IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベクトン・ディキンソン・アンド・カンパニーの特許一覧

特許7503907多数の物理パラメータを用いる薬物分類のためのシステムおよび方法
<>
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図1
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図2
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図3
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図4A
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図4B
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図5A
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図5B
  • 特許-多数の物理パラメータを用いる薬物分類のためのシステムおよび方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-13
(45)【発行日】2024-06-21
(54)【発明の名称】多数の物理パラメータを用いる薬物分類のためのシステムおよび方法
(51)【国際特許分類】
   G01N 21/27 20060101AFI20240614BHJP
   G01N 21/41 20060101ALI20240614BHJP
   G01N 27/06 20060101ALI20240614BHJP
   G01N 33/15 20060101ALI20240614BHJP
【FI】
G01N21/27 Z
G01N21/41 Z
G01N27/06 Z
G01N33/15 Z
【請求項の数】 9
(21)【出願番号】P 2019561990
(86)(22)【出願日】2018-05-10
(65)【公表番号】
(43)【公表日】2020-07-02
(86)【国際出願番号】 US2018031954
(87)【国際公開番号】W WO2018209016
(87)【国際公開日】2018-11-15
【審査請求日】2021-05-10
【審判番号】
【審判請求日】2023-07-27
(31)【優先権主張番号】15/594,265
(32)【優先日】2017-05-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】595117091
【氏名又は名称】ベクトン・ディキンソン・アンド・カンパニー
【氏名又は名称原語表記】BECTON, DICKINSON AND COMPANY
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】クリスティアン サンドマン
(72)【発明者】
【氏名】エリック カート ウィット
【合議体】
【審判長】加々美 一恵
【審判官】▲高▼見 重雄
【審判官】松本 隆彦
(56)【参考文献】
【文献】特表2012-529656(JP,A)
【文献】特開2006-10603(JP,A)
【文献】米国特許出願公開第2013/0279774(US,A1)
【文献】西本右子,これだけ!分析化学,株式会社 秀和システム,2015年2月1日,p.27-29
(58)【調査した分野】(Int.Cl.,DB名)
G01N21/00-21/01,21/17-21/61
G01N27/00-27/10,27/14-27/24
G01N33/00-33/46
(57)【特許請求の範囲】
【請求項1】
少なくとも1つの試料を分類するための方法であって、
前記少なくとも1つの試料に適用するための第1の分析技術を選択する工程と、
前記第1の分析技術を前記少なくとも1つの試料に適用する工程と、
前記少なくとも1つの試料に適用された前記第1の分析技術の結果を得る工程と、
得られた前記結果に基づいて前記少なくとも1つの試料が分類され得るかどうかを判定し、前記少なくとも1つの試料が分類され得ない場合に、前記第1の分析技術を利用して前記少なくとも1つの試料を分類することが困難であるという事実に基づいて前記少なくとも1つの試料に含まれると推定される物質の候補を、成功裏に分類する可能性が高い第2の分析技術を選択し、選択された前記第2の分析技術を適用する工程と、
前記少なくとも1つの試料を分類する工程と、
を含む、方法。
【請求項2】
前記第1の分析技術を選択する前記工程および前記第2の分析技術を選択する工程の少なくとも一方は、光学分光法測定、流体力学測定、電気化学的測定、熱力学的測定、および音響学的測定に基づく分析技術からなる群から選択する工程を含む、
