IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オキュラス ブイアール,エルエルシーの特許一覧

特許7505068アイウェアデバイス用の光マイクロフォン
<>
  • 特許-アイウェアデバイス用の光マイクロフォン 図1
  • 特許-アイウェアデバイス用の光マイクロフォン 図2A
  • 特許-アイウェアデバイス用の光マイクロフォン 図2B
  • 特許-アイウェアデバイス用の光マイクロフォン 図3
  • 特許-アイウェアデバイス用の光マイクロフォン 図4
  • 特許-アイウェアデバイス用の光マイクロフォン 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-14
(45)【発行日】2024-06-24
(54)【発明の名称】アイウェアデバイス用の光マイクロフォン
(51)【国際特許分類】
   H04R 23/00 20060101AFI20240617BHJP
   H04R 1/00 20060101ALI20240617BHJP
【FI】
H04R23/00 320
H04R1/00 328Z
H04R1/00 318Z
H04R1/00 317
【請求項の数】 15
【外国語出願】
(21)【出願番号】P 2023035665
(22)【出願日】2023-03-08
(62)【分割の表示】P 2021526264の分割
【原出願日】2018-11-16
(65)【公開番号】P2023081979
(43)【公開日】2023-06-13
【審査請求日】2023-04-04
(31)【優先権主張番号】16/192,441
(32)【優先日】2018-11-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】515046968
【氏名又は名称】メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー
【氏名又は名称原語表記】META PLATFORMS TECHNOLOGIES, LLC
(74)【代理人】
【識別番号】110002974
【氏名又は名称】弁理士法人World IP
(72)【発明者】
【氏名】カレギメーボディ, モルテザ
【審査官】堀 洋介
(56)【参考文献】
【文献】米国特許出願公開第2018/0011006(US,A1)
【文献】米国特許出願公開第2015/0245131(US,A1)
【文献】米国特許出願公開第2008/0107292(US,A1)
【文献】特開2018-056698(JP,A)
【文献】米国特許第4162397(US,A)
【文献】特開昭58-162199(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04R 23/00
H04R 1/00
H04R 1/10
(57)【特許請求の範囲】
【請求項1】
基準ビームと感知ビームとに光を分離することであって、前記感知ビームは、アイウェアデバイスに結合される光ファイバに結合され、前記光ファイバは、前記アイウェアデバイスの物理的動作および音圧波に起因して動き、前記光ファイバの端部は、当該端部がユーザの外耳道の入口近傍に位置するように空中に垂らされており、前記光ファイバの動きによって前記感知ビームの光路長が変更される、基準ビームと感知ビームとに光を分離することと、
前記基準ビームおよび前記感知ビームの検出に応じて電気信号を生成する光検出器を用いて、前記基準ビームおよび前記光ファイバからの前記感知ビームを検出することと、
電気信号プロセッサによって、前記アイウェアデバイスの前記物理的動作に対応する前記電気信号の一部を除去して、前記電気信号の残りの部分を形成することと、
前記電気信号の前記残りの部分によって示される前記光路長の変化に部分的に基づいて、前記音圧波を測定することと、
を含む方法。
【請求項2】
ビームスプリッタが、前記光を前記基準ビームと前記感知ビームとに分離する、請求項1に記載の方法。
【請求項3】
前記基準ビームのパラメータを変調することと、
変調された前記パラメータに基づいて前記基準ビームを識別することと
をさらに含む、請求項1に記載の方法。
【請求項4】
前記光ファイバが、オーディオシステムのハウジングから垂らされている、請求項1に記載の方法。
【請求項5】
前記光ファイバの一部が、前記ユーザの組織に結合されるように構成される、請求項1に記載の方法。
【請求項6】
20Hz~20kHzの範囲内の周波数を有する前記電気信号の一部を選択することをさらに含む、請求項1に記載の方法。
【請求項7】
基準ビームと感知ビームとに光を分離するように構成されたビームスプリッタであって、前記感知ビームは、アイウェアデバイスに結合される光ファイバに結合され、前記光ファイバは、前記アイウェアデバイスの物理的動作および音圧波に起因して動き、前記光ファイバの端部は、当該端部がユーザの外耳道の入口近傍に位置するように空中に垂らされており、前記光ファイバの動きによって前記感知ビームの光路長が変更される、ビームスプリッタと、
検出器アセンブリであって、
前記基準ビームおよび前記感知ビームの検出に応じて電気信号を生成するように構成された光検出器を用いて、前記基準ビームおよび前記光ファイバからの前記感知ビームを検出し、
電気信号プロセッサによって、前記アイウェアデバイスの前記物理的動作に対応する前記電気信号の一部を除去して、前記電気信号の残りの部分を形成し、
前記電気信号の前記残りの部分によって示される前記光路長の変化に部分的に基づいて、前記音圧波を測定する
ように構成された検出器アセンブリと、
を備えるオーディオシステム。
【請求項8】
前記基準ビームのパラメータを変調するように構成された基準ビーム変調器をさらに備え、前記検出器アセンブリが、変調された前記パラメータに基づいて前記基準ビームを識別するように構成される、請求項7に記載のオーディオシステム。
【請求項9】
前記ユーザの耳に結合されるように構成され、かつオーディオ命令に基づいて音圧波を生み出すように構成された変換器アセンブリをさらに備える、請求項7に記載のオーディオシステム。
【請求項10】
前記検出器アセンブリが、前記音圧波の測定値に基づいて前記オーディオ命令を調節するようにさらに構成される、請求項9に記載のオーディオシステム。
【請求項11】
前記光ファイバが、前記オーディオシステムのハウジングから垂らされている、請求項7に記載のオーディオシステム。
【請求項12】
前記光ファイバの一部が、前記ユーザの組織に結合されるように構成される、請求項7に記載のオーディオシステム。
【請求項13】
前記ユーザの耳の耳介の後ろに結合されるように構成された変換器をさらに備え、前記変換器は、オーディオ命令に基づいて前記耳介に前記音圧波を生み出させるように前記耳介を第1の周波数範囲にわたって振動させるように構成され、前記光ファイバがそれによって動くように構成される前記音圧波は、前記第1の周波数範囲内にある、請求項7に記載のオーディオシステム。
【請求項14】
第2の周波数範囲にわたって振動するように構成され、第2の音圧波を生み出す第2の変換器をさらに備え、前記光ファイバが、前記第2の周波数範囲の前記第2の音圧波によって動くようにさらに構成される、請求項13に記載のオーディオシステム。
【請求項15】
音圧波に起因して動く光ファイバと、
基準ビームと感知ビームとに光を分離するように構成されたビームスプリッタであって、前記感知ビームは、アイウェアデバイスに結合される前記光ファイバに結合され、前記光ファイバは、前記アイウェアデバイスの物理的動作および音圧波に起因して動き、前記光ファイバの端部は、当該端部がユーザの外耳道の入口近傍に位置するように空中に垂らされており、前記光ファイバの前記動きによって前記感知ビームの光路長が変更される、ビームスプリッタと、
検出器アセンブリであって、
前記基準ビームおよび前記感知ビームの検出に応じて電気信号を生成するように構成された光検出器を用いて、前記基準ビームおよび前記光ファイバからの前記感知ビームを検出し、
電気信号プロセッサによって、前記アイウェアデバイスの前記物理的動作に対応する前記電気信号の一部を除去して、前記電気信号の残りの部分を形成し、
前記電気信号の前記残りの部分によって示される前記光路長の変化に部分的に基づいて、前記音圧波を測定する
ように構成された検出器アセンブリと、
を備える光マイクロフォン。
【発明の詳細な説明】
【背景技術】
【0001】
本開示は一般に、アイウェアデバイスのオーディオシステムに関し、詳細には、アイウェアデバイスで使用するための光マイクロフォンに関する。
【0002】
人工現実システムの頭部装着型ディスプレイは、多くの場合、スピーカまたは個人オーディオデバイスなど、オーディオコンテンツを頭部装着型ディスプレイのユーザに提供するための特徴を含む。頭部装着型ディスプレイのオーディオシステムは、ユーザの耳の入口にまたはその近くに配置されたマイクロフォンを含み、それによってスピーカによって生み出された音を測定し、オーディオシステムをキャリブレーションすることができる。頭部装着型デバイスのフレーム内に組み込まれたバイノーラルマイクロフォンまたはマイクロフォンアレイなど、頭部装着型ディスプレイに使用するための現在のマイクロフォンは、感度に限界がある。たとえば、頭部装着型デバイスに使用される典型的なマイクロフォンは、骨伝導変換器によって生み出される、耳の外側にナノメートルまたはピコメートル範囲の粒子変位を生成するオーディオ圧力波を検出するのが困難である。既存のマイクロフォンによって検出することができる圧力波を生成するために、骨伝導変換器は非常に大きい音量を生み出さなくてはならず、これはユーザにとって不快なものである。
【発明の概要】
【0003】
本開示は、従来のマイクロフォンより高感度でオーディオ波を検出するための光マイクロフォンを含むオーディオシステムを説明する。オーディオシステムは、人工現実頭部装着型ディスプレイ(HMD)の構成要素であるアイウェアの構成要素であってもよい。オーディオシステムは、音圧波を生み出す少なくとも1つの変換器と、音圧波を検出するための光マイクロフォンとを含む。光マイクロフォンは、ユーザの外耳道の入口にまたはユーザの耳の近傍に配置することができる。光マイクロフォンは、たとえばビームスプリッタを使用して感知ビームおよび基準ビームに分離される光を発するレーザを含む。感知ビームは、光ファイバなどの光感知経路を通って進行する。音波は、感知ビームが光感知経路内にある間、感知ビームの光路長を変更することによって感知ビームと相互作用する。検出器アセンブリは、光感知経路から感知ビームを受け取り、基準ビームも受け取る。検出器は、感知ビームの光路長の変化に基づいて、検出された音圧波を測定する。オーディオシステムは、検出された音圧波の測定に基づいて、変換器によって生み出された音圧波を調節してもよい。
【0004】
