(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-14
(45)【発行日】2024-06-24
(54)【発明の名称】患者の血流特性を決定するためのコンピュータで実行する方法、システム、及び非一時的コンピュータ可読媒体
(51)【国際特許分類】
A61B 5/026 20060101AFI20240617BHJP
【FI】
A61B5/026 140
(21)【出願番号】P 2023112147
(22)【出願日】2023-07-07
(62)【分割の表示】P 2022106986の分割
【原出願日】2017-09-19
【審査請求日】2023-07-07
(32)【優先日】2016-09-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513030879
【氏名又は名称】ハートフロー, インコーポレイテッド
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】トラヴィス マイケル サンダース
(72)【発明者】
【氏名】セスラマン サンカラン
(72)【発明者】
【氏名】レオ グラディー
(72)【発明者】
【氏名】デイビッド スペイン
(72)【発明者】
【氏名】ナン シャオ
(72)【発明者】
【氏名】ジン キム
(72)【発明者】
【氏名】チャールズ エー. テイラー
【審査官】藤原 伸二
(56)【参考文献】
【文献】米国特許出願公開第2016/0180055(US,A1)
【文献】米国特許出願公開第2016/0196384(US,A1)
【文献】特表2016-500548(JP,A)
【文献】特開2012-024582(JP,A)
【文献】特表2014-534889(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/02-5/03
A61B 5/055
A61B 6/00-6/03
A61B 8/00-8/06
(57)【特許請求の範囲】
【請求項1】
患者の血流特性を決定するためのコンピュータで実行する方法であって、前記方法は、
患者の脈管構造の少なくとも一部分の患者特有の解剖学的モデルの少なくとも一部分を表す
患者特有の次数低減モデルを取得することであって、前記
患者特有の次数低減モデルは、前記患者特有の解剖学的モデルの前記一部分の1つ以上の位置
の各々における
1つ以上の血流特性の第1の推定値に基づいたインピーダンス値を有する1つ以上の点を含む、ことと、
前記患者特有の次数低減モデルとは異なる少なくとも1つの訓練次数低減モデルの少なくとも1つのインピーダンス値と計算流体力学によって決定された少なくとも1つの対応するインピーダンス値との間で決定された誤差に基づいて訓練された、前記
患者特有の次数低減モデルを更新するための機械学習アルゴリズムまたは前記
患者特有の次数低減モデルの最適なパラメータ化を決定するための機械学習アルゴリズムまたは前記
患者特有の次数低減モデルの幾何学的特徴の単純化のための機械学習アルゴリズムを用いることによって、前記
患者特有の次数低減モデルを更新すること
であって、前記機械学習アルゴリズムは、前記患者特有の次数低減モデルの1つ以上のインピーダンス値における誤差を低減するように構成されるようになっている、ことと、
前記更新された
患者特有の次数低減モデルを使用することにより、前記患者特有の解剖学的モデルの前記一部分の前記1つ以上の位置
の各々における前記
1つ以上の血流特性の第2の推定値を決定することと
を含む、方法。
【請求項2】
前記第1の推定値は、前記患者特有の解剖学的モデルの前記一部分への境界条件の適用に基づく、請求項1に記載のコンピュータで実行する方法。
【請求項3】
前記境界条件は、前記患者特有の解剖学的モデルの前記一部分の血管壁、血流の流出、及び血流の流入における血行動態に関連付けられている、請求項2に記載のコンピュータで実行する方法。
【請求項4】
前記患者特有の解剖学的モデルの前記一部分を前記患者の脈管構造の複数の領域に分割することをさらに含み、
前記
患者特有の次数低減モデルは、前記患者の脈管構造の前記複数の領域の各々についてのそれぞれの次数低減モデルを含む、請求項1に記載のコンピュータで実行する方法。
【請求項5】
前記分割することは、前記
1つ以上の血流特性の前記第1の推定値に基づく、請求項4に記載のコンピュータで実行する方法。
【請求項6】
前記分割することは、前記患者の脈管構造の1つ以上の健康領域と前記患者の脈管構造の1つ以上の不健康領域とを区別するように構成される、請求項5に記載のコンピュータで実行する方法。
【請求項7】
前記患者の脈管構造の前記1つ以上の不健康領域は、小孔部分岐、非小孔部分岐、狭窄領域、または拡張領域のうちの1つ以上を含む、請求項6に記載のコンピュータで実行する方法。
【請求項8】
前記機械学習アルゴリズムは、サポートベクトルマシン(SVM)、多層パーセプトロン(MLP)、多変量回帰(MVR)、ニューラルネットワーク、樹木モデル分類器、または重み付け線形回帰またはロジスティック回帰のうちの1つ以上を含む、請求項1に記載のコンピュータで実行する方法。
【請求項9】
前記
1つ以上の血流特性は、血圧、冠血流予備量比(FFR)、血流量または流速、速度場または圧力場、血流力、ならびに臓器及び/または組織の灌流特性のうちの1つ以上を含む、請求項1に記載のコンピュータで実行する方法。
【請求項10】
前記
患者特有の次数低減モデルは、前記患者の前記脈管構造の前記1つ以上の点における幾何学的特徴を単純化する値の推定値を含む、請求項1に記載のコンピュータで実行する方法。
【請求項11】
患者の血流特性を決定するためのシステムであって、前記システムは、
指示と、
患者特有の次数低減モデルとは異なる少なくとも1つの訓練次数低減モデルの少なくとも1つのインピーダンス値と計算流体力学によって決定された少なくとも1つの対応するインピーダンス値との間で決定された誤差に基づいて訓練された、
前記患者特有の次数低減モデルを更新するための機械学習アルゴリズムまたは前記
患者特有の次数低減モデルの最適なパラメータ化を決定するための機械学習アルゴリズムまたは前記
患者特有の次数低減モデルの幾何学的特徴の単純化のための機械学習アルゴリズムとを格納する少なくとも1つのメモリ
であって、前記機械学習アルゴリズムは、前記患者特有の次数低減モデルの1つ以上のインピーダンス値における誤差を低減するように構成されるようになっている、メモリと、
前記メモリに作用可能に接続された少なくとも1つのプロセッサと
を備え、
前記少なくとも1つのプロセッサは、前記指示を実行することにより動作を行うように構成され、
前記動作は、
患者の脈管構造の少なくとも一部分の患者特有の解剖学的モデルの少なくとも一部分を表す
患者特有の次数低減モデルを取得することであって、前記
患者特有の次数低減モデルは、前記患者特有の解剖学的モデルの前記一部分の1つ以上の位置
の各々における
1つ以上の血流特性の第1の推定値に基づいたインピーダンス値を有する1つ以上の点を含む、ことと、