請求項1に記載の方法。
【請求項3】
前記少なくとも1つの試料を分類する前記工程は、多数の試料を順次分類する工程を含む、
請求項1に記載の方法。
【請求項4】
前記少なくとも1つの試料を分類する前記工程は、多数の試料を同時に分類する工程を含む、
請求項1に記載の方法。
【請求項5】
前記少なくとも1つの試料を分類する前記工程は、濃度および種類が異なる薬物および希釈剤を分類する工程を含む、
請求項1に記載の方法。
【請求項6】
少なくとも1つの試料を分類するためのシステムであって、
前記少なくとも1つの試料を収納するためのハウジング、
前記少なくとも1つの試料の少なくとも1つの物理パラメータを測定するための少なくとも1つのセンシング素子、および
前記少なくとも1つの物理パラメータを受信および分析しならびに前記少なくとも1つの試料が分類され得るかどうかを判定するように構成されるプロセッサ、を含み、
第1の物理パラメータを用いて前記少なくとも1つの試料が分類され得ない場合、前記プロセッサは、前記第1の物理パラメータを利用して前記少なくとも1つの試料を分類することが困難であるという事実に基づいて前記少なくとも1つの試料に含まれると推定される物質の候補を、成功裏に分類する可能性が高い第2の物理パラメータを選択し、選択された前記第2の物理パラメータを適用するように構成される、
システム。
【請求項7】
前記試料の別の物理パラメータを測定するための第2のセンシング素子をさらに含む、
請求項6に記載のシステム。
【請求項8】
前記少なくとも1つの試料を収納するための前記ハウジングは、光学的にニュートラルな容器を含む、
請求項6に記載のシステム。
【請求項9】
前記少なくとも1つの試料を収納するための前記ハウジングは、光学的にクリーンなフローセルまたはチューブを含む、
請求項6に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薬物(単数または複数)を分類するためのシステムおよび方法に関する。特に、本発明は、多数の物理パラメータを用いる薬物の分類のための改善されたシステムおよび方法に関する。
【背景技術】
【0002】
投薬過誤は、間違いを低減させるための努力にかかわらず、健康管理において大きな問題であり続けている。薬物過誤を低減させるための1つの取り組みは、投与の前に、薬物、希釈剤(diluent)および濃度を明確に(positively)識別することである。紫外可視(UV/Visual)分光法(Spectroscopy)、ラマン分光法、赤外分光法、円二色性(Circular Dichroism)、屈折率、伝導度(Conductivity)、pHなどのようないくつもの化学技術が、薬物溶液を特性化するために採用され得る。実際に、従来の分析用具(traditional analytical tools)の多くは、薬物を識別するために使用されてきたが、単独でそれらは多岐にわたる薬物および希釈剤溶液を識別することが期待され得ない。関連情報は、公開されたPCT出願(特許文献1)に見出され得、その内容は、その全体が参照によって本明細書に組み入れられる。
【0003】
1つの例として、図1のチャートは、D5W希釈剤中フロセミド、およびD5W希釈剤単独の光学濃度スペクトルを示す。示されるように、希釈剤中のフロセミドの光学濃度スペクトル、希釈剤のスペクトルを覆い隠し、紫外可視スペクトル検査単独による希釈剤の識別を妨げる。
【0004】
IV化合物(IV compound)の改善された識別に対する1つの取り組みは、インピーダンス分光法を使用することであった。小さい交流電流(AC current)がIV化合物に印加され、および交流電流は、化合物のインピーダンススペクトルを識別するための周波数の範囲において掃引(swept)された。しかしながら、照合される(interrogated)流体と接触する電極は汚れ(become foulded)、および汚れなかったときでさえ、インピーダンス分光法単独では化合物と希釈剤を満足のいくように明確に識別することができないので、この取り組みは理想的ではなかった。
【0005】
したがって、薬物化合物と希釈剤とを識別する改善されたシステムおよび方法に対する要求がある。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2009/114115号(WO2009-114115A1)
【発明の概要】
【0007】
少なくとも1つの試料を分類するための方法を含む本発明の実施形態によって、上述の不利点は克服されおよび他の利点は実現される。方法は、少なくとも1つの試料に適用するための分析技術を選択する工程と、分析技術を少なくとも1つの試料に適用する工程と、少なくとも1つの試料に適用された分析技術の結果を得る工程と、得られた結果に基づいて少なくとも1つの試料が分類され得るかどうかを判定する工程と、を含む。少なくとも1つの試料が分類され得ない場合、方法は、別の分析技術を選択および適用する工程をさらに含む。
