IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニーセミコンダクタソリューションズ株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-12
(45)【発行日】2024-06-20
(54)【発明の名称】データ送信装置
(51)【国際特許分類】
   H04L 25/02 20060101AFI20240613BHJP
【FI】
H04L25/02 F
H04L25/02 V
【請求項の数】 5
(21)【出願番号】P 2022211154
(22)【出願日】2022-12-28
(62)【分割の表示】P 2019566999の分割
【原出願日】2019-01-11
(65)【公開番号】P2023026525
(43)【公開日】2023-02-24
【審査請求日】2023-01-06
(31)【優先権主張番号】P 2018008943
(32)【優先日】2018-01-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】110001357
【氏名又は名称】弁理士法人つばさ国際特許事務所
(72)【発明者】
【氏名】林 宏暁
(72)【発明者】
【氏名】城下 寛司
(72)【発明者】
【氏名】菅野 純譜
(72)【発明者】
【氏名】下村 幸雄
【審査官】谷岡 佳彦
(56)【参考文献】
【文献】国際公開第2017/098871(WO,A1)
【文献】国際公開第2016/163252(WO,A1)
【文献】特開2017-195500(JP,A)
【文献】特開2009-049672(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 25/02
(57)【特許請求の範囲】
【請求項1】
複数の送信装置から、一対の信号線を介して1つの受信装置にデータを伝送する通信システムに用いられる前記複数の送信装置のうちの1つの前記送信装置であるデータ送信装置であって、
送信モードを制御するモード制御部と、
前記モード制御部によって制御された前記送信モードに応じて前記データを生成する送信データ生成部と、
前記送信データ生成部で生成された前記データを前記受信装置に送信するデータ送信部と
を備え、
前記モード制御部は、他の前記送信装置における前記送信モードがHS(High Speed)モードとなっているとき、当該データ送信装置における前記送信モードを、当該データ送信装置の出力端を終端する終端モードにし、
前記データ送信部は、
前記一対の信号線に接続された一対の出力端の終端をオンオフ可能な終端抵抗と、
前記一対の出力端の電圧に基づいて他の前記送信装置における前記送信モードを検出し、その検出結果に基づいて前記終端抵抗のオンオフを制御する終端制御部と
を有する
データ送信装置。
【請求項2】
前記終端制御部は、前記他の送信装置の前記送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、前記終端抵抗をオフからオンにする
請求項1に記載のデータ送信装置。
【請求項3】
前記終端制御部は、前記一対の出力端の電圧を所定の閾値で判定し、所望の遷移を検出したときに、前記終端抵抗をオフからオンにする
請求項1に記載のデータ送信装置。
【請求項4】
前記終端制御部は、前記他の送信装置における前記送信モードがLP(Low Power)モードのLP-11であると検出したときに、前記終端抵抗をオンからオフにする
請求項1に記載のデータ送信装置。
【請求項5】
前記終端制御部は、前記一対の出力端の電圧が所定の閾値を超えたことを検出したときに、前記終端抵抗をオンからオフにする
請求項1に記載のデータ送信装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、データ信号の伝送に適用される通信システムに用いられるデータ送信装置に関する。
【背景技術】
【0002】
近年、ドローン、ウェアラブル機器、自動車、スマートフォンなどでは、複数のカメラを搭載する構成が急増している。複数のカメラからの画像データをアプリケーションプロセッサ等に伝送する際には、MIPI(Mobile Industry Processor Interface)アライアンスが策定したC-PHY規格やD-PHY規格といった高速インタフェース規格が適用される。特許文献1には、D-PHY規格の信号伝送についての技術が提案されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-195500号公報
【発明の概要】
【0004】
ところで、MIPIでは、データ伝送がポイントツーポイント伝送であるので、複数のカメラに対応するためには、アプリケーションプロセッサ側のピン数や伝送路サイズのアップ、製品デザイン面での制約など課題が多い。複数のカメラに対応するためには、マルチポイントバス伝送が有望である。しかし、従来のマルチポイントバス伝送では、反射などの影響で波形品質が大きく劣化するので、高速伝送に向かないという問題があった。従って、高速伝送に適したマルチポイントバス伝送を実現することの可能なデータ送信装置を提供することが望ましい。
【0005】
本開示の一実施の形態に係るデータ送信装置は、複数の送信装置から、一対の信号線を介して1つの受信装置にデータを伝送する通信システムに用いられる複数の送信装置のうちの1つの送信装置であるデータ送信装置である。データ送信装置は、送信モードを制御するモード制御部と、モード制御部によって制御された送信モードに応じてデータを生成する送信データ生成部と、送信データ生成部で生成されたデータを受信装置に送信するデータ送信部とを備えている。モード制御部は、他の送信装置における送信モードがHS(High Speed)モードとなっているとき、当該データ送信装置における送信モードを、当該データ送信装置の出力端を終端する終端モードにする。データ送信部は、一対の信号線に接続された一対の出力端の終端をオンオフ可能な終端抵抗と、一対の出力端の電圧に基づいて他の送信装置における送信モードを検出し、その検出結果に基づいて終端抵抗のオンオフを制御する終端制御部とを有している。
【0007】
本開示の一実施の形態に係るデータ送信装置では、複数の送信装置のうちの1つの送信装置であるデータ送信装置における送信モードがHSモードとなっているとき、他の送信装置における送信モードが、当該データ送信装置の出力端を終端する終端モードとなっている。これにより、データ送信装置における送信モードがHSモードとなっているとき、他の送信装置における全反射が抑えられる。また、HSモードとLPモードとを切り替えながら伝送を行うことができる。
【図面の簡単な説明】
【0008】
図1】本開示の第1の実施形態に係る通信システムの概要を表す図である。
図2図1の通信システムの構成の一例を表す図である。
図3図2の通信システムにおけるモード制御に用いられる3つの制御信号の一例を表す図である。
図4図3の3つの制御信号の組み合わせに対応する送信モードの一例を表す図である。
図5図2の通信システムにおけるデータ送信部の構成の一例を表す図である。
図6図5のPHY-FSMの機能の一例を表す図である。
図7図5のPHY-FSMの回路の一例を表す図である。
図8図1の通信システムの波形の一例を表す図である。
図9図1の通信システムの構成の一変形例を表す図である。
図10図9の通信システムにおける送信装置の構成の一例を表す図である。
図11図9の通信システムの波形の一例を表す図である。
図12図9の通信システムの波形の一変形例を表す図である。
図13図1の通信システムの概要を表す図である。
図14図13の通信システムにおける通過特性の一例を表す図である。
図15図13の通信システムにおける反射特性の一例を表す図である。
図16図13の通信システムにおけるアイダイアグラムの一例を表す図である。
図17図1図9の通信システムにおける送信データ生成部の一変形例を表す図である。
図18図17の送信データ生成部を備えた通信システムの波形の一例を表す図である。
図19】上記通信システムが適用されるスマートフォンの外観構成の一例を表す図である。
図20】上記通信システムが適用されたアプリケーションプロセッサの一構成例を表す図である。
図21】上記通信システムが適用されたイメージセンサの一構成例を表す図である。
図22】上記通信システムが適用された車載用カメラの設置例を表す図である。
図23】車載用カメラに上記通信システムを適用した一構成例を表す図である。
【発明を実施するための形態】
【0009】
以下、本開示を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.実施の形態
2.変形例
3.適用例
【0010】
<1.実施の形態>
[構成]
本開示の一実施形態に係る通信システム1について説明する。図1は、通信システム1の概要を表したものである。通信システム1は、データ信号とクロック信号との伝送に適用されるものであり、送信装置10,20および受信装置30を備えている。通信システム1は、送信装置10,20と受信装置30とに跨がって、クロック信号を伝送するクロックレーンCLと、例えば画像データ等のデータ信号を伝送するデータレーンDLとを備えている。つまり、通信システム1は、マルチポイントバス伝送を行うことができるようになっている。
【0011】