前記機械学習アルゴリズムを用いることによって、前記
患者特有の次数低減モデルを更新することと、
前記更新された
患者特有の次数低減モデルを使用することにより、前記患者特有の解剖学的モデルの前記一部分の前記1つ以上の位置
の各々における前記
1つ以上の血流特性の第2の推定値を決定することと
を含む、システム。
【請求項12】
前記第1の推定値は、前記患者特有の解剖学的モデルの前記一部分への境界条件の適用に基づき、
前記境界条件は、前記患者特有の解剖学的モデルの前記一部分の血管壁、血流の流出、及び血流の流入における血行動態に関連付けられている、請求項11に記載のシステム。
【請求項13】
前記動作は、
前記患者特有の解剖学的モデルの前記一部分を前記患者の脈管構造の複数の領域に分割することをさらに含み、
前記分割することは、前記
1つ以上の血流特性の前記第1の推定値に基づき、
前記分割することは、前記患者の脈管構造の1つ以上の健康領域と前記患者の脈管構造の1つ以上の不健康領域とを区別するように構成され、
前記
患者特有の次数低減モデルは、前記患者の脈管構造の前記複数の領域の各々についてのそれぞれの次数低減モデルを含む、請求項11に記載のシステム。
【請求項14】
前記患者の脈管構造の前記1つ以上の不健康領域は、小孔部分岐、非小孔部分岐、狭窄領域、または拡張領域のうちの1つ以上を含む、請求項13に記載のシステム。
【請求項15】
前記機械学習アルゴリズムは、サポートベクトルマシン(SVM)、多層パーセプトロン(MLP)、多変量回帰(MVR)、ニューラルネットワーク、樹木モデル分類器、または重み付け線形回帰またはロジスティック回帰のうちの1つ以上を含む、請求項11に記載のシステム。
【請求項16】
前記
1つ以上の血流特性は、血圧、冠血流予備量比(FFR)、血流量または流速、速度場または圧力場、血流力、ならびに臓器及び/または組織の灌流特性のうちの1つ以上を含む、請求項11に記載のシステム。
【請求項17】
前記
患者特有の次数低減モデルは、前記患者の前記脈管構造の前記1つ以上の点における幾何学的特徴を単純化する値の推定値を含む、請求項11に記載のシステム。
【請求項18】
動作を行うように少なくとも1つのプロセッサによって実行可能である患者の血流特性を決定するための指示を備える非一時的コンピュータ可読媒体であって、前記動作は、
患者の脈管構造の少なくとも一部分の患者特有の解剖学的モデルの少なくとも一部分を表す
患者特有の次数低減モデルを取得することであって、前記
患者特有の次数低減モデルは、前記患者特有の解剖学的モデルの前記一部分の1つ以上の位置
の各々における
1つ以上の血流特性の第1の推定値に基づいたインピーダンス値を有する1つ以上の点を含む、ことと、
前記患者特有の次数低減モデルとは異なる少なくとも1つの訓練次数低減モデルの少なくとも1つのインピーダンス値と計算流体力学によって決定された少なくとも1つの対応するインピーダンス値との間で決定された誤差に基づいて訓練された、前記
患者特有の次数低減モデルを更新するための機械学習アルゴリズムまたは前記
患者特有の次数低減モデルの最適なパラメータ化を決定するための機械学習アルゴリズムまたは前記
患者特有の次数低減モデルの幾何学的特徴の単純化のための機械学習アルゴリズムを用いることによって、前記
患者特有の次数低減モデルを更新すること
であって、前記機械学習アルゴリズムは、前記患者特有の次数低減モデルの1つ以上のインピーダンス値における誤差を低減するように構成されるようになっている、ことと、
前記更新された
患者特有の次数低減モデルを使用することにより、前記患者特有の解剖学的モデルの前記一部分の前記1つ以上の位置
の各々における前記
1つ以上の血流特性の第2の推定値を決定することと
を含む、非一時的コンピュータ可読媒体。
【請求項19】
前記第1の推定値は、前記患者特有の解剖学的モデルの前記一部分への境界条件の適用に基づき、
前記境界条件は、前記患者特有の解剖学的モデルの前記一部分の血管壁、血流の流出、及び血流の流入における血行動態に関連付けられている、請求項18に記載の非一時的コンピュータ可読媒体。
【請求項20】
前記動作は、
前記患者特有の解剖学的モデルの前記一部分を前記患者の脈管構造の複数の領域に分割することをさらに含み、
前記分割することは、前記
1つ以上の血流特性の前記第1の推定値に基づき、
前記分割することは、前記患者の脈管構造の1つ以上の健康領域と前記患者の脈管構造の1つ以上の不健康領域とを区別するように構成され、
前記
患者特有の次数低減モデルは、前記患者の脈管構造の前記複数の領域の各々についてのそれぞれの次数低減モデルを含む、請求項18に記載の非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、その開示全体が本発明において参照により組み込まれている、2016年9月20日に出願された米国特許仮出願第62/396,965号に対する優先権を主張する。
【0002】
本開示の様々な実施形態は、概して、血管系(複数可)の診断及び治療計画に関する。より具体的には、本開示の特定の実施形態は、次数低減モデル及び/または機械学習を使用した血流特性を推定するためのシステム及び方法に関する。
【背景技術】
【0003】
冠状動脈内の血流は、虚血の存在または程度、心筋への血液灌流の存在または程度などを含む有用な情報を提供することができる。小動脈内の血流の直接的な測定は困難であり得ることから、心臓コンピュータ断層撮影(CT)走査、磁気共鳴映像法(MRI))、超音波などを含む医用画像データから導出された患者特有の3次元(3D)幾何学的形状についてナビエ-ストークス方程式を解くことによって血流がシミュレートされ得る。解法プロセスを促進するために、3D幾何学的形状は、面積または半径によってパラメータ化された中心線の一次元骨格に単純化することができ、血流特性(例えば、圧力、流量、等)は、例えば、ナビエ-ストークス方程式の単純化を解くことによって、これらの中心線に沿って計算され得る。これらの技法は、ナビエ-ストークス方程式の解の著しくより速い計算を可能にし得るが、これらは3次元幾何学的形状についてナビエ-ストークス方程式を解くほど正確でないようになり得る。1D幾何学的形状への単純化を含む方法は、十分に正確ではなく、解剖学的モデルの局所化された領域での血流特性のより精密で正確な計算を提供することができる方法に対する要望がある。そのように要望される方法は、計算時間を著しく改善すると同時に精度を維持することができる。これらのモデルを利用して最適な幾何学的パラメータ化を決定する方法に対する要望もあり、この方法は、最適解を与えることになり、及び/または患者の解剖学的構造の幾何学的特徴に関する知識を向上させ、それによって医用画像を向上させることになる。
【発明の概要】
【課題を解決するための手段】
【0004】
以下で説明するものは、次数低減モデル及び/または機械学習を使用して血流特性を推定するためのシステム及び方法についての本開示の様々な実施形態である。
【0005】