いくつかの実施形態では、オーディオシステムが本明細書において説明される。オーディオシステムは、変換器アセンブリと、光感知経路と、レーザと、検出器アセンブリと、コントローラとを含む。変換器アセンブリは、ユーザの耳に結合され、オーディオ命令に基づいて音圧波を生み出すように構成される。光感知経路は、検出された音圧波によって少なくとも部分的に動くように構成される。レーザは、基準ビームおよび感知ビームに分離される光を発するように構成される。感知ビームは、光感知経路内に結合され、検出された音圧波は、感知ビームの光路長を変更するように光感知経路内の感知ビームと相互作用する。検出器アセンブリは、基準ビームを検出し、光感知経路から感知ビームを検出し、基準ビームと感知ビームとの間の光路長の変化に少なくとも部分的に基づいて、検出された音圧波を測定するように構成される。コントローラは、検出された音圧波の測定に基づいてオーディオ命令を調節するように構成される。
【0005】
本発明による実施形態は、特に、オーディオシステムおよびアイウェアデバイスを対象とする添付の特許請求の範囲において開示され、請求項の1つのカテゴリ、たとえばオーディオシステムに述べる任意の特徴は、別の請求項のカテゴリ、たとえばアイウェアデバイス、システム、方法、記憶媒体、またはコンピュータプログラム製品においても特許請求することができる。添付の特許請求の範囲における従属または前に戻る参照は、形式上の理由のためだけに選択される。しかし、任意の前の請求項を故意に前に戻って参照すること(特に複数従属)によりもたらされる任意の主題も、同様に特許請求することができ、それにより、添付の特許請求の範囲において選択された従属とは無関係に、請求項とその特徴の任意の組み合わせが開示され、特許請求されることが可能である。特許請求することができる主題は、添付の特許請求の範囲に述べる特徴の組み合わせだけではなく、特許請求の範囲における特徴の任意の他の組み合わせも含み、特許請求の範囲に述べるそれぞれの特徴は、特許請求の範囲の任意の他の特徴と、または他の特徴の組み合わせと組み合わせることができる。さらに、本明細書に説明または図示する任意の実施形態および特徴は、別個の請求項で、かつ/あるいは本明細書に説明もしくは図示する任意の実施形態もしくは特徴との任意の組み合わせで、または添付の特許請求の範囲の任意の特徴との任意の組み合わせで、特許請求することができる。
【0006】
一実施形態では、オーディオシステムは、
ユーザの耳に結合され、オーディオ命令に基づいて音圧波を生み出すように構成された変換器アセンブリと、
検出された音圧波によって少なくとも部分的に動くように構成された光感知経路と、
基準ビームおよび感知ビームに分離される光を発するように構成されたレーザであって、感知ビームは、光感知経路内に結合され、検出された音圧波は、感知ビームの光路長を変更するように光感知経路内の感知ビームと相互作用する、レーザと、
検出器アセンブリであって、
基準ビームを検出し、光感知経路から感知ビームを検出し、
基準ビームと感知ビームとの間の光路長の変化に部分的に基づいて、検出された音圧波を測定するように構成される、検出器アセンブリと、
検出された音圧波の測定に基づいて、オーディオ命令を調節するように構成されたコントローラと
を備えてもよい。
【0007】
一実施形態では、オーディオシステムは、レーザから発せられた光を基準ビームおよび感知ビームに分離するように構成されたビームスプリッタを備えてもよい。
【0008】
一実施形態では、オーディオシステムは、基準ビームのパラメータを変調するように構成された基準ビーム変調器を備えてもよく、検出器アセンブリは、変調されたパラメータに基づいて基準ビームを識別するように構成されてもよい。
【0009】
光感知経路は、オーディオシステムのハウジングから垂らされた光ファイバを備えてもよい。
【0010】
光感知経路は、検出された音圧波によって動くように構成されてもよい可撓性膜に結合された光ファイバを備えてもよい。
【0011】
光感知経路の端部は、空気中に垂らされ、ユーザの耳の入口に配置されるように構成されてもよい。
【0012】
光感知経路は、ユーザの組織に結合されるように構成されてもよい。
【0013】
変換器アセンブリは、ユーザの耳の耳介の後ろの第1の部分に結合されるように構成されてもよい少なくとも1つの変換器を備えてもよく、少なくとも1つの変換器は、耳介がオーディオ命令に基づいて音圧波を生み出すようにするために、第1の周波数範囲にわたって耳介を振動させるように構成されてもよく、光感知経路がそれによって動くように構成されてもよい検出された音圧波は、第1の周波数範囲内にある。
【0014】
変換器アセンブリは、第2の周波数範囲にわたって振動するように構成されてもよい第2の変換器を備えてもよく、第2の変換器は、音圧波の第2の範囲を生み出してもよく、光感知経路は、さらに、検出された音圧波によって第2の周波数範囲内で動くように構成されてもよい。
【0015】
第1の周波数範囲は、第2の周波数範囲と異なっていてもよい。
【0016】
オーディオシステムは、アイウェアデバイスの構成要素であってもよい。
【0017】
一実施形態では、アイウェアデバイスは、
フレームと、
フレームに結合されたオーディオシステムであって、
ユーザの耳に結合されるように構成されてもよく、オーディオ命令に基づいて音圧波を生み出してもよい変換器アセンブリと、
検出された音圧波によって少なくとも部分的に動くように構成されてもよい光感知経路と、
基準ビームおよび感知ビームに分離されてもよい光を発するように構成されてもよいレーザであって、感知ビームは、光感知経路内に結合されてもよく、検出された音圧波は、感知ビームの光路長を変更するように光感知経路内の感知ビームと相互作用してもよい、レーザと、
検出器アセンブリであって、
基準ビームを検出し、光感知経路から感知ビームを検出し、
基準ビームと感知ビームとの間の光路長の変化に部分的に基づいて、検出された音圧波を測定するように構成されてもよい、検出器アセンブリと、
検出された音圧波の測定に基づいて、オーディオ命令を調節するように構成されてもよいコントローラと
を備えてもよい。
【0018】
アイウェアデバイスは、レーザから発せられた光を基準ビームおよび感知ビームに分離するように構成されてもよいビームスプリッタを備えてもよい。
【0019】
アイウェアデバイスは、基準ビームのパラメータを変調するように構成されてもよい基準ビーム変調器を備えてもよく、検出器アセンブリは、変調されたパラメータに基づいて基準ビームを識別するように構成されてもよい。
【0020】
光感知経路は、フレームから垂らされた光ファイバを備えてもよい。
【0021】
光感知経路は、検出された音圧波によって動くように構成された可撓性膜に結合されてもよい。
【0022】
光感知経路の端部は、空気中に垂らされ、ユーザの耳の入口に配置されるように構成されてもよい。
【0023】
光感知経路は、ユーザの組織に結合されるように構成されてもよい。
【0024】
変換器アセンブリは、ユーザの耳の耳介の後ろの第1の部分に結合されるように構成されてもよい少なくとも1つの変換器を備えてもよく、少なくとも1つの変換器は、耳介がオーディオ命令に基づいて音圧波を生み出すようにするために、第1の周波数範囲にわたって耳介を振動させるように構成されてもよく、光感知経路がそれによって動くように構成される、検出された音圧波は、第1の周波数範囲内にある。
【0025】
変換器アセンブリは、第2の周波数範囲にわたって振動するように構成されてもよい第2の変換器を備えてもよく、第2の変換器は、音圧波の第2の範囲を生み出してもよく、光感知経路は、さらに、検出された音圧波によって第2の周波数範囲内で動くように構成されてもよい。
【0026】
本発明のさらなる実施形態では、1つまたは複数のコンピュータ読取り可能な非一時的記憶媒体は、実行されたときに、本発明による、または上述した任意の実施形態によるオーディオシステムにおいて実行するように動作可能なソフトウェアを具体化する。
【0027】
本発明のさらなる実施形態では、コンピュータ実装方法は、本発明による、または上述した任意の実施形態によるオーディオシステムを使用する。
【0028】
本発明のさらなる実施形態では、コンピュータ読取り可能な非一時的記憶媒体を備えることが好ましいコンピュータプログラム製品は、本発明による、または上述した任意の実施形態によるオーディオシステムにおいて使用される。
【図面の簡単な説明】
【0029】
図1】1つまたは複数の実施形態による、オーディオシステムを含むアイウェアデバイスの斜視図である。
図2A】1つまたは複数の実施形態による、アイウェアデバイスの構成要素として光ファイバマイクロフォンを含むオーディオシステムの一部の側面図である。
図2B】1つまたは複数の実施形態による、アイウェアデバイスの構成要素として可撓性膜を備えた光マイクロフォンを含むオーディオシステムの一部の側面図である。
図3】1つまたは複数の実施形態による、オーディオシステムのブロック図である。
図4】1つまたは複数の実施形態による、オーディオシステムのマイクロフォンアセンブリのブロック図である。
図5】1つまたは複数の実施形態による、オーディオシステムを含むアイウェアデバイスのシステム環境の図である。
【発明を実施するための形態】
【0030】
図面は、例示のみを目的として本開示の実施形態を示す。当業者であれば、本明細書に示す構造および方法の代替実施形態が、本明細書に記載の開示の原理または喧伝された恩恵から逸脱することなく利用されてもよいことを、以下の説明から容易に認識するであろう。
【0031】
本発明の実施形態は、人工現実システムを含んでもよく、または人工現実システムに関連して実装されてもよい。人工現実は、ユーザに提示する前に何らかのやり方で調節された現実の形態であり、たとえば、仮想現実、拡張現実、複合現実、ハイブリッド現実、またはこれらの何らかの組み合わせおよび/または派生物を含んでもよい。人工現実コンテンツは、完全に生成されたコンテンツ、または取り込まれた(たとえば実世界の)コンテンツと組み合わせられた、生成されたコンテンツを含んでもよい。人工現実コンテンツは、動画、オーディオ、皮膚におきる感覚、またはこれらの何らかの組み合わせを含んでもよく、そのいずれも単一チャンネルまたは多チャンネル(三次元効果を視聴者に対して生み出すステレオビデオなど)で提示されてもよい。さらに、いくつかの実施形態では、人工現実は、たとえば人工現実においてコンテンツを作り出すために使用され、かつ/または人工現実において別の形で使用される(たとえばそこでアクティビティを実行する)、アプリケーション、製品、アクセサリ、サービス、またはこれらの何らかの組み合わせに関連付けられてもよい。人工現実コンテンツを提供する人工現実システムは、アイウェアデバイス、構成要素としてアイウェアデバイスを備えた頭部装着型ディスプレイ(HMD)アセンブリ、ホストコンピュータシステムに接続されたHMD、HMD単独、モバイルデバイスもしくはコンピューティングシステム、または人工現実コンテンツを1人または複数の視聴者に提供することができる任意の他のハードウェアプラットフォームを含む、さまざまなプラットフォーム上に実装されてもよい。
【0032】
システムアーキテクチャ