送信装置10,20は、送信デジタル回路と、送信アナログ回路とを有している。受信装置30は、受信デジタル回路と、受信アナログ回路とを有している。送信デジタル回路と送信アナログ回路との間では、例えば、16ビットや8ビットのパラレル信号が伝送される。また、受信デジタル回路と受信アナログ回路との間では、例えば、16ビットや8ビットのパラレル信号が伝送される。クロックレーンCLにおいて、送信アナログ回路と受信アナログ回路との間は、差動のクロック信号を伝送するクロック信号線51で接続されている。データレーンDLにおいて、送信アナログ回路と受信アナログ回路との間は、差動のデータ信号を伝送するデータ信号線52で接続されている。クロック信号線51は、差動信号を伝送する一対のポジティブ信号線Cpとネガティブ信号線Cnとを有している。データ信号線52は、差動信号を伝送する一対のポジティブ信号線Dpとネガティブ信号線Dnとを有している。クロック信号線51およびデータ信号線52にはそれぞれ、例えば、1ビットのシリアル信号が伝送される。
【0012】
送信装置10は、クロック送信回路111と、データ送信回路112とを有している。送信装置20は、クロック送信回路121と、データ送信回路122とを有している。受信装置30は、クロック受信回路131と、データ受信回路132とを有している。クロックレーンCLにおいて、クロック送信回路111,121とクロック受信回路131との間は、上述のクロック信号線51で接続されている。データレーンDLにおいて、データ送信回路112,122とデータ受信回路132との間は、上述のデータ信号線52で接続されている。クロック送信回路111,121は、クロック信号として差動のクロック信号を生成し、クロック信号線51に出力する差動信号送信回路である。データ送信回路112,122は、データ信号として差動のデータ信号を生成し、データ信号線52に出力する差動信号送信回路である。クロック受信回路131は、クロック信号として差動のクロック信号を、クロック信号線51を介して受信し、受信した差動のクロック信号に対して所定の処理を行う差動信号受信回路である。データ受信回路132は、データ信号として差動のデータ信号を、データ信号線52を介して受信し、受信した差動のデータ信号に対して所定の処理を行う差動信号受信回路である。なお、クロック送信装置111、121とデータ送信装置112、122が、3値レベルの信号を出力する3値信号送信回路であってもよい。また、クロック受信回路131とデータ受信回路132が、3値信号受信回路であってもよい。
【0013】
図2は、通信システム1の構成の一例を表したものである。図2に記載の通信システム1は、図1に記載の通信システム1を機能ブロックで表したものである。
【0014】
送信装置10は、クロックレーンCLにおいて、送信モード制御部11と、クロック生成部12と、クロック送信部13とを有している。送信装置10は、データレーンDLにおいて、送信データ生成部14と、データ送信部15とを有している。送信モード制御部11は、上位層からの指示(例えば、図2図3に示したような3つの制御信号HSEN,DRVEN,PU_EN)に従って伝送モードを決定する。
【0015】
ここで、制御信号HSENは、HSモードのEnableおよびDisableとを設定するための信号である。制御信号DRVENは、HSモードもしくはLPモードのEnableおよびDisableとを設定するための信号である。制御信号PU_ENは、PU(PullUp)モードのEnableおよびDisableとを設定するための信号である。送信モード制御部11は、例えば、図4に示したように、3つの制御信号HSEN,DRVEN,PU_EN)の組み合わせに応じて各種モードを設定する。
【0016】
例えば、(HSEN,DRVEN,PU_EN)=(1,1,0)のとき、送信モード制御部11は、HSモードを設定する。また、例えば、(HSEN,DRVEN,PU_EN)=(0,1,0)のとき、送信モード制御部11は、LPモードを設定する。また、例えば、(HSEN,DRVEN,PU_EN)=(0,1,1)のとき、送信モード制御部11は、LPモードにおいてさらにPullUpモード(以下、「LPモード+PullUpモード」と称する。)を設定する。また、例えば、(HSEN,DRVEN,PU_EN)=(0,0,1)のとき、送信モード制御部11は、PullUpモードを設定する。また、例えば、(HSEN,DRVEN,PU_EN)=(0,0,0)のとき、送信モード制御部11は、ハイインピーダンス(HiZ)モードを設定する。
【0017】
PullUpモードとは、一対の出力端40A,40Bの電圧を所定の電圧値にプルアップするモードを指す。LPモード+PullUpモードとは、LPモードに設定した上で、さらに、一対の出力端40A,40Bの電圧を所定の電圧値にプルアップするモードを指す。HiZモードとは、一対の出力端40A,40Bをフローティングにすることを指す。
【0018】
送信モード制御部11は、さらに、決定した伝送モードに応じた制御をクロック生成部12および送信データ生成部14に対して行う。クロック生成部12は、送信モード制御部11の指示に従い、伝送モードに応じたクロック周波数のクロック信号を生成する。クロック生成部12は、生成したクロック信号をクロック送信部13および送信データ生成部14に出力する。クロック送信部13は、クロック生成部12によって生成されたクロック信号をクロック信号線51に出力する。つまり、クロック送信部13は、クロック生成部12によって生成されたクロック信号を、クロック信号線51を介して、クロック受信部31に出力する。
【0019】
送信データ生成部14は、送信モード制御部11の指示に従い、入力されたデータ信号(例えば、高速送信データHS-TxDataまたは低速送信データLP-TxData)に対して、通信プロトコル制御や、上位層から入力されたデータの復号化、制御コマンドの挿入、パラレルシリアル変換などの各種処理を行い、それによりデータ信号を生成する。送信データ生成部14は、生成したデータ信号をデータ送信部15に出力する。送信データ生成部14は、上記各種処理を、送信モード制御部11の指示に従って切り換える。データ送信部15は、送信データ生成部14によって生成されたデータ信号をデータ信号線に出力する。つまり、データ送信部15は、送信データ生成部14によって生成されたデータ信号を、データ信号線を介して、データ受信部32に出力する。
【0020】
送信装置20は、クロックレーンCLにおいて、送信モード制御部21と、クロック生成部22と、クロック送信部23とを有している。送信装置20は、データレーンDLにおいて、送信データ生成部24と、データ送信部25とを有している。送信モード制御部21は、上位層からの指示(例えば、3つの制御信号HSEN,DRVEN,PU_EN)に従って伝送モードを決定する。送信モード制御部21は、さらに、決定した伝送モードに応じた制御をクロック生成部22および送信データ生成部24に対して行う。クロック生成部22は、送信モード制御部21の指示に従い、伝送モードに応じたクロック周波数のクロック信号を生成する。クロック生成部22は、生成したクロック信号をクロック送信部23および送信データ生成部24に出力する。クロック送信部23は、クロック生成部22によって生成されたクロック信号をクロック信号線51に出力する。つまり、クロック送信部23は、クロック生成部22によって生成されたクロック信号を、クロック信号線51を介して、クロック受信部31に出力する。
【0021】
送信データ生成部24は、送信モード制御部21の指示に従い、入力されたデータ信号(例えば、高速送信データHS-TxDataまたは低速送信データLP-TxData)に対して、通信プロトコル制御や、上位層から入力されたデータの復号化、制御コマンドの挿入、パラレルシリアル変換などの各種処理を行い、それによりデータ信号を生成する。送信データ生成部24は、生成したデータ信号をデータ送信部25に出力する。送信データ生成部24は、上記各種処理を、送信モード制御部21の指示に従って切り換える。データ送信部25は、送信データ生成部24によって生成されたデータ信号をデータ信号線に出力する。つまり、データ送信部25は、送信データ生成部24によって生成されたデータ信号を、データ信号線を介して、データ受信部32に出力する。
【0022】
受信装置30は、クロックレーンCLにおいて、クロック受信部31を有している。受信装置30は、データレーンDLにおいて、データ受信部32と、受信データ解釈部33とを有している。クロック受信部31は、クロック送信部13またはクロック送信部23が出力したクロック信号を、クロック信号線51を介して受信する。クロック受信部31は、受信したクロック信号を受信データ解釈部33に出力する。データ受信部32は、データ送信部15またはデータ送信部25が出力したデータ信号を、データ信号線52を介して受信する。データ受信部32は、受信したデータ信号を受信データ解釈部33に出力する。受信データ解釈部33は、入力されたクロック信号に基づいて、入力されたデータ信号に対して、シリアルパラレル変換や、制御コマンドの検出、信号データの復号化、通信プロトコル制御などの各種処理を行い、それにより、後段に提供するためのデータ信号を生成する。受信データ解釈部33は、例えば、上記各種処理を、入力されたクロック信号に応じて切り換える。受信データ解釈部33は、生成したデータ信号(例えば、高速受信データHS-RxDataまたは低速受信データLP-RxData)を後段の回路に出力する。
【0023】
[データ送信部]