【0008】
本発明の実施形態は、また、少なくとも1つの試料を分類するためのシステムを提供する。システムは、少なくとも1つの試料を収納するためのハウジング、少なくとも1つの試料の少なくとも1つの物理パラメータを測定するための少なくとも1つのセンシング素子、および少なくとも1つの物理パラメータを受信(receive)および分析しならびに少なくとも1つの試料が分類され得るかどうか判定するように構成されるプロセッサを含む。少なくとも1つの試料が分類され得ない場合、プロセッサは、少なくとも1つの試料が分類されるまで、付加的な分析技術を選択および適用するように構成される。
【0009】
本発明の例示的な実施形態は、添付図面に関連して記載される。
【図面の簡単な説明】
【0010】
図1】D5W希釈剤単独の紫外可視スペクトルと比較された、D5W希釈剤中フロセミドの紫外可視スペクトルを示す図である。
図2】異なる希釈剤のインピーダンスおよびアドミッタンス測定値を示す図である。
図3】本発明の例示的な実施形態による方法を示す図である。
図4A】容器内で照合される静的な(static)薬物試料を含む薬物分類のためのシステムを示す図である。
図4B図4Aのシステムにおいて薬物を分類するためのアルゴリズムを示す図である。
図5A図5Bおよび図6を含む、薬物分類のためのシステムを示す図である。
図5B図5Aのシステムにおいて薬物を分類するためのアルゴリズムを示す図である。
図6】本発明による多数のセンサ種類(sensor types)を含むフローセルの例示的な実施形態を示す図である。
【発明を実施するための形態】
【0011】
図面の図全体を通して、同様の参照番号は、同様の要素、特徴および構造を指していることが理解されるべきである。
【0012】
本発明の例示的な実施形態の詳細な説明
本発明の例示的実施形態は、薬物、希釈剤、および濃度の分類のために、薬物治療溶液(medication solutions)の多数の物性を利用する。2つまたはそれより多い物理学的測定の組み合わせは、光学分光法、流体力学、電気化学的、熱力学的、および音響学的特性を含む薬物特性化のために使用される。光学分光法測定の例は、紫外可視分光分析(Spectrometry)、ラマン分光法、赤外分光法、円二色性分光法(Circular Dichroic Spectroscopy)、および屈折率を含むが、これらに限定されない。流体力学測定の例は、質量密度、比重、相対密度、粘度、表面張力、およびレイノルズ数を含むが、これらに限定されない。電気化学的測定の例は、pH、電気伝導度および伝導度スペクトル、インピーダンスおよびインピーダンススペクトル、ならびにアドミッタンスおよびアドミッタンススペクトルを含むが、これらに限定されない。熱力学的測定の例は、熱容量(比熱)および熱伝導度を含むが、これらに限定されない。音響学的測定の例は、音速、および飛行時間を含むが、これらに限定されない。これらのパラメータの多くは、流体の他の直接または間接測定から導出される。したがって、本発明の例示的な実施形態によって採用される特性は、特定の物理的、化学的または数学的定義に限定されないことを理解されたい。測定値は、典型的には、システムを通じて伝達され(transmitted)、システムから反射し返されるエネルギー、または流体路内部にあるセンサを照合するために使用されるエネルギー、を測定することによって決定される。
【0013】
また、化学および分子プローブは、注入剤(infusate)の所望のまたは夾雑(contaminating)構成成分を識別するために採用されてもよいことに留意されたい。抗体、蛍光染料、生体活性分子(bio-active molecules)、DNA、ナノ粒子、電子ノーズセンサ(electronic nose sensor)などは、それらが流体流および揮発性物質(volatiles)に暴露されならびに分析のために測定されまたはシステムに送信され得る信号を提供するところの流体路内に含まれ得る。これらのプローブは、流体または揮発性物質に対する連続的な暴露が望ましい構成に統合され得、または、流体を試験するためにそれらを使用することがそれらが再度使用されることをできなくする場合、限られた時間にわたって流体に対して暴露され得る。例えば、抗体と結合する薬物は可逆性ではない可能性があり、それゆえ、1つの試料および試験、または1回限りの試験取り組み法は、優先的な試験方法であり得る。
【0014】
これらのパラメータは、意図される注入剤、その濃度、ならびに、溶解された夾雑物(dissolved contaminates)、誤った希釈剤、微粒子、感染因子(infectious agents)、およびガス(例えば、気泡)を含む間欠的な混入物(intermittent contamination)の存在、を実証するために使用され得る。
