(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-13
(45)【発行日】2024-06-21
(54)【発明の名称】スマートペンダント
(51)【国際特許分類】
B25J 9/22 20060101AFI20240614BHJP
【FI】
B25J9/22 Z
(21)【出願番号】P 2020037278
(22)【出願日】2020-02-15
【審査請求日】2023-02-14
(73)【特許権者】
【識別番号】518088897
【氏名又は名称】田中 博幸
(72)【発明者】
【氏名】田中 博幸
【審査官】尾形 元
(56)【参考文献】
【文献】特開2019-25582(JP,A)
【文献】特開2018-202564(JP,A)
【文献】国際公開第2018/179191(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B25J 1/00-21/02
(57)【特許請求の範囲】
【請求項1】
ロボットを教示する携帯して操作可能な装置において、
入力手段と表示部を備え、
AIによる制御を実施するための情報を受信するセンサ入力部と、
前記センサ入力部からのデータを参照してAIによるロボットの教示を実行するAI制御部
と、
AI制御によらないロボットの教示を実施するための非AI制御部と、
AIによるロボット教示実行の適否を判断し、前記AI制御部と前記非AI制御部の動作を管轄するAI制御実施判断部を備えてなるスマートペンダント。
【請求項2】
AIによる教示とAIによらない教示の組み合わせ方を学習していく手段を前記AI制御実施判断部に設けたこと特徴とする請求項
1のスマートペンダント。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロボットシステムを構成する一つであり、ロボットを教示するための装置であるスマートペンダントに関する。
【背景技術】
【0002】
ロボットないしロボットアームの動作の教示をシステムに登録する方法としては直接教示と間接教示がある。ロボットの教示には通常ペンダントと称する入力表示装置が使われる。ペンダントは、ロボットのティーチング用の画像やロボットの動作状態を示す画像を表示する表示部と、ロボットの手動操作や各種入力操作を行う操作キーとを備え、作業者が携帯して操作することができる。
ペンダントによる直接教示と間接教示、およびペンダントの従来技術は、例えば下記の特許文献1に開示されている。また直接教示と関節教示の問題点についても特許文献1に開示されている。なお、この特許文献には間接教示という用語は出てこない。しかし直接教示でないものは間接教示であり、この特許文献ではテキストベースという用語が使われている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
直接教示は、ロボットのアームの先端部や関節部に力センサやトルクセンサなどを取り付け、作業者がアームを直接的に動かす教示方法である。なおモータもセンサのうちに含むものとする。アームに設けてあるモータのモータ電流から関節部のトルクを推定することができるのでモータもセンサとして使うことができる。ただしモータ電流のみもしくは主としてモータ電流によって、教示を実行するには相当の技量が必要である。
一方間接教示には、いわゆるオンラインとオフラインがある。工場の生産現場で多用されてきたのがオンライン教示である。ペンダントに教示データ(教示プログラム)を作業者が入力する方法である。その教示データないし教示プログラムが優れたものであれば信頼性が高い教示方法である。しかし優れた教示データを作るのは簡単ではない。一般に作成容易でない教示プログラムをいかに簡単に作れるようにするか補助するシステムを提供するのがペンダントメーカの腕の見せ所であり、ペンダントユーザである現場の対応力、技術力でもある。
さらにもう一方のオフライン教示は、ロボットの動作環境の変化に強い、実機を止めずに教示ができるという利点はあるものの、オフライン教示用のプログラムの開発が困難という問題点がある。またオフライン教示は、ペンンダントではなくパソコンを使うことが一般的である。ロボットのペンダントにおいては、作業者が携帯して操作する性質上、ペンダントの表示領域(画面)に充分なエリアを確保できないことが普通である。このため、オフライン教示をペンダント上で行うのは容易ではない。ペンダント上でオフライン教示を行わないとするなら、現場で教示のたびごとにパソコンを用意しなければならないので手間である。パソコンを用意してもオンライン教示よりすぐれた教示ができるとは限らない。つまりパソコンを用意する手間が報われるかどうか定かでない。ペンダント上でオフライン教示をしようとするならオンライン教示以上にプログラムの開発が困難である。