図5は、通信システム1におけるデータ送信部15,25の構成の一例を表したものである。データ送信部15,25は、それぞれ、HSモードでの信号伝送用のドライバHS-TXと、LPモードでの信号伝送用のドライバLP-TXと、LPモードでの信号受信用のドライバLP-RXとを有している。データ送信部15,25は、それぞれ、さらに、一対のデータ信号線52に接続された一対の出力端40A,40Bの終端をオンオフ可能な終端抵抗RTと、一対のデータ信号線52に接続された一対の出力端40A,40Bをプルアップすることの可能なプルアップ抵抗PUとを有している。プルアップ抵抗PUは、プルアップを制御する制御信号PUONに基づいて、プルアップ抵抗のオンオフを制御する。データ送信部15,25は、それぞれ、さらに、終端制御部PHY-FSMを有している。
【0024】
ドライバHS-TXは、送信データ生成部14,24からの制御信号に基づいて、送信データ生成部14,24から入力された低速送信データLP-TxDataを、一対の出力端40A,40Bを介して一対のデータ信号線52に出力する。ドライバHS-TXは、送信データ生成部14,24からの制御信号に基づいて、送信データ生成部14,24から入力された低速送信データLP-TxDataを、一対の出力端40A,40Bを介して一対のデータ信号線52に出力する。終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧に基づいて他の送信装置における送信モードを検出する。終端制御部PHY-FSMで検出される送信モードの種類としては、例えば、LPモードのLP-11、LPモードのLP-01、または、LPモードのLP-00などが挙げられる。
【0025】
終端制御部PHY-FSMは、さらに、検出した送信モード(検出結果)に基づいて終端抵抗RTのオンオフを制御する。図6は、終端制御部PHY-FSMの機能の一例を表したものである。図7は、終端制御部PHY-FSMの回路の一例を表したものである。終端制御部PHY-FSMは、例えば、LPdata_pおよびLPdata_nに基づいて、他の送信装置がLPモードのLP-11となっていることを検出したとする。このとき、送信装置10,20はともに、ステート変動が停止の状態となっている。終端制御部PHY-FSMは、例えば、他の送信装置がLPモードのLP-11となっていることを検出した後、LPdata_pおよびLPdata_nに基づいて、他の送信装置がLPモードのLP-01となっていることを検出したとする。このとき、他の送信装置はステートをLPモードのLP-11からHSモードに遷移することを開始している。終端制御部PHY-FSMは、例えば、他の送信装置がLPモードのLP-01となっていることを検出した後、LPdata_pおよびLPdata_nに基づいて、他の送信装置がLPモードのLP-00となっていることを検出したとする。このとき、他の送信装置はHSモードに入る準備を行っている。そこで、終端制御部PHY-FSMは、例えば、他の送信装置がLPモードのLP-00となっていることを検出しているとき(LPモードのLP-00を検出している間)に、制御信号RTONとして、終端抵抗RTをオフからオンに切り替える制御信号を終端抵抗RTに出力する。すると、終端抵抗RTは、オフからオンに切り替わる。
【0026】
他の送信装置のモードは、例えば、一対の出力端40A,40Bの電圧を所定の閾値で判定することにより検出する。他の送信装置がHSモードへの遷移を開始し、その後HSモードに移行し、HSモードを終了しHSモードからLPモードへの遷移を開始したとする。この際の出力端40A,40Bの電圧を所定の閾値で検出することでLPdata_pおよびLPdata_nを生成する。終端制御部PHY-FSMは、このLPdata_pおよびLPdata_nを入力データとし、終端抵抗RTをオンもしくはオフに切り替える制御信号を終端抵抗RTに出力する。これにより、終端抵抗RTは、オンもしくはオフに切り替わる。
【0027】
図8は、通信システム1の波形の一例を表したものである。図8に示したように、送信装置10,20において、データ信号線52(一対のポジティブ信号線Dpとネガティブ信号線Dn)に対して、HS-TxData、LP-TxData、PullUpを出力している方の送信装置を「表」と表記し、Hi-Zモードとなっている方の送信装置を「裏」と表記している。受信装置30は、送信装置10,20から交互に出力された高速送信データHS-TxDataを、データ信号線52(一対のポジティブ信号線Dpとネガティブ信号線Dn)を介して受信する。そのため、図8(C)に示したように、受信装置30が、あたかも単一の送信装置からの高速送信データHS-TxData、LP-TxDataを受信しているように見える。
【0028】
ここで、送信装置10,20のうち第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、送信装置10,20のうち第2の送信装置(送信装置20)におけるモード制御部(送信モード制御部24)は、当該第2の送信装置(送信装置20)における送信モードを、当該第2の送信装置(送信装置20)の出力端40A,40Bを終端する終端モードにする。一方、送信装置10,20のうち第2の送信装置(送信装置20)における送信モードがHSモードとなっているとき、送信装置10,20のうち第1の送信装置(送信装置10)におけるモード制御部(送信モード制御部14)は、当該第1の送信装置(送信装置10)における送信モードを、当該第1の送信装置(送信装置10)の出力端40A,40Bを終端する終端モードにする。
【0029】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、他の送信装置(送信装置20)の送信モードにおいてLP-11、LP-01、LP-00(LP-11→LP-01→LP-00)の一連の所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。一方、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、他の送信装置(送信装置10)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。
【0030】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。一方、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。
【0031】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、他の送信装置(送信装置20)における送信モードがLPモードのLP-11であると検出したときに、終端抵抗RTをオンからオフにする。一方、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、他の送信装置(送信装置10)における送信モードがLPモードのLP-11であると検出したときに、終端抵抗RTをオンからオフにする。
【0032】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧が所定の閾値を超えたことを検出したときに、終端抵抗RTをオンからオフにする。一方、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧が所定の閾値を超えたことを検出したときに、終端抵抗RTをオンからオフにする。
【0033】
また、第1の送信装置(送信装置10)において、送信モード制御部11は、送信モードがHSモードからLPモードに変位する際に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。一方、第2の送信装置(送信装置20)において、送信モード制御部21は、送信モードがHSモードからLPモードに変位する際に変位した後に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。
【0034】
また、第1の送信装置(送信装置10)において、モード制御部11は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードを挿入する。一方、第2の送信装置(送信装置20)において、モード制御部21は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードを挿入する。
【0035】
[効果]
次に、本実施の形態の通信システム1の効果について説明する。
【0036】
近年、ドローン、ウェアラブル機器、自動車、スマートフォンなどでは、複数のカメラを搭載する構成が急増している。複数のカメラからの画像データをアプリケーションプロセッサ等に伝送する際には、MIPIアライアンスが策定したC-PHY規格やD-PHY規格といった高速インタフェース規格が適用される。
【0037】
ところで、MIPIでは、データ伝送がポイントツーポイント伝送であるので、複数のカメラに対応するためには、アプリケーションプロセッサ側のピン数や伝送路サイズのアップ、製品デザイン面での制約など課題が多い。複数のカメラに対応するためには、マルチポイントバス伝送が有望である。しかし、従来のマルチポイントバス伝送では、反射などの影響で波形品質が大きく劣化するので、高速伝送に向かないという問題があった。
【0038】