オーディオシステムは、ユーザの耳に提供された音を測定するための光マイクロフォンを含む。オーディオシステムは、軟骨伝導変換器、空気伝導変換器、または骨伝導変換器などのうちの1つまたは複数の変換器を備えてもよい。変換器は、ユーザの耳によって感知される音圧波を生み出す。耳の形状および構成は人によって変わるため、変換器は、ユーザごとに変わる音圧波を生み出す。音圧波は、使用される変換器に応じて、空気伝達圧力波、または組織伝達圧力波(たとえば骨、軟骨、または1つまたは複数の他の組織を通って伝播する音圧波)であってもよい。たとえば、軟骨伝導変換器は、ユーザの耳の耳介を振動させ、それによって耳の入口において空気伝達音圧波を作り出し、この空気伝達音圧波は、外耳道から鼓膜まで進行し、ここでユーザによって音として知覚される。軟骨伝導変換器の所与の振動に応答して、異なる耳の幾何学的形状が異なる空気伝達音圧波を生み出す。光マイクロフォンは、変換器によって生成された音圧波を測定し、この測定値をコントローラに提供し、コントローラは、この測定値に従って変換器へのオーディオ命令を調節する。
【0033】
本明細書に開示する光マイクロフォンは、検出された音圧波によって動く光感知経路を含む。光感知経路の動きは、光感知経路を通って進行する感知ビームの光路長を変更する。光路長の変化を測定することにより、検出された音圧波の測定値が提供される。本明細書に記載の光マイクロフォン構成は、感度が極めて高い。たとえば、光マイクロフォンは、ナノメータまたはピコメータ範囲の粒子偏向を検出することができ、それによってユーザの耳の外側において骨伝導変換器によって生成される空気伝導圧力波を少量であっても測定することが可能になる。こうして、光マイクロフォンを使用して、不快な大音量を必要とすることなく変換器へのオーディオ命令をキャリブレーションすることができる。
【0034】
図1は、1つまたは複数の実施形態による、オーディオシステムを含むアイウェアデバイス100の斜視図である。アイウェアデバイス100は、ユーザにメディアを提示する。1つの実施形態では、アイウェアデバイス100は、頭部装着型ディスプレイ(HMD)の構成要素であってもよい。いくつかの実施形態では、アイウェアデバイス100は、ニアアイディスプレイである。アイウェアデバイス100により提示されるメディアの例は、1つまたは複数の画像、動画、オーディオ、またはこれらの何らかの組み合わせを含む。アイウェアデバイス100は、他の構成要素のなかでもとりわけ、フレーム105と、レンズ110と、センサデバイス115と、変換器アセンブリ120と、光マイクロフォンアセンブリ125と、コントローラ150とを含んでもよい。
【0035】
アイウェアデバイス100は、ユーザの視覚を補正もしくは増強してもよく、ユーザの目を保護してもよく、またはユーザに画像を提供してもよい。アイウェアデバイス100は、ユーザの視力の欠損を補正する眼鏡であってもよい。アイウェアデバイス100は、太陽からユーザの目を保護するサングラスであってもよい。アイウェアデバイス100は、衝撃からユーザの目を保護する安全眼鏡であってもよい。アイウェアデバイス100は、夜間にユーザの視覚を増強するための暗視デバイスまたは赤外線ゴーグルであってもよい。アイウェアデバイス100は、ユーザに向けて人工現実コンテンツを生み出すHMDであってもよい。あるいは、アイウェアデバイス100はレンズ110を含まなくてもよく、ユーザにオーディオ(たとえば音楽、ラジオ、ポッドキャスト)を提供するオーディオシステムを備えたフレーム105であってもよい。
【0036】
フレーム105は、レンズ110を保持する正面部分と、ユーザに取り付けるための末端部とを含む。フレーム105の正面部分は、ユーザの鼻の上をまたいでいる。末端部(たとえば、テンプル)は、ユーザのこめかみが付くフレーム105の部分である。末端部の長さは、異なるユーザに合うように調節可能(たとえば、テンプルの長さが調節可能)であってもよい。また末端部は、ユーザの耳の後方で湾曲する部分(たとえば、テンプルの先端、つる)を含んでもよい。
【0037】
レンズ110は、アイウェアデバイス100を着用しているユーザに対して光を提供する、またはそれを透過する。レンズ110は、アイウェアデバイス100のフレーム105の正面部分によって保持される。レンズ110は、ユーザの視力の欠損を補正しやすくするための処方レンズ(たとえば、単焦点、二焦点、および三焦点、または累進多焦点)であってもよい。処方レンズは、アイウェアデバイス100を着用しているユーザに対して周囲光を透過する。透過した周囲光は、ユーザの視力の欠損を補正するように処方レンズによって変更されてもよい。レンズ110は、太陽からユーザの目を保護するための偏光レンズまたは色付きレンズであってもよい。レンズ110は、ユーザの目に向かって導波路の端部または縁部を通って画像光が結合される導波路ディスプレイの一部としての、1つまたは複数の導波路であってもよい。レンズ110は、画像光を提供するための電子ディスプレイを含んでもよく、また電子ディスプレイからの画像光を拡大するための光学ブロックを含んでもよい。レンズ110に関するさらなる詳細事項は、図5の詳細な説明に見いだすことができる。
【0038】
センサデバイス115は、アイウェアデバイス100の初期位置に対するアイウェアデバイス100の現在の位置を推定する。センサデバイス115は、アイウェアデバイス100のフレーム105の一部分に位置付けられてもよい。他の実施形態では、センサデバイス115は、図1に示す場所とは異なる場所に位置付けられてもよい。センサデバイス115は、位置センサと慣性計測装置とを含む。センサデバイス115についてのさらなる詳細事項は、図5の詳細な説明に見いだすことができる。
【0039】
アイウェアデバイス100のオーディオシステムは、アイウェアデバイスのユーザにオーディオコンテンツを提供するように構成された変換器アセンブリ120と、変換器アセンブリ120によって生み出された音圧波を検出するように構成された光マイクロフォンアセンブリ125とを備える。図1の図示する実施形態では、アイウェアデバイス100のオーディオシステムは、変換器アセンブリ120と、光マイクロフォンアセンブリ125と、コントローラ130とを含む。オーディオシステムは、変換器アセンブリ120を使用することにより、ユーザにオーディオコンテンツを提供する。またオーディオシステムは、異なるユーザにわたって同様のオーディオ体験を作り出すために光マイクロフォンアセンブリ125からのフィードバックを使用する。コントローラ130は、オーディオ命令を生成することにより、変換器アセンブリ120の動作を管理する。またコントローラ130は、たとえばオーディオ命令を更新するために、マイクロフォンアセンブリ120によって監視されるフィードバックを受信する。オーディオシステムに関するさらなる詳細事項は、図3の詳細な説明に見いだすことができる。
【0040】
さまざまなタイプの変換器が、ユーザの耳にオーディオコンテンツを出力するために利用可能である。変換器アセンブリ120は、軟骨伝導変換器、骨伝導変換器、または空気伝導変換器などの単一のタイプの変換器を含むことができる。あるいは、変換器アセンブリ120は、2つまたはそれ以上のタイプの変換器を含むハイブリッド変換器である。たとえば、変換器アセンブリ120は、重なっていてもいなくてもよい2つの異なる周波数範囲にわたって振動するように構成された2つの変換器を含む。変換器アセンブリ120は、コンテンツ信号、制御信号、およびゲイン信号を含んでもよいオーディオ命令に従って動作する。コンテンツ信号は、ユーザに提示するためのオーディオコンテンツに基づいてもよい。制御信号は、変換器アセンブリ120、または変換器アセンブリのうちの1つもしくは複数の変換器を有効化または無効化するために使用されてもよい。ゲイン信号は、コンテンツ信号の振幅を調節するために使用されてもよい。
【0041】
いくつかの実施形態では、変換器アセンブリ120は、ユーザの耳の軟骨を振動させることによって音を生み出す軟骨伝導変換器を含む。一実施形態では、軟骨伝導変換器は、フレーム105の末端部に結合され、ユーザの耳の耳介の後ろに結合されるように構成される。耳介は、ユーザの頭部から突出する外耳の部分である。軟骨伝導変換器は、コントローラ130からオーディオ命令を受信し、オーディオ命令に従って耳介を振動させてユーザの耳の入口に空気伝達音圧波を生成する。
【0042】
いくつかの実施形態では、変換器アセンブリ120は、ユーザの耳内に空気伝達音圧波を生成することによって音を生み出す空気伝導変換器を含む。一実施形態では、空気伝導変換器は、フレーム105の末端部に結合され、ユーザの耳の入口の正面に置かれる。空気伝導変換器は、コントローラ130からオーディオ命令を受信する。
【0043】
いくつかの実施形態では、変換器アセンブリ120は、ユーザの頭部内の骨を振動させることによって音を生み出す骨伝導変換器を含む。一実施形態では、骨伝導変換器は、フレーム105の末端部に結合され、耳介の後方にありユーザの骨の一部に結合されるように構成される。骨伝導変換器は、コントローラ130からオーディオ命令を受信し、オーディオ命令に従ってユーザの骨の一部を振動させる。骨の振動は組織伝達音圧波を生成し、組織伝達音圧波は、ユーザの蝸牛に向かって伝播し、それによって鼓膜を迂回する。
【0044】
光マイクロフォンアセンブリ125は、ユーザの耳の入口における音圧波を検出する。光マイクロフォンアセンブリ125は、フレーム105の末端部に結合される。図1に示す光マイクロフォンアセンブリ125は、ユーザの耳の入口に配置された、光ファイバなどの光感知経路を含む。また光マイクロフォンアセンブリ125は、レーザと検出器アセンブリとを含み、これらはフレーム105に結合され、またはこの中に収容される。たとえば、レーザおよび/または検出器アセンブリは、コントローラ130のところの、もしくはその近くのフレーム105内に収容されてもよく、または光感知経路が結合されるフレーム105の末端部内に収容されてもよい。レーザは、光感知経路内に光を発するように構成され、検出器アセンブリは、光感知経路を通って進行した光を検出するように構成される。検出器は、検出された光の光路長に基づいて、ユーザの耳の近傍の音圧波を測定する。
【0045】
図1に示す実施形態では、光ファイバは、光マイクロフォンアセンブリ125がユーザの耳の入口における音圧波を直接測定するように構成される。他の実施形態では、光ファイバは、ユーザの耳の近傍の異なる場所に位置付けられる。さらに他の実施形態では、光マイクロフォンアセンブリ125は、ユーザの耳介の後ろに結合されるように構成された可撓性膜に結合された光ファイバを含み、光マイクロフォンアセンブリ125は、耳の入口における音圧波を間接的に測定する。たとえば、光マイクロフォンアセンブリ125は、耳の入口における音圧波の反射である振動を測定してもよく、かつ/またはユーザの耳の耳介において変換器アセンブリによって作り出された振動を測定してもよく、それを使用して、耳の入口における音圧波が推定されてもよい。他の実施形態では、光ファイバを備えた可撓性膜は、ユーザの頭部内の骨または他の組織に結合される。光マイクロフォンアセンブリ125についてのさらなる詳細事項は、図3の詳細な説明に見いだすことができる。
【0046】
