョンFDに接続される。
【0031】
フォトダイオードPD2は、受光量に応じた量の電荷を生成して内部に蓄積する光電変換素子である。フォトダイオードPD2が光を受光可能な受光領域は、フォトダイオードPD1が光を受光可能な受光領域よりも狭く構成されている。フォトダイオードPD2のアノードは接地され、カソードはトランジスタTGSのソースに接続される。
【0032】
トランジスタTGSのゲートは制御線TGSLに接続され、ソースはフォトダイオードPD2のカソードに接続され、ドレインは容量素子FCおよびトランジスタFCGのソースに接続される。
【0033】
容量素子FCの一端はトランジスタTGSのドレインおよびトランジスタFCGのソースに接続され、他端は電源線PLに接続される。
【0034】
トランジスタFCGのゲートは制御線FCGLに接続され、ソースは容量素子FCの一端およびトランジスタTGSのドレインに接続され、ドレインはトランジスタRSTのソースおよびトランジスタFDGのドレインに接続される。
【0035】
トランジスタRSTのゲートは制御線RSTLに接続され、ドレインは電源線PLに接続され、ソースは、トランジスタFCG,FDGのドレインに接続される。
【0036】
トランジスタFDGのゲートは制御線FDGLに接続され、ドレインはトランジスタRSTのソースおよびトランジスタFCGのドレインに接続され、ソースはフローティングディフュージョンFDに接続される。
【0037】
フローティングディフュージョンFDは、フォトダイオードPD1,PD2から供給された電荷を蓄積するように構成され、例えば、半導体基板の表面に形成された拡散層を用いて構成される。
図2では、フローティングディフュージョンFDを、容量素子のシンボルを用いて示している。
【0038】
トランジスタAMPのゲートはフローティングディフュージョンFDに接続され、ドレインは電源線PLに接続され、ソースはトランジスタSELのドレインに接続される。
【0039】
トランジスタSELのゲートは制御線SELLに接続され、ドレインはトランジスタAMPのソースに接続され、ソースは信号線SGLに接続される。
【0040】
この構成により、撮像画素P1では、制御線SELLに印加された信号SSELに基づいてトランジスタSELがオン状態になることにより、撮像画素P1が信号線SGLと電気的に接続される。これにより、トランジスタAMPは、読出部30の電流源35(後述)に接続され、いわゆるソースフォロワとして動作する。そして、撮像画素P1は、フローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして、信号線SGLに出力する。具体的には、撮像画素P1は、後述するように、いわゆる水平期間H内の8つの期間(変換期間T1~T8)において、8つの画素電圧VP(VP1~VP8)を順次出力するようになっている。
【0041】
図3は、画素アレイ10の撮像画素領域R1におけるフォトダイオードPD1,PD2の配列の一例を表すものである。
図3において、“R”は赤色のカラーフィルタを示し、“G”は緑色のカラーフィルタを示し、“B”は青色のカラーフィルタを示す。各撮像画素P1において、フォトダイオードPD1の右上にフォトダイオードPD2が形成されている。各撮像画素P1における2つのフォトダイオードPD1,PD2には、同じ色のカラーフィルタが形成されている。この例では、フォトダイオードPD1は8角形の形状を有し、フォトダイオードPD2は4角形の形状を有している。この図に示したように、フォトダイオードPD1が光を受光可能な受光領域は、フォトダイオードPD2が光を受光可能な受光領域よりも広く構成される。
【0042】
図4A,4Bは、ダミー画素領域R21,R22におけるダミー画素P2およびダミー画素領域R31,R32におけるダミー画素P3の一構成例を表すものである。ダミー画素領域R21,R22では、ダミー画素PAまたはダミー画素PBが選択的にダミー画素P2として配置され、ダミー画素領域R31,R32では、ダミー画素PAまたはダミー画素PBが選択的にダミー画素P3として配置される。
図3Aはダミー画素PAの一例を示し、
図3Bはダミー画素PBの一例を示す。画素アレイ10は、ダミー画素領域R21,R22,R31,R32において、複数の制御線TGLLと、複数の制御線FDGLと、複数の制御線RSTLと、複数の制御線FCGLと、複数の制御線TGSLと、複数の制御線SELLと、複数の電源線PLと、複数の電圧供給線VLと、複数の信号線SGLとを有している。電圧供給線VLは、コントローラ40の電圧生成部42(後述)に接続されている。複数の電圧供給線VLには、電圧生成部42により、単一の電圧信号SVRが印加される。この電圧信号SVRは、所定の電圧VRおよび電源電圧VDDの間で変化する信号である。電圧VRは、電源電圧VDDよりも低い電圧である。この電圧信号SVRは、例えば、後述する読出駆動D2におけるトランジスタTGL,TGSがオン状態になる期間において電圧VRに設定され、後述する蓄積開始駆動D1におけるトランジスタTGL,TGSがオン状態になる期間において電源電圧VDDに設定される。
【0043】
ダミー画素PAの画素回路CKTでは、トランジスタTGLのドレインおよびソースが互いに接続されるとともに、トランジスタTGSのドレインおよびソースが互いに接続される。すなわち、ダミー画素PAでは、トランジスタTGLのドレインおよびソースは、トランジスタTGLを介さずに互いに接続され、トランジスタTGSのドレインおよびソースは、トランジスタTGSを介さずに互いに接続される。この構成により、ダミー画素PAでは、後述するように、読出駆動D2において、フローティングディフュージョンFDの電圧が電源電圧VDDに設定される。そして、ダミー画素PAは、このフローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして信号線SGLに出力する。具体的には、ダミー画素PAは、撮像画素P1と同様に、いわゆる水平期間H内の8つの期間(変換期間T1~T8)において、8つの画素電圧VP(VP1~VP8)を順次出力するようになっている。
【0044】
また、ダミー画素PBの画素回路CKTでは、トランジスタTGLのソースが電圧供給線VLに接続されるとともに、トランジスタTGSのソースが電圧供給線VLに接続される。この構成により、ダミー画素PBでは、後述するように、読出駆動D2において、トランジスタTGL,TGSをオン状態にすることによりフローティングディフュージョンFDの電圧が電圧VRに設定される。そして、ダミー画素PBは、このフローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして信号線SGLに出力する。具体的には、ダミー画素PBは、撮像画素P1と同様に、いわゆる水平期間H内の8つの期間(変換期間T1~T8)において、8つの画素電圧VP(VP1~VP8)を順次出力するようになっている。
【0045】
図5は、ダミー画素領域R31,R21におけるダミー画素P3,P2の配列を表すものである。
図6は、ダミー画素領域R22,R32におけるダミー画素P2,P3の配列を表すものである。この
図5,6において、“0”はダミー画素PAを示し、“1”はダミー画素PBを示す。
【0046】
図5に示したように、1つの画素ラインLは、ダミー画素領域R31における2個のダミー画素P3(ダミー画素P3[1],P3[0])、およびダミー画素領域R21における11個のダミー画素P2(ダミー画素P2[10]~P2[0])を含んでいる。同様に、
図6に示したように、1つの画素ラインLは、ダミー画素領域R22における11個のダミー画素P2(ダミー画素P2[10]~P2[0])、およびダミー画素領域R32における2個のダミー画素P3(ダミー画素P3[1],P3[0])を含んでいる。
【0047】
ダミー画素領域R31(
図5)において、各画素ラインLにおけるダミー画素P3の配列は“10”である。撮像装置1では、ダミー画素領域R31におけるこの2つのダミー画素P3の配列は、画素アレイ10の左端を識別する左端識別情報INFLとして機能する。
【0048】
同様に、ダミー画素領域R32(
図6)において、各画素ラインLにおけるダミー画素P3の配列は“01”である。撮像装置1では、ダミー画素領域R31におけるこの2つのダミー画素P3の配列は、画素アレイ10の右端を識別する右端識別情報INFRとして機能する。
【0049】
また、ダミー画素領域R21(
図5)において、0番目の画素ラインL[0]では、ダミー画素P2の配列は“00000000000”である。すなわち、11個のダミー画素P2[10]~P2[0]の全てがダミー画素PAである。1番目の画素ラインL[1]では、ダミー画素P2の配列は“00000000001”である。すなわち、ダミー画素P2[0]がダミー画素PBであり、その他のダミー画素P2[10]~P2[1]はダミー画素PAである。2番目の画素ラインL[2]では、ダミー画素P2の配列は“00000000010”である。すなわち、ダミー画素P2[1]がダミー画素PBであり、その他のダミー画素P2[10]~P2[2],P2[0]はダミー画素PAである。このように、ダミー画素P2の配列は、画素ラインL間で互いに異なるように設定される。特に、この例ではダミー画素P2の配列は、2進数で表された、画素ラインLの番目の数に対応する。この例では、11個のダミー画素P2を設けたので、2048本の画素ラインLの番目の数を表現することができる。つまり、11個のダミー画素P2の配列は、画素ラインLを識別するライン識別情報INFとして機能する。なお、以上では、ダミー画素領域R21を例に説明したが、ダミー画素領域R22(
図6)についても同様である。
【0050】
2つの走査部20L,20R(
図1)は、コントローラ40からの指示に基づいて、画素ラインL単位で、画素アレイ10における撮像画素P1およびダミー画素P2,P3を順次駆動するように構成される。走査部20Lは、アドレスデコーダ21Lと、ロジック部22Lと、ドライバ部23Lとを有している。走査部20Rは、同様に、アドレスデコーダ21Rと、ロジック部22Rと、ドライバ部23Rとを有している。
【0051】
アドレスデコーダ21Lは、コントローラ40から供給されたアドレス信号ADRに基づいて、画素アレイ10における、アドレス信号ADRが示すアドレスに応じた画素ラインLを選択するように構成される。ロジック部22Lは、アドレスデコーダ21Lからの指示に基づいて、各画素ラインLに対応する信号STGL1,SFDG1,SRST1,SFCG1,STGS1,SSEL1をそれぞれ生成するように構成される。ドライバ部23Lは、各画素ラインLに対応する信号STGL1,SFDG1,SRST1,SFCG1,STGS1,SSEL1に基づいて、各画素ラインLに対応する信号STGL,SFDG,SRST,SFCG,STGS,SSELをそれぞれ生成するように構成される。アドレスデコーダ21R、ロジック部22R、およびドライバ部23Rについても同様である。アドレスデコーダ21Rに供給されるアドレス信号ADRは、アドレスデコーダ21Lに供給されるアドレス信号ADRと同じである。よって、アドレスデコーダ21L,21Rは、アドレス信号ADRに基づいて、互いに同じ画素ラインLを選択する。これにより、走査部20L,20Rは、画素アレイ10の左右両側から、画素ラインL単位で、画素アレイ10における撮像画素P1およびダミー画素P2,P3を順次駆動するようになっている。
【0052】
読出部30は、画素アレイ10から信号線SGLを介して供給された信号SIGに基づいてAD変換を行うことにより、画像信号DATA0を生成するように構成される。
【0053】
図7は、読出部30の一構成例を表すものである。なお、
図7には、読出部30に加え、コントローラ40をも描いている。読出部30は、読出制御部31と、参照信号生成部32と、複数のAD(Analog to Digital)変換部ADC(AD変換部ADC[0],ADC[1],ADC[2],…)と、複数のスイッチ部SW(スイッチ部SW[0],SW[1],SW[2],…)と、バス配線100とを有している。
【0054】
読出制御部31は、コントローラ40からの指示に基づいて、読出部30における読出動作を制御するように構成される。具体的には、読出制御部31は、参照信号生成部32に制御信号を供給することにより、参照信号生成部32に参照信号REF(後述)を生成させる。また、読出制御部31は、複数のAD変換部ADCに、クロック信号CLKおよび制御信号CCを供給することにより、複数のAD変換部ADCにおけるAD変換動作を制御するようになっている。
【0055】
参照信号生成部32は、参照信号REFを生成するように構成される。参照信号REFは、AD変換を行う8つの期間(変換期間T1~T8)において、時間の経過に応じて電圧レベルが徐々に低下する、いわゆるランプ波形を有する。参照信号生成部32は、この参照信号REFにおけるランプ波形の傾きを変更可能に構成されている。撮像装置1では、このようにランプ波形の傾きを変更することにより撮像感度を変更することができ、その結果、明るい被写体や暗い被写体を撮像することができる。そして、参照信号生成部32は、生成した参照信号REFを複数のAD変換部ADCに供給するようになっている。
【0056】
AD変換部ADCは、画素アレイ10から供給された信号SIGに基づいてAD変換を行うことにより、信号SIGの電圧をデジタルコードCODEに変換するように構成される。複数のAD変換部ADCは、複数の信号線SGLに対応して設けられている。具体的には、0番目のAD変換部ADC[0]は、0番目の信号線SGL[0]に対応して設けられ、1番目のAD変換部ADC[1]は、1番目の信号線SGL[1]に対応して設けられ、2番目のAD変換部ADC[2]は、2番目の信号線SGL[2]に対応して設けられている。
【0057】
AD変換部ADCは、容量素子33,34と、電流源35と、コンパレータ36と、カウンタ37と、ラッチ38とを有している。容量素子33の一端には参照信号REFが供給され、他端はコンパレータ36の正入力端子に接続されている。容量素子34の一端は信号線SGLに接続され、他端はコンパレータ36の負入力端子に接続されている。電流源35は、信号線SGLから接地に所定の電流値の電流を流すように構成される。コンパレータ36は、正入力端子における入力電圧と負入力端子における入力電圧とを比較して、その比較結果を信号CMPとして出力するように構成される。コンパレータ36の正入力端子には、容量素子33を介して参照信号REFが供給され、負入力端子には、容量素子34を介して信号SIGが供給されるようになっている。このコンパレータ36は、後述する所定の期間において、容量素子33,34の電圧を設定するゼロ調整を行う機能をも有している。カウンタ37は、コンパレータ36から供給された信号CMP、読出制御部31から供給されたクロック信号CLKおよび制御信号CCに基づいて、カウント動作を行うように構成される。ラッチ38は、カウンタ37により得られたカウント値CNTを、複数のビットを有するデジタルコードCODEとして保持するように構成される。
【0058】
スイッチ部SWは、コントローラ40から供給された制御信号SSWに基づいて、AD変換部ADCから出力されたデジタルコードCODEをバス配線100に供給するように構成される。複数のスイッチ部SWは、複数のAD変換部ADCに対応して設けられている。具体的には、0番目のスイッチ部SW[0]は、0番目のAD変換部ADC[0]に対応して設けられ、1番目のスイッチ部SW[1]は、1番目のAD変換部ADC[1]に対応して設けられ、2番目のスイッチ部SW[2]は、2番目のAD変換部ADC[2]に対応して設けられている。
【0059】