本発明は、従来の教示方法のこうした実情に鑑みてなされたものであり、画面の大きさに制約があるペンダントにおいて、作業者の熟練度に左右されにくく、教示作業の操作性を向上させることができる賢いペンダントすなわちスマートペンダントの提供を目的とする。
【課題を解決するための手段】
【0005】
本発明に係るスマートペンダントは以下のような構成である。
請求項1の発明は、ロボットを教示する携帯して操作可能な装置において、入力手段と表示部を備え、AIによる制御を実施するための情報を受信するセンサ入力部と、前記センサ入力部からのデータを参照してAIによるロボットの教示を実行するAI制御部を備えてなる。
【0006】
請求項1の発明は、スマートペンダントにおいて、AI制御によらないロボットの教示を実施するための非AI制御部を有する。
【0007】
請求項1の発明は、スマートペンダントにおいて、AIによるロボット教示実行の適否を判断し、前記AI制御部と前記非AI制御部の動作を管轄するAI制御実施判断部を設けたものである。
【0008】
請求項2の発明は、請求項1のスマートペンダントにおいて、AIによる教示とAIによらない教示の組み合わせ方を学習していく手段を前記AI制御実施判断部に設けたこと特徴とする。
【発明の効果】
【0009】
ロボットのペンダントにおいてAIによる教示を行うことによって、ペンダントを操作する作業者の操作性と生産性を向上させることができる。またAIによる教示を行わないことによってペンダントの操作性と生産性が低下することを防止することもできる。さらにまたAI制御と非AI制御を組み合わせてロボットを操作することが可能なので、熟練者であってもそうでなくてもスマートペンダントによってロボットの操作を従来よりも適切に行うことが可能となる。
【図面の簡単な説明】
【0010】
【
図4】 本発明に係るAI制御の一実施形態を示すブロック図
【発明を実施するための形態】
【0011】
図面を参照して本発明の実施形態を実施例1から同4まで以下に説明する。なお以下の実施例ではスマートペンダントのことをペンダントと称する。
【実施例1】
【0012】
図1は、本発明の第1実施形態を示すブロック図である。ロボットシステムの主要構成要素はロボット9とペンダント1である。図示しないけれどロボットは駆動機構すなわちアームを持っている。ロボットのいわゆるシステムコントローラは図示していないけれどシステムのどこに設けてもよい。本発明の実施により好都合なのはペンダント1の制御部6に内蔵させる方式である。
本発明ではセンサ入力部4が必要となる。そのセンサ入力部と電気的に接続するセンサは単数でも複数でもよい。
図1ではカメラ10aをセンサに用いる場合を示している。センサを設ける部位は、自由である。ロボットに内蔵させてもよいし、ペンダントに内蔵させてもよいし、
図1のようにペンダント1やロボット9の外部に独立的に設けてもよい。
ペンダント1は、入力機能(入力手段)と出力機能(表示手段)を備える持ち運び可能な端末装置ないし操作装置である。いわゆる教示ができることが必須要件である。ペンダント1には表示部2と入力部3を具備させる。入力部3は入力手段であれば何でもよい。例えばマウスでもよいのではあるがペンダントに実装が容易なキーパッドを通常用いる。入力部3はペンダント1ないし制御部6に信号を出力する。
なお本発明ではタブレット型の端末もペンダント1の一種とみなすものとする。つまり表示部2をタッチパネルに成して入力キー(入力部3)は表示部2に設けてもよい。一般的にノート型のパソコンはペンダントではない。しかしながら作業者が携帯した状態で操作可能な端末は、本発明でいうところのペンダントである。たとえばノートパソコンにストラップを付ければペンダントである。また、ノートパソコンをショルダーバッグのような鞄に入れて操作するのであれば、それはペンダントである。
本発明の重要な特徴的構成要素はセンサ入力部4とそれに続くAI制御部5である。AI制御部5は、人工知能(AI)によるロボット操作やロボット教示をするためのハードウエアまたはソフトウエアのモジュールである。AIのアルゴリズムには種々のものが知られている。本発明では、そのどれを用いてもよい。センサからの情報を参照してアクチュエータ(アーム)を知能的に動かそうとするアルゴリズムや手法なら何でもよい。しかしながら特に推奨できるのは深層学習(ディープラーニング)、サブサンプション・アーキテクチャ(包摂アーキテクチャ)などである。