一方、本実施の形態では、送信装置10,20のうち第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、送信装置10,20のうち第2の送信装置(送信装置20)における送信モードが、当該第2の送信装置(送信装置20)の出力端40A,40Bを終端する終端モードとなっている。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、第2の送信装置(送信装置20)における全反射を抑えることができる。また、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0039】
また、本実施の形態では、データ送信部15,25には、それぞれ、データ信号線52に接続された一対の出力端40A,40Bの終端をオンオフ可能な終端抵抗RTが設けられている。さらに、一対の出力端40A,40Bの電圧に基づいて他の送信装置における送信モードが検出され、その検出結果に基づいて終端抵抗RTのオンオフが制御される。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、第2の送信装置(送信装置20)における全反射を抑えることができる。また、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0040】
また、本実施の形態では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、他の送信装置(送信装置20)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTがオフからオンに変わる。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、終端抵抗RTによって、第2の送信装置(送信装置20)における全反射が抑えられる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0041】
また、本実施の形態では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、一対の出力端40A,40Bを所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTがオフからオンに変わる。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、終端抵抗RTによって、第2の送信装置(送信装置20)における全反射を抑えることができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0042】
また、本実施の形態では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、他の送信装置(送信装置20)における送信モードがLPモードのLP-11であると検出されたときに、終端抵抗RTがオンからオフに変わる。これにより、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0043】
また、本実施の形態では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、一対の出力端40A,40Bの電圧が所定の閾値を超えたことが検出されたときに、終端抵抗RTがオンからオフに変わる。これにより、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0044】
また、本実施の形態では、第1の送信装置(送信装置10)において、送信モード制御部11は、送信モードがHSモードからLPモードに変位する際に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードが挿入される。これにより、送信装置10と送信装置20とを互いに切り替えながら、伝送を行う際に、LPモードのLP-11区間が互いに重なり合って、意図しない不要電流が流れる可能性を低減することができる。その結果、HSモードとLPモードとを切り替えながら伝送を行うことができる。従って、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0045】
また、本実施の形態では、第1の送信装置(送信装置10)において、モード制御部11は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードが挿入される。第1の送信装置は、第2の送信装置がHSモード伝送およびLPモード伝送を行う際にHiZモードとなる。また第2の送信装置は、第1の送信装置がHSモード伝送およびLPモード伝送を行う際にHiZモードとなる。このように、第1の送信装置と第2の送信装置でHSモード・LPモードとHiZモードとを排他的に使用することで、マルチポイントバス伝送路を、第一の送信装置と第2の送信装置で時分割で使用することが実現できる。従って、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0046】
また、本実施の形態では、3つの制御信号HSEN,DRVEN,PU_ENの組み合わせに基づいて、伝送モード(HSモード、LPモード、プルアップモード、ハイインピーダンスモード)が決定される。これにより、簡単な制御方法で、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0047】
<2.変形例>
(変形例A)
図9は、上記実施の形態の通信システム1の構成の一変形例を表したものである。上記実施の形態の通信システム1において、送信装置が3つ以上、設けられていてもよい。本変形例に係る通信システム1は、例えば、図9に示したように、送信装置10,20,40および受信装置30を備えている。通信システム1は、送信装置10,20,40と受信装置30とに跨がって、クロック信号を伝送するクロックレーンCLと、例えば画像データ等のデータ信号を伝送するデータレーンDLとを備えている。つまり、通信システム1は、マルチポイントバス伝送を行うことができるようになっている。
【0048】
送信装置40は、送信装置10,20と同様、送信デジタル回路と、送信アナログ回路とを有している。送信デジタル回路と送信アナログ回路との間では、例えば、16ビットや8ビットのパラレル信号が伝送される。また、受信デジタル回路と受信アナログ回路との間では、例えば、16ビットや8ビットのパラレル信号が伝送される。クロックレーンCLにおいて、送信アナログ回路と受信アナログ回路との間は、差動のクロック信号を伝送するクロック信号線51で接続されている。データレーンDLにおいて、送信アナログ回路と受信アナログ回路との間は、差動のデータ信号を伝送するデータ信号線52で接続されている。クロック信号線51は、差動信号を伝送する一対のポジティブ信号線Cpとネガティブ信号線Cnとを有している。データ信号線52は、差動信号を伝送する一対のポジティブ信号線Dpとネガティブ信号線Dnとを有している。クロック信号線51およびデータ信号線52にはそれぞれ、例えば、1ビットのシリアル信号が伝送される。
【0049】
送信装置40は、例えば、送信装置20と同様、クロック送信回路121と、データ送信回路122とを有している。クロックレーンCLにおいて、クロック送信回路111,121とクロック受信回路131との間は、上述のクロック信号線51で接続されている。データレーンDLにおいて、データ送信回路112,122とデータ受信回路132との間は、上述のデータ信号線52で接続されている。クロック送信回路111,121は、クロック信号として差動のクロック信号を生成し、クロック信号線51に出力する差動信号送信回路である。データ送信回路112,122は、データ信号として差動のデータ信号を生成し、データ信号線52に出力する差動信号送信回路である。クロック受信回路131は、クロック信号として差動のクロック信号を、クロック信号線51を介して受信し、受信した差動のクロック信号に対して所定の処理を行う差動信号受信回路である。データ受信回路132は、データ信号として差動のデータ信号を、データ信号線52を介して受信し、受信した差動のデータ信号に対して所定の処理を行う差動信号受信回路である。なお、クロック送信装置111、121とデータ送信装置112、122が、3値レベルの信号を出力する3値信号送信回路であってもよい。また、クロック受信回路131とデータ受信回路132が、3値信号受信回路であってもよい。
【0050】
送信装置40は、クロックレーンCLにおいて、例えば、図10に示したように、送信モード制御部41と、クロック生成部42と、クロック送信部43とを有している。送信装置40は、データレーンDLにおいて、例えば、図10に示したように、送信データ生成部44と、データ送信部45とを有している。送信モード制御部41は、上位層からの指示(例えば、3つの制御信号HSEN,DRVEN,PU_EN)に従って伝送モードを決定する。送信モード制御部41は、さらに、決定した伝送モードに応じた制御をクロック生成部42および送信データ生成部44に対して行う。クロック生成部42は、送信モード制御部41の指示に従い、伝送モードに応じたクロック周波数のクロック信号を生成する。クロック生成部42は、生成したクロック信号をクロック送信部43および送信データ生成部44に出力する。クロック送信部43は、クロック生成部42によって生成されたクロック信号をクロック信号線51に出力する。つまり、クロック送信部43は、クロック生成部22によって生成されたクロック信号を、クロック信号線51を介して、クロック受信部31に出力する。