一方法は、電子記憶媒体において、1つ以上の点で幾何学的特徴を有する患者の脈管構造の少なくとも一部分の患者特有の画像データを受信することと、受信した画像データから患者特有の次数低減モデルを生成することであって、患者特有の次数低減モデルが、インピーダンス値の推定値、及び患者の脈管構造の1つ以上の点における幾何学的特徴の単純化を含むことと、患者特有の次数低減モデルの1つ以上の点のそれぞれについて、インピーダンス値の推定値及び幾何学的特徴を含む特徴ベクトルを作成することと、1つ以上の点において生成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、患者特有の次数低減モデルの1つ以上の点における血流特性を決定することを含んでいる。
【0006】
別の実施形態によると、次数低減モデル及び/または機械学習を使用して血流特性を推定するためのシステムは、次数低減モデル及び/または機械学習を使用した血流特性を推定するための指示を格納する記憶装置と、プロセッサであって、電子記憶媒体において、1つ以上の点で幾何学的特徴を有する患者の脈管構造の少なくとも一部分の患者特有の画像データを受信することと、受信した画像データから患者特有の次数低減モデルを生成することであって、患者特有の次数低減モデルが、インピーダンス値の推定値、及び患者の脈管構造の1つ以上の点における幾何学的特徴の単純化を含むことと、患者特有の次数低減モデルの1つ以上の点のそれぞれについて、インピーダンス値の推定値及び幾何学的特徴を含む特徴ベクトルを作成することと、1つ以上の点において作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、患者特有の次数低減モデルの1つ以上の点における血流特性を決定することと、を行うように構成されているプロセッサとを含んでいる。
【0007】
別の実施形態によると、次数低減モデル及び/または機械学習を使用した血流特性の推定のためのコンピュータで実行可能なプログラミング指示を収容するコンピュータシステム上で使用するための非一時的コンピュータ可読媒体において、方法が、電子記憶媒体において、1つ以上の点で幾何学的特徴を有する患者の脈管構造の少なくとも一部分の患者特有の画像データを受信することと、受信した画像データから患者特有の次数低減モデルを生成することであって、患者特有の次数低減モデルが、インピーダンス値の推定値及び患者の脈管構造の1つ以上の点における幾何学的特徴の単純化を含むことと、患者特有の次数低減モデルの1つ以上の点のそれぞれについて、インピーダンス値の推定値及び幾何学的特徴を含む特徴ベクトルを作成することと、1つ以上の点において作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して患者特有の次数低減モデルの1つ以上の点における血流特性を決定することと、を含んでいる。
本明細書は、例えば、以下の項目も提供する。
(項目1)
電子記憶媒体において、1つ以上の点で幾何学的特徴を有する患者の脈管構造の少なくとも一部分の前記患者特有の画像データを受信することと、
前記受信した画像データから患者特有の次数低減モデルを生成することであって、前記患者特有の次数低減モデルが、インピーダンス値の推定値、及び前記患者の脈管構造の前記1つ以上の点における前記幾何学的特徴の単純化を含む、前記生成することと、
前記患者特有の次数低減モデルの前記1つ以上の点のそれぞれについて、前記インピーダンス値の推定値及び幾何学的特徴を含む特徴ベクトルを作成することと、
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することと、
を含む、前記患者の前記血流特性を決定するためのコンピュータで実行する方法。
(項目2)
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することが、
複数の個人の各々について、個人特有の解剖学モデルの1つ以上の点における血流特性の既知の値を有し、前記個人の脈管構造に対応する前記個人特有の解剖学モデルの前記1つ以上の点において1つ以上の幾何学的特徴を有する、前記個人特有の脈管構造の解剖学モデルを受信することと、
前記1つ以上の点で前記血流特性の既知の値を有する前記複数の個人の各々について、(i)前記1つ以上の点の位置に関する情報、及び(ii)前記1つ以上の点における幾何学的特徴を含む特徴ベクトルを形成することと、
前記1つ以上の点において前記血流特性の既知の値を有する前記複数の個人の各々について、前記特徴ベクトルを前記1つ以上の点での前記血流特性の前記既知の値に関連付けることと、
前記1つ以上の点において幾何学的特徴を含む特徴ベクトルから脈管構造の1つ以上の点での前記血流特性の値を予測するために、前記関連付けられた特徴ベクトルを使用して前記機械学習アルゴリズムを訓練することと、
前記訓練された機械学習アルゴリズムを使用して、前記患者の脈管構造に対応する前記患者特有の次数低減モデルの前記1つ以上の点での血流特性を決定することと、
を含む、項目1に記載のコンピュータで実行する方法。
(項目3)
各特徴ベクトルが、前記患者特有の次数低減モデルの1つ以上の点における前記患者の生理学的及び/または表現型パラメータをさらに含み、
前記患者の脈管構造の1つ以上の点における幾何学的特徴及び生理学的及び/または表現型パラメータを含む特徴ベクトルから前記患者の脈管構造の1つ以上の点における前記血流特性の値を予測するために前記機械学習アルゴリズムが訓練されている、項目1に記載のコンピュータで実行する方法。
(項目4)
前記生理学的及び/または表現型パラメータが、収縮期血圧及び拡張期血圧、心拍数、ヘマトクリット値、血圧、血液粘度、前記患者の年齢、前記患者の性別、前記患者の身長、前記患者の体重、前記患者のライフスタイルの特徴、及び供給された組織の質量のうち1つ以上を含む、項目3に記載のコンピュータで実行する方法。
(項目5)
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することが、
前記患者特有の前記患者の脈管構造の画像データに基づいて患者特有の解剖学的モデルを受信することであって、前記患者特有の解剖学的モデルが、前記患者の脈管構造に対応する前記患者特有の解剖学的モデルの1つ以上の点における幾何学的特徴を有する、前記受信することと、
前記患者特有の解剖学的モデルを通る血流をシミュレートするために、前記患者特有の解剖学的モデル上の位置に境界条件を適用することと、
計算流体力学(CFD)を使用して血流のシミュレーションから前記患者特有の解剖学的モデルの1つ以上の点における血流特性のための値を決定することと、
(i)前記患者特有の解剖学的モデルの前記1つ以上の点の位置に関する情報、及び(ii)前記受信した前記患者特有の解剖学的モデルの前記1つ以上の点における幾何学的特徴を含む特徴ベクトルを形成することと、
前記患者特有の解剖学的モデルの前記1つ以上の点において、前記特徴ベクトルを前記血流特性の前記決定された値に関連付けることと、
前記1つ以上の点において幾何学的特徴を含む特徴ベクトルから前記患者の脈管構造の1つ以上の点における前記血流特性の値を予測するために、前記関連付けられた特徴ベクトルを使用して機械学習アルゴリズムを訓練することと、