AI制御部5は、ペンダント1内のどこに設けてもよい。一般的には制御部5内に設けるか制御部5と通信可能に接続して設ける。
ペンダント1にセンサ入力部6とAI制御部5を設けたことにより、持ち運び可能な端末であるペンダン1を使用してAI制御によるロボットへの教示が可能となる。
本発明のAI制御の実施の一形態は、作業者がロボット9のアームの先端部を動かして直接教示することで得られるデータをプログラム化してAI制御部5に蓄積するなどである。モータ電流からトルクを推定するアルゴリズムやモジュールをAI化することも推奨できる。
【実施例2】
【0013】
図2は、本発明の第2実施形態を示すブロック図である。
上述したようにセンサ10はロボット9に付設してもよい。カメラ以外で使用できるセンサ10は、マイクロフォン、力センサ、トルクセンサ、力覚センサ、加速度センサまたはエンコーダなどである。当然モータ(図示せず)もセンサとして使える。モータ電流からトルクを計算できるからである。また入力部3のキー操作情報(操作履歴)もセンサ情報として使える。この場合、入力部3はセンサ入力部4の機能を一部兼ねることになる。
図1と
図2は、ほぼ同様の実施例を示しているわけであるが大きな相違点は、
図2では制御部6内に非AI制御部8を設けたことである。なお非AI制御部8は、制御部6とは別に設けてもよい。また非AI制御部8は、AI制御部5内に設けてもよい。
作業者が入力部から所定のキー操作を行えば、AI制御による教示も非AI制御による教示も適宜実施できる。
【実施例3】
【0014】
図3は、本発明の第3実施形態を示すブロック図である。
この実施の形態は
図2で示す実施の形態に加えて、AI制御実施判断部7を設けた構成である。他は
図2と同様である。
なおAI制御実施判断部7は、制御部6とは別に設けてもよい。またAI制御実施判断部7は、AI制御部5内に設けてもよい。
AI制御実施判断部7はAI制御と非AI制御の得失を判断するモジュールである。作業者の熟練度、操作履歴、作業内容、AIの進化度(学習度や学習意欲)などを評価して、AIを使う制御のほうが教示操作に有利だと判断すればAIによるロボット9の教示を実施する。AI制御による教示操作が有利でないと判断すれば非AI制御によるロボット9の教示を実施する。非AI制御による教示そのものは従来技術であり代表的には間接教示のオンライン教示である。本発明の場合、AI制御による教示を行うべくその検討は行う。しかしそれが不利だとAI制御実施判断部7が判断すれば非AI制御による教示を行い、そのデータを蓄積しておく。AI制御実施判断部7は、評価に特化した機能であり、教示動作そのものは、AI制御部5または非AI制御部8が行う。
【実施例4】
【0015】
図4は本発明に係るAI制御の一実施形態を示すブロック図である。これを本発明の第4実施形態とする。
AI制御実施判断部7は、制御部6内またはAI制御部5内に設けてもよいことは上述した通りである。
AI制御部5は、例えばこの
図4のようなモジュール構成とする。
なお直接教示モジュール5aと間接教示モジュール5bを分ける構成にする必要は必ずしもない。特に一つのモジュールをだけを呼び出す場合はそうである。しかしながら制御演算部5cで、呼び出した複数のモジュールを組み合させたり合成したり比較したりする場合は、
図4のようなモジュール構成とするほうが、ペンダントを作る側も使う側も混乱しにくいと言える。
また、制御演算部5cは、AIによる教示とAIによらない教示の組み合わせ方を学習していく手段である。教示を含むロボット制御ステップのうち、どれをAI制御するか、一連の制御動作のうち、どことどこをAI制御するかを学習していく。
その学習の成果はAI制御実施判断部7が行う。なおAI制御実施判断部7はペンダント内のどこに設けてもよい。
【産業上の利用可能性】
【0016】
ペンダントにAI制御を実行する手段を設けたことにより従来よりもロボットのペンダントの操作性を向上させることができる。すなわちスマートペンダントの一つの形態を提供できる。
【符号の説明】
【0017】
1 ペンダント
2 表示部
3 入力部
4 センサ入力部
5 AI制御部
5a 直接教示モジュール
5b 間接教示モジュール
5c 制御演算部
6 制御部
7 AI制御実施判断部
8 非AI制御部
9 ロボット
10 センサ
10a カメラ(センサ)