スイッチ部SWは、この例では、デジタルコードCODEのビット数と同じ数のトランジスタを用いて構成されている。これらのトランジスタは、コントローラ40から供給された制御信号SSWの各ビット(制御信号SSW[0],SSW[1],SSW[2],…)に基づいて、オンオフ制御される。具体的には、例えば、0番目のスイッチ部SW[0]は、制御信号SSW[0]に基づいて各トランジスタがオン状態になることにより、0番目のAD変換部ADC[0]から出力されたデジタルコードCODEをバス配線100に供給する。同様に、例えば、1番目のスイッチ部SW[1]は、制御信号SSW[1]に基づいて各トランジスタがオン状態になることにより、1番目のAD変換部ADC[1]から出力されたデジタルコードCODEをバス配線100に供給する。他のスイッチ部SWについても同様である。
【0060】
バス配線100は、複数の配線を有し、AD変換部ADCから出力されたデジタルコードCODEを伝えるように構成される。読出部30は、このバス配線100を用いて、AD変換部ADCから供給された複数のデジタルコードCODEを、画像信号DATA0として、コントローラ40に順次転送するようになっている(データ転送動作)。
【0061】
コントローラ40(
図1)は、走査部20L,20Rおよび読出部30に制御信号を供給することにより、撮像装置1の動作を制御するように構成される。コントローラ40は、アドレス生成部41と、電圧生成部42と、カラム走査部43と、画像処理部44と、診断処理部45とを有している。
【0062】
アドレス生成部41は、画素アレイ10における駆動対象となる画素ラインLを決定し、その画素ラインLに対応するアドレスを示すアドレス信号ADRを生成するように構成される。そして、アドレス生成部41は、生成したアドレス信号ADRを、走査部20Lのアドレスデコーダ21Lおよび走査部20Rのアドレスデコーダ21Rに供給するようになっている。
【0063】
電圧生成部42は、電圧信号SVRおよび電源電圧VDDを生成するように構成される。この電圧信号SVRは、所定の電圧VRおよび電源電圧VDDの間で変化する信号である。電圧VRは、電源電圧VDDよりも低い電圧である。この電圧信号SVRは、例えば、後述する読出駆動D2におけるトランジスタTGL,TGSがオン状態になる期間において電圧VRに設定され、後述する蓄積開始駆動D1において、電源電圧VDDに設定される。そして、電圧生成部42は、生成した電圧信号SVRを、画素アレイ10における複数の電圧供給線VLに供給するとともに、生成した電源電圧VDDを、画素アレイ10における複数の電源線PLに供給するようになっている。
【0064】
カラム走査部43は、読出部30における、データ転送動作の対象となるAD変換部ADCを決定し、その決定結果に基づいて、制御信号SSWを生成するように構成される。そして、カラム走査部43は、生成した制御信号SSWを、読出部30の複数のスイッチ部SWに供給するようになっている。
【0065】
画像処理部44は、画像信号DATA0が示す画像に対して、所定の画像処理を行うように構成される。所定の画像処理は、例えば、画像合成処理を含んでいる。画像合成処理では、画像処理部44は、読出部30から供給された、AD変換を行う8つの期間(変換期間T1~T8)において得られた各画素に係る8つのデジタルコードCODE(デジタルコードCODE1~CODE8)に基づいて、その画素についての4つの画素値VAL1~VAL4を生成し、この4つの画素値VAL1~VAL4を合成することにより、その画素の画素値VALを生成する。画像処理部44は、画素アレイ10に含まれるすべての画素について、この画素値VALを生成する。そして、画像処理部44は、撮像画素P1に係る画素値VALを、画像信号DATAとして出力する。なお、この例では、画像処理部44は、4つの画素値VAL1~VAL4を合成することにより画素値VALを生成するようにしたが、これに限定されるものではなく、例えば、4つの画素値VAL1~VAL4をそのまま出力してもよい。また、画像処理部44は、ダミー画素P2,P3に係る画素値VAL1~VAL4を、画像信号DATA1として診断処理部45に供給するようになっている。
【0066】
診断処理部45は、アドレス信号ADRおよび画像信号DATA1に基づいて、診断処理を行うように構成される。具体的には、診断処理部45は、画像信号DATA1に含まれるダミー画素P3に係る画素値VAL1~VAL4に基づいて左端識別情報INFLおよび右端識別情報INFRを求めるとともに、画像信号DATA1に含まれるダミー画素P2に係る画素値VALに基づいてライン識別情報INFを求める。そして、診断処理部45は、アドレス信号ADRが示すアドレスとこのライン識別情報INFとを比較することにより、撮像装置1が所望の動作を行っているかどうかを診断する。そして、診断処理部45は、その診断処理の結果(診断結果RES)を出力するようになっている。
【0067】
次に、撮像装置1の実装例について、いくつか例を挙げて説明する。
【0068】
図8は、撮像装置1の実装例E1を表すものである。この実装例E1では、撮像装置1は、1つの半導体チップ200に形成されている。画素アレイ10は、半導体チップ200の中央付近に配置される。走査部20Lは、画素アレイ10の左側に配置され、走査部20Rは、画素アレイ10の右側に配置される。読出部30およびコントローラ40のカラム走査部43は、画素アレイ10の下側に配置される。画素アレイ10の上側には、制御部40Aが配置される。この制御部40Aは、コントローラ40のうちのカラム走査部43以外の回路に対応している。
【0069】
この構成において、制御部40A内のアドレス生成部41は、アドレス信号ADRを走査部20L,20Rに供給する。走査部20L,20Rは、信号STGL,SFDG,SRST,SFCG,STGS,SSELを画素アレイ10に供給する。制御部40A内の電圧生成部42は、電圧信号SVRおよび電源電圧VDDを画素アレイ10に供給する。画素アレイ10は、信号SIGを読出部30に供給する。読出部30は、画像信号DATA0を制御部40A内の画像処理部44に供給する。撮像装置1は、診断処理を行うことにより、例えば、各回路の動作の不具合や、半導体チップ200における各種配線のオープンやショートなどの結線の不具合を検出することができるようになっている。
【0070】
図9は、撮像装置1の他の実装例E2を表すものである。この実装例E2では、撮像装置1は、2つの半導体チップ201,202に形成されている。
【0071】
半導体チップ201には、この例では画素アレイ10が形成されている。すなわち、半導体チップ201には、複数の撮像画素P1、複数のダミー画素P2,P3、制御線TGLL,FDGL,RSTL,FCGL,TGSL,SELL、電源線PL、電圧供給線VL、および信号線SGLが形成される。また、半導体チップ201には、電極領域201A,201B,201Cが設けられている。電極領域201Aは、半導体チップ201の左辺近傍に設けられ、電極領域201Bは、半導体チップ201の右辺近傍に設けられ、電極領域201Cは、半導体チップ201の下辺近傍に設けられている。電極領域201Aには、複数の電極が形成され、これらの複数の電極は、例えばTCV(Through Chip Via)などのビアを介して画素アレイ10における制御線TGLL,FDGL,RSTL,FCGL,TGSL,SELL、電源線PL、電圧供給線VLに接続されている。電極領域201Bには、複数の電極が形成され、これらの複数の電極は、例えばTCVなどのビアを介して画素アレイ10における制御線TGLL,FDGL,RSTL,FCGL,TGSL,SELL、電源線PL、電圧供給線VLに接続されている。電極領域201Cには、複数の電極が形成され、これらの複数の電極は、例えばTCVなどのビアを介して画素アレイ10における複数の信号線SGLに接続されている。
【0072】
半導体チップ202には、この例では、走査部20L,20R、制御部40A、カラム走査部43、および読出部30が形成されている。制御部40A、カラム走査部43、および読出部30は、半導体チップ202の中央付近に配置される。走査部20Lは、制御部40A、カラム走査部43、および読出部30の左に配置され、走査部20Rは、制御部40A、カラム走査部43、および読出部30の右側に配置される。また、半導体チップ202には、電極領域202A,202B,202Cが設けられている。電極領域202Aは、半導体チップ202の左辺近傍に、走査部20Lに隣り合うように設けられ、電極領域202Bは、半導体チップ202の右辺近傍に、走査部20Rに隣り合うように設けられ、電極領域202Cは、半導体チップ202の下辺近傍に、読出部30に隣り合うように設けられている。電極領域202Aには、複数の電極が形成され、これらの複数の電極は、例えばTCVなどのビアを介して、走査部20L、および制御部40A内の電圧生成部42に接続されている。電極領域202Bには、複数の電極が形成され、これらの複数の電極は、例えばTCVなどのビアを介して、走査部20R、および制御部40A内の電圧生成部42に接続されている。電極領域202Cには、複数の電極が形成され、これらの複数の電極は、例えばTCVなどのビアを介して読出部30に接続されている。
【0073】
この実装例E2では、半導体チップ201および半導体チップ202が、互いにはり合わされる。これにより、半導体チップ201の電極領域201Aにおける複数の電極が、半導体チップ202の電極領域202Aにおける複数の電極に電気的に接続され、半導体チップ201の電極領域201Bにおける複数の電極が、半導体チップ202の電極領域202Bにおける複数の電極に電気的に接続され、半導体チップ201の電極領域201Cにおける複数の電極が、半導体チップ202の電極領域202Cにおける複数の電極に電気的に接続される。
【0074】
この構成において、半導体チップ202の制御部40A内のアドレス生成部41は、アドレス信号ADRを走査部20L,20Rに供給する。半導体チップ202の走査部20L,20Rは、電極領域201A,202Aにおける複数の電極、および電極領域201B,202Bにおける複数の電極を介して、制御線TGLL,FDGL,RSTL,FCGL,TGSL,SELLを、半導体チップ201の画素アレイ10に供給する。半導体チップ202の制御部40A内の電圧生成部42は、電極領域201A,202Aにおける複数の電極、および電極領域201B,202Bにおける複数の電極を介して、電圧信号SVRおよび電源電圧VDDを、半導体チップ201の画素アレイ10に供給する。半導体チップ201の画素アレイ10は、電極領域201Cにおける複数の電極を介して、信号SIGを、半導体チップ202の読出部30に供給する。半導体チップ202において、読出部30は、画像信号DATA0を、制御部40A内の画像処理部44に供給する。撮像装置1は、診断処理を行うことにより、例えば、各回路の動作の不具合、半導体チップ201,202における各種配線のオープンやショートなどの結線の不具合、半導体チップ201と半導体チップ202との間の結線不良を検出することができるようになっている。
【0075】
また、このように、半導体チップ201に画素アレイ10を主に配置することにより、画素に特化した半導体製造工程を用いて半導体チップ201を製造することができる。つまり、半導体チップ201には、画素アレイ10以外にトランジスタがないので、例えば、1000度でアニールする工程がある場合でも、画素アレイ10以外の回路に影響を与えることがない。よって、半導体チップ201を製造する際、例えば白点対策の高温プロセスを導入することができ、その結果、撮像装置1における特性を改善することができる。
【0076】
ここで、フォトダイオードPD1は、本開示における「第1の受光素子」の一具体例に対応する。フォトダイオードPD2は、本開示における「第2の受光素子」の一具体例に対応する。撮像画素P1の画素回路CKTは、本開示における「撮像画素回路」の一具体例に対応する。ダミー画素PAの画素回路CKTは、本開示における「第1のダミー画素回路」の一具体例に対応する。ダミー画素PBの画素回路CKTは、本開示における「第2のダミー画素回路」の一具体例に対応する。フローティングディフュージョンFDは、本開示における「蓄積部」の一具体例に対応する。トランジスタTGLは、本開示における「第1のトランジスタ」の一具体例に対応する。トランジスタAMP,SELは、本開示における「出力部」の一具体例に対応する。トランジスタRSTは、本開示における「第2のトランジスタ」の一具体例に対応する。トランジスタTGSは、本開示における「第3のトランジスタ」の一具体例に対応する。トランジスタFCGは、本開示における「第4のトランジスタ」の一具体例に対応する。トランジスタFDGは、本開示における「第5のトランジスタ」の一具体例に対応する。容量素子FCは、本開示における「容量素子」の一具体例に対応する。電圧供給線VLは、本開示における「電圧供給線」の一具体例に対応する。アドレス生成部41は、本開示における「アドレス生成部」の一具体例に対応する。走査部20L,20Rは、本開示における「駆動制御部」の一具体例に対応する読出部30、画像処理部44、および診断処理部45は、本開示における「診断部」の一具体例に対応する。
[動作および作用]
続いて、本実施の形態の撮像装置1の動作および作用について説明する。
【0077】
(全体動作概要)
まず、
図1を参照して、撮像装置1の全体動作概要を説明する。コントローラ40のアドレス生成部41は、画素アレイ10における駆動対象となる画素ラインLを決定し、その画素ラインLに対応するアドレスを示すアドレス信号ADRを生成する。2つの走査部20L,20Rは、コントローラ40からの指示に基づいて、画素ラインL単位で、画素アレイ10における撮像画素P1およびダミー画素P2,P3を順次駆動する。コントローラ40の電圧生成部42は、電圧信号SVRおよび電源電圧VDDを生成する。画素アレイ10における撮像画素P1およびダミー画素P2,P3は、8つの変換期間T1~T8において、8つの画素電圧VP1~VP8を順次出力する。読出部30のAD変換部ADCは、これらの8つの画素電圧VP1~VP8に基づいてそれぞれAD変換を行い、8つのデジタルコードCODE(デジタルコードCODE1~CODE8)をそれぞれ出力する。コントローラ40の画像処理部44は、画像信号DATA0に含まれる各画素に係る8つのデジタルコードCODE1~CODE8に基づいて、その画素についての4つの画素値VAL1~VAL4を生成し、この4つの画素値VAL1~VAL4を合成することにより、その画素の画素値VALを生成し、撮像画素P1に係る画素値VALを、画像信号DATAとして出力する。また、画像処理部44は、ダミー画素P2,P3に係る画素値VAL1~VAL4を、画像信号DATA1として診断処理部45に供給する。コントローラ40の診断処理部45は、アドレス信号ADRおよび画像信号DATA1に基づいて診断処理を行い、診断結果RESを出力する。
【0078】
(詳細動作)
撮像装置1において、画素アレイ10における撮像画素P1のそれぞれは、受光量に応じて電荷を蓄積し、画素電圧VPを信号SIGとして出力する。以下に、この動作について詳細に説明する。
【0079】
図10は、画素アレイ10における複数の撮像画素P1および複数のダミー画素P2,P3を走査する動作の一例を表すものである。
【0080】
撮像装置1は、タイミングt0~t1の期間において、画素アレイ10における複数の撮像画素P1および複数のダミー画素P2,P3に対して、垂直方向において上から順に蓄積開始駆動D1を行う。具体的には、走査部20L,20Rは、例えば、垂直方向において上から順に、画素ラインL単位で、水平期間H内の所定の期間においてトランジスタTGL,FDG,RST,FCG,TGSをオン状態に設定した後に、これらのトランジスタをオフ状態にする。これにより、複数の撮像画素P1のそれぞれでは、フローティングディフュージョンFD、容量素子FC、およびフォトダイオードPD1,PD2における電圧が電源電圧VDDに設定された後に、電荷の蓄積が開始され、読出駆動D2が行われるまでの蓄積期間T10において、電荷が蓄積される。また、複数のダミー画素P2,P3のそれぞれでは、フローティングディフュージョンFDおよび容量素子FCにおける電圧が電源電圧VDDに設定される。すなわち、電圧供給線VLに印加される電圧信号SVRの電圧VRは、蓄積開始駆動D1におけるトランジスタTGL,TGSがオン状態になる期間において電源電圧VDDに設定されるので、フローティングディフュージョンFDおよび容量素子FCにおける電圧が電源電圧VDDに設定される。