【0015】
いくつかの場合において、特定の薬物および希釈剤は、単一の物理学的測定により、ある程度識別され得るが、他の場合において、薬物溶液は、多数の物理パラメータの測定を組み合わせることなしに、一意的に(uniquely)識別され得ない。本発明の例示的な実施形態によると、多数の照合(interrogation)技術からの異なる物性の測定を有利に組み合わせることによって、薬物識別の性能(capabilities)および正確さ(accuracy)は改善される。例えば、いくつかの場合において、 紫外可視スペクトル単独で、薬物をある程度分類し得るが、希釈剤は、ときどき、例えば試料が220~320nmの間に高い吸収を有するときなど、判定することが困難である。図1、D5W希釈剤中フロセミド、およびD5W希釈剤単独に関する紫外可視スペクトル測定を示す。図1は、また、希釈剤のより低い吸収と比較しW中フロセミドの強い吸収を示す。釈剤フロセミドのスペクトル、D5Wのスペクトルを覆い隠すので、紫外可視分光法単独では、希釈剤を明確に識別するのに不十分である。図2に示されるように、しかしながら、2つの希釈剤は、異なる伝導度プロファイルを有する。したがって、紫外可視スペクトルに加えてインピーダンススペクトルおよび/またはアドミッタンススペクトルを測定することは、判定の正確さを増大させる。屈折率は、また、上述の電気特性に加えてまたは上述の電気特性の代わりに使用されてもよい。サポートベクトルマシン(SVM)を使用する1つの実施形態において、伝導度は、試料の希釈剤を識別するために使用され、およびこの結果に基づいて、D5Wまたは生理食塩水に関する特定の薬物ライブラリのいずれかが、UV/VIS分光計を用いて測定されたデータを分類するために使用された。この取り組みに続いて、2つの異なる希釈剤中の4つの異なる濃度での10種の薬物に関する薬物識別性能は、UV/VIS単独から伝導度とUV/VISとの組み合わせに移って、70%正確な薬物識別から84%に改善した。別の実施形態において、また、サポートベクトルマシン(SVM)分類法を使用して、2つの異なる希釈剤中の4つの異なる濃度での20種の薬物に関して、希釈剤(D5Wまたは生理食塩水)を識別するための全体的な正確さは、96%であり、これは、屈折率データを付加的に使用することにより、100%まで、さらに増大し得た。これらの実験は、異なる分析技術の組み合わせが薬物識別性能を著しく向上させることを示した。
【0016】
本発明の好ましい実施形態において、物理パラメータの組み合わせは、患者への送達前に薬物を分類するために、リンクされている。これらの分析は、単一のまたは多数の試料に対して順次または同時に実施され得る。アルゴリズムは、正確な溶液識別のための物理パラメータを統合する(integrates)。アルゴリズムは、化学的特性によって薬物および希釈剤および濃度を分類し、および次いで、薬物ライブラリ内の較正濃度間において内挿する。
【0017】
図3は、本発明の例示的な実施形態による例示的な方法を示す。工程100において、第1の分析技術は、未知の試料に適用される。工程102において、第1の分析技術の結果は、一意的な薬物および希釈剤が分類される可能性があるかどうか、 またはさらなる特性が測定されなければならないかどうかを判定するために分析される。工程104において一意的な薬物および希釈剤が第1の分析技術に基づいて分類される場合、次いで、薬物および希釈剤は識別されおよび方法は終了する。しかしながら、一意的な薬物および希釈剤が第1の分析技術に基づいて分離されることができない場合、次いで、方法は、工程106に続き、そこで、第2の分析技術は、試料に適用されるように選択される。第2の分析技術は、好ましくは、薬物および希釈剤を成功裏に分類する可能性を増大させるために、第1の分析技術の結果に基づいて選択される。例えば、上述のように、第1の技術が紫外可視分光法である場合、結果は、フロセミドまたはD5Wを示す可能性がある。したがって、選択されるべき第2の技術は、好ましくは、伝導度であり得る。工程108において、第2の分析技術は試料に適用され、および工程110において、第2の技術の結果は判定される。工程112において、分類が第2の技術の結果に基づいて可能である場合、次いで、方法は終了する。しかしながら、ステップ112において分類が依然として可能ではない場合、次いで、さらなる分析技術は、上述されおよび工程114において概して示されるように、選択されおよび適用される。上述の例示的方法を実行する分類器(classifier)システムは、好ましくは、さまざまな薬物のための所定の閾値パラメータおよび特徴を含むように構成される。試料は、測定された特性が所定の閾値パラメータの範囲に入るとき、分類され得る。