【0051】
送信データ生成部44は、送信モード制御部41の指示に従い、入力されたデータ信号(例えば、高速送信データHS-TxDataまたは低速送信データLP-TxData)に対して、通信プロトコル制御や、上位層から入力されたデータの復号化、制御コマンドの挿入、パラレルシリアル変換などの各種処理を行い、それによりデータ信号を生成する。送信データ生成部44は、生成したデータ信号をデータ送信部45に出力する。送信データ生成部44は、上記各種処理を、送信モード制御部41の指示に従って切り換える。データ送信部45は、送信データ生成部44によって生成されたデータ信号をデータ信号線に出力する。つまり、データ送信部45は、送信データ生成部44によって生成されたデータ信号を、データ信号線を介して、データ受信部32に出力する。データ送信部45は、例えば、図5に示したようなデータ送信部11,25と同様の構成となっている。
【0052】
図11は、本変形例に係る通信システム1の波形の一例を表したものである。送信装置10,20,40は、図11に示したように、データ信号線42(一対のポジティブ信号線Dpとネガティブ信号線Dn)に対して、高速送信データHS-TxDataおよび低速送信データLP-TxDataを順次出力する。なお、図11では、HS-TxData、LP-TxData、PullUpを出力している方の送信装置を「表」と表記し、HiZモードとなっている方の送信装置を「裏」と表記している。受信装置30は、送信装置10,20,40から順次出力された高速送信データHS-TxDataおよび低速送信データLP-TxDataを、データ信号線42(一対のポジティブ信号線Dpとネガティブ信号線Dn)を介して受信する。そのため、図11(C)に示したように、受信装置30が、あたかも単一の送信装置からのHS-TxData、LP-TxDataを受信しているように見える。
【0053】
ここで、送信装置10,20,40のうち第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、送信装置10,20,40のうち第2の送信装置(送信装置20)および第3の送信装置(送信装置40)におけるモード制御部(送信モード制御部24,44)は、当該第2の送信装置(送信装置20)および第3の送信装置(送信装置40)における送信モードを、当該第2の送信装置(送信装置20)および第3の送信装置(送信装置40)の出力端40A,40Bを終端する終端モードにする。また、送信装置10,20,40のうち第2の送信装置(送信装置20)における送信モードがHSモードとなっているとき、送信装置10,20,40のうち第1の送信装置(送信装置10)および第3の送信装置(送信装置40)におけるモード制御部(送信モード制御部14)は、当該第1の送信装置(送信装置10)および第3の送信装置(送信装置40)における送信モードを、当該第1の送信装置(送信装置10)および第3の送信装置(送信装置40)の出力端40A,40Bを終端する終端モードにする。また、送信装置10,20,40のうち第3の送信装置(送信装置40)における送信モードがHSモードとなっているとき、送信装置10,20,40のうち第1の送信装置(送信装置10)および第2の送信装置(送信装置20)におけるモード制御部(送信モード制御部14)は、当該第1の送信装置(送信装置10)および第2の送信装置(送信装置20)における送信モードを、当該第1の送信装置(送信装置10)および第2の送信装置(送信装置20)の出力端40A,40Bを終端する終端モードにする。
【0054】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、他の送信装置(送信装置20,40)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。また、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、他の送信装置(送信装置10,40)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。また、第3の送信装置(送信装置40)の終端制御部PHY-FSMは、他の送信装置(送信装置10,20)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。
【0055】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。また、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。また、第3の送信装置(送信装置40)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオフからオンにする。
【0056】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、他の送信装置(送信装置20,40)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオンからオフにする。また、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、他の送信装置(送信装置10,40)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオンからオフにする。また、第3の送信装置(送信装置40)の終端制御部PHY-FSMは、他の送信装置(送信装置10,20)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、終端抵抗RTをオンからオフにする。
【0057】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオンからオフにする。また、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオンからオフにする。また、第3の送信装置(送信装置40)の終端制御部PHY-FSMは、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTをオンからオフにする。
【0058】
また、第1の送信装置(送信装置10)において、送信モード制御部11は、送信モードがHSモードからLPモードに変位する際に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。また、第2の送信装置(送信装置20)において、送信モード制御部21は、送信モードがHSモードからLPモードに変位する際に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。また、第3の送信装置(送信装置40)において、送信モード制御部41は、送信モードがHSモードからLPモードに変位する際に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。
【0059】
また、第1の送信装置(送信装置10)において、モード制御部11は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードを挿入する。また、第2の送信装置(送信装置20)において、モード制御部21は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードを挿入する。また、第3の送信装置(送信装置40)において、モード制御部41は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードを挿入する。
【0060】
[効果]
次に、本変形例に係る通信システム1の効果について説明する。
【0061】
本変形例では、送信装置10,20,40のうち第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、送信装置10,20,40のうち第2の送信装置(送信装置20)および第3の送信装置(送信装置40)における送信モードが、当該第2の送信装置(送信装置20)および第3の送信装置(送信装置40)の出力端40A,40Bを終端する終端モードとなっている。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、第2の送信装置(送信装置20)および第3の送信装置(送信装置40)における全反射が抑えられる。また、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0062】
また、本変形例では、データ送信部15,25,45には、それぞれ、一対のデータ信号線42に接続された一対の出力端40A,40Bの終端をオンオフ可能な終端抵抗RTが設けられている。さらに、一対の出力端40A,40Bの電圧に基づいて他の送信装置における送信モードが検出され、その検出結果に基づいて終端抵抗RTのオンオフが制御される。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、第2の送信装置(送信装置20)および第3の送信装置(送信装置40)における全反射が抑えられる。また、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0063】