前記訓練された機械学習アルゴリズムを使用して、前記患者の脈管構造に対応する前記患者特有の次数低減モデルの前記1つ以上の点での血流特性を決定することと、
を含む、項目1に記載のコンピュータで実行する方法。
(項目6)
境界条件を適用することが、前記患者特有の解剖学的モデルを適切な境界条件が適用されることができる位置で切り取ることを含み、前記位置が血流の流入境界、血流の流出境界、及び血管壁を含む、項目5に記載のコンピュータで実行する方法。
(項目7)
前記受信した患者特有の画像データを前記患者の脈管構造の1つ以上の領域に分割することをさらに含み、前記次数低減モデルが前記脈管構造の1つ以上の領域の各々のために生成されている、項目1に記載のコンピュータで実行する方法。
(項目8)
前記機械学習アルゴリズムが、サポートベクトルマシン(SVM)、多層パーセプトロン(MLP)、多変量回帰(MVR)、ニューラルネットワーク、樹木モデル分類器、及び重み付け線形回帰またはロジスティック回帰のうち1つ以上を含む、項目1に記載のコンピュータで実行する方法。
(項目9)
前記血流特性が、血圧、冠血流予備量比(FFR)、血流量または流速、速度場または圧力場、血流力、ならびに臓器及び/または組織の灌流特性のうち1つ以上を含む、項目1に記載のコンピュータで実行する方法。
(項目10)
患者の血流特性を決定するための指示を格納するデータ記憶装置と、
電子記憶媒体において、1つ以上の点で幾何学的特徴を有する前記患者の脈管構造の少なくとも一部分の患者特有の画像データを受信することと、
前記受信した画像データから患者特有の次数低減モデルを生成することであって、前記患者特有の次数低減モデルが、インピーダンス値の推定値、及び前記患者の脈管構造の前記1つ以上の点における幾何学的特徴の単純化を含む、前記生成することと、
前記患者特有の次数低減モデルの前記1つ以上の点のそれぞれについて、前記インピーダンス値の推定値及び幾何学的特徴を含む特徴ベクトルを作成することと、
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することと、
を含む方法を行うための指示を実行するように構成されたプロセッサと、
を含む、患者の血流特性を決定するためのシステム。
(項目11)
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することが、
複数の個人の各々について、個人特有の解剖学モデルの1つ以上の点における血流特性の既知の値を有し、前記個人の脈管構造に対応する前記個人特有の解剖学モデルの前記1つ以上の点において1つ以上の幾何学的特徴を有する、前記個人特有の脈管構造の解剖学モデルを受信することと、
前記1つ以上の点で前記血流特性の既知の値を有する前記複数の個人の各々について、(i)前記1つ以上の点の位置に関する情報、及び(ii)前記1つ以上の点における前記幾何学的特徴を含む特徴ベクトルを形成することと、
前記1つ以上の点において前記血流特性の既知の値を有する前記複数の個人の各々について、前記特徴ベクトルを前記1つ以上の点での前記血流特性の前記既知の値に関連付けることと、
前記1つ以上の点において幾何学的特徴を含む特徴ベクトルから脈管構造の1つ以上の点での前記血流特性の値を予測するために、前記関連付けられた特徴ベクトルを使用して前記機械学習アルゴリズムを訓練することと、
前記訓練された機械学習アルゴリズムを使用して、前記患者の脈管構造に対応する前記患者特有の次数低減モデルの前記1つ以上の点での血流特性を決定することと、
を含む、項目10に記載のシステム。
(項目12)
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することが、
前記受信した患者特有の前記患者の脈管構造の画像データに基づいて患者特有の解剖学的モデルを受信することであって、前記患者特有の解剖学的モデルが、前記患者の脈管構造に対応する前記患者特有の解剖学的モデルの1つ以上の点における幾何学的特徴を有する、前記受信することと、
前記患者特有の解剖学的モデルを通る血流をシミュレートするために、前記患者特有の解剖学的モデル上の位置に境界条件を適用することと、
計算流体力学(CFD)を使用して前記患者特有の解剖学的モデルまたは母集団由来の解剖学的モデルを通る血流のシミュレーションから前記患者特有の解剖学的モデルの1つ以上の点における血流特性のための値を決定することと、
(i)前記患者特有の解剖学的モデルの前記1つ以上の点の位置に関する情報、及び(ii)前記患者特有の解剖学的モデルの前記1つ以上の点における前記幾何学的特徴を含む特徴ベクトルを形成することと、
前記患者特有の解剖学的モデルの前記1つ以上の点において、前記特徴ベクトルを前記血流特性の前記決定された値に関連付けることと、
前記1つ以上の点において幾何学的特徴を含む特徴ベクトルから前記患者の脈管構造の1つ以上の点における前記血流特性の値を予測するために、前記関連付けられた特徴ベクトルを使用して機械学習アルゴリズムを訓練することと、
前記訓練された機械学習アルゴリズムを使用して、前記患者の脈管構造に対応する前記患者特有の次数低減モデルの前記1つ以上の点での血流特性を決定することと、を含む、項目10に記載のシステム。
(項目13)
境界条件を適用することが、前記患者特有の解剖学的モデルを適切な境界条件が適用されることができる位置で切り取ることを含み、前記位置が血流の流入境界、血流の流出境界、及び血管壁を含む、項目12に記載のシステム。
(項目14)
前記受信した患者特有の画像データを前記患者の脈管構造の1つ以上の領域に分割することをさらに含み、前記次数低減モデルが前記脈管構造の1つ以上の領域の各々のために生成されている、項目10に記載のシステム。
(項目15)
前記機械学習アルゴリズムが、サポートベクトルマシン(SVM)、多層パーセプトロン(MLP)、多変量回帰(MVR)、ニューラルネットワーク、樹木モデル分類器、及び重み付け線形回帰またはロジスティック回帰のうち1つ以上を含む、項目10に記載のシステム。
(項目16)
前記血流特性が、血圧、冠血流予備量比(FFR)、血流量または流速、速度場または圧力場、血流力、ならびに臓器及び/または組織の灌流特性のうち1つ以上を含む、項目10に記載のシステム。
(項目17)
コンピュータによって実行されると、前記コンピュータに患者の血流特性を決定するための方法を行わせるようにする指示を格納する非一時的コンピュータ可読記録媒体であって、前記方法が、
電子記憶媒体において、1つ以上の点で幾何学的特徴を有する前記患者の脈管構造の少なくとも一部分の患者特有の画像データを受信することと、
前記受信した画像データから患者特有の次数低減モデルを生成することであって、前記患者特有の次数低減モデルが、インピーダンス値の推定値、及び前記患者の脈管構造の前記1つ以上の点における前記幾何学的特徴の単純化を含む、前記生成することと、
前記患者特有の次数低減モデルの前記1つ以上の点のそれぞれについて、前記インピーダンス値の推定値及び幾何学的特徴を含む特徴ベクトルを作成することと、