【0018】
上述の分類器は段階的である一方、採用され得るパターン認識および機械学習の技術分野において知られている多くの分類アルゴリズムがある。分類器訓練の間、物理パラメータのサブセットが常に要求されることが判定される場合、次いで、1つまたは複数の分類工程は、多次元的(multi-dimensional)であり得る。分類アルゴリズムは、判別分析(discriminant analysis)、決定木(decision trees)、ニュートラルネットワークおよびサポートベクトルマシンのような、パラメトリックおよびノンパラメトリック監視法(supervised methods)から選択され得る。クラスタリング、および回帰(regression)(主成分分析のような)アルゴリズム、ならびに当技術分野において知られている多くの他の方法は、採用され得る。
【0019】
特定のシステムアーキテクチャにおいて、注入剤を完全に特性化することは必要ではない場合がある。システムは、注入剤が、それが調整された薬局(pharmacy)を出てから、変化が生じていないことを実証するように設計され得る。この場合において、物理パラメータの特定のセットは、測定および記録され得る。患者サイトへの送達に際し、注射の前または間に、同一のパラメータは、測定され得る。測定変動性(measurement variability)を斟酌し、および2つの時点からのデータを比較して、薬物が同一薬物であるという信頼水準は、判定されおよび臨床医に報告され得る。過誤が生じたという警報または通知は、臨床医に対して表示され得る。システムアーキテクチャは、また、多くの注入剤パラメータが高い正確さおよび精密さ(precision)で測定される薬局において、高忠実度のシステムを備えて設計され得る。システムのアルゴリズムは、パラメータのサブセットを判定し、これは、薬物が変化していないという可能な限り最高の信頼水準を達成するために、患者のベッドサイドにおいて、より低い忠実度のシステムを用いて測定されることとなる。
【0020】
別の実施形態において、システムは、特定の注入剤特性が安全上の危険(safety hazards)を患者に対して絶対的な感覚で(in an absolute sense)提示し得るかどうかを判定するために設計されてもよく、一方、他の特性は、質的な感覚で(in a qualitative sense)報告されてもよい。例えば、イオン含有量(塩分濃度)が生理学的レベルよりも著しく高い場合、心血管との関わり(cardiovascular implications)があり得る。バルク電気インピーダンスは、イオン含有量を測定するために利用され得、および他の危険から切り離して危険を報告するために使用され得る。同一のインピーダンスデータは、次いで、特定の患者に対する誤った薬物のような別の投薬過誤の可能性に関して報告するために、分類器において他の測定された流体特性と組み合わせて使用され得る。
【0021】
上述の実施形態の多くは、2つまたはそれより多い場所および時間からの注入剤特性データの比較を必要とする。加えて、元の(original)患者処方、薬局または病院在庫から引き出される注入剤の構成成分、再構成および調製(preparation)に関連する工程および患者への送達の方法の知識は、システムを可能にするために必要とされる場合がある。これらのデータは、今日、病院および病院薬局において使用される情報およびワークフローシステムにおいて入手可能(available)である。さらに、データの有線および無線伝送、および機械可読コーディングおよび読み取り機(例えば、RFID、バーコードスキャナ)のために使用される技術は、当技術分野において広く知られている。注入剤パラメータの生成、伝達、アルゴリズムの処理、報告、記憶および警報は、任意の数のアーキテクチャを用いて、単一のまたは多数のプロセッサで、ローカルまたはリモートネットワークで、1つまたは複数のハウジング内で、実行され得る。当業者に知られておりおよび完全に実行するために本明細書において詳細な説明が必要とされない異なるアーキテクチャ間におけるトレードオフがもちろんあり、それゆえ、それらは効率および簡潔さ(brevity)のために省略される。
【0022】
分類器システムは、好ましくは、さまざまな薬物に関する所定の閾値パラメータおよび特徴を含むように前もって構成される。試料は、測定された特性が所定の閾値パラメータの範囲に入るとき、分類され得る。
【0023】