また、本変形例では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、他の送信装置(送信装置20,40)の送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出されたときに、終端抵抗RTがオフからオンに変わる。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、終端抵抗RTによって、第2の送信装置(送信装置20)および第3の送信装置(送信装置40)における全反射が抑えられる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0064】
また、本変形例では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、一対の出力端40A,40Bの電圧を所定の閾値で判定し、所望の遷移を検出したときに、終端抵抗RTがオフからオンに変わる。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、終端抵抗RTによって、第2の送信装置(送信装置20)および第3の送信装置(送信装置40)における全反射が抑えられる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0065】
また、本変形例では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、他の送信装置(送信装置20,40)における送信モードがLPモードのLP-11であると検出されたときに、終端抵抗RTがオンからオフに変わる。これにより、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0066】
また、本変形例では、第1の送信装置(送信装置10)の終端制御部PHY-FSMにおいて、一対の出力端40A,40Bの電圧が所定の閾値を超えたことが検出されたときに、終端抵抗RTがオンからオフに変わる。これにより、HSモードとLPモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0067】
また、本変形例では、第1の送信装置(送信装置10)において、送信モード制御部11は、送信モードがHSモードからLPモードに変位する際に、一対の出力端40A,40Bの電圧をプルアップするPullUpモードが挿入される。これにより、送信装置10、送信装置20および送信装置40を順次切り替えながら、伝送を行う際に、LPモードのLP-11区間が互いに重なり合って、意図しない不要電流が流れる可能性を低減することができる。その結果、HSモードとLPモードとを切り替えながら伝送を行うことができる。従って、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0068】
また、本変形例では、第1の送信装置(送信装置10)において、モード制御部11は、終端モードの前後に、一対の出力端40A,40Bの電圧をハイインピーダンスにするHiZモードが挿入される。第1の送信装置は、第2の送信装置もしくは第3の送信装置がHSモード伝送およびLPモード伝送を行う際にHiZモードとなる。また第2の送信装置は、第1の送信装置もしくは第3の送信装置がHSモード伝送およびLPモード伝送を行う際にHiZモードとなる。第3の送信装置は、第1の送信装置もしくは第2の送信装置がHSモード伝送およびLPモード伝送を行う際にHiZモードとなる。このように、第1の送信装置、第2の送信装置、第3の送信装置でHSモード・LPモードとHiZモードとを排他的に使用することで、マルチポイントバス伝送路を第1の送信装置、第2の送信装置、第3の送信装置で時分割で使用することが実現できる。従って、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0069】
また、本変形例では、3つの制御信号HSEN,DRVEN,PU_ENの組み合わせに基づいて、伝送モード(HSモード、LPモード、プルアップモード、ハイインピーダンスモード)が決定される。これにより、簡単な制御方法で、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0070】
(変形例B)
図12は、上記変形例Aに係る通信システム1の波形の一変形例を表したものである。本変形例では、送信装置40からは、高速送信データHS-TxDataおよび低速送信データLP-TxDataが出力されず、送信装置40は、例えば、図12(C)に示したように、HSモードおよびLPモード以外のモード(具体的には、ハイインピーダンスモード)となっている。そのため、本変形例では、受信装置30は、例えば、図12(D)に示したように、送信装置10,20から交互に出力された高速送信データHS-TxDataおよび低速送信データLP-TxDataを、データ信号線52(一対のポジティブ信号線Dpとネガティブ信号線Dn)を介して受信する。このように、複数の送信装置のうち一部の送信装置がHSモードおよびLPモード以外のモード(具体的には、ハイインピーダンスモード)となっている場合であっても、上記実施の形態と同様に効果が得られる。
【0071】
(変形例C)
図13は、上記実施の形態に係る通信システム1の回路構成の一例を表したものである。上記実施の形態に係る通信システム1は、例えば、図13に示したように、送信装置10としての送信装置TX1と、送信装置20としての送信装置TX2と、受信装置30としての受信装置RXとを備えていてもよい。上記実施の形態に係る通信システム1は、さらに、例えば、図13に示したように、各送信装置TX1,TX2と、受信装置RXとを互いに接続する伝送路Pを備えていてもよい。
【0072】
伝送路Pは、途中で3つに分岐しており、分岐点H,Hを有している。分岐の1つである伝送路Pは、送信装置TX1と、分岐点H,Hとを互いに接続している。伝送路Pは、差動信号を伝送する一対の信号線P1p,P1nによって構成されている。信号線P1pは、分岐点Hに接続されており、信号線P1nは、分岐点Hに接続されている。送信装置TX1の、各信号線P1p,P1nに対して終端抵抗R/2が設けられている。
【0073】
分岐の1つである伝送路Pは、送信装置TX2と、分岐点H,Hとを互いに接続している。伝送路Pは、差動信号を伝送する一対の信号線P2p,P2nによって構成されている。信号線P2pは、分岐点Hに接続されており、信号線P2nは、分岐点Hに接続されている。送信装置TX2の、各信号線P2p,P2nに対して終端抵抗R/2が設けられている。
【0074】
分岐の1つである伝送路Pは、受信装置RXと、分岐点H,Hとを互いに接続している。伝送路Pは、差動信号を伝送する一対の信号線P3p,P3nによって構成されている。信号線P3pは、分岐点Hに接続されており、信号線P3nは、分岐点Hに接続されている。受信装置RXの、各信号線P3p,P3nに対して終端抵抗R/2が設けられている。
【0075】
各信号線P1p,P2p,P3pは、分岐点Hの近傍に抵抗素子Rを有しており、さらに、各信号線P1n,P2n,P3nも、分岐点Hの近傍にも抵抗素子Rを有している。ここで、各信号線P1p,P1n,P2p,P2n,P3p,P3nの特性インピーダンスをZとし、各送信装置TX1,TX2の、各信号線P1p,P1n,P2p,P2nに対する終端抵抗をR/2とし、受信装置RXの、各信号線P3p,P3nに対する終端抵抗をR/2とすると、抵抗素子Rは、以下の式(1)で表される抵抗値を有している。
R=((分枝数-1)×Z-R/2)/分枝数…(1)
【0076】
特性インピーダンスZが50オームとなっており、終端抵抗R/2が100/2=50オームとなっているとき、抵抗素子Rは、16.7オームとなっている。このとき、各信号線P1p,P1n,P2p,P2n,P3p,P3nは、送信装置TX1,TX2および受信装置RXのいずれのポートから見ても、50オーム(R)となっており、インピーダンス整合のとれた伝送路となっている。
【0077】
各抵抗素子Rは、反射による伝送特性の劣化を抑えるため、極力、分岐点H,Hの近傍に配置される。また、伝送路Pのレーン内スキュー特性の劣化を抑えるため、信号線P1pと信号線P1nと配線パターンが極力、近似レイアウトとなるように、信号線P1p,P1nが配置される。同様に、信号線P2pと信号線P2nと配線パターンが極力、近似レイアウトとなるように、信号線P2p,P2nが配置される。同様に、信号線P3pと信号線P3nと配線パターンが極力、近似レイアウトとなるように、信号線P3p,P3nが配置される。また、伝送路Pのレーン間スキュー特性の劣化を抑えるため、互いに異なるレーン同士の配線パターンが極力、近似レイアウトとなるように、各信号線P1p,P1n,P2p,P2n,P3p,P3nが配置される。
【0078】
通信システム1では、送信装置TX1が信号を出力するときは、例えば、図13に示したように、送信装置TX2の出力は停止され、さらに、送信装置TX2は差動終端される。同様に、通信システム1では、送信装置TX2が信号を出力するときは、送信装置TX1の出力は停止され、さらに、送信装置TX1は差動終端される。
【0079】