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することと、
を含む、前記非一時的コンピュータ可読記録媒体。
(項目18)
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することが、
複数の個人の各々について、個人特有の解剖学モデルの1つ以上の点における血流特性の既知の値を有し、前記個人の脈管構造に対応する前記個人特有の解剖学モデルの前記1つ以上の点において1つ以上の幾何学的特徴を有する前記個人特有の脈管構造の解剖学モデルを受信することと、
前記1つ以上の点で前記血流特性の既知の値を有する前記複数の個人の各々について、(i)前記1つ以上の点の位置に関する情報、及び(ii)前記1つ以上の点における幾何学的特徴を含む特徴ベクトルを形成することと、
前記1つ以上の点において前記血流特性の既知の値を有する前記複数の個人の各々について、前記特徴ベクトルを前記1つ以上の点での前記血流特性の前記既知の値に関連付けることと、
前記1つ以上の点において幾何学的特徴を含む特徴ベクトルから脈管構造の1つ以上の点での前記血流特性の値を予測するために、前記関連付けられた特徴ベクトルを使用して前記機械学習アルゴリズムを訓練することと、
前記訓練された機械学習アルゴリズムを使用して、前記患者の脈管構造に対応する前記患者特有の次数低減モデルの前記1つ以上の点での血流特性を決定することと、
を含む、項目17に記載の非一時的コンピュータ可読媒体。
(項目19)
前記1つ以上の点において前記作成された特徴ベクトルに基づいて血流特性を予測するように訓練された機械学習アルゴリズムを使用して、前記患者特有の次数低減モデルの前記1つ以上の点における血流特性を決定することが、
前記受信した患者特有の前記患者の脈管構造の画像データに基づいて患者特有の解剖学的モデルを受信することであって、前記患者特有の解剖学的モデルが、前記患者の脈管構造に対応する前記患者特有の解剖学的モデルの1つ以上の点における幾何学的特徴を有する、前記受信することと、
前記患者特有の解剖学的モデルを通る血流をシミュレートするために、前記患者特有の解剖学的モデル上の位置に境界条件を適用することと、
計算流体力学(CFD)を使用して前記患者特有の解剖学的モデルを通る血流のシミュレーションから前記患者特有の解剖学的モデルの1つ以上の点における血流特性のための値を決定することと、
(i)前記患者特有の解剖学的モデルの前記1つ以上の点の位置に関する情報、及び(ii)前記患者特有の解剖学的モデルの前記1つ以上の点における幾何学的特徴を含む特徴ベクトルを形成することと、
患者特有の解剖学的モデルの前記1つ以上の点において、前記特徴ベクトルを前記血流特性の前記決定された値に関連付けることと、
前記1つ以上の点において幾何学的特徴を含む特徴ベクトルから前記患者の脈管構造の1つ以上の点における前記血流特性の値を予測するために、前記関連付けられた特徴ベクトルを使用して機械学習アルゴリズムを訓練することと、
前記訓練された機械学習アルゴリズムを使用して、前記患者の脈管構造に対応する前記患者特有の次数低減モデルの前記1つ以上の点での血流特性を決定することと、
を含む、項目17に記載の非一時的コンピュータ可読媒体。
(項目20)
前記機械学習アルゴリズムが、サポートベクトルマシン(SVM)、多層パーセプトロン(MLP)、多変量回帰(MVR)、ニューラルネットワーク、樹木モデル分類器、及び重み付け線形回帰またはロジスティック回帰のうち1つ以上を含む、項目17に記載の非一時的コンピュータ可読媒体。
【0008】
開示された実施形態のさらなる目的及び利点は、以下の説明に部分的に示され、その説明から部分的に明らかになり、または開示された実施形態の実施によって習得され得る。開示された実施形態の目的と利点は、添付の特許請求の範囲において詳しく指摘されている要素及び組み合わせの手段によって実現され、達成されるであろう。
【0009】
上述の一般的な説明、及び以下に述べる詳細な説明は、どちらも例示と説明だけを目的としており、特許請求されている開示された実施形態の範囲の限定を意図するものではないことが理解されよう。
【0010】
本明細書に組み込まれて本明細書の一部を構成する添付の図面は、様々な例示的実施形態を示し、その説明と共に、開示された実施形態の原理を説明する役目を果たす。
【図面の簡単な説明】
【0011】
【
図1】本開示の例示的実施形態による、次数低減モデル及び/または機械学習を使用した血流特性を予測または推定するための例示的システム及びネットワーク100のブロック図である。
【
図2】本開示の例示的実施形態による、次数低減モデル及び/または機械学習を使用した血流特性を予測または推定する一般的方法200のブロック図である。
【
図3】本開示の例示的な実施形態による、画像データから次数低減モデルを生成し、次数低減モデルを使用してインピーダンス値を決定する一般的方法300のブロック図である。
【
図4A】本開示の例示的実施形態による、次数低減モデルを使用して血流特性を推定するための機械学習アルゴリズムを訓練及び実行する例示的方法400Aのブロック図である。
【
図4B】本開示の例示的実施形態による、次数低減モデルを使用して血流特性を推定するための機械学習アルゴリズムを訓練及び実行する例示的方法400Bのブロック図である。
【
図4C】本開示の例示的実施形態による、次数低減モデルを使用して血流特性を推定するための機械学習アルゴリズムを訓練及び実行する例示的方法400Cのブロック図である。
【発明を実施するための形態】
【0012】
方法に記載されているステップは、任意の順序で、または他の任意のステップと併せて実行され得る。本開示に記載の方法を実行するために、1つ以上のステップが省略され得ることも企図される。
【0013】
ここで、本開示の例示的な実施形態を詳細に参照すると、それらの例が添付の図面に示されている。可能な限り、図面全体を通して同じまたは類似の部分を指すために、同一の参照番号が使用される。
【0014】
本開示の様々な実施形態は、次数低減モデル及び/または機械学習を使用して血流特性を推定するためのシステム及び方法を提供することができる。本開示の目的のために、血流特性は、血圧、冠血流予備量比(FFR)、血流量または流速、速度または圧力場、血流力、ならびに臓器及び/または組織の灌流特性を含み得るが、これらに限定されない。本開示の少なくともいくつかの実施形態は、例えば、次数低減モデルの使用を通じて、画像データから血流特性のより速い計算を提供するという利点を提供することができるだけでなく、例えば、訓練された機械学習アルゴリズムを利用することによって血流特性のより正確な計算を確実にする。これらの利点を達成するために、次数低減モデルの代わりにまたはそれに加えて、次数低減モデル以外の単純化された形状を有する他のモデルが使用されることも可能であることが企図される。
【0015】
ここで図面を参照すると、