コントローラ130は、変換器アセンブリ120にオーディオ命令を提供し、生み出された音に関する情報を光マイクロフォンアセンブリ125から受信し、受信した情報に基づきオーディオ命令を更新する。オーディオ命令は、コントローラ130によって生成されてもよい。コントローラ130は、ユーザに提示するためのオーディオコンテンツ(たとえば、音楽、キャリブレーション信号)をコンソールから受信し、受信したオーディオコンテンツに基づいてオーディオ命令を生成してもよい。オーディオ命令は、振動をどのように発生させるかを変換器アセンブリ120または変換器アセンブリ120のそれぞれの変換器に命令する。たとえば、オーディオ命令は、コンテンツ信号(たとえば、提供されるオーディオコンテンツに基づくターゲット波形)、(たとえば、変換器アセンブリを有効化または無効化するための)制御信号、および(ターゲット波形の振幅を増減することによってコンテンツ信号を拡大縮小するための)ゲイン信号を含んでもよい。複数の変換器が変換器アセンブリ120内に含まれる場合、コントローラ130は、異なる変換器に合わせるように異なるオーディオ命令を適合させる。たとえば、骨伝導変換器によって生成された音圧波は、全般的に、軟骨伝導変換器または空気伝導変換器によって生成された音圧波より小さい大きさを有する。加えて、異なる変換器の周波数応答は異なることがあり、そのためコントローラ130は、その周波数応答に基づいて変換器ごとに命令を調節する。
【0047】
またコントローラ130は、ユーザの耳において生み出された音を説明する情報を光マイクロフォンアセンブリ125から受信する。コントローラ130は、受信した情報を、生み出された音とターゲットの音(たとえばオーディオコンテンツ)とを比較するためのフィードバックとして使用し、生み出された音をターゲットの音に近づけるようにオーディオ命令を更新する。たとえば、コントローラ130は、ユーザの耳の耳介の振動をターゲットの音に近くなるように調節するように、軟骨変換器アセンブリのオーディオ命令を更新する。コントローラ130は、アイウェアデバイス100のフレーム105内に組み込まれる。他の実施形態では、コントローラ130は異なる場所に位置付けられてもよい。たとえば、コントローラ130は、変換器アセンブリ120もしくは光マイクロフォンアセンブリ125の一部であってもよく、またはアイウェアデバイス100の外部に位置付けられてもよい。コントローラ130およびオーディオシステムの他の構成要素とのコントローラ130の動作に関するさらなる詳細事項は、図3および図4の詳細な説明に見いだすことができる。
【0048】
オーディオシステム
図2Aは、1つまたは複数の実施形態による、アイウェアデバイス(たとえばアイウェアデバイス100)の構成要素として光ファイバマイクロフォンを含むオーディオシステムの一部の側面図200である。この実施形態では、変換器アセンブリ120は、軟骨伝導変換器220と、空気伝導変換器225と、骨伝導変換器230とを含む。光感知経路235は、光マイクロフォンアセンブリ125の構成要素である。光感知経路235は、軟骨伝導変換器220、空気伝導変換器225または骨伝導変換器230のうちの1つまたは複数によって生み出されたオーディオ圧力波を検出する。
【0049】
図2Aに示す実施形態では、光感知経路235は、光ファイバであり、この光ファイバを通って光が進行して、ユーザの耳210の入口近くの音圧を検出する。光ファイバを通って進行する光は、フレーム105内に収容されたレーザによって透過される感知ビームであってもよい。感知ビームは、光ファイバを通ってフレーム105から離れる方向に進行する。感知ビームは、光ファイバの端部において反射され、光ファイバを通り、これもまたフレーム105内に収容されている検出器の方に進行して戻る。たとえば、光感知経路235は、耳210の入口近くの端部においてファブリペロー干渉計を含んでもよい。ファブリペロー干渉計は、互いの方を向くハーフミラーおよびフルミラーを含み、それにより、感知ビームはこれらの2つのミラー間を前後に進む。ミラーは、空気または別の媒体によって分離されてもよい。音圧波は、感知ビームが2つのミラー間を進むときにこれを変調する。他の実施形態では、他のタイプの干渉計が使用されてもよい。いくつかの実施形態では、光は、光ファイバを通って単一方向に進行し、光感知経路235は、前進および戻り経路を含む(すなわち光感知経路235はループを形成する)。変換器220、225、または230のうちの1つまたは複数によって直接的にまたは間接的に生成された音圧波は、感知ビームが(たとえば、光ファイバの端部にあるファブリペロー干渉計内の)光ファイバを通って進行するときに感知ビームと相互作用し、それにより、音圧波は感知ビームの光路長を変更する。光マイクロフォンアセンブリ125は、光ファイバを通って進行した感知ビームの光路長を決定し、感知ビームの検出された光路長に基づいて音圧波を測定する。光マイクロフォンアセンブリ125の構成要素は、図4に関してより詳細に説明される。
【0050】
図2Aに示すように、光感知経路235は、オーディオシステムのハウジングであるフレーム105から垂らされた光ファイバである。この場合、光感知経路235は、直接フレーム105から耳210の入口に向かって延びる。光感知経路235は、変換器220、225、または230によって生み出された空気伝達音波を測定する。たとえば、光感知経路235は、空気伝導変換器225によって直接生み出され空気を通って耳210の近傍に伝導された空気伝達圧力波を測定する。光感知経路235は、軟骨伝導変換器220または骨伝導変換器230によって間接的に生み出された空気伝達圧力波、すなわち組織伝達圧力波から生み出された空気伝達圧力波を測定する。光ファイバの長さは、図2Aに示すものより長くても短くてもよい。光ファイバをより長くして、光マイクロフォンの感度を高めてもよく、光ファイバをより短くして、ユーザの気を散らさないようにしてもよい。いくつかの実施形態では、光感知経路235は、フレーム105から延びる剛性構成要素と、剛性構成要素から延び耳210の入口近くに配置された可撓性光ファイバとを含む。一実施形態では、オーディオシステムのハウジングから垂らされた光感知経路235は、ユーザの組織に結合されるように構成される。
【0051】
軟骨伝導変換器220は、ユーザの耳210の耳介の後ろの一部に結合される。軟骨伝導変換器220は、(たとえばコントローラからの)オーディオ命令に基づいて耳210の入口において空気伝達音圧波の第1の範囲を生成するために、周波数の第1の範囲でユーザの耳210の耳介の後ろを振動させる。空気伝導変換器225は、スピーカ(たとえばボイスコイル変換器)であり、このスピーカは、耳の入口において空気伝達音圧波の第2の範囲を生成するために、周波数の第2の範囲にわたって振動する。周波数の第1および第2の範囲は、異なっていてもよく、または何らかの重複を有してもよい。空気伝達音圧波の第1の範囲および空気伝達音圧波の第2の範囲は、耳210の入口から、鼓膜が位置付けられる外耳道215まで進行する。鼓膜は、空気伝達音圧波の変動によって振動し、空気伝達音圧波は、その後、ユーザの蝸牛(図2には図示せず)によって音として検出される。光マイクロフォンアセンブリ125の光感知経路235および他の構成要素は、軟骨伝導変換器220および空気伝導変換器225によって生み出された音圧波を検出するために、ユーザの耳210の入口に配置される。
【0052】
骨伝導変換器230は、ユーザの耳210の後方のユーザの骨の一部に結合される。骨伝導変換器230は、周波数の第3の範囲にわたって振動する。骨伝導変換器230は、これが結合される骨の部分を振動させる。骨のこの部分は、振動を伝導して蝸牛において組織伝達音圧波の第3の範囲を作り出し、これはその後ユーザによって音として知覚される。骨伝導変換器230によって作り出された内耳内の振動の結果、ユーザの耳の外側に弱い空気伝達音圧波が生じる。光マイクロフォンアセンブリ125の光感知経路235および他の構成要素は、骨伝導変換器230によって生み出された空気伝達音圧波を検出するように構成される。
【0053】
より具体的には、骨伝導変換器230は、組織伝達圧力波を生成し、組織伝達圧力波は、ユーザの(たとえば乳様突起の)骨を通り、蝸牛を含む内耳まで進行する。組織伝達圧力波が内耳に到達すると、内耳内の波は内側から鼓膜を振動させ、それによって弱い空気伝達圧力波をユーザの鼓膜の外側に生成する。たとえば、ユーザの耳の外側の空気伝達圧力波の結果、ナノメートルまたはピコメートル程度の粒子変動が生じ得る。これらの空気伝達圧力波は弱すぎて、典型的なバイノーラルマイクロフォンまたはマイクロフォンアレイによって検出できない。しかし、光感知経路235は、ナノメートルまたはピコメートル程度の粒子変位を検出するのに十分な感度があるため、骨伝導変換器230によって生成された音圧波を検出することができる。
【0054】
図2Aに示すようなオーディオシステムの一部は、1つの軟骨伝導変換器220と、1つの空気伝導変換器225と、1つの骨伝導変換器230と、ユーザの一方の耳210のためのオーディオコンテンツを生み出し、検出するように構成された1つの光感知経路235とを示しているが、他の実施形態は、ユーザの他方の耳210のためのオーディオコンテンツを生み出すために同一のセットアップを含む。オーディオシステムの他の実施形態は、1つまたは複数の軟骨伝導変換器、1つまたは複数の空気伝導変換器、および1つまたは複数の骨伝導変換器の任意の組み合わせを含む。オーディオシステムの例は、軟骨伝導および骨伝導の組み合わせ、空気伝導および骨伝導の別の組み合わせ、空気伝導および軟骨伝導の別の組み合わせなどを含む。
【0055】
図2Bは、1つまたは複数の実施形態による、アイウェアデバイス(たとえば、アイウェアデバイス100)の構成要素として可撓性膜を備えた光マイクロフォンを含むオーディオシステムの一部の側面図250である。変換器アセンブリ120は、軟骨伝導変換器270と、空気伝導変換器275と、骨伝導変換器280とを含み、これらの変換器は、図2Aに関して説明した軟骨伝導変換器220、空気伝導変換器225、および骨伝導変換器230と同様である。光感知経路285は、光マイクロフォンアセンブリ125の代替の実施形態の構成要素である。光感知経路285は、軟骨伝導変換器270、空気伝導変換器275、または骨伝導変換器280のうちの1つまたは複数によって生み出された空気伝達オーディオ圧力波を検出する。
【0056】
図2Bに示す実施形態では、光感知経路285は、膜290が結合された光ファイバ295を含む。膜290は可撓性であり、光ファイバ295は、膜290が(たとえば音圧波に応答して)動くと光感知経路285の長さが変わるような形で、膜290に取り付けられる。光ファイバ295は剛性であってもよく、それにより、光路長の変化は、光ファイバ295の動きではなく、膜290の動きによって生成される。膜290および光ファイバ295は、フレーム105に連結され、外耳道265の近傍に配置される。図2Aの光ファイバと同様に、フレーム105内に収容されたレーザによって発せられた感知ビームは、光ファイバ295内に進行してこれを通り抜ける。感知ビームは、膜290によって反射され、光ファイバ295を通り、検出器の方に進行して戻る。光ファイバ295によって出力された感知ビームは、検出器の方に向けられる。
【0057】