【0081】
そして、撮像装置1は、タイミングt10~t11の期間において、複数の撮像画素P1および複数のダミー画素P2,P3に対して、垂直方向において上から順に読出駆動D2を行う。これにより、複数の撮像画素P1および複数のダミー画素P2,P3のそれぞれは、8つの画素電圧VP1~VP8を順次出力する。読出部30は、これらの8つの画素電圧VP1~VP8に基づいてそれぞれAD変換を行い、8つのデジタルコードCODE(デジタルコードCODE1~CODE8)をそれぞれ出力する。
【0082】
そして、画像処理部44は、読出部30から供給された各画素に係る8つのデジタルコードCODE1~CODE8に基づいて、その画素についての4つの画素値VAL1~VAL4を生成し、この4つの画素値VAL1~VAL4を合成することにより、その画素の画素値VALを生成する。
【0083】
撮像装置1は、このような蓄積開始駆動D1および読出駆動D2を繰り返す。具体的には、撮像装置1は、
図10に示したように、タイミングt2~t3の期間において蓄積開始駆動D1を行い、タイミングt12~t13の期間において読出駆動D2を行う。また、撮像装置1は、タイミングt4~t5の期間において蓄積開始駆動D1を行い、タイミングt14~t15の期間において読出駆動D2を行う。
【0084】
(読出駆動D2について)
次に、読出駆動D2について、詳細に説明する。以下に、複数の撮像画素P1のうちのある撮像画素P1(撮像画素P1A)に着目し、この撮像画素P1Aの動作について詳細に説明する。なお、この例では、撮像画素P1の動作について説明するが、ダミー画素P2,P3の動作についても同様である。
【0085】
図11,12A,12Bは、撮像装置1の一動作例を表すものである。
図11において、(A)は水平同期信号XHSの波形を示し、(B)は撮像画素P1Aに供給される信号SSELの波形を示し、(C)は撮像画素P1Aに供給される信号SRSTの波形を示し、(D)は撮像画素P1Aに供給される信号SFDGの波形を示し、(E)は撮像画素P1Aに供給される信号STGLの波形を示し、(F)は撮像画素P1Aに供給される信号SFCGの波形を示し、(G)は撮像画素P1Aに供給される信号STGSの波形を示し、(H)は参照信号REFの波形を示し、(I)は撮像画素P1Aから出力される信号SIGの波形を示し、(J)は撮像画素P1Aに接続されたAD変換部ADCにおけるカウンタ37の動作を示す。
図12Aは、
図11に示した動作のうちの前半の動作を示し、
図12Bは、
図11に示した動作のうちの後半の動作を示す。
図11(H),(I)、
図12A(H),(I)、および
図12B(H),(I)では、各信号の波形を同じ電圧軸で示している。
図11(H)、
図12A(H)、および
図12B(H)の参照信号REFは、コンパレータ36の正入力端子における波形を示し、
図11(I)、
図12A(I)、および
図12B(I)の信号SIGは、コンパレータ36の負入力端子における波形を示している。また、
図11(J)、
図12A(J)、
図12B(J)において、斜線は、カウンタ37がカウント動作を行っていることを示している。
【0086】
図12A~12Cは、撮像画素P1Aの状態を表すものである。この
図12A~12Cでは、トランジスタTGL,RST,FDG,TGS,FCG,SELを、そのトランジスタの動作状態に応じたスイッチを用いてそれぞれ示している。
【0087】
撮像装置1では、ある水平期間Hにおいて、まず、走査部20L,20Rは、信号SSELを用いて、撮像画素P1Aを含む画素ラインLを選択し、撮像画素P1Aを、その撮像画素P1Aに対応する信号線SGLに電気的に接続させる。そして、走査部20L,20Rは、信号SRST,SFDG,STGL,SFCG,STGSを用いて撮像画素P1Aの動作を制御し、撮像画素P1Aは、8つの変換期間T1~T8において、8つの画素電圧VP1~VP8を順次出力する。そして、読出部30のAD変換部ADCは、これらの8つの画素電圧VP1~VP8に基づいてそれぞれAD変換を行い、8つのデジタルコードCODE1~CODE8を出力する。以下にこの動作について詳細に説明する。
【0088】
まず、タイミングt1において、水平期間Hが開始すると、走査部20L,20Rは、タイミングt2において、信号SSELの電圧を低レベルから高レベルに変化させる(
図12A(B))。これにより、撮像画素P1Aでは、トランジスタSELがオン状態になり、撮像画素P1Aが信号線SGLと電気的に接続される。
【0089】
タイミングt11までの期間において、走査部20L,20Rは、信号SRST,SFDGをともに高レベルにする(
図12A(C),(D))。これにより、撮像画素P1Aでは、トランジスタRST,FDGがともにオン状態になり、フローティングディフュージョンFDの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDがリセットされる。
【0090】
(タイミングt11~t21の動作)
次に、タイミングt11において、走査部20L,20Rは、信号SFDGの電圧を高レベルから低レベルに変化させる(
図12A(D))。これにより、撮像画素P1Aでは、トランジスタFDGがオフ状態になる。次に、タイミングt12において、走査部20L,20Rは、信号SRSTの電圧を高レベルから低レベルに変化させる(
図12A(C))。これにより、撮像画素P1Aでは、トランジスタRSTがオフ状態になる。次に、タイミングt13において、走査部20L,20Rは、信号SFDGの電圧を低レベルから高レベルに変化させる(
図12A(D))。これにより、撮像画素P1Aでは、トランジスタFDGがオン状態になる。また、コンパレータ36は、タイミングt13~t14までの期間において、容量素子33,34の電圧を設定するゼロ調整を行う。
【0091】
次に、タイミングt14において、コンパレータ36は、ゼロ調整を終了する。そして、このタイミングt14において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12A(H))。
【0092】
これにより、撮像画素P1Aでは、
図13Aに示したように、トランジスタFDG,SELはオン状態になり、その他のトランジスタは全てオフ状態になる。トランジスタFDGがオン状態であるので、フローティングディフュージョンFDおよびトランジスタFDGが合成容量を構成する。この合成容量は、撮像画素P1Aにおいて電荷を電圧へ変換する変換容量として機能する。撮像画素P1Aでは、このように、トランジスタFDGがオン状態であるので、撮像画素P1Aにおける変換容量の容量値が大きいため、電荷から電圧への変換効率が低い。この変換容量は、タイミングt12までの期間においてフローティングディフュージョンFDがリセットされたときの電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP1)を出力する。
【0093】
次に、タイミングt15~t17の期間(変換期間T1)において、AD変換部ADCは、この画素電圧VP1に基づいてAD変換を行う。具体的には、タイミングt15において、読出制御部31は、クロック信号CLKの生成を開始し、これと同時に、参照信号生成部32は、参照信号REFの電圧を、電圧V1から所定の変化度合いで低下させ始める(
図12A(H))。これに応じて、AD変換部ADCのカウンタ37は、カウント動作を開始する(
図12A(J))。
【0094】
そして、タイミングt16において、参照信号REFの電圧が信号SIGの電圧(画素電圧VP1)を下回る(
図12A(H),(I))。これに応じて、AD変換部ADCのコンパレータ36は、信号CMPの電圧を変化させ、その結果、カウンタ37は、カウント動作を停止する(
図12A(J))。カウント動作が停止したときのカウンタ37のカウント値CNTは、画素電圧VP1に対応している。AD変換部ADCは、このようにして、画素電圧VP1に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE1として出力する(
図12A(J))。
【0095】
そして、タイミングt17において、読出制御部31は、変換期間T1の終了に伴い、クロック信号CLKの生成を停止し、参照信号生成部32は、参照信号REFの電圧の変化を停止させ(
図12A(H))、カウンタ37は、カウント値CNTをリセットする。
【0096】
(タイミングt21~t31の動作)
次に、タイミングt21において、走査部20L,20Rは、信号SFDGの電圧を高レベルから低レベルに変化させる(
図12A(D))。これにより、撮像画素P1Aでは、トランジスタFDGがオフ状態になる。また、コンパレータ36は、タイミングt21~t22までの期間において、容量素子33,34の電圧を設定するゼロ調整を行う。
【0097】
次に、タイミングt22において、コンパレータ36は、ゼロ調整を終了する。そして、このタイミングt22において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12A(H))。
【0098】
これにより、撮像画素P1Aでは、
図13Bに示したように、トランジスタSELはオン状態になり、その他のトランジスタは全てオフ状態になる。撮像画素P1Aでは、このように、トランジスタFDGがオフ状態であるので、撮像画素P1Aにおける変換容量の容量値が小さいため、電荷から電圧への変換効率が高い。この変換容量は、タイミングt12までの期間においてフローティングディフュージョンFDがリセットされたときの電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP2)を出力する。
【0099】
次に、タイミングt23~t25の期間(変換期間T2)において、AD変換部ADCは、この画素電圧VP2に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP2に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE2として出力する(
図12A(J))。
【0100】
(タイミングt31~t41の動作)
次に、タイミングt31において、走査部20L,20Rは、信号STGLの電圧を低レベルから高レベルに変化させる(
図12A(E))。これにより、撮像画素P1Aでは、トランジスタTGLがオン状態になる。これにより、フォトダイオードPD1で発生した電荷がフローティングディフュージョンFDに転送される。また、このタイミングt31において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12A(H))。
【0101】
次に、タイミングt32において、走査部20L,20Rは、信号STGLの電圧を高レベルから低レベルに変化させる(
図12A(E))。これにより、撮像画素P1Aでは、トランジスタTGLがオフ状態になる。
【0102】
これにより、撮像画素P1Aでは、
図13Bに示したように、トランジスタFDGがオフ状態であるので、撮像画素P1Aにおける変換容量の容量値が小さいので、電荷から電圧への変換効率が高い。この変換容量は、タイミングt31~t32においてフォトダイオードPD1から転送された電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP3)を出力する。
【0103】
次に、タイミングt33~t35の期間(変換期間T3)において、AD変換部ADCは、この画素電圧VP3に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP3に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE3として出力する(
図12A(J))。このデジタルコードCODE3は、同じく変換効率が高い時(変換期間T2)に得られたデジタルコードCODE2に対応している。
【0104】
(タイミングt41~t51の動作)
次に、タイミングt41において、走査部20L,20Rは、信号SFDGの電圧を低レベルから高レベルに変化させるとともに信号STGLの電圧を低レベルから高レベルに変化させる(
図12A(D),(E))。これにより、撮像画素P1Aでは、トランジスタFDG,TGLがともにオン状態になる。また、このタイミングt41において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12A(H))。次に、走査部20L,20Rは、タイミングt42において、信号STGLの電圧を高レベルから低レベルに変化させる(
図12A(E))。これにより、撮像画素P1Aでは、トランジスタTGLがオフ状態になる。
【0105】
これにより、撮像画素P1Aでは、
図13Aに示したように、トランジスタFDGがオン状態であるので、フローティングディフュージョンFDおよびトランジスタFDGが合成容量(変換容量)を構成する。よって、撮像画素P1Aにおける変換容量の容量値が大きいので、電荷から電圧への変換効率が低い。この変換容量は、タイミングt31~t32,t41~t42においてフォトダイオードPD1から転送された電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP4)を出力する。
【0106】
次に、タイミングt43~t45の期間(変換期間T4)において、AD変換部ADCは、この画素電圧VP4に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP4に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE4として出力する(
図12A(J))。このデジタルコードCODE4は、同じく変換効率が低い時(変換期間T1)に得られたデジタルコードCODE1に対応している。
【0107】
(タイミングt51~t61の動作)
次に、タイミングt51において、走査部20L,20Rは、信号SRSTの電圧を低レベルから高レベルに変化させる(
図12B(C))。これにより、撮像画素P1Aでは、トランジスタRSTがオン状態になる。トランジスタFDGはオン状態であるので、これにより、フローティングディフュージョンFDの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDがリセットされる。次に、タイミングt52において、走査部20L,20Rは、信号SRSTの電圧を高レベルから低レベルに変化させる(
図12B(C))。これにより、撮像画素P1Aでは、トランジスタRSTがオフ状態になる。また、このタイミングt52において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12B(H))。
【0108】
次に、タイミングt53において、走査部20L,20Rは、信号SFCGの電圧を低レベルから高レベルに変化させる(
図12B(F))。これにより、撮像画素P1Aでは、トランジスタFCGがオン状態になる。また、コンパレータ36は、タイミングt53~t54までの期間において、容量素子33,34の電圧を設定するゼロ調整を行う。
【0109】
次に、タイミングt54において、コンパレータ36は、ゼロ調整を終了する。また、このタイミングt54において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12A(H))。
【0110】
これにより、撮像画素P1Aでは、
図13Cに示したように、トランジスタFDG,FCG,SELはオン状態になり、その他のトランジスタは全てオフ状態になる。トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt53より前にフォトダイオードPD2で発生し、トランジスタTGSを介して容量素子FCに供給され蓄積されていた電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP5)を出力する。