図1は、例示的実施形態による、次数低減モデル及び/または機械学習を使用して血流特性を推定するための例示的システム100及びネットワークのブロック図を示している。具体的には、
図1は、複数の医師102とサードパーティプロバイダ104を示しており、それらのいずれも、1つ以上のコンピュータ、サーバ、及び/またはハンドヘルドモバイルデバイスを介してインターネットなどの電子ネットワーク100に接続されることができる。医師102及び/またはサードパーティプロバイダ104は、1人以上の患者の解剖学的構造の画像を作成することができるか、そうでない場合、取得することができる。医師102及び/またはサードパーティプロバイダ104はまた、患者特有の、及び/または基準の解剖学的画像、生理学的測定値、及び/または患者の関心対象血管の幾何学的特徴及び/または解剖学的特徴、血流特性、関心対象血管のインピーダンス値などを含むがこれらに限定されない情報の任意の組み合わせを取得することができる。いくつかの実施形態では、医師102及び/またはサードパーティプロバイダ104はまた、それが次数低減モデルまたは集中定数モデルに関連するので、血流特性に関する基準値を取得することができる。例えば、1次元電気回路へ血流特性を単純化する次数低減モデルの場合、医師102及び/またはサードパーティプロバイダ104は、単純化され得る血流特性に基づいてパラメータのライブラリーまたはルックアップテーブルから抵抗値、静電容量値、及び/またはインダクタンス値を得ることができる。
【0016】
医師102及び/またはサードパーティプロバイダ104は、解剖学的画像、生理学的情報、及び/または関心対象血管に関する情報を、電子ネットワーク100を介してサーバシステム106に送信することができる。サーバシステム106は、医師102及び/またはサードパーティプロバイダ104から受信した画像及びデータを格納するための記憶装置を含むことができる。サーバシステム106はまた、記憶装置に格納された画像及びデータを処理するための処理装置を含むことができる。
【0017】
図2は、本開示の例示的実施形態による、次数低減モデル及び/または機械学習を使用した血流特性を推定する方法200を示す。
【0018】
いくつかの実施形態では、方法200のステップ202は、患者の関心対象の血管系、脈管構造、または血管の患者特有の解剖学的モデルを受信することを含み得る。いくつかの実施形態では、モデルの代わりに、患者特有の画像データが、患者の関心対象の血管系、脈管構造、または血管から受信されることができる。関心対象の血管または脈管構造が属し得る血管系は、冠状血管モデル、脳血管モデル、末梢血管モデル、肝血管モデル、腎血管モデル、内臓血管モデル、または狭窄病変またはプラーク形成を起こしやすい血液を供給する血管を含む任意の血管モデルを含むことができる。いくつかの実施形態では、患者の関心対象の血管系、脈管構造、または血管の他の患者のデータ、例えば、測定された血流特性及び/または性質を受信することができる。画像データ及び/または血流特性及び/または性質は、患者から非侵襲的に、及び/または侵襲的に取得されることができ(例えば、走査型撮影装置または医療機器を介して)、または集団研究(例えば、患者との類似性に基づいて)を介して取得されることもできる。
【0019】
ステップ204は、適切な境界条件が適用され得る場所で、患者特有の解剖学的モデルを切り取ることを含み得る。この切り取りは、血管狭窄領域を捕捉できるように実行されることができ、例えば、画像撮影装置で見える動脈内の疾患位置の遠位で、且つ解剖学的情報(例えば、ステップ202で受信した解剖学情報)から識別された1つ以上の血管を包含する領域で実行できる。
【0020】
ステップ206は、血流特性を推定するために切り取られた患者特有の解剖学的モデルに境界条件を適用することを含み得る。推定された血流特性は、(例えば、212Aにおけるように)次数低減モデルを生成するために使用され得る近似値を提供することができる。いくつかの実施形態では、適用された境界条件は、数値流体力学(CFD)を使用して血流特性を最終的に解くために使用されることができる(例えば、212B)。境界条件は、3次元モデルの境界における、例えば、流入境界または流入口、流出境界または流出口、血管壁境界などにおける血行動態に関する情報を提供する。流入境界または流入口は、そこを通って流れが大動脈などの3次元モデルの解剖学的構造内に向けられる境界を含むことができる。流入境界は、例えば、心臓モデル及び/または集中定数モデルを境界に結合することなどによって、例えば、速度、流量、圧力、または他の特性に関する所定の値またはフィールドを割り当てられることができる。大動脈での流量は心拍出量によって推定されることができるか、直接測定されることができるか、またはスケーリング則を使用して患者の質量から導き出すことができる。いくつかの実施形態では、大動脈の流量は、その全体が参照により本明細書に組み込まれている、2013年4月17日に出願された米国特許第9,424,395号(「Method and system for sensitivity analysis in modeling blood flow characteristics」)に記載されている方法を使用して、心拍出量によって推定されることができる。
【0021】
例えば、正味心拍出量(Q)は、
【化1】
(心拍出量)として体表面積(BSA)から計算され得る。体表面積(BSA)は、
【化2】
として身長(h)及び体重(w)から計算され得る。冠血流量(q
cor)は、心筋質量(m
myo)から
【化3】
として計算されることができ、式中、
【化4】
は拡大因数である。従って、動脈内の流れは、
【化5】
となり得る。
【0022】
同様に、代替的に、または追加的に、ステップ210は、CFDを使用して切り捨てた患者特有の解剖学的モデルについての血流特性を決定することを含み得る。
【0023】
従って、ステップ210は、切り取った患者特有の解剖学的モデルを1つ以上の領域に分割することを含み得る。この分割は、適用された境界条件(例えば、ステップ206からの)からの血流特性の推定に基づいて実行されることができる。代替的または追加的に、ステップ210は、(例えば、本明細書に記載のステップ212Bから)CFDを使用して決定された血流特性に基づいて、切り取った患者特有の解剖学的モデルを1つ以上の領域に分割することを含み得る。いくつかの実施形態では、患者の関心対象の血管系、血管構造、または血管の少なくとも一部の血流特性の測定値もまた、(例えば、ステップ202のように)関心対象の血管系、血管構造、または血管の患者特有の解剖学的モデルと共に受信され得る。そのような実施形態では、切り取った患者特有の解剖学的モデルは、測定された血流特性に基づいて1つ以上の領域に分割され得る。モデルは、流動特性に基づいて異なる領域、例えば、(i)小孔部分岐、(ii)非小孔部分岐、(iii)狭窄領域、(iv)狭窄後の拡大領域、(v)健康領域などに分割され得る。これらの領域の各々は、所定の長さを有するサブ領域にさらに分割され得る。いくつかの実施形態では、ステップ204と210は組み合わせられる(例えば、領域の境界で切り取る)ことができるか、または2つのステップのうちの1つをスキップすることができる(例えば、方法に単一領域のみを使用する)。