変換器270、275、または280のうちの1つまたは複数によって生成された音圧波は、感知ビームが光ファイバを通って進行するときに感知ビームと相互作用し、それにより、音圧波は感知ビームの光路長を変更する。特に、膜290は検出された音発波によって動き、膜290が動くことにより、光ファイバ295の光路長に変化が引き起こされる。たとえば、音圧波が膜290をフレーム105の方向に押し出すと、これにより、光路長は膜位置290の中立位置より短くなる。光マイクロフォンアセンブリ125は、光ファイバ295を通って進行した感知ビームの光路長を決定し、感知ビームの検出された光路長に基づいて音発波を測定する。たとえば、膜290は、音発波によって振動してもよく、光路長の変動量によって測定される、検出された振動の振幅は、検出された音圧波の振幅に相関付けられてもよい。結合された光ファイバ295は、ナノメータ程度またはピコメータ程度であっても音圧波に対する感度が高く、低量における検出および骨伝導変換器280によって生成された圧力波の検出を可能にする。
【0058】
図2Bでは、光感知経路285の膜290は耳260の入口近くに配置されるが、他の実施形態では、光感知経路285および/または膜290は、異なる位置に位置付けられる。たとえば、光ファイバ295および取り付けられた膜290は、図2Bに示すようにフレーム105からユーザの耳の入口に向かって延びる光ファイバ295ではなく、フレーム105上に直接装着されてもよい。他の実施形態では、膜290および結合された光ファイバ295は、ユーザの頭部の組織に結合される。たとえば、膜290は、耳260の耳介、またはユーザの頭部内の骨に結合される。膜290をユーザの頭部内の骨に結合させると、骨伝導変換器280によって生成された音圧波の検出をさらに向上させることができる。この例では、膜290は、組織伝達圧力波から生じる空気伝達圧力波ではなく、組織伝達圧力波を測定する。いくつかの実施形態では、オーディオシステムは、複数の光感知経路、たとえば空気伝達音圧波を検出するための1つの光感知経路を外耳道の近くに含み、組織伝達音圧波を検出するための第2の光感知経路を組織に結合させて含む。
【0059】
図2Bに示すように、光感知経路285は、オーディオシステムのハウジング(たとえばフレーム105)から垂らされた光ファイバ295を有する。1つの実施形態では、光感知経路285(たとえば膜290)は、ユーザの組織に結合されるように構成される。別の実施形態では、光感知経路285(たとえば膜290)の端部は、空中に垂らされ、ユーザの耳の入口(たとえば図2Bに示すように外耳道265の入口)に配置されるように構成される。
【0060】
図3は、1つまたは複数の実施形態による、オーディオシステム300のブロック図である。図1のオーディオシステムは、オーディオシステム300の一実施形態である。オーディオシステム300は、1つまたは複数の変換器310と、音響アセンブリ320と、コントローラ330とを含む。1つの実施形態では、オーディオシステム300は、入力インターフェースをさらに備える。他の実施形態では、オーディオシステム300は、リストされた構成要素と任意の追加の構成要素との任意の組み合わせを有することができる。同様に、その機能も、本明細書で説明するのとは異なるやり方で構成要素間で分散させることができる。
【0061】
変換器310は、1つまたは複数の実施形態による、1つまたは複数の軟骨伝導変換器、1つまたは複数の空気伝導変換器、および1つまたは複数の骨伝導変換器の任意の組み合わせを含む。変換器310は、周波数の全範囲にわたって音をユーザに提供する。たとえば、周波数の全範囲は、20Hzから20kHzであり、ほぼ人間の平均聴覚範囲である。変換器310のそれぞれは、周波数のさまざまな範囲にわたって振動するように構成される。1つの実施形態では、変換器310のそれぞれは、周波数の全範囲にわたって動作する。他の実施形態では、各変換器は、周波数の全範囲の副範囲にわたって動作する。1つの実施形態では、1つまたは複数の変換器は、第1の副範囲にわたって動作し、1つまたは複数の変換器は、第2の副範囲にわたって動作する。たとえば、第1の変換器は、低い副範囲(たとえば20Hz~500Hz)にわたって動作するように構成され、第2の変換器は、中程度の副範囲(たとえば500Hz~8kHz)にわたって動作するように構成され、第3の変換器は、高い副範囲(たとえば8kHz~20kHz)にわたって動作するように構成される。別の実施形態では、変換器310の副範囲は、1つまたは複数の副範囲と部分的に重複する。
【0062】
いくつかの実施形態では、変換器310は、軟骨伝導変換器を含む。軟骨伝導変換器は、(たとえばコントローラ330から受信した)オーディオ命令に従って、ユーザの耳の軟骨を振動させるように構成される。軟骨伝導変換器は、ユーザの耳の耳介の後ろの一部に結合される。軟骨伝導変換器は、オーディオ命令に従って耳介が音圧波を作り出すようにするために、耳介を第1の周波数範囲にわたって振動させるための少なくとも1つの変換器を含む。第1の周波数範囲にわたって、軟骨伝導変換器は、生み出された音圧波の振幅に影響を及ぼすように振動の振幅を変えることができる。たとえば、軟骨伝導変換器は、500Hz~8kHzの第1の周波数副範囲にわたって耳介を振動させるように構成される。1つの実施形態では、軟骨伝導変換器は、ユーザの耳の後ろとの良好な表面接触を維持し、ユーザの耳に加えられる一定量の力(たとえば1ニュートン)を維持する。良好な表面接触により、変換器からユーザの軟骨への最大の振動の並進がもたらされる。
【0063】
1つの実施形態では、変換器は、単一の圧電変換器である。圧電変換器は、約+/-100Vの電圧範囲を使用して、最大20kHzの周波数を生成することができる。電圧範囲は、下側電圧も含むことができる(たとえば+/-10V)。圧電変換器は、積層圧電アクチュエータであってもよい。積層圧電アクチュエータは、積層された(たとえば機械的に直列接続された)複数の圧電素子を含む。積層圧電アクチュエータの動きは、単一の圧電素子の動きと、積層内の素子の数との積とすることができるので、積層圧電アクチュエータは、より低い電圧範囲を有してもよい。圧電変換器は、電界が存在するときにひずみ(たとえば、材料の変形)を生成することができる圧電材料から作られる。圧電材料は、ポリマー(たとえば、ポリ塩化ビニル(PVC)、フッ化ポリビニリデン(PVDF))、ポリマーベースの複合材、セラミック、または結晶(たとえば石英(二酸化ケイ素またはSiO)、チタン酸ジルコン酸鉛(PZT))であってもよい。極性材料であるポリマーにわたり電界または電圧を印加することにより、ポリマーは極性を変え、印加された電界の極性および大きさに応じて、収縮または拡張することができる。圧電変換器は、ユーザの耳によく付く材料(たとえばシリコーン)に結合されてもよい。
【0064】
別の実施形態では、変換器は可動コイル変換器である。典型的な可動コイル変換器は、永久磁界を作り出すためのワイヤのコイルおよび永久磁石を含む。ワイヤが永久磁界に置かれている間に電流をワイヤに印加することにより、電流の振幅および極性に基づいてコイルにかかる力が生み出され、その力が、コイルを永久磁石に向けて、またはそれから離れるように動かすことができる。可動コイル変換器は、より剛性の高い材料から作られてもよい。可動コイル変換器もまた、ユーザの耳によく付く材料(たとえばシリコーン)に結合されてもよい。
【0065】
いくつかの実施形態では、変換器310は、空気伝導変換器を含む。空気伝導変換器は、(たとえばコントローラ330から受信した)オーディオ命令に従ってユーザの耳の入口において音圧波を生成するために、振動するように構成される。空気伝導変換器は、ユーザの耳の入口の正面にある。最適には、空気伝導変換器は、妨げられず、耳の入口において直接音圧波を生成することができる。空気伝導変換器は、オーディオ命令に従って音圧波を作り出すために、第2の周波数範囲にわたって振動するための(軟骨伝導変換器に関連して説明した変換器と実質的に同様の)少なくとも1つの変換器を含む。第2の周波数範囲にわたって、空気伝導変換器は、生み出された音圧波の振幅に影響を及ぼすように振動の振幅を変えることができる。たとえば、空気伝導変換器は、8kHz~20kHzの第2の周波数副範囲(または人か聴くことができるこれより高い周波数)にわたって振動するように構成される。
【0066】
いくつかの実施形態では、変換器310は、骨伝導変換器を含む。骨伝導変換器は、(たとえばコントローラ330から受信した)オーディオ命令に従って、蝸牛によって直接検出されるためにユーザの骨を振動させるように構成される。骨伝導変換器は、ユーザの骨の一部に結合されてもよい。1つの実装形態では、骨伝導変換器は、ユーザの耳の後方のユーザの頭骸骨に結合される。別の実装形態では、骨伝導変換器は、ユーザの顎部に結合される。骨伝導変換器は、オーディオ命令に従って第3の周波数範囲にわたって振動するための(軟骨伝導変換器に関連して説明した変換器と実質的に同様の)少なくとも1つの変換器を含む。第3の周波数範囲にわたって、骨伝導変換器は、振動の振幅を変えることができる。たとえば、骨伝導変換器アセンブリは、100Hz(または人が聴くことができるこれより低い周波数)~500Hzの第3の周波数副範囲にわたって振動するように構成される。
【0067】
マイクロフォンアセンブリ320は、ユーザの耳の入口における音圧波を検出する。マイクロフォンアセンブリ320は、図2Aおよび2Bに関して説明した光感知経路の1つなどの光感知経路を含む光マイクロフォンである。1つまたは複数の光マイクロフォンは、ユーザの各耳の入口に配置されてもよい。マイクロフォンアセンブリ320は、ユーザの耳の入口において形成された空気伝達音圧波を検出するように構成される。あるいは、またはさらに、マイクロフォンアセンブリ320は、ユーザの耳の入口において形成された空気伝達音圧波を検出するように構成される。1つの実施形態では、マイクロフォンアセンブリ320は、生み出された音についての情報をコントローラ330に提供する。マイクロフォンアセンブリ320は、検出された音圧波のフィードバック情報をコントローラ330に送信する。マイクロフォンアセンブリ320の一例は、図4に関してより詳細に説明される。
【0068】
コントローラ330は、オーディオシステム300の構成要素を制御する。コントローラ330は、マイクロフォンアセンブリ320からのフィードバックに基づいて振動をどのように生み出すかを変換器310に命令するためのオーディオ命令を生成する。たとえば、オーディオ命令は、コンテンツ信号(たとえば、振動を生み出すために変換器310の任意の1つに加えられる信号)、任意の変換器310を有効化または無効化するための制御信号、およびコンテンツ信号を拡大縮小する(たとえば、任意の変換器310によって生み出された振動の振幅を増減する)ためのゲイン信号を含んでもよい。たとえば、コントローラ330は、オーディオ命令を異なる変換器310に対する異なるセットのオーディオ命令に分割する。オーディオ命令の一セットは、特有の変換器を制御する。いくつかの実施形態では、コントローラ330は、各変換器の周波数範囲に基づいて、(たとえば入力インターフェースを介して)ユーザから受信したオーディオ源オプションの選択に基づいて、または各変換器の周波数範囲と受信したオーディオ源オプションの選択の両方に基づいて、変換器ごとにオーディオ命令を分割する。
【0069】