【0111】
次に、タイミングt55~t57の期間(変換期間T5)において、AD変換部ADCは、この画素電圧VP5に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP5に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE5として出力する(
図12B(J))。
【0112】
(タイミングt61~t71の動作)
次に、タイミングt61において、走査部20L,20Rは、信号STGSの電圧を低レベルから高レベルに変化させる(
図12B(G))。これにより、撮像画素P1Aでは、トランジスタTGSがオン状態になる。これにより、フォトダイオードPD2で発生した電荷がフローティングディフュージョンFDおよび容量素子FCに転送される。また、このタイミングt61において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12B(H))。
【0113】
次に、タイミングt62において、走査部20L,20Rは、信号STGSの電圧を高レベルから低レベルに変化させる(
図12B(G))。これにより、撮像画素P1Aでは、トランジスタTGSがオフ状態になる。
【0114】
これにより、撮像画素P1Aでは、
図13Cに示したように、トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt53より前にフォトダイオードPD2で発生し、トランジスタTGSを介して容量素子FCに供給され蓄積されていた電荷に加え、タイミングt61~t62においてフォトダイオードPD2から転送された電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP6)を出力する。
【0115】
次に、タイミングt63~t65の期間(変換期間T6)において、AD変換部ADCは、この画素電圧VP6に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP6に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE6として出力する(
図12B(J))。このデジタルコードCODE6は、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量を構成するときに得られたデジタルコードCODE5に対応している。
【0116】
(タイミングt71~t81の動作)
次に、コンパレータ36は、タイミングt71~t72までの期間において、容量素子33,34の電圧を設定するゼロ調整を行う。
【0117】
次に、タイミングt72において、コンパレータ36は、ゼロ調整を終了する。また、このタイミングt72において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12B(H))。
【0118】
これにより、撮像画素P1Aでは、
図13Cに示したように、トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt53より前にフォトダイオードPD2で発生し、トランジスタTGSを介して容量素子FCに供給され蓄積されていた電荷に加え、タイミングt61~t62においてフォトダイオードPD2から転送された電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP7)を出力する。
【0119】
次に、タイミングt73~t75の期間(変換期間T7)において、AD変換部ADCは、この画素電圧VP7に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP7に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE7として出力する(
図12B(J))。
【0120】
(タイミングt81~t7の動作)
次に、タイミングt81において、走査部20L,20Rは、信号SRSTの電圧を低レベルから高レベルに変化させる(
図12B(C))。これにより、撮像画素P1Aでは、トランジスタRSTがオン状態になる。トランジスタFDG,FCGはオン状態であるので、フローティングディフュージョンFDの電圧および容量素子FCの電圧が電源電圧VDDに設定され、フローティングディフュージョンFDおよび容量素子FCがリセットされる。
【0121】
次に、タイミングt82において、走査部20L,20Rは、信号SFCGの電圧を高レベルから低レベルに変化させる(
図12B(F))。これにより、撮像画素P1Aでは、トランジスタFCGがオフ状態になる。
【0122】
次に、タイミングt83において、走査部20L,20Rは、信号SRSTの電圧を高レベルから低レベルに変化させる(
図12B(C))。これにより、撮像画素P1Aでは、トランジスタRSTがオフ状態になる。
【0123】
次に、タイミングt84において、走査部20L,20Rは、信号SFCGの電圧を低レベルから高レベルに変化させる(
図12B(F))。これにより、撮像画素P1Aでは、トランジスタFCGがオン状態になる。また、このタイミングt84において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図12B(H))。
【0124】
これにより、撮像画素P1Aでは、
図13Cに示したように、トランジスタFDG,FCGがともにオン状態であるので、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量(変換容量)を構成する。この変換容量は、タイミングt81~t82においてフローティングディフュージョンFDおよび容量素子FCがリセットされたときの電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP8)を出力する。
【0125】
次に、タイミングt85~t87の期間(変換期間T8)において、AD変換部ADCは、この画素電圧VP8に基づいてAD変換を行う。この動作は、変換期間T1における動作と同様である。AD変換部ADCは、画素電圧VP8に基づいてAD変換を行い、AD変換部ADCのラッチ38は、カウンタ37のカウント値CNTを、デジタルコードCODE8として出力する(
図12B(J))。このデジタルコードCODE8は、フローティングディフュージョンFD、トランジスタFDG,FCG、および容量素子FCが合成容量を構成するときに得られたデジタルコードCODE7に対応している。
【0126】
次に、タイミングt7において、走査部20L,20Rは、信号SFDGの電圧を高レベルから低レベルに変化させるとともに、信号SFCGの電圧を高レベルから低レベルに変化させる(
図12B(D),(F))。これにより、撮像画素P1Aでは、トランジスタFDG,FCGがオフ状態になる。
【0127】
そして、タイミングt8において、走査部20L,20Rは、信号SSELの電圧を高レベルから低レベルに変化させる(
図12B(B))。これにより、撮像画素P1Aでは、トランジスタSELがオフ状態になり、撮像画素P1Aが信号線SGLから電気的に切り離される。
【0128】
次に、画像処理部44における画像合成処理について説明する。画像処理部44は、読出部30から供給された各画素に係る8つのデジタルコードCODE1~CODE8に基づいて、その画素についての4つの画素値VAL1~VAL4を生成し、この4つの画素値VAL1~VAL4を合成することにより、その画素の画素値VALを生成する。
【0129】
図14は、画像合成処理を模式的に表すものである。
図14(A)~(G)に示した波形は、
図11(A)~(G)に示した波形と同様である。読出部30は、
図11,12A,12Bを用いて説明したように、タイミングt11~t21の期間、タイミングt21~t31の期間、タイミングt31~t41の期間、タイミングt41~t51の期間、タイミングt51~t61の期間、タイミングt61~t71の期間、タイミングt71~t81の期間、およびタイミングt81~t7の期間における動作に基づいて、デジタルコードCODE1~CODE8をそれぞれ生成する。
【0130】
画像処理部44は、デジタルコードCODE2およびデジタルコードCODE3に基づいて、画素値VAL1を生成する。具体的には、画像処理部44は、デジタルコードCODE3からデジタルコードCODE2を減算(CODE3-CODE2)することにより、画素値VAL1を算出する。すなわち、撮像装置1は、いわゆる相関2重サンプリング(CDS;Correlated double sampling)の原理を利用し、P相(Pre-Charge相)データに対応するデジタルコードCODE2、およびD相(Data相)データに対応するデジタルコードCODE3を用いて、画素値VAL1を算出する。撮像装置1では、このような相関2重サンプリングを行うようにしたので、画素値VAL1に含まれるノイズ成分を取り除くことができ、その結果、撮像画像の画質を高めることができる。
【0131】
同様に、画像処理部44は、デジタルコードCODE1およびデジタルコードCODE4に基づいて、画素値VAL2を生成する。具体的には、画像処理部44は、デジタルコードCODE4からデジタルコードCODE1を減算(CODE4-CODE1)することにより、画素値VAL2を算出する。すなわち、撮像装置1は、相関2重サンプリングの原理を利用し、P相データに対応するデジタルコードCODE1、およびD相データに対応するデジタルコードCODE4を用いて、画素値VAL2を算出する。
【0132】
同様に、画像処理部44は、デジタルコードCODE5およびデジタルコードCODE6に基づいて、画素値VAL3を生成する。具体的には、画像処理部44は、デジタルコードCODE6からデジタルコードCODE5を減算(CODE6-CODE5)することにより、画素値VAL3を算出する。すなわち、撮像装置1は、相関2重サンプリングの原理を利用し、P相データに対応するデジタルコードCODE5、およびD相データに対応するデジタルコードCODE6を用いて、画素値VAL3を算出する。
【0133】
そして、画像処理部44は、デジタルコードCODE7およびデジタルコードCODE8に基づいて、画素値VAL4を生成する。具体的には、画像処理部44はデジタルコードCODE7からデジタルコードCODE8を減算(CODE7-CODE8)することにより、画素値VAL4を算出する。すなわち、撮像装置1は、いわゆる2重データサンプリング(DDS;Double Data Sampling)の原理を利用し、フローティングディフュージョンFDおよび容量素子FCをリセットする前のデジタルコードCODE7、およびフローティングディフュージョンFDおよび容量素子FCをリセットした後のデジタルコードCODE8を用いて、画素値VAL4を算出する。
【0134】
そして、画像処理部44は、4つの画素値VAL1~VAL4を合成することにより、その画素の画素値VALを生成する。画像処理部44は、画素アレイ10における全ての画素について、この画素値VALを生成する。そして、画像処理部44は、撮像画素P1に係る画素値VALを、画像信号DATAとして出力する。
【0135】
(診断処理について)
次に、撮像装置1における診断処理について詳細に説明する。
【0136】
図15は、撮像装置1における診断処理の全体動作例を模式的に表すものである。この診断処理は、撮像画素領域R1の撮像画素P1を用いた通常の撮像動作と並行して行われる。読出部30、画像処理部44、および診断処理部45は、診断部49を構成する。
【0137】
まず、コントローラ40のアドレス生成部41は、画素アレイ10における駆動対象となる画素ラインLを決定し、その画素ラインLに対応するアドレスを示すアドレス信号ADRを生成する。そして、アドレス生成部41は、このアドレス信号ADRを走査部20L,20Rに供給する。
【0138】
2つの走査部20L,20Rは、コントローラ40からの指示に基づいて、アドレス信号ADRが示すアドレスに対応する画素ラインLに属する撮像画素P1およびダミー画素P2,P3を駆動する。
【0139】
画素アレイ10の、ダミー画素領域R21における11個のダミー画素P2、ダミー画素領域R22における11個のダミー画素P2、ダミー画素領域R31における2個のダミー画素P3、およびダミー画素領域R32における2個のダミー画素P3は、8つの変換期間T1~T8において、8つの画素電圧VP1~VP8を順次、信号SIGとして出力する。読出部30のAD変換部ADCは、これらの8つの画素電圧VP1~VP8に基づいてそれぞれAD変換を行い、8つのデジタルコードCODE(デジタルコードCODE1~CODE8)をそれぞれ出力する。コントローラ40の画像処理部44は、画像信号DATA0に含まれる各画素の8つのデジタルコードCODE1~CODE8に基づいて4つの画素値VAL1~VAL4を生成する。そして、画像処理部44は、ダミー画素P2,P3に係る画素値VAL1~VAL4を、画像信号DATA1として診断処理部45に供給する。
【0140】
ダミー画素P2,P3のそれぞれは、ダミー画素PA(
図4A)またはダミー画素PB(
図4B)である。ダミー画素PAでは、
図4Aに示したように、トランジスタTGLのドレインおよびソースが互いに接続されるとともに、トランジスタTGSのドレインおよびソースが互いに接続される。よって、読出駆動D2において、例えば、
図12Aに示した、ダミー画素PAが出力する画素電圧VP2および画素電圧VP3は殆ど同じである。すなわち、タイミングt31~t32の期間において、トランジスタTGLをオン状態にしているが、このトランジスタTGLのドレインおよびソースは互いに接続されているので、ダミー画素PAは、画素電圧VPを維持する。同様に、
図12Aに示した画素電圧VP1と画素電圧VP4とは殆ど同じであり、
図12Bに示した画素電圧VP5,VP6は殆ど同じである。すなわち、ダミー画素PAは、受光量が0(ゼロ)である撮像画素P1と同様の動作を行う。よって、読出部30のAD変換部ADCおよび画像処理部44は、ダミー画素PAから供給された8つの画素電圧VP1~VP8に基づいて、小さい値を有する画素値VAL1~VAL4を生成する。
【0141】
また、ダミー画素PBでは、
図4Bに示したように、トランジスタTGLのソースが電圧供給線VLに接続されるとともに、トランジスタTGSのソースが電圧供給線VLに接続される。これにより、読出駆動D2において、トランジスタTGLがオン状態になると、フローティングディフュージョンFDの電圧は電圧VRに設定され、トランジスタTGSがオン状態になると、フローティングディフュージョンFDの電圧は電圧VRに設定される。すなわち、ダミー画素PBは、受光量が多い撮像画素P1と同様の動作を行う。よって、読出部30のAD変換部ADCおよび画像処理部44は、ダミー画素PAから供給された8つの画素電圧VP1~VP8に基づいて、大きい値を有する画素値VAL1~VAL4を生成する。
【0142】
コントローラ40の診断処理部45は、画像処理部44から供給されたダミー画素P3に係る画素値VAL1~VAL4に基づいて左端識別情報INFLおよび右端識別情報INFRを求める。また、診断処理部45は、画像処理部44から供給されたダミー画素P2に係る画素値VAL1~VAL4に基づいてライン識別情報INFを求め、アドレス信号ADRが示すアドレスと、このライン識別情報INFとを比較することにより、撮像装置1が所望の動作を行っているかどうかを診断する。
【0143】
具体的には、診断処理部45は、ダミー画素領域R21における11個のダミー画素P2に係る画素値VAL1~VAL4のそれぞれに対してしきい値THを用いて2値化処理を行う。ダミー画素PAに係る画素値VAL1~VAL4は、小さい値であるので、この2値化処理により“0”になり、一方、ダミー画素PBに係る画素値VAL1~VAL4は、大きい値であるので、この2値化処理により“1”になる。これにより、診断処理部45は、11ビットの2進数を得る。この11ビットの2進数は、