【0024】
ステップ212Aは、1つ以上の領域のそれぞれの領域について次数低減モデルを生成することを含み得る。次数低減モデルは、中心線に沿った半径のセットを使用して幾何学的形状をパラメータ化することができ、血流プロファイルを仮定することによって単純化されたナビエ-ストークス方程式を解くことができる。次数低減モデルまたは集中定数モデルは、特質上、より複雑な(例えば、3D)モデルの幾何学的特徴を有し得ないので、次数低減モデルまたは集中定数モデルは、例えば、幾何学的特徴が1次元に関して記載されるなど、より複雑なモデルの幾何学的特徴の単純化(「単純化幾何学的特徴」)を表すことができる。例えば、血管周囲狭窄化の3次元の幾何学的特徴は、次数低減モデル及び/または集中定数モデル上の血管径縮小の単純化された幾何学的特徴であり得る。従って、3D幾何形状は、次数低減モデル及び/または集中定数モデルの中心線に沿った半径のセットによって表現され得る。しかし、例えば、機械学習アルゴリズムにおいて特徴ベクトルを作成する目的のために、幾何学的特徴は、例えば、元の3D解剖学的構造またはモデルから定量化及び/または離散化されることが可能であることが企図される。幾何学的特徴の例は、最も近い分岐部からの距離、小孔からの距離、最小上流直径などを含み得るが、これらに限定されない。
【0025】
ステップ214Aは、各次数低減モデル(またはステップ212からの1つ以上の次数低減モデル)内の1つ以上の点のインピーダンス値を推定することを含むことができる。インピーダンス値は、事前の次数低減モデル及び/または集中定数モデルに基づく血流特性の推定を含み得る。例えば、血流特性は、境界条件から推定されることも、患者から測定されることもできる。いくつかの実施形態では、これらの次数低減モデルは、領域の幾何学的特徴に基づいてもよい。一実施形態では、これらの次数低減モデルは、血流性質(例えば、粘度、濃度、流量など)及び/または血流特性にさらに基づいてもよい。そのような実施形態では、患者の関心対象の血管系、血管構造、または血管の少なくとも一部についての血流特性の測定値もまた、関心対象の血管系、血管構造、または血管の患者特有の解剖学的モデルと共に(例えば、ステップ202のように)受信され得る。同様に、患者の生理学的及び/または表現型パラメータもインピーダンス値の推定に影響を与えることができ、これらのパラメータもまた(例えば、ステップ202において)受信されることができる。いくつかの実施形態では、次数低減モデル及び/または集中定数モデルは、解剖学的モデルを、解剖学的モデルを通る血流の経路を表す一次元電気回路に単純化することができる。そのような実施形態では、インピーダンスは電気回路上の抵抗値(及び他の電気的特徴)によって表され得る。
【0026】
上述のステップ212A及び214Aは、次数低減モデル及び/または集中定数モデルを介してインピーダンス値を推定及び/または決定するための方法を説明することができる一方で、ステップ212B及び214Bは、CFD分析を介してインピーダンス値を推定及び/または決定するための方法を説明することができる。
【0027】
例えば、ステップ212Bは、CFD分析またはシミュレーションを使用するために血流特性について解くことを含み得る。ステップ212Bは、CFD分析またはシミュレーションにおいて(例えば、206から)適用された境界条件を利用することができる。
【0028】
さらに、ステップ212Bは、(例えば、患者の関心対象の血管系、血管構造、または血管の患者特有の解剖学的モデルによって表される)システム全体、切り取られた患者特有の解剖学的モデル、または患者特有の解剖学的モデルの1つ以上の領域(ステップ210で分割)の各領域に関する血流特性を計算することを含み得る。例えば、ステップ212Bは、ステップ206で適用された境界条件を使用して速度及び圧力について血流を統制する方程式を解くことを含み得る。一実施形態では、ステップ212Bは、割り当てられた境界条件を使用して、解剖学的モデルの1つ以上の点または領域に対する血流速度場または流量場を計算することを含み得る。この速度場または流量場は、上で提供された生理学的条件及び/または境界条件を使用して血流の方程式を解くことによって計算されたものと同じ場であり得る。ステップ212Bは、患者特有の解剖学的モデルの1つ以上の位置における血流を統制するスカラー移流拡散方程式を解くことをさらに含み得る。
【0029】
ステップ214Bは、CFDを使用して計算された血流特性を使用して、1つ以上の領域の各領域について1つ以上の点についてのインピーダンス値を決定することを含み得る。いくつかの実施形態では、インピーダンス値は、(ステップ212Aにおける次数低減モデル及び/または集中定数モデルからの推定とは対照的に)CFDを使用して解かれた血流特性からの近似値及び/または単純化であり得る。
【0030】
ステップ214A及び/または214Bについて、インピーダンス値は、例えば、抵抗値、静電容量値、及び/またはインダクタンス値を含み得る。
【0031】
抵抗は、例えば、血管の対応するセグメントを通る推定流量に応じて、一定、線形、または非線形であり得る。狭窄などのより複雑な形状の場合、抵抗は流量と共に変化し得る。様々な幾何学的形状に対する抵抗は、計算分析(例えば、有限差分、有限体積、スペクトル、格子ボルツマン、粒子ベース、レベルセット、アイソジオメトリック、または有限要素法、または他の計算流体力学(CFD)分析法)に基づいて決定されることができ、異なる流れ及び圧力条件下で実行される計算分析からの複数の解法が患者特有の抵抗、血管特有の抵抗、及び/または病変特有の抵抗を誘導するために使用されることができる。結果は、モデル化され得るあらゆるセグメントの様々な種類の特徴及び幾何学的形状に対する抵抗を決定するために使用され得る。結果として、上述のように患者特有の抵抗、血管特有の抵抗、及び/または病変特有の抵抗を導出することは、コンピュータシステムが、非対称狭窄、多発性病変、分岐部及び分枝部における病変、及び蛇行血管などのより複雑な形状を認識して評価することを可能にすることができる。
【0032】
コンデンサはまた、インピーダンスとして、及び/または次数低減モデルまたは集中定数モデルにおける特徴として含まれることができる。静電容量は、例えば、対応するセグメントの血管壁の弾性に基づいて決定されることができる。インダクタが含まれてもよく、インダクタンスは、例えば、対応するセグメントを通って流れる血液量の加速または減速に関連する慣性効果に基づいて決定されてもよい。
【0033】
次数低減モデル及び/または集中定数モデルで使用される他の電気構成部品に関連する抵抗、静電容量、インダクタンス、及び他の変数の個々の値は、多くの患者からのデータに基づいて導出されることができ、類似の血管形状は類似の値を有し得る。従って、経験的モデルは、患者特異的データの多数の集団から開発されることができ、特定の幾何学的特徴に対応する値のライブラリーを作成し、ライブラリーは将来の分析において類似の患者に応用され得る。幾何学的形状は2つの異なる血管セグメント間で合致されることができ、以前のシミュレーションから患者の関心対象のセグメントまたは血管についての値を自動的に選択する。