図14は、通信システム1における通過特性の一例を表したものである。図15は、通信システム1における反射特性の一例を表したものである。図16は、通信システム1におけるアイダイアグラムの一例を表したものである。図14において、2つの波形のうち下側の波形は、送信装置TX1,TX2側から見たときの通過特性の結果であり、2つの波形のうち上側の波形は、受信装置RX側から見たときの通過特性の結果である。図15では、送信装置TX1,TX2側から見たときの反射特性の結果と、受信装置RX側から見たときの反射特性の結果とが互いに重なり合っている。
【0080】
図14では、1GHz付近の信号レベルが-5dBとなっている。これは、抵抗素子Rが挿入されたことにより、信号レベルが約半分にまで下がったことを意味している。また、図15では、1GHz付近の信号レベルが-15dBとなっている。図16では、アイダイアグラムの目が、くっきりと開いている。
【0081】
本変形例では、伝送路Pにおいて、3分岐した分岐点H,Hが設けられ、3分岐した分岐点H,Hにおいて、信号線ごとに抵抗素子Rが設けられている。このように、本変形例では、非常に簡単な構成で伝送路Pに分岐を設けるだけで、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0082】
また、本変形例では、伝送路Pに設けた各抵抗素子Rが、上記の式(1)で表される抵抗値を有している。これにより、各信号線P1p,P1n,P2p,P2n,P3p,P3nは、送信装置TX1,TX2および受信装置RXのいずれのポートから見ても、50オーム(R)となっており、インピーダンス整合のとれた伝送路となる。従って、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0083】
また、本変形例では、信号を出力しない送信装置(例えば、送信装置TX2)が差動終端される。これにより、信号を出力しない送信装置が解放端にされている場合と比べて、伝送路P上のノイズを低減することができる。従って、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0084】
(変形例D)
図17は、上記実施の形態および変形例A,B,Cにおける送信データ生成部15,25,45の回路の一変形例を表したものである。本変形例では、送信データ生成部15,25,45において、ドライバLP-TX、ドライバLP-RXおよびプルアップ抵抗PUが省略されている。本変形例では、送信データ生成部15,25,45は、それぞれ、ドライバHS-TXと、終端抵抗RTと、プルアップ・プルダウン抵抗PU/PDと、コンパレータCMP1,CMP2とを有している。
【0085】
プルアップ・プルダウン抵抗PU/PDは、ポジティブ信号線Dpに接続されたプルダウンすることの可能なプルダウン抵抗と、ネガティブ信号線Dnに接続されたプルアップすることの可能なプルアップ抵抗とを含んで構成されている。プルアップ・プルダウン抵抗PU/PDは、プルアップ・プルダウンを制御する制御信号PUPDONに基づいて、プルダウン抵抗およびプルアップ抵抗のオンオフを制御する。コンパレータCMP1は、ポジティブ信号線Dpの電圧と、閾値Vthとの対比結果を終端制御部PHY-FSMに出力する。コンパレータCMP2は、ネガティブ信号線Dnの電圧と、閾値Vthとの対比結果を終端制御部PHY-FSMに出力する。コンパレータCMP1,CMP2は、一値の閾値Vthで判定した2つのLP-RXの出力を、2ビット信号として後段のPHY-FSMに入力する。
【0086】
図18は、図17の送信データ生成部15,25を備えた通信システム1の波形の一例を表したものである。本変形例では、送信装置10,20は、図18に示したように、データ信号線52(一対のポジティブ信号線Dpとネガティブ信号線Dn)に対して、高速送信データHS-TxDataを交互に出力する。なお、図18では、送信データ生成部15,25は、高速送信データHS-TxDataの出力の前後に、DIF-PおよびDIF-Nを出力している場合が例示されている。
【0087】
ここで、送信装置10,20のうち第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、送信装置10,20のうち第2の送信装置(送信装置20)におけるモード制御部(送信モード制御部24)は、当該第2の送信装置(送信装置20)における送信モードを、当該第2の送信装置(送信装置20)の出力端40A,40Bを終端する終端モードにする。一方、送信装置10,20のうち第2の送信装置(送信装置20)における送信モードがHSモードとなっているとき、送信装置10,20のうち第1の送信装置(送信装置10)におけるモード制御部(送信モード制御部14)は、当該第1の送信装置(送信装置10)における送信モードを、当該第1の送信装置(送信装置10)の出力端40A,40Bを終端する終端モードにする。
【0088】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、他の送信装置(送信装置20)における送信モードがDIF-NモードからDIF-Pモードに遷移したことを検出したときに、終端抵抗RTをオフからオンにする。一方、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、他の送信装置(送信装置10)における送信モードがDIF-NモードからDIF-Pモードに遷移したことを検出したときに、終端抵抗RTをオフからオンにする。
【0089】
また、第1の送信装置(送信装置10)の終端制御部PHY-FSMは、他の送信装置(送信装置20)における送信モードがDIF-Nモードに遷移し、かつ、DIF-Nにおける振幅が所定の閾値以下になったことを検出したときに、終端抵抗RTをオンからオフにする。一方、第2の送信装置(送信装置20)の終端制御部PHY-FSMは、他の送信装置(送信装置10)における送信モードがDIF-Nモードに遷移し、かつ、DIF-Nにおける振幅が所定の閾値以下になったことを検出したときに、終端抵抗RTをオンからオフにする。
【0090】
また、第1の送信装置(送信装置10)において、送信モード制御部11は、送信モードがDIF-NモードからHiZモードに変位する際に、DIF-Nモードでの電圧レベルを維持するために、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。一方、第2の送信装置(送信装置20)において、送信モード制御部21は、送信モードがDIF-NモードからHiZモードに変位する際に、DIF-Nモードでの電圧レベルを維持するために、一対の出力端40A,40Bの電圧をプルアップするPullUpモードを挿入する。
【0091】
本変形例では、送信装置10,20のうち第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、送信装置10,20のうち第2の送信装置(送信装置20)における送信モードが、当該第2の送信装置(送信装置20)の出力端40A,40Bを終端する終端モードとなっている。これにより、第1の送信装置(送信装置10)における送信モードがHSモードとなっているとき、第2の送信装置(送信装置20)における全反射が抑えられる。また、HSモードとDIF-Nモードとを切り替えながら伝送を行うことができる。その結果、高速伝送に適したマルチポイントバス伝送を実現することができる。
【0092】
<3.適用例>
以下に、上記実施の形態およびその変形例A~Dに係る通信システム1の適用例について説明する。
【0093】
(適用例その1)
図19は、上記実施の形態およびその変形例A~Dに係る通信システム1が適用されるスマートフォン2(多機能携帯電話)の外観を表すものである。このスマートフォン2には、様々なデバイスが搭載されており、それらのデバイス間でデータのやり取りを行う通信システムにおいて、上記各実施の形態の通信システムが適用されている。
【0094】
図20は、スマートフォン2に用いられるアプリケーションプロセッサ310の一構成例を表すものである。アプリケーションプロセッサ310は、CPU(Central Proc essing Unit)311と、メモリ制御部312と、電源制御部313と、外部インタフェース314と、GPU(Graphics Processing Unit)315と、メディア処理部316と、ディスプレイ制御部317と、MIPIインタフェース318とを有している。CPU311、メモリ制御部312、電源制御部313、外部インタフェース314、GPU315、メディア処理部316、ディスプレイ制御部317は、この例では、システムバス319に接続され、このシステムバス319を介して、互いにデータのやり取りをすることができるようになっている。
【0095】
CPU311は、プログラムに従って、スマートフォン2で扱われる様々な情報を処理するものである。メモリ制御部312は、CPU311が情報処理を行う際に使用するメモリ501を制御するものである。電源制御部313は、スマートフォン2の電源を制御するものである。
【0096】
外部インタフェース314は、外部デバイスと通信するためのインタフェースであり、この例では、無線通信部502およびイメージセンサ410と接続されている。無線通信部502は、携帯電話の基地局と無線通信をするものであり、例えば、ベースバンド部や、RF(Radio Frequency)フロントエンド部などを含んで構成される。イメージセンサ410は、画像を取得するものであり、例えばCMOSセンサを含んで構成される。この外部インタフェース314とイメージセンサ410との間の通信システムには、例えば、上記実施の形態および変形例A~Dの通信システムが適用される。