図5に示したライン識別情報INFである。そして、診断処理部45は、アドレス信号ADRが示すアドレスと、このライン識別情報INFとを比較することにより、撮像装置1が所望の動作を行っているかどうかを診断する。すなわち、アドレス信号ADRが示すアドレスは、例えば、アドレス信号ADRが0番目の画素ラインL[0]を示す場合には“00000000000”であり、アドレス信号ADRが1番目の画素ラインL[1]を示す場合には“00000000001”であり、アドレス信号ADRが2番目の画素ラインL[2]を示す場合には“00000000010”である。よって、診断処理部45は、アドレス信号ADRが示すアドレスと、このライン識別情報INFとを比較することにより、撮像装置1が所望の動作を行っているかどうかを診断することができる。
【0144】
ダミー画素領域R22についても同様である。すなわち、診断処理部45は、ダミー画素領域R22における11個のダミー画素P2に係る画素値VAL1~VAL4のそれぞれに対して2値化処理を行うことによりライン識別情報INFを求める。そして、診断処理部45は、アドレス信号ADRが示すアドレスと、このライン識別情報INFとを比較することにより、撮像装置1が所望の動作を行っているかどうかを診断する。
【0145】
例えば、診断処理部45は、ダミー画素領域R21に係る画素値VAL1~VAL4から取得したライン識別情報INFと、アドレス信号ADRが示すアドレスとが互いに一致するとともに、ダミー画素領域R22に係る画素値VAL1~VAL4から取得したライン識別情報INFと、アドレス信号ADRが示すアドレスとが互いに一致する場合には、撮像装置1が所望の動作を行っていると判断する。
【0146】
また、例えば、診断処理部45は、ダミー画素領域R21に係る画素値VAL1~VAL4から取得したライン識別情報INFと、アドレス信号ADRが示すアドレスとが互いに一致しない場合や、ダミー画素領域R22に係る画素値VAL1~VAL4から取得したライン識別情報INFと、アドレス信号ADRが示すアドレスとが互いに一致しない場合には、撮像装置1に不具合があると判断する。
【0147】
ダミー画素領域R21に係る画素値VAL1~VAL4から取得したライン識別情報INFと、アドレス信号ADRが示すアドレスとが互いに一致しない場合の原因は、例えば、アドレス生成部41と走査部20Lとの間の結線の不具合、走査部20Lの不具合、走査部20Lとダミー画素領域R21におけるダミー画素P2との間の結線の不具合、ダミー画素領域R21におけるダミー画素P2の不具合、ダミー画素領域R21におけるダミー画素P2とAD変換部ADCとの間の結線の不具合、AD変換部ADCの不具合、などがあり得る。
【0148】
また、ダミー画素領域R22に係る画素値VAL1~VAL4から取得したライン識別情報INFと、アドレス信号ADRが示すアドレスとが互いに一致しない場合の原因は、例えば、アドレス生成部41と走査部20Rとの間の結線の不具合、走査部20Rの不具合、走査部20Rとダミー画素領域R22におけるダミー画素P2との間の結線の不具合、ダミー画素領域R22におけるダミー画素P2の不具合、ダミー画素領域R22におけるダミー画素P2とAD変換部ADCとの間の結線の不具合、AD変換部ADCの不具合、などがあり得る。
【0149】
また、診断処理部45は、ダミー画素領域R31における2個のダミー画素P3に係る画素値VAL1~VAL4のそれぞれに対して2値化処理を行うことにより左端識別情報INFLを求める。同様に、診断処理部45は、ダミー画素領域R32における2個のダミー画素P3に係る画素値VAL1~VAL4のそれぞれに対して2値化処理を行うことにより右端識別情報INFRを求める。
【0150】
診断処理部45は、このようにして診断処理を行う。そして、診断処理部45は、その診断処理の結果を、診断結果RESとして出力する。
【0151】
以上のように、撮像装置1では、ダミー画素領域R21,R22,R31,R32を設け、このダミー画素領域R21,R22,R31,R32に、ダミー画素PA(
図4A)またはダミー画素PB(
図4B)をダミー画素P2,P3として配置するようにした。これにより、例えば、撮像装置1では、ダミー画素P2の配置を用いて、各画素ラインLについての情報を、いわゆるマスクROM(Read Only Memory)のように固定設定することができる。この例では、ダミー画素P2の配置を用いて、画素ラインLを識別するためのライン識別情報INFを設定するようにしたので、自己診断を行うことにより、アドレス制御の故障検出、および画素制御の故障検出を行うことができる。
【0152】
特に、撮像装置1では、
図5,6に示したように、11個のダミー画素P2の配列を、2進数で表された、画素ラインLの番目の数を示す配列にしたので、ライン識別情報INFと、アドレス信号ADRが示すアドレスとを比較する回路の構成をシンプルにすることができる。
【0153】
また、撮像装置1では、
図4Aに示したように、ダミー画素PAにおいて、トランジスタTGLのドレインおよびソースを互いに接続するとともに、トランジスタTGSのドレインおよびソースを互いに接続した。これにより、撮像装置1では、このダミー画素PAの画素値VAL1~VAL4を“0”に近づけることができるので、例えば、参照信号REFにおけるランプ波形の傾きを変更することにより撮像感度を高くした場合において、誤診断を防ぐことができる。
【0154】
すなわち、例えば、
図16に示したように、ダミー画素PAにおいて、トランジスタTGLのソースを電源線PLに接続するとともに、トランジスタTGSのソースを電源線PLに接続した場合には、撮像感度を高くした場合に、画素値VAL1~VAL4のそれぞれに対して2値化処理を行うことにより得られた値が“1”になってしまうおそれがある。すなわち、例えば、読出駆動D2において、トランジスタRST,FDGをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧と、トランジスタTGLをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧とは、互いに等しいことが望ましい。しかしながら、トランジスタの寄生容量などの影響により、これらの電圧が互いにずれるおそれがある。特に、トランジスタTGLをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧が、トランジスタRST,FDGをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧よりも低い場合には、画素値VAL1,VAL2が“0”よりも大きくなる。そして、これらの電圧のずれが大きい場合には、画素値VAL1,VAL2の“0”からのずれが大きくなる。この場合には、例えば撮像装置の撮像感度を高くすると、2値化処理の結果が“1”になってしまうおそれがある。画素値VAL3,VAL4についても同様である。その結果、撮像装置では、例えば、故障していないにもかかわらず故障していると誤診断してしまうおそれがある。
【0155】
一方、撮像装置1では、ダミー画素PAにおいて、トランジスタTGLのドレインおよびソースを互いに接続するとともに、トランジスタTGSのドレインおよびソースを互いに接続した。よって、ダミー画素PAでは、タイミングt31~t32の期間(
図12A)において、トランジスタTGLをオン状態にしても、フローティングディフュージョンFDの電圧は維持される。トランジスタTGSについても同様である。よって、撮像装置1では、画素値VAL1~VAL4のそれぞれの“0”からのずれを小さくすることができるので、例えば、撮像装置1の撮像感度が高い場合でも、2値化処理の結果をより安定的に“0”にすることができる。その結果、撮像装置1では、誤診断を防ぐことができる。
【0156】
また、撮像装置1では、2つのダミー画素領域R21,R22を、撮像画素領域R1の左右にそれぞれ設け、撮像画素領域R1の撮像画素P1を用いた通常の撮像動作と並行して、診断処理を行うようにしたので、例えば、故障をタイムリーに検出することができる。すなわち、例えば、ブランキング期間T20において診断処理を行う場合には、ブランキング期間T20が短いので、1つのブランキング期間T20で全ての画素ラインLについての診断処理を行うことが難しい。よって、この場合には、複数のブランキング期間T20を用いて全ての画素ラインLについての診断処理を行うこととなるが、この場合には、故障が生じたときに、その故障をタイムリーに検出できないおそれがある。一方、撮像装置1では、通常の撮像動作を行いながら、全ての画素ラインLについての診断処理を行うことができるので、1フレーム期間内に全ての画素ラインLについての診断処理を行うことができる。その結果、撮像装置1では、故障をタイムリーに検出することができる。
【0157】
[効果]
以上のように本実施の形態では、ダミー画素領域を設け、このダミー画素領域に、ダミー画素PAまたはダミー画素PBを配置するようにしたので、自己診断を行うことにより、撮像装置の不具合を検出することができる。
【0158】
本実施の形態では、ダミー画素PAにおいて、トランジスタTGLのドレインおよびソースを互いに接続するとともに、トランジスタTGSのドレインおよびソースを互いに接続したので、誤診断を防ぐことができる。
【0159】
本実施の形態では、2つのダミー画素領域を、通常画素領域の左右にそれぞれ設け、撮像画素領域の画素を用いた通常の撮像動作と並行して診断処理を行うようにしたので、例えば、故障をタイムリーに検出することができる。
【0160】
[変形例1-1]
上記実施の形態では、2つの走査部20L,20Rを設けたが、これに限定されるものではなく、これに代えて、
図17に示す撮像装置1Bのように、1つの走査部を設けてもよい。この撮像装置1Bは、1つの走査部20Lと、画素アレイ10Bと、読出部30Bと、コントローラ40Bとを備えている。すなわち、撮像装置1Bは、上記実施の形態に係る撮像装置1(
図1)において、走査部20Rを省くとともに、画素アレイ10、読出部30、およびコントローラ40を、画素アレイ10B、読出部30B、およびコントローラ40Bにそれぞれ置き換えたものである。
【0161】
画素アレイ10Bは、上記実施の形態に係る画素アレイ10(
図1)において、ダミー画素領域R21を省いたものである。読出部30Bは、画素アレイ10Bから信号線SGLを介して供給された信号SIGに基づいてAD変換を行うことにより、画像信号DATA0を生成するように構成される。コントローラ40Bは、走査部20Lおよび読出部30Bに制御信号を供給することにより、撮像装置1Bの動作を制御するように構成される。コントローラ40Bは、カラム走査部43Bと、画像処理部44Bと、診断処理部45Bとを有している。カラム走査部43Bは、読出部30Bにおける、データ転送動作の対象となるAD変換部ADCを決定し、その決定結果に基づいて、制御信号SSWを生成するように構成される。画像処理部44Bは、画像信号DATA0が示す画像に対して、画像合成処理を含む所定の画像処理を行うように構成される。診断処理部45Bは、ダミー画素領域R22における11個のダミー画素P2に係る画素値VAL1~VAL4のそれぞれに対して、2値化処理を行うことによりライン識別情報INFを求め、アドレス信号ADRが示すアドレスと、このライン識別情報INFとを比較することにより、撮像装置1Bが所望の動作を行っているかどうかを診断するように構成される。
【0162】
撮像装置1Bでは、走査部20Lは、コントローラ40Bからの指示に基づいて、アドレス信号ADRが示すアドレスに対応する画素ラインLに属する撮像画素P1およびダミー画素P2,P3を駆動する。そして、画素アレイ10Bにおける、ダミー画素領域R22における11個のダミー画素P2は、それぞれ信号SIGを生成し、生成した信号SIGを読出部30Bにそれぞれ供給する。走査部20Lは、画素アレイ10Bの左に配置され、ダミー画素領域R22は、画素アレイ10Bにおける右端近傍に設けられている。すなわち、撮像装置1Bでは、画素アレイ10Bにおいて、ダミー画素領域R22を、走査部20Lから離れた場所に設けたので、診断処理を行うことにより、走査部20Lのドライバ部23Lの駆動能力を診断することができる。また、撮像装置1Bでは、このように、ダミー画素領域R22を、走査部20Lから離れた場所に設けることにより、ダミー画素領域R31、撮像画素領域R1、およびダミー画素領域R22における制御線TGLL,FDGL,RSTL,FCGL,TGSL,SELLおよび電源線PLの断線をも診断することができる。
【0163】
[変形例1-2]
上記実施の形態では、7つのトランジスタを用いて画素回路CKTを構成したが、これに限定されるものではない。例えば、トランジスタFDGを省いてもよいし、トランジスタFCGを省いてもよい。以下に、本変形例に係る撮像装置1Cについて詳細に説明する。撮像装置1Cは、画素アレイ10Cと、走査部20LC,20RCを備えている。
【0164】
画素アレイ10Cは、撮像画素P1およびダミー画素P2,P3を有している。撮像画素P1は撮像画素領域R1に配置され、複数のダミー画素P2はダミー画素領域R21,R22に配置され、複数のダミー画素P3はダミー画素領域R31,R32に配置される。ダミー画素領域R21,R22には、ダミー画素PAまたはダミー画素PBが選択的にダミー画素P2として配置され、ダミー画素領域R31,R32には、ダミー画素PAまたはダミー画素PBが選択的にダミー画素P3として配置される。
【0165】
図18は、本変形例に係る撮像画素P1の一構成例を表すものである。撮像画素P1は、
画素アレイ10Bは、複数の制御線TGLLと、複数の制御線RSTLと複数の制御線TGSLと、複数の制御線SELLと、複数の電源線PLと、複数の信号線SGLとを有している。撮像画素P1は、フォトダイオードPD1,PD2と、画素回路CKTとを有している。画素回路CKTは、トランジスタTGLと、トランジスタTGSと、トランジスタRSTと、フローティングディフュージョンFDと、トランジスタAMP,SELとを有している。トランジスタTGSのドレインはフローティングディフュージョンFDに接続される。トランジスタRSTのソースはフローティングディフュージョンFDに接続される。本変形例に係る画素回路CKTは、上記実施の形態に係る画素回路CKT(
図2)から、トランジスタFCG,FDGを省いたものである。
【0166】
図19Aは、本変形例に係るダミー画素PAの一構成例を表すものであり、
図19Bは、本変形例に係るダミー画素PBの一構成例を表すものである。ダミー画素PAの画素回路CKTでは、トランジスタTGLのドレインおよびソースが互いに接続されるとともに、トランジスタTGSのドレインおよびソースが互いに接続される。ダミー画素PBの画素回路CKTでは、トランジスタTGLのソースが電圧供給線VLに接続されるとともに、トランジスタTGSのソースが電圧供給線VLに接続される。
【0167】
走査部20LC,20RCは、コントローラ40からの指示に基づいて、画素ラインL単位で、画素アレイ10Bにおける撮像画素P1およびダミー画素P2,P3を順次駆動するように構成される。
【0168】
[変形例1-3]
上記実施の形態では、ダミー画素PAの画素回路CKTにおいて、トランジスタTGLのドレインおよびソースを互いに接続するとともに、トランジスタTGSのドレインおよびソースを互いに接続したが、これに限定されるものではない。以下に、いくつか例を挙げて本変形例について詳細に説明する。
【0169】
図20は、本変形例に係る撮像装置1Dの画素アレイ10Dに配置されたダミー画素PAの一構成例を表すものである。このダミー画素PAの画素回路CKTでは、トランジスタTGLのソースが電源線PLに接続され、トランジスタTGSのソースが電源線PLに接続され、トランジスタRSTのドレインが電圧供給線VLに接続される。ダミー画素PBは、
図4Bの構成を使用することができる。
【0170】
ダミー画素PA(