たとえば、オーディオシステム300は、軟骨伝導変換器と、空気伝導変換器と、骨伝導変換器とを備えてもよい。この例に従い、コントローラ330は、中程度の範囲の周波数にわたる振動を指示するためのオーディオ命令の第1のセットを軟骨伝導変換器に指定し、高い範囲の周波数にわたる振動を指示するためのオーディオ命令の第2のセットを空気伝導変換器に指定し、低い範囲の周波数にわたる振動を指示するためのオーディオ命令の第3のセットを骨伝導変換器に指定する。さらなる実施形態では、オーディオ命令のセットは、1つの変換器の周波数範囲が別の変換器の周波数範囲に部分的に重複するように変換器310に命令する。
【0070】
コントローラ330は、オーディオコンテンツの一部および周波数応答モデルに基づいてオーディオ命令のコンテンツ信号を生成する。提供されるオーディオコンテンツは、人間の全聴覚範囲にわたる音を含んでよい。コントローラ330は、オーディオコンテンツを取り上げ、変換器310のそれぞれによって提供されるオーディオコンテンツの部分を決定する。1つの実施形態では、コントローラ330は、変換器の動作可能な周波数範囲に基づいて、変換器ごとのオーディオコンテンツの部分を決定する。たとえば、コントローラ330は、骨伝導変換器の作動範囲であってもよい100Hz~300Hzの範囲内のオーディオコンテンツの部分を決定する。制御信号は、変換器310のそれぞれの振動のためのターゲット波形を含んでもよい。周波数応答モデルは、特定の周波数における入力に対するオーディオシステム300の応答を表し、出力の振幅および位相が入力に基づきどのようにシフトされるかを示すことができる。周波数応答モデルを用いて、コントローラ330は、シフトされた出力にも責任を負うようにコンテンツ信号を調節してもよい。こうして、コントローラ330は、オーディオコンテンツ(たとえばターゲット出力)および周波数応答モデル(たとえば入力と出力の関係)を用いて、オーディオ命令のコンテンツ信号を生成してもよい。1つの実施形態では、コントローラ330は、周波数応答の逆数をオーディオコンテンツに適用することにより、オーディオ命令のコンテンツ信号を生成してもよい。
【0071】
コントローラ330は、マイクロフォンアセンブリ320からフィードバックを受信する。マイクロフォンアセンブリ320は、変換器310のうちの1つまたは複数によって生み出された、検出された音圧波についての情報を提供する。コントローラ330は、検出された音圧波を、ユーザに提供されるオーディオコンテンツに基づいてターゲット波形と比較してもよい。次いでコントローラ330は、検出された音圧波がターゲット波形と合致するように、検出された音圧波に適用すべき逆関数を計算することができる。したがってコントローラ330は、各ユーザ固有の計算された逆関数を使用して、オーディオシステムの周波数応答モデルを更新することができる。周波数モデルの調節は、ユーザがオーディオコンテンツを聴いている間に実行されてもよい。周波数モデルの調節は、ユーザに対するオーディオシステム300のキャリブレーション中に行われてもよい。次いでコントローラ330は、調節された周波数応答モデルを使用して、更新されたオーディオ命令を生成することができる。マイクロフォンアセンブリ320からのフィードバックに基づいてオーディオ命令を更新することにより、コントローラ330は、オーディオシステム300の異なるユーザ間で同様のオーディオ体験をより良好に提供することができる。
【0072】
軟骨伝導変換器、空気伝導変換器、および骨伝導変換器の任意の組み合わせを備えたオーディオシステム300のいくつかの実施形態では、コントローラ330は、変換器310のそれぞれに対する動作の可変の変化に影響を及ぼすようにオーディオ命令を更新する。ユーザのそれぞれの耳介は異なっており(たとえば、形および大きさ)、周波数応答モデルはユーザごとに異なる。マイクロフォンアセンブリ320によって取り込まれたオーディオフィードバックに基づいてユーザごとに周波数応答モデルを調節することにより、オーディオシステムはユーザに関係なく、同じタイプの生み出された音を維持することができる(たとえばニュートラルリスニング)。ニュートラルリスニングは、異なるユーザ間で同様のリスニング体験を有することである。言い換えれば、リスニング体験は、ユーザに対して偏っておらず、またはニュートラルである(たとえば、ユーザごとに変化しない)。
【0073】
別の実施形態では、オーディオシステムは、調節された周波数応答モデルを生成するために、平坦なスペクトルの広帯域信号を使用する。たとえば、コントローラ330は、平坦なスペクトルの広帯域信号に基づいて変換器310にオーディオ命令を提供する。マイクロフォンアセンブリ320は、ユーザの耳の入口における音圧波を検出する。コントローラ330は、検出された音圧波とターゲット波形を、平坦なスペクトルの広帯域信号に基づいてターゲット波形と比較し、オーディオシステムの周波数モデルを適宜調節する。この実施形態では、平坦なスペクトルの広帯域信号は、特定のユーザに対してオーディオシステムのキャリブレーションを実行している間に使用されてもよい。したがって、オーディオシステムは、オーディオシステムを継続的に監視するのではなく、ユーザの初期キャリブレーションを実行してもよい。この実施形態では、マイクロフォンアセンブリ320は、ユーザのキャリブレーションのために一時的にオーディオシステム300に結合されてもよい。たとえば、キャリブレーション後、光感知経路235または285は、ユーザの快適性を向上させるためにアイウェアデバイスから取り外すことができる。
【0074】
いくつかの実施形態では、コントローラ330は、オーディオシステム300のキャリブレーションを管理する。コントローラ330は、変換器310のそれぞれに対するキャリブレーション命令を生成する。キャリブレーション命令は、ターゲット波形に対応する音圧波を生成するように1つまたは複数の変換器に命令してもよい。いくつかの実施形態では、音圧波は、たとえば音調または音調のセットに対応してもよい。他の実施形態では、音圧波は、ユーザに提示されているオーディオコンテンツ(たとえば音楽)に対応してもよい。コントローラ330は、一度に1つずつまたは一度に複数のキャリブレーション命令を変換器310に送ってもよい。変換器がキャリブレーションコンテンツを受信するとき、変換器は、キャリブレーション命令に従って音圧波を生成する。マイクロフォンアセンブリ320は、音圧波を検出し、検出された音圧波をコントローラ330に送る。コントローラ330は、検出された音圧波をターゲット波形と比較する。次いでコントローラ330は、ターゲット波形により近い音圧波を変換器310が発するようにキャリブレーション命令を変更することができる。コントローラ330は、ターゲット波形と検出された音圧波との間の相違が何らかの閾値内になるまで、このプロセスを反復することができる。各変換器が個々にキャリブレーションされる1つの実施形態では、コントローラ330は、変換器に送られたキャリブレーションコンテンツを、マイクロフォンアセンブリ320によって検出された音圧波に対して比較する。コントローラ330は、その変換器アセンブリのキャリブレーションに基づいて周波数応答モデルを生成してもよい。ユーザのキャリブレーションの完了に応答して、マイクロフォンアセンブリ320は、オーディオシステム300から結合解除されてもよい。マイクロフォンアセンブリ320を取り外す利点は、オーディオシステム300をより着用しやすくすることと、オーディオシステム300、潜在的にはオーディオシステム300が構成要素であるアイウェアデバイス(たとえばアイウェアデバイス100、アイウェアデバイス200、またはアイウェアデバイス250)のかさおよび重量を低減することと、オーディオシステム300の電力消費を低減することとを含む。
【0075】
図4は、1つまたは複数の実施形態による、オーディオシステムのマイクロフォンアセンブリ320のブロック図である。図4に示すマイクロフォンアセンブリ320は、光のビームを生成するためのレーザ410と、ビームを基準ビームおよび感知ビームに分割するためのビームスプリッタ420と、感知ビームが通過する光センサ430と、基準ビームが通過する基準ビーム変調器440と、感知ビームおよび基準ビームに基づいて感知された音圧波を測定するための検出器アセンブリ450とを含む光学マッハツェンダー干渉計である。
【0076】
レーザ410は、光のビームを発する。レーザ410は、レーザダイオードなどの任意のコヒーレント光源であってもよい。レーザ410は、ビームスプリッタ420内に結合される。ビームスプリッタ420は、レーザ410によって発せられた光ビームを光の第1のビームおよび光の第2のビームに分離するように構成されたデバイスである。たとえば、ビームスプリッタ42は、半透明ミラー、ガラスプリズムの対、ダイクロイックミラープリズムであってもよい。第1のビームは、音圧波を検出するために使用される感知ビームであり、第2のビームは、感知ビームの変化を検出するために使用される基準ビームである。
【0077】
第1のビーム(すなわち感知ビーム)は、光センサ430内に結合される。光センサ430は、感知ビームがそこを通って進行する光感知経路を含む。いくつかの実施形態では、光感知経路は、検出された音圧波によって動くように構成され、それにより、感知ビームは音圧波を感知できるようになる。たとえば、光センサ430は、図2Aに関して説明したようなファブリペロー干渉計を備えた光ファイバ、または図2Bに関して説明したような可撓性膜に結合された光ファイバであってもよい。
【0078】
検出された音圧波は、感知ビームの光路長を変更するように光センサ430と相互作用する。光路長は、感知ビームが進行する経路の幾何学的長と、感知ビームがそこを通って進行する材料の屈折率(たとえば光ファイバの屈折率またはファブリペロー干渉計内のミラー間の空洞の屈折率)の積である。検出された音圧波は、音圧波がそこを通って進行する媒質内に粒子変位を作り出す。図2Aおよび2Bに示す光感知経路などの、空中に垂らされユーザの耳の入口に配置された光感知経路によって検出される空気伝達波の場合、媒質は空気である。(たとえば図2Aおよび2bに示す骨伝導変換器の近傍における)ユーザの頭部の組織に結合された光感知経路によって検出される組織伝達圧力波の場合、媒質は、骨または軟骨などの組織である。いずれの場合も、音圧波によって作り出された粒子変位は、光感知経路(たとえば膜またはファブリペロー干渉計)を振動させ、この振動により、光感知経路を通る感知ビームの幾何学的経路長は変更され、したがって光路長が変更される。光路長の変化を測定することにより、音圧の測定値に対応する粒子変位の測定値が提供される。
【0079】
第2のビーム(すなわち基準ビーム)は、基準ビーム変調器440に結合される。マイクロフォンアセンブリ320は、音圧波によって引き起こされた感知ビームの光路長の変化を測定するために、感知ビームを基準ビームと比較する。基準ビーム変調器440は、基準ビームのパラメータを変調し、それにより、検出器アセンブリ450は、変更されたパラメータに基づいて基準ビームを識別し、基準ビームと感知ビームを区別することができる。たとえば、基準ビーム変調器440は、基準ビームの振幅または周波数を変調することができる。
【0080】