化学および分子プローブは、注入剤の所望のまたは夾雑構成成分を識別するために採用されてもよいことに留意されたい。抗体、蛍光染料、生体活性分子、DNA、ナノ粒子、等は、それらが流体流に暴露されおよび分析のために測定されまたはシステムに送信され得る信号を提供するところの流体路内に含まれ得る。これらのプローブは、流体に対する連続的な暴露が望ましい構成に統合され得、または、流体を試験するためにそれらを使用することがそれらが再度使用されることをできなくする場合、限られた時間にわたって流体に対して暴露され得る。例えば、抗体と結合する薬物は、可逆性ではない可能性があり、それゆえ、1つの試料および試験または1回限りの試験取り組み法は、優先的な試験方法であり得る。
【0024】
これらのパラメータは、意図される注入剤、その濃度、ならびに、溶解された夾雑物、誤った希釈剤、微粒子、感染因子、およびガス(例えば、気泡)を含む間欠的な混入物の存在、を実証するために使用され得る。
【0025】
本発明の実施形態は、1つだけではなく多数の物性を使用することにより、溶液特性化がより具体的(specific)である点で、先行技術を上回る利点を有する。例えば、フロセミド希釈剤溶液を紫外可視スペクトル単独によって識別することは、その特定の信号は希釈剤信号と重なるので、困難である。多くの高吸収性薬物は、同様の重なり特性を有する。伝導度測定が紫外可視スペクトルを用いて採用される場合、そうして、薬物および希釈剤の両方は、識別され得る。同様のやり方で、2つの薬物は、匹敵する(comparable)紫外可視スペクトルを有しおよび分類することが困難であるかもしれないが、特定のラマンスペクトルまたは他の分析技術によって区別されてもよい。
【0026】
本発明の付加的な利点は、使い捨てプローブは、それらを使用またはさもなければ消費することなしに注入剤の適切な特性化がなされ得る場合、保存され得ることである。
【0027】
図4Aは、本発明による例示的なシステムを示す。静的な薬物試料(71)は、上で論じたもののような1つまたは複数の物理技術を用いて、容器(72)内で照合される。例えば、光学的にニュートラルな容器は、測定値Mi...Mnを得るために、1つのシステムにおいて紫外可視、ラマン分光法、または屈折率によって分析され得る。伝導度が測定される必要がある場合、次いで、電極(73a、73b)は、Mn+1を得るために分析容器(72)に加えられ得る。図4Bは、未知のものの溶液特性(Mi...Mn+1)(75)をコンパイルしおよびそれらを既知の薬物のライブラリ(76)と比較するためのアルゴリズムを使用するデバイス74を示す。この実施形態は、送達前に正確な薬物調合(compounding)を確認するための調合薬局における使用に適している。
【0028】
図5Aは、フローセル中の溶液特性がフローシステム(80)を用いてインラインで監視される例示的な実施形態を示す。この実施形態において、光学的にクリーンなフローセルまたはチューブ(81)は、薬物特性化のための光学的技術によって分析され得る。例えば、光学的にクリーンなフローセルまたはチューブ(81)は、測定値Mi...Mnを得るために、1つのシステムにおいて紫外可視、ラマン分光法、または屈折率によって分析され得る。伝導度が測定される必要がある場合、フロー中の電極(82)は、伝導度測定Mn+1のために使用されてもよい。図5Bは、未知のものの溶液特性(Mi...Mn+1)(87)をコンパイルしおよびそれらを既知の薬物のライブラリ(88)と比較するアルゴリズムを使用するデバイス(86)を示す。フローシステム(80)は、ベッドサイドにおいて、ライン (83)内、注入ポンプ (84)内、または廃棄物(waste)容器システム(85)内において使用され得る。
【0029】
分析技術によって判定されるようなバルク化学特性は、有利には、薬物特性化に活用される(exploited)。関連した適用(application)は、臨床上の解決策または診断上の解決策に関連する診断上の適用である。
【0030】
本発明の例示的な実施形態は、図6に示される。フローセル600は、好ましくは、分析されるべき流体がそれを通して流れるカテーテル602または同様のものの中に組み入れられる。フローセル600は、複数の異なるセンサ種類604a~604eを含む。示されるように、センサ種類は、励起LED604aおよびフォトダイオードアレイ604b、流量センサ(flow sensor)604c、温度センサ(thermal sensor)604dおよび伝導度センサ604eを含む。2つまたはそれより多いセンサからのパラメータの測定値を利用して、フローセル600内を流れる流体の組成(composition)または識別(identification)は、単一のセンサ種類からの単一のパラメータ測定値によって物質を特性化しようと試みる従来のシステムにおけるよりもはるかな確実性を持って識別され得る。
【0031】
上述の実施形態に対する多くの付加および修正は、以下に続く列挙される請求項によって定義される本発明の範囲および精神から逸脱することなく、当業者によってなされてもよいことは理解されよう。
図1
図2
図3
図4A
図4B
図5A
図5B
図6