図20)およびダミー画素PB(
図4B)は、トランジスタTGL,TGSのソースの接続、およびトランジスタRSTのドレインの接続が互いに異なっている。すなわち、トランジスタTGL,TGSのソースは、ダミー画素PAでは電源線PLに接続され、ダミー画素PBでは電圧供給線VLに接続される。また、トランジスタRSTのドレインは、ダミー画素PAでは電圧供給線VLに接続され、ダミー画素PBでは電源線PLに接続される。
【0171】
ここで、電源線PLは、本開示における「第1の電圧供給線」の一具体例に対応する。電圧供給線VLは、本開示における「第2の電圧供給線」の一具体例に対応する。撮像画素P1の画素回路CKTは、本開示における「撮像画素回路」の一具体例に対応する。ダミー画素PAの画素回路CKTは、本開示における「第1のダミー画素回路」の一具体例に対応する。ダミー画素PBの画素回路CKTは、本開示における「第2のダミー画素回路」の一具体例に対応する。
【0172】
撮像画素P1における通常の動作では、例えば、トランジスタTGLをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧は、トランジスタRST,FDGをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧よりも低い。よって、画素値VAL1~VAL4は、その撮像画素P1における受光量に応じた値になる。
【0173】
一方、このダミー画素PAでは、読出駆動D2において、トランジスタTGLのソースに印加される電源電圧VDDは、トランジスタRSTのドレインに印加される電圧VRよりも高い。よって、トランジスタTGLをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧は、トランジスタRSTをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧よりも高い。その結果、画素値VAL1,VAL2は“0”にクランプされる。画素値VAL3,VAL4についても同様である。よって、本変形例に係る撮像装置1Dでは、例えば、撮像装置1Dの撮像感度が高い場合でも、画素値VAL1~VAL4の2値化処理の結果をより安定的に“0”にすることができる。
【0174】
図21は、本変形例に係る他の撮像装置1Eの画素アレイ10Eに配置されたダミー画素PAの一構成例を表すものである。このダミー画素PAの画素回路CKTでは、トランジスタTGLのソースが電源線PLに接続され、ドレインは開放(オープン)される。また、トランジスタTGSのソースが電源線PLに接続され、ドレインは開放される。すなわち、上記実施の形態では、トランジスタTGLのドレインをフローティングディフュージョンFDに接続するとともに、トランジスタTGSのドレインを容量素子FCに接続したが、本変形例では、トランジスタTGL,TGSのドレインを他の素子に接続していない。ダミー画素PBは、
図4Bの構成を使用することができる。
【0175】
ここで、電圧供給線VLは、本開示における「電圧供給線」の一具体例に対応する。撮像画素P1の画素回路CKTは、本開示における「撮像画素回路」の一具体例に対応する。ダミー画素PAの画素回路CKTは、本開示における「第1のダミー画素回路」の一具体例に対応する。ダミー画素PBの画素回路CKTは、本開示における「第2のダミー画素回路」の一具体例に対応する。
【0176】
この場合でも、ダミー画素PAでは、タイミングt31~t32の期間(
図12A)において、トランジスタTGLをオン状態にしても、フローティングディフュージョンFDの電圧は維持される。トランジスタTGSについても同様である。よって、撮像装置1Eでは、画素値VAL1~VAL4の“0”からのずれを小さくすることができるので、画素値VAL1~VAL4の2値化処理の結果をより安定的に“0”にすることができる。
【0177】
図21の例では、トランジスタTGL,TGSのソースを電源線PLに接続したが、これに限定されるものではなく、例えば、トランジスタTGL,TGSのソースを電圧供給線VLに接続してもよい。
【0178】
図22は、本変形例に係る他の撮像装置1Fの画素アレイ10Fに配置されたダミー画素PAの一構成例を表すものである。このダミー画素PAの画素回路CKTでは、トランジスタTGLのソースが開放され、ドレインがフローティングディフュージョンFDに接続される。また、トランジスタTGSのソースが開放され、ドレインが容量素子FCに接続される。すなわち、トランジスタTGL,TGSのソースを他の素子に接続していない。ダミー画素PBは、
図4Bの構成を使用することができる。
【0179】
ここで、電圧供給線VLは、本開示における「電圧供給線」の一具体例に対応する。撮像画素P1の画素回路CKTは、本開示における「撮像画素回路」の一具体例に対応する。ダミー画素PAの画素回路CKTは、本開示における「第1のダミー画素回路」の一具体例に対応する。ダミー画素PBの画素回路CKTは、本開示における「第2のダミー画素回路」の一具体例に対応する。
【0180】
この場合でも、ダミー画素PAでは、タイミングt31~t32の期間(
図12A)において、トランジスタTGLをオン状態にしても、フローティングディフュージョンFDの電圧は維持される。トランジスタTGSについても同様である。よって、撮像装置1Fでは、画素値VAL1~VAL4の“0”からのずれを小さくすることができるので、画素値VAL1~VAL4の2値化処理の結果をより安定的に“0”にすることができる。
【0181】
[その他の変形例]
また、これらの変形例のうちの2以上を組み合わせてもよい。
【0182】
<2.第2の実施の形態>
次に、第2の実施の形態に係る撮像装置2について説明する。本実施の形態は、1つのフォトダイオードPDを用いて撮像画素を構成している。なお、上記第1の実施の形態に係る撮像装置1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
【0183】
図23は、撮像装置2の一構成例を表すものである。撮像装置2は、画素アレイ50と、2つの走査部60L,60Rと、読出部30と、コントローラ70とを備えている。
【0184】
画素アレイ50は、複数の撮像画素P1と、複数のダミー画素P2,P3とを有している。複数の撮像画素P1は撮像画素領域R1に配置され、複数のダミー画素P2はダミー画素領域R21,R22に配置され、複数のダミー画素P3はダミー画素領域R31,R32に配置される。
【0185】
図24は、撮像画素P1の一構成例を表すものである。画素アレイ50は、複数の制御線TGLLと、複数の制御線RSTLと、複数の制御線SELLと、複数の電源線PLと、複数の信号線SGLとを有している。
【0186】
制御線TGLLは、水平方向(
図23における横方向)に延伸するように構成され、制御線TGLLの一端は走査部60Lに接続され、他端は走査部60Rに接続されている。制御線TGLLには、走査部60L,60Rにより信号STGが印加される。制御線RSTLは、水平方向に延伸するように構成され、制御線RSTLの一端は走査部60Lに接続され、他端は走査部60Rに接続されている。制御線RSTLには、走査部60L,60Rにより信号SRSTが印加される。制御線SELLは、水平方向に延伸するように構成され、制御線SELLの一端は走査部60Lに接続され、他端は走査部60Rに接続されている。制御線SELLには、走査部60L,60Rにより信号SSELが印加される。電源線PLは、コントローラ70の電圧生成部42に接続されている。この電源線PLには、電圧生成部42により電源電圧VDDが印加される。信号線SGLは、垂直方向(
図23における縦方向)に延伸するように構成され、一端が読出部30に接続される。
【0187】
撮像画素P1は、フォトダイオードPDと、画素回路CKTとを有している。画素回路CKTは、トランジスタTG,RSTと、フローティングディフュージョンFDと、トランジスタAMP,SELとを有している。フォトダイオードPDのアノードは接地され、カソードはトランジスタTGのソースに接続される。トランジスタTGのゲートは制御線TGLLに接続され、ソースはフォトダイオードPDのカソードに接続され、ドレインはフローティングディフュージョンFDに接続される。トランジスタRSTのゲートは制御線RSTLに接続され、ドレインは電源線PLに接続され、ソースはフローティングディフュージョンFDに接続される。トランジスタAMPのゲートはフローティングディフュージョンFDに接続され、ドレインは電源線PLに接続され、ソースはトランジスタSELのドレインに接続される。トランジスタSELのゲートは制御線SELLに接続され、ドレインはトランジスタAMPのソースに接続され、ソースは信号線SGLに接続される。
【0188】
この構成により、撮像画素P1では、制御線SELLに印加された信号SSELに基づいてトランジスタSELがオン状態になることにより、撮像画素P1が信号線SGLと電気的に接続される。そして、撮像画素P1は、フローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして、信号線SGLに出力する。具体的には、撮像画素P1は、後述するように、いわゆる水平期間H内の2つの変換期間(P相期間TPおよびD相期間TD)において、2つの画素電圧VP(VP11,VP12)を順次出力するようになっている。
【0189】
図25は、フォトダイオードPDの配列の一例を表すものである。
図25において、“R”は赤色のカラーフィルタを示し、“G”は緑色のカラーフィルタを示し、“B”は青色のカラーフィルタを示す。フォトダイオードPDはマトリクス状に配置されている。
【0190】
図26A,26Bは、ダミー画素領域R21,R22におけるダミー画素P2およびダミー画素領域R31,R32におけるダミー画素P3の一構成例を表すものである。ダミー画素領域R21,R22では、ダミー画素PAまたはダミー画素PBが選択的にダミー画素P2として配置され、ダミー画素領域R31,R32では、ダミー画素PAまたはダミー画素PBが選択的にダミー画素P3として配置される。
図26Aはダミー画素PAの一例を示し、
図26Bはダミー画素PBの一例を示す。画素アレイ50は、ダミー画素領域R21,R22,R31,R32において、複数の制御線TGLLと、複数の制御線RSTLと、複数の制御線SELLと、複数の電源線PLと、複数の電圧供給線VLと、複数の信号線SGLとを有している。電圧供給線VLは、コントローラ70の電圧生成部42に接続されている。複数の電圧供給線VLには、電圧生成部42により、単一の電圧信号SVRが印加される。この電圧信号SVRは、例えば、読出駆動D2におけるトランジスタTGがオン状態になる期間において電圧VRに設定され、蓄積開始駆動D1におけるトランジスタTGがオン状態になる期間において電源電圧VDDに設定される
【0191】
ダミー画素PAの画素回路CKTでは、トランジスタTGLのドレインおよびソースが互いに接続される。すなわち、ダミー画素PAでは、トランジスタTGLのドレインおよびソースは、トランジスタTGLを介さずに互いに接続される。この構成により、ダミー画素PAでは、読出駆動D2において、フローティングディフュージョンFDの電圧が電源電圧VDDに設定される。そして、ダミー画素PAは、このフローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして信号線SGLに出力するようになっている。
【0192】
また、ダミー画素PBの画素回路CKTでは、トランジスタTGLのソースが電圧供給線VLに接続されるとともに、トランジスタTGSのソースが電圧供給線VLに接続される。この構成により、ダミー画素PBでは、後述するように、読出駆動D2において、トランジスタTGをオン状態にすることによりフローティングディフュージョンFDの電圧が電圧VRに設定される。そして、ダミー画素PBは、このフローティングディフュージョンFDにおける電圧に応じた画素電圧VPを、信号SIGとして信号線SGLに出力するようになっている。
【0193】
ダミー画素領域R31,R21におけるダミー画素P3,P2の配列は、第1の実施の形態の場合(
図5)と同様であり、ダミー画素領域R22,R32におけるダミー画素P2,P3の配列は、第1の実施の形態の場合(
図6)と同様である。
【0194】
2つの走査部60L,60R(
図23)は、コントローラ70からの指示に基づいて、画素ラインL単位で、画素アレイ50における撮像画素P1およびダミー画素P2,P3を順次駆動するように構成される。走査部60Lは、アドレスデコーダ21Lと、ロジック部62Lと、ドライバ部63Lとを有している。走査部60Rは、同様に、アドレスデコーダ21Rと、ロジック部62Rと、ドライバ部63Rとを有している。
【0195】
アドレスデコーダ21Lは、コントローラ70から供給されたアドレス信号ADRに基づいて、画素アレイ50における、アドレス信号ADRが示すアドレスに応じた画素ラインLを選択するように構成される。ロジック部62Lは、アドレスデコーダ21Lからの指示に基づいて、各画素ラインLに対応する信号STG1,SRST1,SSEL1をそれぞれ生成するように構成される。ドライバ部63Lは、各画素ラインLに対応する信号STG1,SRST1,SSEL1に基づいて、各画素ラインLに対応する信号STG,SRST,SSELをそれぞれ生成するように構成される。アドレスデコーダ21R、ロジック部62R、およびドライバ部63Rについても同様である。
【0196】
コントローラ70(
図1)は、走査部60L,60Rおよび読出部30に制御信号を供給することにより、撮像装置2の動作を制御するように構成される。コントローラ70は、画像処理部74と、診断処理部75とを有している。
【0197】
画像処理部74は、画像信号DATA0が示す画像に対して、所定の画像処理を行うように構成される。
【0198】
診断処理部75は、アドレス信号ADRおよび画像信号DATA0に基づいて、診断処理を行うように構成される。具体的には、診断処理部75は、画像信号DATA0に含まれるダミー画素P3に係る画素値VALに基づいて左端識別情報INFLおよび右端識別情報INFRを求めるとともに、画像信号DATA0に含まれるダミー画素P2に係る画素値VALに基づいてライン識別情報INFを求める。そして、診断処理部75は、アドレス信号ADRが示すアドレスとこのライン識別情報INFとを比較することにより、撮像装置2が所望の動作を行っているかどうかを診断する。そして、診断処理部75は、その診断処理の結果(診断結果RES)を出力するようになっている。
【0199】
ここで、フォトダイオードPDは、本開示における「第1の受光素子」の一具体例に対応する。撮像画素P1の画素回路CKTは、本開示における「撮像画素回路」の一具体例に対応する。ダミー画素PAの画素回路CKTは、本開示における「第1のダミー画素回路」の一具体例に対応する。ダミー画素PBの画素回路CKTは、本開示における「第2のダミー画素回路」の一具体例に対応する。トランジスタTGは、本開示における「第1のトランジスタ」の一具体例に対応する。トランジスタRSTは、本開示における「第2のトランジスタ」の一具体例に対応する。アドレス生成部41は、本開示における「アドレス生成部」の一具体例に対応する。走査部60L,60Rは、本開示における「駆動制御部」の一具体例に対応する読出部30および診断処理部75は、本開示における「診断部」の一具体例に対応する。
【0200】
撮像装置2は、第1の実施の形態の場合(