基準ビーム変調器440によって出力された、変調された基準ビーム、および光センサ430によって出力された感知ビームは、検出器アセンブリ内に結合される。いくつかの実施形態では、変調された基準ビームおよび感知ビームは、図4に示すように、検出器アセンブリ450に入る前に再度組み合わせられる。たとえば、基準ビーム変調器440および光センサ430それぞれによって出力された基準ビームおよび感知ビームは、基準ビームおよび感知ビームの組み合わせを出力する第2のビームスプリッタに入ってもよい。光路長の変化は、光センサ430を通過した後の感知ビームの位相の変化において観察される。感知ビームの位相の変化は、感知ビームの位相を基準ビームの位相と比較することによって決定することができる。
【0081】
図4に示す例では、検出器アセンブリ450は、光検出器460と、信号プロセッサ470とを含む。変調された基準ビームおよび感知ビームの組み合わせは、光検出器460内に結合される。光検出器460は、光を受け取り光を電流に変換するデバイスである。基準ビームおよび感知ビームの組み合わせにより、強め合う干渉が生じ、光検出器460において検出された光の量は、基準ビームおよび感知ビームの相対位相に関連付けられる。信号プロセッサ470は、光検出器460によって生成された電流を受け取り、この電流を検出された音圧波の測定値に変換する。特に、信号プロセッサ470は、感知ビームおよび基準ビームの相対位相に基づいて基準ビームに対する感知ビームの光路長の変化を決定し、光路長の変化に基づいて音圧波の測定値を決定する。信号プロセッサ470は、音圧波の測定値をコントローラ330に送信し、コントローラは、上記で論じたように、測定値に基づいて変換器310のうちの1つまたは複数のオーディオ命令を調節する。
【0082】
また信号プロセッサ470は、音圧波によって引き起こされた光路長の変化と他の要因による光路長の変化とを区別してもよい。たとえば、オーディオシステム300をユーザが動いているときに着用している場合、ユーザの頭部の動きが、たとえば光ファイバの動きによって光路長に変化を引き起こし得る。一例として、信号プロセッサ470は、受信した信号を処理して、検出された光路長の変化の周波数を識別し、音圧波に対応する周波数範囲(たとえば20Hz~20kHz)内の信号の部分を選択する。物理的動作によって引き起こされた光路長の変化の周波数は、典型的にはこれより低く、それにより、信号プロセッサ470は、物理的動作によって引き起こされた受信信号の部分を雑音として除去することができる。いくつかの実施形態では、コントローラ330は、特定の周波数、周波数のセット、または周波数の範囲において音圧波を生み出すように変換器310に命令し、この周波数情報を信号プロセッサ470に送信する。そのような実施形態では、信号プロセッサ470は、生み出された音圧波の周波数に合致する受信信号の部分を測定する。
【0083】
図4はマッハツェンダー干渉計に基づく光マイクロフォンアセンブリ320を示しているが、他の実施形態では、代替の検出デバイスを使用することもできる。たとえば、光マイクロフォンアセンブリは、マイケルソン干渉計、フィゾー干渉計、別のタイプの光学干渉計または光学検出装置に基づいてもよい。
【0084】
図5は、1つまたは複数の実施形態による、オーディオシステムを含むアイウェアデバイスのシステム環境500である。システム500は、仮想現実環境、拡張現実環境、複合現実環境、これらの何らかの組み合わせにおいて動作してもよい。図5に示すシステム500は、アイウェアデバイス505と、コンソール510に結合された入力/出力(I/O)インターフェース515とを備える。アイウェアデバイス505は、アイウェアデバイス100の実施形態であってもよい。図5は、1つのアイウェアデバイス505と1つのI/Oインターフェース515とを含む例示的なシステム500を示すが、他の実施形態では、任意の数のこれら構成要素がシステム500に含まれてもよい。たとえば、複数のアイウェアデバイス505が存在し、それぞれが関連するI/Oインターフェース515を有し、それぞれのアイウェアデバイス505およびI/Oインターフェース515がコンソール510と通信してもよい。代替的な構成では、異なるかつ/または追加の構成要素が、システム500に含まれてもよい。さらに、図5に示す構成要素のうちの1つまたは複数に関連して説明した機能は、いくつかの実施形態では、図5に関連して説明したのとは異なるやり方で構成要素間で分散されてもよい。たとえば、コンソール510の一部または全部の機能が、アイウェアデバイス505によって提供される。
【0085】
アイウェアデバイス505は、コンピュータ生成要素(たとえば、2次元(2D)または3次元(3D)の画像、2Dまたは3Dの動画、音など)を有する物理的な現実世界の環境の拡張ビューを含むコンテンツをユーザに提示する、HMDであってもよい。いくつかの実施形態では、提示されるコンテンツはオーディオシステム300を介して提示されるオーディオを含み、このオーディオシステムは、アイウェアデバイス505、コンソール510、またはこれらの両方からオーディオ情報を受信し、このオーディオ情報に基づいてオーディオデータを提示する。いくつかの実施形態では、アイウェアデバイス505は、ユーザを囲む実際の環境に部分的に基づく仮想コンテンツをユーザに提示する。たとえば、仮想コンテンツは、アイウェアデバイスのユーザに提示されてもよい。ユーザは物理的に部屋の中にいてもよく、その部屋の仮想の壁および仮想の床が、仮想コンテンツの一部としてレンダリングされる。
【0086】
アイウェアデバイス505は、図3のオーディオシステム300を含む。オーディオシステム300は、1つまたは複数の音伝導方法と、生み出された音を検出するための光マイクロフォンアセンブリとを含む。上述したように、オーディオシステム300は、1つまたは複数の軟骨伝導変換器、1つまたは複数の空気伝導変換器、および1つまたは複数の骨伝導変換器の任意の組み合わせを含んでもよい。オーディオシステム300は、アイウェアデバイス505のユーザにオーディオコンテンツを提供する。オーディオシステム300は光マイクロフォンを使用して、生み出された音を、これがユーザのそれぞれの耳の周波数応答モデルを補償することができ、アイウェアデバイス505を使用して異なる個人間で生み出される音を一貫的に維持できるように監視する。
【0087】
アイウェアデバイス505は、深度カメラアセンブリ(DCA)520と、電子ディスプレイ525と、光学ブロック530と、1つまたは複数の位置センサ535と、慣性計測装置(IMU)540とを含んでもよい。電子ディスプレイ525および光学ブロック530は、レンズ110の1つの実施形態である。位置センサ535およびIMU540は、センサデバイス115の1つの実施形態である。アイウェアデバイス505のいくつかの実施形態は、図5に関連して説明するものとは異なる構成要素を有する。さらに、図5に関連して説明するさまざまな構成要素によって提供される機能は、他の実施形態ではアイウェアデバイス505の構成要素間で異なって分散されてもよく、またはアイウェアデバイス505から遠隔の別個のアセンブリに取り込まれてもよい。
【0088】
DCA520は、アイウェアデバイス505の一部または全部を取り囲む局所領域の深度情報を説明するデータを取り込む。DCA520は、光発生器と、撮像デバイスと、光発生器と撮像デバイスの両方に結合されてもよいDCAコントローラとを含んでもよい。光発生器は、たとえば、DCAコントローラによって生成された発光命令に従って、局所領域を照明光で照明する。DCAコントローラは、たとえば局所領域を照明する照明光の強度およびパターンを調節するために、発光命令に基づいて光発生器の特定の構成要素の動作を制御するように構成される。いくつかの実施形態では、照明光は、構造化された光パターン、たとえばドットパターン、ラインパターンなどを含んでもよい。撮像デバイスは、照明光によって照明された局所領域内の1つまたは複数の物体のうちの1つまたは複数の画像を取り込む。DCA520は、撮像デバイスまたはDCA520によって取り込まれたデータを使用して深度情報を計算することができ、またはDCA520は、コンソール510などの別のデバイスにこの情報を送ることができ、コンソールは、DCA520からのデータを使用して深度情報を決定することができる。
【0089】
電子ディスプレイ525は、コンソール510から受信したデータに従ってユーザに2Dまたは3Dの画像を表示する。さまざまな実施形態では、電子ディスプレイ525は、単一の電子ディスプレイまたは複数の電子ディスプレイ(たとえば、ユーザの両目用のディスプレイ)を備える。電子ディスプレイ525の例は、液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、アクティブマトリックス式有機発光ダイオードディスプレイ(AMOLED)、何らかの他のディスプレイ、またはこれらの何らかの組み合わせを含む。電子ディスプレイ525は、導波管ディスプレイであってもよい。
【0090】
いくつかの実施形態では、光学ブロック530は、電子ディスプレイ525から受信した画像光を拡大し、画像光に関連した光学誤差を補正し、補正した画像光をアイウェアデバイス505のユーザに提示する。さまざまな実施形態では、光学ブロック530は、1つまたは複数の光学素子を含む。光学ブロック530に含まれる例示的な光学素子は、導波管、アパーチャ、フレネルレンズ、凸レンズ、凹レンズ、フィルタ、反射面、または画像光に影響を及ぼす任意の他の好適な光学素子を含む。さらに、光学ブロック530は、異なる光学素子の組み合わせを含んでもよい。いくつかの実施形態では、光学ブロック530の光学素子のうちの1つまたは複数は、部分反射または反射防止のコーティングなど、1つまたは複数のコーティングを有してもよい。
【0091】
光学ブロック530による画像光の拡大および焦点合わせにより、電子ディスプレイ525を物理的に小さく、軽量にすることができ、大型ディスプレイより消費電力を少なくすることができる。さらに、拡大により、電子ディスプレイ525によって提示されるコンテンツの視野が広くなってもよい。たとえば、表示されるコンテンツの視野は、表示されるコンテンツが、ユーザの視野のほぼ全部(たとえば、対角約110度)、および一部の事例ではその全部を使用して提示されるような視野である。さらにいくつかの実施形態では、拡大量は、光学素子を追加するまたは取り外すことによって調節されてもよい。
【0092】
いくつかの実施形態では、光学ブロック530は、1つまたは複数のタイプの光学誤差を補正するように設計されてもよい。光学誤差の例は、たる形または糸巻き形のディストーション、縦色収差、または横色収差を含む。他のタイプの光学誤差はさらに、球面収差、色収差、またはレンズ像面湾曲に起因する誤差、非点収差、または任意の他のタイプの光学誤差を含んでもよい。いくつかの実施形態では、表示するために電子ディスプレイ525に提供されるコンテンツはプリディストーションされ、光学ブロック530は、そのコンテンツに基づいて生成された画像光を電子ディスプレイ525から受信したとき、そのディストーションを補正する。
【0093】