【0097】
GPU315は、画像処理を行うものである。メディア処理部316は、音声や、文字や、図形などの情報を処理するものである。ディスプレイ制御部317は、MIPIインタフェース318を介して、ディスプレイ504を制御するものである。
【0098】
MIPIインタフェース318は画像信号をディスプレイ504に送信するものである。画像信号としては、例えば、YUV形式やRGB形式などの信号を用いることができる。このMIPIインタフェース318とディスプレイ504との間の通信システムには、例えば、上記実施の形態および変形例A~Dの通信システムが適用される。
【0099】
図21は、イメージセンサ410の一構成例を表すものである。イメージセンサ410は、センサ部411と、ISP(Image Signal Processor)412と、JPEG(Joint Photographic Experts Group)エンコーダ413と、CPU414と、RAM(Random A ccess Memory)415と、ROM(Read Only Memory)416と、電源制御部417と、IC(Inter-Integrated Circuit)インタフェース418と、MIPIインタフェース419とを有している。これらの各ブロックは、この例では、システムバス420に接続され、このシステムバス420を介して、互いにデータのやり取りをすることができるようになっている。
【0100】
センサ部411は、画像を取得するものであり、例えばCMOSセンサにより構成されるものである。ISP412は、センサ部411が取得した画像に対して所定の処理を行うものである。JPEGエンコーダ413は、ISP412が処理した画像をエンコードしてJPEG形式の画像を生成するものである。CPU414は、プログラムに従ってイメージセンサ410の各ブロックを制御するものである。RAM415は、CPU414が情報処理を行う際に使用するメモリである。ROM416は、CPU414において実行されるプログラムを記憶するものである。電源制御部417は、イメージセンサ410の電源を制御するものである。ICインタフェース418は、アプリケーションプロセッサ310から制御信号を受け取るものである。また、図示していないが、イメージセンサ410は、アプリケーションプロセッサ310から、制御信号に加えてクロック信号をも受け取るようになっている。具体的には、イメージセンサ410は、様々な周波数のクロック信号に基づいて動作できるよう構成されている。
【0101】
MIPIインタフェース419は、画像信号をアプリケーションプロセッサ310に送信するものである。画像信号としては、例えば、YUV形式やRGB形式などの信号を用いることができる。このMIPIインタフェース419とアプリケーションプロセッサ310との間の通信システムには、例えば、上記各実施の形態の通信システムが適用される。
【0102】
(適用例その3)
図22および図23に、撮像装置への適用例として、車載用カメラの構成例を示す。図22は車載用カメラの設置例の一例を示し、図23は車載用カメラの内部構成例を示している。
【0103】
例えば、図22に示したように、車両301のフロント(前方)に車載用カメラ401、左右に車載用カメラ402,403、さらにリア(後方)に車載用カメラ404が設置される。車載用カメラ401~404はそれぞれ、車内ネットワークを介してECU302(Electrical Control Unit;電子制御ユニット)に接続されている。
【0104】
車両301のフロントに備え付けられた車載用カメラ401の画像取り込み角度は、例えば図22にaで示す範囲である。車載用カメラ402の画像取り込み角度は、例えば図22にbで示す範囲である。車載用カメラ403の画像取り込み角度は、例えば図22にcで示す範囲である。車載用カメラ404の画像取り込み角度は、例えば図22にdで示す範囲である。車載用カメラ401~404はそれぞれ、取り込んだ画像をECU302に出力する。この結果、車両301の前方、左右、後方の360度(全方位)の画像をE CU302において取り込むことができる。
【0105】
例えば、図23に示したように、車載用カメラ401~404はそれぞれ、イメージセンサ431と、DSP(Digital Signal Processing)回路432と、セレクタ433と、SerDes(SERializer/DESerializer)回路434とを有している。
【0106】
DSP回路432は、イメージセンサ431から出力された撮像信号に対して各種の画 像信号処理を行うものである。SerDes回路434は、信号のシリアル/パラレル変換を行うものであり、例えばFPD-Link III等の車載インタフェースチップで構成されている。
【0107】
セレクタ433は、イメージセンサ431から出力された撮像信号を、DSP回路432を介して出力するか、DSP回路432を介さずに出力するかを選択するものである。
【0108】
イメージセンサ431とDSP回路432との間の接続インタフェース441に、例え ば、上記各実施の形態の通信システムが適用可能である。また、イメージセンサ431とセレクタ433との間の接続インタフェース442に、例えば、上記各実施の形態の通信システムが適用可能である。
【0109】
以上、複数の実施の形態およびそれらの変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
【0110】
また、例えば、本開示は以下のような構成を取ることができる。
(1)
複数の送信装置から、一対の信号線を介して1つの受信装置にデータを伝送する通信システムであって、
各前記送信装置は、
送信モードを制御するモード制御部と、
前記モード制御部によって制御された前記送信モードに応じて前記データを生成する送信データ生成部と、
前記送信データ生成部で生成された前記データを前記受信装置に送信するデータ送信部と
を有し、
複数の前記送信装置のうち第1の送信装置における前記送信モードがHS(High Speed)モードとなっているとき、複数の前記送信装置のうち第2の送信装置における前記モード制御部は、当該第2の送信装置における前記送信モードを、当該第2の送信装置の出力端を終端する終端モードにする
通信システム。
(2)
各前記データ送信部は、
前記一対の信号線に接続された一対の出力端の終端をオンオフ可能な終端抵抗と、
前記一対の出力端の電圧に基づいて他の送信装置における前記送信モードを検出し、その検出結果に基づいて前記終端抵抗のオンオフを制御する終端制御部と
を有する
(1)に記載の通信システム。
(3)
前記終端制御部は、前記他の送信装置の前記送信モードにおいてLP-11、LP-01、LP-00の一連の所望の遷移を検出したときに、前記終端抵抗をオフからオンにする
(2)に記載の通信システム。
(4)
前記終端制御部は、前記一対の出力端の電圧を所定の閾値で判定し、所望の遷移を検出したときに、前記終端抵抗をオフからオンにする
(2)または(3)に記載の通信システム。
(5)
前記終端制御部は、前記他の送信装置における前記送信モードがLP(Low Power)モードのLP-11であると検出したときに、前記終端抵抗をオンからオフにする
(2)ないし(4)のいずれか1つに記載の通信システム。
(6)
前記終端制御部は、前記一対の出力端の電圧が所定の閾値を超えたことを検出したときに、前記終端抵抗をオンからオフにする
(2)ないし(5)のいずれか1つに記載の通信システム。
(7)
前記第1の送信装置において、前記モード制御部は、前記送信モードがHSモードからLPモードに変位する際に、前記一対の出力端の電圧をプルアップするプルアップモードを挿入する
(2)ないし(6)のいずれか1つに記載の通信システム。
(8)
前記第2の送信装置において、前記モード制御部は、前記終端モードの前後に、前記一対の出力端の電圧をハイインピーダンスにするハイインピーダンスモードを挿入する
(7)に記載の通信システム。
(9)
前記モード制御部は、3つの制御信号の組み合わせに基づいて、HSモード、LPモード、プルアップモード、ハイインピーダンスモードを制御する
(8)に記載の通信システム。
(10)
複数の送信装置から、一対の信号線を介して1つの受信装置にデータを伝送する通信方法であって、
複数の前記送信装置のうち第1の送信装置における送信モードがHS(High Speed)モードとなっているとき、複数の前記送信装置のうち第2の送信装置における前記送信モードを、当該第2の送信装置の出力端を終端する終端モードにする
通信方法。
【0111】
本開示の一実施の形態に係る通信システムおよび通信方法によれば、複数の送信装置のうち第1の送信装置における送信モードがHSモードとなっているとき、複数の送信装置のうち第2の送信装置における送信モードを、当該第2の送信装置の出力端を終端する終端モードとなるようにしたので、高速伝送に適したマルチポイントバス伝送を実現することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
【0112】
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23