図10)と同様に、タイミングt0~t1の期間において、画素アレイ50における複数の撮像画素P1および複数のダミー画素P2,P3に対して、垂直方向において上から順に蓄積開始駆動D1を行う。具体的には、走査部60L,60Rは、例えば、垂直方向において上から順に、画素ラインL単位で、水平期間H内の所定の期間においてトランジスタTG,RSTをオン状態に設定した後に、これらのトランジスタをオフ状態にする。これにより、複数の撮像画素P1のそれぞれでは、フローティングディフュージョンFDおよびフォトダイオードPDにおける電圧が電源電圧VDDに設定された後に、電荷の蓄積が開始され、読出駆動D2が行われるまでの蓄積期間T10において、電荷が蓄積される。また、複数のダミー画素P2,P3のそれぞれでは、フローティングディフュージョンFDにおける電圧が電源電圧VDDに設定される。すなわち、電圧供給線VLに印加される電圧信号SVRの電圧VRは、蓄積開始駆動D1におけるトランジスタTGがオン状態になる期間において電源電圧VDDに設定されるので、フローティングディフュージョンFDにおける電圧が電源電圧VDDに設定される。
【0201】
そして、撮像装置2は、タイミングt10~t11の期間において、複数の撮像画素P1および複数のダミー画素P2,P3に対して、垂直方向において上から順に読出駆動D2を行う。これにより、複数の撮像画素P1および複数のダミー画素P2,P3のそれぞれは、2つの画素電圧VP(VP11,VP12)を順次出力する。読出部30は、これらの2つの画素電圧VP11,VP12に基づいてそれぞれAD変換を行い、デジタルコードCODE(画素値VAL)を出力する。
【0202】
図27は、着目した撮像画素P1Aにおける読出駆動D2の一動作例を表すものであり、(A)は水平同期信号XHSの波形を示し、(B)は信号SRSTの波形を示し、(C)は信号STGの波形を示し、(D)は信号SSELの波形を示し、(E)は参照信号REFの波形を示し、(F)は信号SIGの波形を示し、(G)はAD変換部ADCのコンパレータ36から出力される信号CMPの波形を示し、(H)はクロック信号CLKの波形を示し、(I)はAD変換部ADCのカウンタ37におけるカウント値CNTを示す。ここで、
図27(E)の参照信号REFは、コンパレータ36の正入力端子における波形を示し、
図27(F)の信号SIGは、コンパレータ36の負入力端子における波形を示す。
【0203】
撮像装置2では、ある水平期間(H)において、まず、走査部60L,60Rが、撮像画素P1Aに対してリセット動作を行い、AD変換部ADCが、その後のP相期間TPにおいて、撮像画素P1Aが出力した画素電圧VP11に基づいてAD変換を行う。そして、走査部60L,60Rが、撮像画素P1Aに対して電荷転送動作を行い、AD変換部ADCが、D相期間TDにおいて、撮像画素P1Aが出力した画素電圧VP12に基づいてAD変換を行う。以下にこの動作について詳細に説明する。
【0204】
まず、タイミングt91において、水平期間Hが開始すると、走査部60L,60Rは、タイミングt92において、信号SSELの電圧を低レベルから高レベルに変化させる(
図27(D))。これにより、撮像画素P1Aでは、トランジスタSELがオン状態になり、撮像画素P1Aが信号線SGLと電気的に接続される。
【0205】
次に、タイミングt93において、走査部60L,60Rは、信号SRSTの電圧を低レベルから高レベルに変化させる(
図27(B))。これにより、撮像画素P1Aでは、トランジスタRSTがオン状態になり、フローティングディフュージョンFDの電圧が電源電圧VDDに設定される(リセット動作)。
【0206】
次に、タイミングt94において、走査部60L,60Rは、信号SRSTの電圧を高レベルから低レベルに変化させる(
図27(B))。これにより、撮像画素P1Aでは、トランジスタRSTがオフ状態になる。そして、コンパレータ36は、タイミングt94~t95の期間において、容量素子33,34の電圧を設定するゼロ調整を行う。
【0207】
次に、タイミングt95において、コンパレータ36は、ゼロ調整を終了する。そして、このタイミングt95において、参照信号生成部32は、参照信号REFの電圧を電圧V1に変化させる(
図27(E))。
【0208】
これにより、撮像画素P1Aでは、トランジスタSELはオン状態になり、トランジスタTG,RSTはそれぞれオフ状態になる。フローティングディフュージョンFDは、タイミングt93~t94の期間においてフローティングディフュージョンFDがリセットされたときの電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP11)を出力する。
【0209】
次に、タイミングt96~t98の期間(P相期間TP)において、読出部30は、この画素電圧VP11に基づいてAD変換を行う。具体的には、まず、タイミングt96において、読出制御部31は、クロック信号CLKの生成を開始し(
図27(H))、これと同時に、参照信号生成部32は、参照信号REFの電圧を、電圧V1から所定の変化度合いで低下させ始める(
図27(E))。これに応じて、AD変換部ADCのカウンタ37は、カウント動作を開始し、カウント値CNTを順次変化させる(
図27(I))。
【0210】
そして、タイミングt97において、参照信号REFの電圧が画素電圧VP11を下回る(
図27(E),(F))。これに応じて、AD変換部ADCのコンパレータ36は、信号CMPの電圧を高レベルから低レベルに変化させる(
図27(G))。その結果、カウンタ37は、カウント動作を停止する(
図27(I))。
【0211】
次に、タイミングt98において、読出制御部31は、P相期間TPの終了に伴い、クロック信号CLKの生成を停止する(
図27(H))。これと同時に、参照信号生成部32は、参照信号REFの電圧の変化を停止させ、その後のタイミングt99において、参照信号REFの電圧を電圧V1に変化させる(
図27(E))。これに伴い、参照信号REFの電圧が画素電圧VP11を上回るので(
図27(E),(F))、AD変換部ADCのコンパレータ36は、信号CMPの電圧を低レベルから高レベルに変化させる(
図27(G))。
【0212】
次に、タイミングt100において、AD変換部ADCのカウンタ37は、制御信号CCに基づいて、カウント値CNTの極性を反転する(
図27(I))。
【0213】
次に、タイミングt101において、走査部60L,60Rは、信号STGの電圧を低レベルから高レベルに変化させる(
図27(C))。これにより、撮像画素P1Aでは、トランジスタTGがオン状態になり、その結果、フォトダイオードPDで発生した電荷がフローティングディフュージョンFDに転送される(電荷転送動作)。これに応じて、信号SIGの電圧は低下する(
図27(F))。
【0214】
そして、タイミングt102において、走査部60L,60Rは、信号STGの電圧を高レベルから低レベルに変化させる(
図27(C))。これにより、撮像画素P1Aでは、トランジスタTGがオフ状態になる。
【0215】
これにより、撮像画素P1Aでは、トランジスタSELはオン状態になり、トランジスタTG,RSTはそれぞれオフ状態になる。フローティングディフュージョンFDは、タイミングt101~t102の期間においてフォトダイオードPDから転送された電荷を保持している。撮像画素P1Aは、このときのフローティングディフュージョンFDにおける電圧に応じた画素電圧VP(画素電圧VP12)を出力する。
【0216】
次に、タイミングt103~t105の期間(D相期間TD)において、読出部30は、画素電圧VP12に基づいてAD変換を行う。具体的には、まず、タイミングt103において、読出制御部31は、クロック信号CLKの生成を開始し(
図27(H))、これと同時に、参照信号生成部32は、参照信号REFの電圧を、電圧V1から所定の変化度合いで低下させ始める(
図27(E))。これに応じて、AD変換部ADCのカウンタ37は、カウント動作を開始し、カウント値CNTを順次変化させる(
図27(I))。
【0217】
そして、タイミングt104において、参照信号REFの電圧が画素電圧VP12を下回る(
図27(E),(F))。これに応じて、AD変換部ADCのコンパレータ36は、信号CMPの電圧を高レベルから低レベルに変化させる(
図27(G))。その結果、カウンタ37は、カウント動作を停止する(
図27(I))。このようにして、AD変換部ADCは、画素電圧VP11,VP12の差に応じたカウント値CNTを得る。そして、AD変換部ADCのラッチ38は、このカウント値CNTを、デジタルコードCODEとして出力する。
【0218】
次に、タイミングt105において、読出制御部31は、D相期間TDの終了に伴い、クロック信号CLKの生成を停止する(
図27(H))。これと同時に、参照信号生成部32は、参照信号REFの電圧の変化を停止させ、その後のタイミングt106において、参照信号REFの電圧を電圧V2に変化させる(
図27(E))。これに伴い、参照信号REFの電圧が画素電圧VP12を上回るので(
図27(E),(F))、AD変換部ADCのコンパレータ36は、信号CMPの電圧を低レベルから高レベルに変化させる(
図27(G))。
【0219】
次に、タイミングt107において、走査部60L,60Rは、信号SSELの電圧を高レベルから低レベルに変化させる(
図27(D))。これにより、撮像画素P1Aでは、トランジスタSELがオフ状態になり、撮像画素P1Aが信号線SGLから電気的に切り離される。
【0220】
そして、タイミングt108において、AD変換部ADCのカウンタ37は、制御信号CCに基づいて、カウント値CNTを“0”にリセットする(
図27(I))。
【0221】
このように、撮像装置2では、P相期間TPにおいて画素電圧VP11に基づいてカウント動作を行い、カウント値CNTの極性を反転したのちに、D相期間TDにおいて画素電圧VP12に基づいてカウント動作を行うようにした。これにより、撮像装置2は、画素電圧VP11,VP12の差電圧に応じたデジタルコードCODEを取得することができる。撮像装置2では、このような相関2重サンプリングを行うようにしたので、画素電圧VP12に含まれるノイズ成分を取り除くことができ、その結果、撮像画像の画質を高めることができる。
【0222】
撮像装置2における診断処理は、第1の実施の形態の場合(
図15)と同様である。
【0223】
すなわち、コントローラ70のアドレス生成部41は、画素アレイ50における駆動対象となる画素ラインLを決定し、その画素ラインLに対応するアドレスを示すアドレス信号ADRを生成する。そして、アドレス生成部41は、このアドレス信号ADRを走査部60L,60Rに供給する。
【0224】
2つの走査部60L,60Rは、コントローラ70からの指示に基づいて、アドレス信号ADRが示すアドレスに対応する画素ラインLに属する撮像画素P1およびダミー画素P2,P3を駆動する。
【0225】
画素アレイ50の、ダミー画素領域R21における11個のダミー画素P2、ダミー画素領域R22における11個のダミー画素P2、ダミー画素領域R31における2個のダミー画素P3、およびダミー画素領域R32における2個のダミー画素P3は、2つの変換期間(P相期間TPおよびD相期間TD)において、2つの画素電圧VP(VP11,VP12)を順次、信号SIGとして出力する。読出部30のAD変換部ADCは、これらの2つの画素電圧VP11,VP12に基づいてそれぞれAD変換を行い、デジタルコードCODE(画素値VAL)をそれぞれ出力する。
【0226】
そして、コントローラ70の診断処理部75は、画像信号DATA0に含まれるダミー画素P3に係る画素値VALに基づいて左端識別情報INFLおよび右端識別情報INFRを求めるとともに、画像信号DATA0に含まれるダミー画素P2に係る画素値VALに基づいてライン識別情報INFを求める。そして、診断処理部75は、アドレス信号ADRが示すアドレスとこのライン識別情報INFとを比較することにより、撮像装置2が所望の動作を行っているかどうかを診断する。そして、診断処理部75は、その診断処理の結果(診断結果RES)を出力する。
【0227】
撮像装置2では、
図26Aに示したように、ダミー画素PAにおいて、トランジスタTGのドレインおよびソースを互いに接続した。これにより、撮像装置2では、上記第1の実施の形態に係る撮像装置1と同様に、このダミー画素PAの画素値VALを“0”に近づけることができるので、例えば、参照信号REFにおけるランプ波形の傾きを変更することにより撮像感度を高くした場合において、誤診断を防ぐことができる。
【0228】
本実施の形態では、ダミー画素PAにおいて、トランジスタTGLのドレインおよびソースを互いに接続したので、誤診断を防ぐことができる。その他の効果は、上記第1の実施の形態の場合と同様である。
【0229】
[変形例2]
上記実施の形態に係る撮像装置2に、上記第1の実施の形態の各変形例を適用してもよい。以下に、一例として、撮像装置2に、第1の実施の形態の変形例1-3を適用した例について説明する。
【0230】
図28は、本変形例に係る撮像装置2Bの画素アレイ50Bに配置されたダミー画素PAの一構成例を表すものである。このダミー画素PAの画素回路CKTでは、トランジスタTGのソースが電源線PLに接続され、トランジスタRSTのドレインが電圧供給線VLに接続される。ダミー画素PBは、
図26Bの構成を使用することができる。
【0231】
このダミー画素PAでは、読出駆動D2において、トランジスタTGのソースに印加される電源電圧VDDは、トランジスタRSTのドレインに印加される電圧VRよりも高い。よって、トランジスタTGをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧は、トランジスタRSTをオン状態にすることにより設定されたフローティングディフュージョンFDの電圧よりも高い。その結果、画素値VALは“0”にクランプされる。よって、本変形例に係る撮像装置2Bでは、例えば、撮像装置2Bの撮像感度が高い場合でも、画素値VALの2値化処理の結果をより安定的に“0”にすることができる。
【0232】
図29は、本変形例に係る他の撮像装置2Cの画素アレイ50Cに配置されたダミー画素PAの一構成例を表すものである。このダミー画素PAの画素回路CKTでは、トランジスタTGのソースが電源線PLに接続され、ドレインは開放(オープン)される。すなわち、トランジスタTGのドレインを他の素子に接続していない。この場合でも、ダミー画素PAでは、タイミングt101~t102の期間(
図27)において、トランジスタTGをオン状態にしても、フローティングディフュージョンFDの電圧は維持される。よって、撮像装置2Cでは、画素値VALの“0”からのずれを小さくすることができるので、画素値VALの2値化処理の結果をより安定的に“0”にすることができる。
【0233】
図29の例では、トランジスタTGのソースを電源線PLに接続したが、これに限定されるものではなく、例えば、トランジスタTGのソースを電圧供給線VLに接続してもよい。
【0234】
図30は、本変形例に係る他の撮像装置2Dの画素アレイ50Dに配置されたダミー画素PAの一構成例を表すものである。このダミー画素PAの画素回路CKTでは、トランジスタTGのソースが開放され、ドレインがフローティングディフュージョンFDに接続される。すなわち、トランジスタTGのソースを他の素子に接続していない。この場合でも、ダミー画素PAでは、タイミングt101~t102の期間(
図27)において、トランジスタTGをオン状態にしても、フローティングディフュージョンFDの電圧は維持される。よって、撮像装置2Dでは、画素値VALの“0”からのずれを小さくすることができるので、画素値VALの2値化処理の結果をより安定的に“0”にすることができる。
【0235】
<3.撮像装置の使用例>
図31は、上記実施の形態に係る撮像装置1,2の使用例を表すものである。上述した撮像装置1,2は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
【0236】
・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレビジョンや、冷蔵庫、エアーコンディショナ等の家電に供される装置
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
【0237】
<4.移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
【0238】