IMU540は、位置センサ535のうちの1つまたは複数から受信した測定信号に基づいて、アイウェアデバイス505の位置を示すデータを生成する電子デバイスである。位置センサ535は、アイウェアデバイス505の動きに応答して1つまたは複数の測定信号を生成する。位置センサ535の例は、1つもしくは複数の加速度計、1つもしくは複数のジャイロスコープ、1つもしくは複数の磁力計、動きを検出する別の好適なタイプのセンサ、IMU540の誤差補正に使用されるタイプのセンサ、またはこれらの何らかの組み合わせを含む。位置センサ535は、IMU540の外部に位置付けられてもよく、IMU540の内部に位置付けられてもよく、またはこれらの組み合わせであってもよい。
【0094】
1つまたは複数の位置センサ535からの1つまたは複数の測定信号に基づき、IMU540は、アイウェアデバイス505の初期位置に対するアイウェアデバイス505の推定現在位置を示すデータを生成する。たとえば、位置センサ535は、並進運動(前/後、上/下、左/右)を測定するための複数の加速度計と、回転運動(たとえばピッチ、ヨー、およびロール)を測定するための複数のジャイロスコープとを含む。いくつかの実施形態では、IMU540は、測定信号を高速でサンプリングし、アイウェアデバイス505の推定現在位置を、サンプリングされたデータから計算する。たとえば、IMU540は、加速度計から受信した測定信号を経時的に積分して速度ベクトルを推定し、この速度ベクトルを経時的に積分して、アイウェアデバイス505の基準点の推定現在位置を決定する。あるいは、IMU540は、サンプリングした測定信号をコンソール510に提供し、コンソールは、誤差を低減するようにデータを解釈する。基準点は、アイウェアデバイス505の位置を説明するために使用されてもよい点である。基準点は通常、アイウェアデバイス505の向きおよび位置に関係する空間内の点、または位置として定義されてもよい。
【0095】
I/Oインターフェース515は、ユーザがアクション要求を送り、コンソール510から応答を受信できるようにするデバイスである。アクション要求は、特定のアクションを実行するための要求である。たとえば、アクション要求は、画像データまたは動画データの取り込みを開始もしくは終了するための命令であってもよく、またはアプリケーション内で特定のアクションを実行するための命令であってもよい。I/Oインターフェース515は、1つまたは複数の入力デバイスを含んでもよい。例示的な入力デバイスは、キーボード、マウス、ゲームコントローラ、またはアクション要求を受信し、そのアクション要求をコンソール510に通信するための任意の他のデバイスを含む。I/Oインターフェース515が受信したアクション要求は、コンソール510に通信され、コンソールは、そのアクション要求に対応するアクションを実行する。いくつかの実施形態では、I/Oインターフェース515は、上記でさらに説明したように、I/Oインターフェース515の初期位置の対するI/Oインターフェース515の推定位置を示すキャリブレーションデータを取り込むIMU540を含む。いくつかの実施形態では、I/Oインターフェース515は、コンソール510から受信した命令に従って、ユーザに触覚フィードバックを提供してもよい。たとえば、アクション要求が受信されたときに触覚フィードバックが提供され、またはコンソール510がアクションを実行するときに、コンソール510が、I/Oインターフェース515に命令を通信して、I/Oインターフェース515に触覚フィードバックを生成させる。
【0096】
コンソール510は、アイウェアデバイス505およびI/Oインターフェース515のうちの1つまたは複数から受信した情報に従って、処理するためのコンテンツをアイウェアデバイス505に提供する。図5に示す例では、コンソール510は、アプリケーションストア550と、追跡モジュール555と、エンジン545とを含む。コンソール510のいくつかの実施形態は、図5に関連して説明するものとは異なるモジュールまたは構成要素を有する。同様に、以下でさらに説明する機能は、図5に関連して説明したのとは異なるやり方で、コンソール510の構成要素間で分散されてもよい。
【0097】
アプリケーションストア550は、コンソール510によって実行するための1つまたは複数のアプリケーションを記憶する。アプリケーションは、プロセッサによって実行されたときに、ユーザに提示するためのコンテンツを生成する命令のグループである。アプリケーションによって生成されるコンテンツは、アイウェアデバイス505の動きを介してユーザから受信するか、またはI/Oインターフェース515から受信する入力に応答するものであってもよい。アプリケーションの例は、ゲーミングアプリケーション、会議アプリケーション、動画再生アプリケーション、または他の好適なアプリケーションを含む。
【0098】
追跡モジュール555は、1つまたは複数のキャリブレーションパラメータを使用してシステム環境500をキャリブレーションし、アイウェアデバイス505またはI/Oインターフェース515の位置を決定する際の誤差を低減するように、1つまたは複数のキャリブレーションパラメータを調節してもよい。また、追跡モジュール555によって実行されるキャリブレーションは、アイウェアデバイス505のIMU540および/またはI/Oインターフェース515に含まれるIMU540から受信する情報にも責任を負う。さらに、アイウェアデバイス505の追跡が失われると、追跡モジュール555は、システム環境500の一部または全部を再キャリブレーションしてもよい。
【0099】
追跡モジュール555は、1つまたは複数の位置センサ535、IMU540、DCA520、またはそれらの何らかの組み合わせからの情報を使用して、アイウェアデバイス505またはI/Oインターフェース515の動きを追跡する。たとえば、追跡モジュール555は、アイウェアデバイス505からの情報に基づいて、局所領域のマッピングにおいてアイウェアデバイス505の基準点の位置を決定する。また追跡モジュール555は、アイウェアデバイス505の基準点の位置、またはI/Oインターフェース515の基準点の位置を、アイウェアデバイス505の位置を示すIMU540からのデータを使用して、またはI/Oインターフェース515の位置を示すI/Oインターフェース515に含まれるIMU540からのデータを使用して、それぞれ決定してもよい。さらに、いくつかの実施形態では、追跡モジュール555は、位置またはアイウェアデバイス505を示すIMU540からのデータの部分を使用して、アイウェアデバイス505の将来の場所を予測してもよい。追跡モジュール555は、アイウェアデバイス505またはI/Oインターフェース515の推定または予測の将来位置を、エンジン545に提供する。
【0100】
またエンジン545は、システム環境500内のアプリケーションを実行し、アイウェアデバイス505の位置情報、加速度情報、速度情報、予測将来位置、またはそれらの何らかの組み合わせを、追跡モジュール555から受信する。受信した情報に基づき、エンジン545は、ユーザに提示するためにアイウェアデバイス505に提供すべきコンテンツを決定する。たとえば、受信した情報が、ユーザが左を見たことを示す場合、エンジン545は、仮想環境において、または局所領域を追加のコンテンツで拡張する環境において、ユーザの動きを反映するコンテンツをアイウェアデバイス505に対して生成する。さらに、エンジン545は、I/Oインターフェース515から受信したアクション要求に応答して、コンソール510上で実行しているアプリケーション内でアクションを実行し、そのアクションが実行されたというフィードバックをユーザに提供する。提供されるフィードバックは、アイウェアデバイス505を介した視覚的もしくは聴覚的なフィードバック、またはI/Oインターフェース515を介した触覚フィードバックであってもよい。
【0101】
追加の構成情報
本開示の実施形態の上の説明は、例示を目的として提示されてきたものであり、網羅的であること、または開示した厳密な形態に本開示を限定することは意図していない。当業者は、上記の開示に鑑み、多くの修正形態および変形形態が可能であることを理解できる。
【0102】
この説明のいくつかの部分は、情報についての動作のアルゴリズムおよび象徴的表現という観点から、本開示の実施形態を説明する。これらのアルゴリズム的記述および表現は、データ処理分野の当業者によって、自らの研究の主旨を効果的に他の当業者に伝えるために一般的に使用される。これらの動作は、機能的、コンピュータ的、または論理的に説明されたが、コンピュータプログラム、または同等の電気回路、マイクロコードなどによって実装されると理解される。さらに、一般性を失うことなく、動作のこれらの構成をモジュールと呼ぶことが、ときに便利であることも証明されている。説明した動作およびそれらの関連モジュールは、ソフトウェア、ファームウェア、ハードウェア、またはこれらの任意の組み合わせに具体化されてもよい。
【0103】
本明細書に記載の任意のステップ、動作、またはプロセスは、1つまたは複数のハードウェアもしくはソフトウェアモジュールを用いて、単体で、または他のデバイスとの組みみ合わせで、実行または実装されてもよい。1つの実施形態では、ソフトウェアモジュールは、コンピュータプログラムコードを収容するコンピュータ読取り可能媒体を備えるコンピュータプログラム製品を用いて実装され、このコンピュータプログラムコードは、説明したステップ、動作、またはプロセスのいずれかまたは全部を実行するためにコンピュータプロセッサによって実行することができる。
【0104】
また本開示の実施形態は、本明細書の動作を実行するための装置に関してもよい。この装置は、必要な目的のために専用に構築されてもよく、かつ/またはコンピュータに記憶されたコンピュータプログラムによって選択的に有効化または再構成される汎用コンピューティングデバイスを備えてもよい。こうしたコンピュータプログラムは、非一時的な有形のコンピュータ読取り可能記憶媒体、または電子命令を記憶するのに適した任意のタイプの媒体に記憶されてもよく、これらの媒体がコンピュータシステムバスに結合されてもよい。さらに、本明細書で言及する任意のコンピューティングシステムは、シングルプロセッサを含んでもよく、または計算能力を高めるためにマルチプロセッサ設計を採用したアーキテクチャであってもよい。
【0105】
また本開示の実施形態は、本明細書に記載の計算プロセスによって生み出される製品に関してもよい。こうした製品は、計算プロセスの結果得られる情報を含んでもよく、この情報は、非一時的な有形のコンピュータ読取り可能記憶媒体に記憶され、コンピュータプログラム製品または本明細書に記載の他のデータの組み合わせの任意の実施形態を含んでもよい。
【0106】
最後に、本明細書で使用する言葉は、読みやすさ、および教授を目的として主に選択されたものであり、発明の主題の境界を明示するか、またはそれを制限するために選択されたものではない場合がある。したがって、本開示の範囲は、この詳細な説明によってではなく、むしろ本明細書に基づく出願に対して発行される任意の請求項によって限定されるものとする。したがって、実施形態の開示は、以下の特許請求の範囲に述べる本開示の範囲を例示するものであり、限定するものとは意図していない。
図1
図2A
図2B
図3
図4
図5