図32は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
【0239】
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。
図32に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
【0240】
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
【0241】
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
【0242】
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
【0243】
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
【0244】
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
【0245】
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
【0246】
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
【0247】
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
【0248】
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。
図32の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
【0249】
図33は、撮像部12031の設置位置の例を示す図である。
【0250】
図33では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
【0251】
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
【0252】
なお、
図33には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
【0253】
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
【0254】
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
【0255】
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
【0256】
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
【0257】
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。これにより、車両制御システム12000では、診断処理を行うことにより、撮像部12031が正常に動作しているかどうかを診断することができる。そして、撮像部12031に不具合が生じた場合には、例えば、その診断結果をマイクロコンピュータ12051に通知することにより、車両制御システム12000は、撮像部12031に不具合が生じたことを把握することができる。これにより、車両制御システム12000では、例えば運転者に注意喚起を促すなどの適切な処理を行うことができるため、信頼性を高めることができる。また、車両制御システム12000では、診断処理の結果に基づいて、車両を制御する機能を制限することができる。車両を制御する機能の具体例としては、車両の衝突回避あるいは衝突緩和機能、車間距離に基づく追従走行機能、車速維持走行機能、車両の衝突警告機能、車両のレーン逸脱警告機能等が挙げられる。診断処理の結果、撮像部12031に不具合が生じたと判定された場合、車両を制御する機能を制限し、あるいは禁止することができる。これにより、車両制御システム12000では、撮像部12031の不具合に基づく誤検知に起因した事故を防止することができる。
【0258】
以上、いくつかの実施の形態および変形例、ならびにそれらの具体的な応用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
【0259】
例えば、撮像装置1では、
図14に示したように、読出部30がデジタルコードCODE2,CODE3を出力し、画像処理部44が、デジタルコードCODE3からデジタルコードCODE2を減算(CODE3-CODE2)することにより、画素値VAL1を算出したが、これに限定されるものではない。これに代えて、読出部30が、撮像装置2の場合(
図27)と同様に、変換期間T2の後にカウント値CNTの極性を反転することにより、デジタルコードCODE2,CODE3の差に対応するデジタルコードCODEを出力してもよい。デジタルコードCODE5,CODE6についても同様であり、デジタルコードCODE7,CODE8についても同様である。
【0260】
また、例えば、撮像装置1では、
図14に示したように、読出部30がデジタルコードCODE1,CODE4を出力し、画像処理部44が、デジタルコードCODE4からデジタルコードCODE1を減算(CODE4-CODE1)することにより、画素値VAL2を算出したが、これに限定されるものではない。これに代えて、読出部30のAD変換部ADCが、変換期間T1の後に、そのときのカウント値CNTを一旦内部に記憶しておき、変換期間T4の前に、そのカウント値CNTをカウンタ37にセットするとともにそのカウント値CNTの極性を反転してもよい。この場合でも、撮像装置2の場合(
図27)と同様に、画像処理部44は、デジタルコードCODE1,CODE4の差に対応するデジタルコードCODEを得ることができる。
【0261】
例えば、上記の実施の形態に係る撮像画素P1は、
図2,24に示した構成に限定されるものではない。
【0262】
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
【0263】
なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、自己診断を行い、不具合の有無を診断することができる。
【0264】
(1)第1の受光素子と、
それぞれが、電荷を蓄積可能な蓄積部と、第1の端子および前記蓄積部に接続された第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第1のトランジスタと、前記蓄積部に蓄積された電荷に応じた電圧を出力可能な出力部とを有し、撮像画素回路および第1のダミー画素回路を含む複数の画素回路と
を備え、
前記撮像画素回路における前記第1のトランジスタの前記第1の端子は、前記第1の受光素子に接続され、
前記第1のダミー画素回路における前記第1のトランジスタの前記第1の端子は、前記第1のダミー画素回路の前記第1のトランジスタを介さずに前記第1のダミー画素回路の前記第1のトランジスタの前記第2の端子に接続された
撮像装置。
(2)電圧供給線をさらに備え、
前記複数の画素回路は、第2のダミー画素回路を含み、
前記第2のダミー画素回路における前記第1のトランジスタの前記第1の端子は、前記電圧供給線に接続された
前記(1)に記載の撮像装置。
(3)前記複数の画素回路のそれぞれは、オン状態になることにより所定の電圧を前記蓄積部に印加可能な第2のトランジスタをさらに有する
前記(1)または(2)に記載の撮像装置。
(4)第2の受光素子をさらに備え、
前記複数の画素回路のそれぞれは、第1の端子および前記蓄積部に接続可能な第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第3のトランジスタをさらに有し、
前記撮像画素回路における前記第3のトランジスタの前記第1の端子は、前記第2の受光素子に接続され、
前記第1のダミー画素回路における前記第3のトランジスタの前記第1の端子は、前記第1のダミー画素回路の前記第3のトランジスタを介さずに前記第1のダミー画素回路の前記第3のトランジスタの前記第2の端子に接続された
前記(1)または(2)に記載の撮像装置。
(5)前記複数の画素回路のそれぞれは、オン状態になることにより所定の電圧を接続ノードに印加可能な第2のトランジスタと、前記第3のトランジスタの前記第2の端子に接続された容量素子と、オン状態になることにより前記容量素子および前記接続ノードを接続可能な第4のトランジスタと、オン状態になることにより前記接続ノードおよび前記蓄積部を接続可能な第5のトランジスタとをさらに有する
前記(4)に記載の撮像装置。
(6)前記撮像画素回路は、前記撮像装置の有効画素領域に配置され、
前記第1のダミー画素回路は、前記有効画素領域の領域外に配置された
前記(1)から(5)のいずれかに記載の撮像装置。
(7)アドレス信号を生成可能なアドレス生成部と、
前記アドレス信号に基づいて、前記第1のトランジスタの動作を制御可能な駆動制御部と、
前記アドレス信号、および前記第1のダミー画素回路の前記出力部から出力された第1の信号に基づいて診断処理を行うことが可能な診断部と
をさらに備えた
前記(1)から(6)のいずれかに記載の撮像装置。
(8)第1の電圧供給線と、
第2の電圧供給線と、
第1の受光素子と、
それぞれが、電荷を蓄積可能な蓄積部と、第1の端子および前記蓄積部に接続された第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第1のトランジスタと、第1の端子および前記蓄積部に接続可能な第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第2のトランジスタと、前記蓄積部に蓄積された電荷に応じた電圧を出力可能な出力部とを有し、撮像画素回路、第1のダミー画素回路、および第2のダミー画素回路を含む複数の画素回路と
を備え、
前記撮像画素回路において、前記第1のトランジスタの前記第1の端子は前記第1の受光素子に接続され、前記第2のトランジスタの前記第1の端子は前記第1の電圧供給線に接続され、
前記第1のダミー画素回路において、前記第1のトランジスタの前記第1の端子は前記第1の電圧供給線に接続され、前記第2のトランジスタの前記第1の端子は前記第2の電圧供給線に接続され、
前記第2のダミー画素回路において、前記第1のトランジスタの前記第1の端子は前記第2の電圧供給線に接続され、前記第2のトランジスタの前記第1の端子は前記第1の電圧供給線に接続されている
撮像装置。
(9)前記複数の画素回路のそれぞれにおける前記第2のトランジスタの前記第2の端子は前記蓄積部に接続された
前記(8)に記載の撮像装置。
(10)第2の受光素子をさらに備え、
前記複数の画素回路のそれぞれは、第1の端子および前記蓄積部に接続可能な第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第3のトランジスタをさらに有し、
前記撮像画素回路における前記第3のトランジスタの前記第1の端子は、前記第2の受光素子に接続され、
前記第1のダミー画素回路における前記第3のトランジスタの前記第1の端子は、前記第1の電圧供給線に接続され、
前記第2のダミー画素回路における前記第3のトランジスタの前記第1の端子は、前記第2の電圧供給線に接続されている
前記(8)に記載の撮像装置。
(11)前記複数の画素回路のそれぞれは、前記第3のトランジスタの前記第2の端子に接続された容量素子と、オン状態になることにより前記容量素子および接続ノードを接続可能な第4のトランジスタと、オン状態になることにより前記接続ノードおよび前記蓄積部を接続可能な第5のトランジスタとをさらに有し、
前記複数の画素回路のそれぞれにおける前記第2のトランジスタの前記第2の端子は、前記複数の画素回路のそれぞれの前記接続ノードに接続された
前記(10)に記載の撮像装置。
(12)前記撮像画素回路は、前記撮像装置の有効画素領域に配置され、
前記第1のダミー画素回路および前記第2のダミー画素回路は、前記有効画素領域の領域外に配置された
前記(8)から(11)のいずれかに記載の撮像装置。
(13)アドレス信号を生成可能なアドレス生成部と、
前記アドレス信号に基づいて、前記第1のトランジスタの動作を制御可能な駆動制御部と、
前記アドレス信号、前記第1のダミー画素回路の前記出力部から出力された第1の信号、および前記第2のダミー画素回路の前記出力部から出力された第2の信号に基づいて診断処理を行うことが可能な診断部と
をさらに備えた
前記(8)から(12)のいずれかに記載の撮像装置。
(14)第1の受光素子と、
それぞれが、電荷を蓄積可能な蓄積部と、第1の端子および第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第1のトランジスタと、前記蓄積部に蓄積された電荷に応じた電圧を出力可能な出力部とを有し、撮像画素回路および第1のダミー画素回路を含む複数の画素回路と
を備え、
前記撮像画素回路において、前記第1のトランジスタの前記第1の端子は前記第1の受光素子に接続され、前記第1のトランジスタの前記第2の端子は前記蓄積部に接続され、
前記第1のダミー画素回路において、前記第1のトランジスタの前記第1の端子および前記第2の端子のうちの少なくともいずれか1つは、前記第1のトランジスタ以外の素子に接続されていない
撮像装置。
(15)電圧供給線をさらに備え、
前記複数の画素回路は、第2のダミー画素回路を含み、
前記第2のダミー画素回路において、前記第1のトランジスタの前記第1の端子は、前記電圧供給線に接続され、前記第1のトランジスタの前記第2の端子は前記蓄積部に接続された
前記(14)に記載の撮像装置。
(16)前記複数の画素回路のそれぞれは、オン状態になることにより所定の電圧を前記蓄積部に印加可能な第2のトランジスタをさらに有する
前記(14)または(15)に記載の撮像装置。
(17)第2の受光素子をさらに備え、
前記複数の画素回路のそれぞれは、第1の端子および第2の端子を有しオン状態になることにより前記第1の端子および前記第2の端子を接続可能な第3のトランジスタをさらに有し、
前記撮像画素回路において、前記第3のトランジスタの前記第1の端子は前記第2の受光素子に接続され、前記第3のトランジスタの前記第2の端子は前記蓄積部に接続可能であり、
前記第1のダミー画素回路において、前記第3のトランジスタの前記第1の端子および前記第2の端子のうちの少なくともいずれか1つは、前記第3のトランジスタ以外の素子に接続されていない
前記(14)または(15)に記載の撮像装置。
(18)前記複数の画素回路のそれぞれは、オン状態になることにより所定の電圧を接続ノードに印加可能な第2のトランジスタと、容量素子と、オン状態になることにより前記容量素子および前記接続ノードを接続可能な第4のトランジスタと、オン状態になることにより前記接続ノードおよび前記蓄積部を接続可能な第5のトランジスタとをさらに有し、
前記撮像画素回路において、前記容量素子は前記第3のトランジスタの前記第2の端子に接続された
前記(17)に記載の撮像装置。
(19)前記撮像画素回路は、前記撮像装置の有効画素領域に配置され、
前記第1のダミー画素回路は、前記有効画素領域の領域外に配置された
前記(14)から(18)のいずれかに記載の撮像装置。
(20)アドレス信号を生成可能なアドレス生成部と、
前記アドレス信号に基づいて、前記第1のトランジスタの動作を制御可能な駆動制御部と、
前記アドレス信号、および前記第1のダミー画素回路の前記出力部から出力された第1の信号に基づいて診断処理を行うことが可能な診断部と
をさらに備えた
前記(14)から(19)のいずれかに記載の撮像装置。
【0265】
本出願は、日本国特許庁において2018年12月11日に出願された日本特許出願番号2018-231796号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
【0266】
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。