【0034】
ステップ216は、各領域内の1つ以上の点について、CFDを使用して計算された血流特性を使用して決定されたインピーダンス値から次数低減モデルのインピーダンス値の誤差(例えば、差分)を決定することを含み得る。ステップ218は、インピーダンス値の誤差を使用して機械学習アルゴリズムを訓練して、適切な特徴のセットを有する次数低減モデルを更新することを含み得る。機械学習リグレッサは、ステップ216で計算された誤差について訓練され得る。従って、次数低減モデルを解いて、CFDを使用して計算された血流特性に関して誤差を計算した後、ステップ218は、1セットの特徴(例えば、幾何学的、臨床的、流れ関連など)を定義し、特徴をより良い血流の解決策を推定するための誤差にマッピングすることを含み得る。幾何学的特徴(例えば、狭窄の程度、小孔からの距離、分岐からの距離、最悪の上流の狭窄など)、流れに関する特徴(例えば、下流境界条件)、及び/または次数低減モデルから直接計算された特徴(例えば、抵抗)を含む1セットの特徴が使用され得る。異なる候補の機械学習アルゴリズムまたはリグレッサ(例えば、ランダム決定フォレスト、ニューラルネットワーク、多層パーセプトロンなど)が利用され得る。訓練された機械学習アルゴリズムが、例えば、新たな(または修正された)インピーダンス値を決定することによって、次数低減モデル(複数可)を更新するために使用され得る。ステップ220は、更新された次数低減モデルを使用して血流特性を決定することを含み得る。例えば、学習したインピーダンスは、流れ及び圧力を推定するために使用され得る。
図4Aの方法400Aは、そのような機械学習アルゴリズムの訓練をさらに詳細に説明することができる。
【0035】
或いは、リグレッサは、CFDまたは測定値と一致するように理想化された形状を予測するように訓練され得る。機械学習アルゴリズムを使用して決定されたこの理想化された幾何学的形状は、(例えば、次数低減モデル及び/または集中定数モデルの単純化された幾何学的特徴を最適化する)このシステムへの入力として、またはナビエ-ストークス方程式の高速計算を可能にするシステムの一部として使用され得る。例えば、リグレッサが次数低減モデルの幾何学的特徴の最適なパラメータ化及び/または単純化を決定するために使用されることができ、次数低減モデルが血流特性をより正確に計算できるようになる。方法400Bまたは
図4Bは、そのような機械学習アルゴリズムの訓練をさらに詳細に説明することができる。
【0036】
いくつかの実施形態では、方法200の結果は、電子記憶媒体またはディスプレイに出力されることができる。この結果は血流特性を含み得る。この結果は、カラーマップを使用して視覚化されることができる。
【0037】
図3は、本開示の例示的な実施形態による、画像データから次数低減モデルを生成し、次数低減モデルを使用してインピーダンス値を決定する一般的方法300のブロック図である。
【0038】
方法300のステップ302は、関心対象血管または血管領域を包含する画像データ(または解剖学的画像及び/または情報)を受信することを含み得る。そのような実施形態では、画像データ、解剖学的画像、及び/または情報は電子記憶媒体に格納されることができる。関心対象血管は、例えば、冠状血管系の様々な血管を含み得る。他の実施形態では、他の血管系の血管もまた捕捉されることができ、それらは、冠状血管系、脳血管系、末梢血管系、肝血管系、腎血管系、内臓血管系、または狭窄性病変またはプラーク形成を起こしやすい血液を供給する血管を有するあらゆる血管系を含むがこれらに限定されない。解剖学的画像及び/または情報は、走査型撮影装置から生成された画像及び/または画像データ(例えば、磁気共鳴(MR)の形態、コンピュータ断層撮影(CT)の形態、ポジトロン断層法(PET)の形態、X線、等)から抽出されることができ、及び/または電子記憶装置(例えばハードドライブ)から受信されることができる。
【0039】
ステップ308は、モデルを1つ以上の領域に分割することを含み得る。いくつかの実施形態では、分割は解剖学的特性及び/または血流特性の推定に基づくことができる。例えば、これらの解剖学的特性及び/または血流特性は、小孔部分岐310A、非小孔部分岐310B、狭窄領域(複数可)310C、拡張領域(例えば狭窄後)310D、及び健康領域(複数可)310Eを含むことができるが、これらに限定されない。異なる領域データ特性に基づいた他の領域分割方式もまた推進されてもよい。いくつかの実施形態において、血流特性の推定値は、ステップ304A及び306、及び/または304Bを介して取得されることができる。
【0040】
例えば、ステップ304Aは、受信した画像データを使用して関心対象血管を包含する3次元(3D)解剖学的モデルを生成することを含み得る。他の実施形態では、2D解剖学的モデルが生成されてもよく、または時間次元を有する解剖学的モデルが生成されてもよい。解剖学的モデルは、受信された、または格納された解剖学的画像、及び/または患者の関心対象血管を包含する情報から(例えば、ステップ302から)生成されることができる。そのような実施形態では、3D解剖学的モデルの構築は、セグメンテーションまたは関連方法を含み得る。セグメンテーションは、例えば、抽出された中心線に基づいてシードを配置することによって、そして画像データからの強度値を使用して1つ以上のセグメンテーションモデルを形成すること(例えば、その全体が本明細書に組み込まれている2011年1月25日に出願された米国特許第8,315,812号に記載の「threshold-based segmentation」)によって生じ得る。セグメンテーションはまた、画像データの強度値を使用して(例えば、内腔の)縁部を見つけ、シードを配置して、縁部に達するまでシードを拡張すること(例えば、その全体が本明細書に組み込まれている2011年1月25日に出願された米国特許第8,315,812号に記載の「threshold-based segmentation」)によって生じ得る。いくつかの実施形態では、マーチングキューブアルゴリズムもまたセグメンテーションに使用されることができる。
【0041】
ステップ306は、3D解剖学的モデルを使用して関心対象血管の血流特性を決定することを含み得る。
【0042】
追加的または代替的に、ステップ308における分割は、受信された血流特性の推定から生じ得る。例えば、ステップ304Bは、例えば、母集団由来のデータ、患者研究、または測定値から関心対象血管の血流特性の推定を受信することを含むことができる。ステップ312は、領域(複数可)の分割画像データから単純化された幾何学的形状を導出することを含み得る。一実施形態では、幾何学的形状は、ステップ302で受信された画像データの元の3D幾何学的形状から、またはステップ304Aで生成された3Dモデルから導出されることができる。幾何学的形状は、中心線の点及び関連する半径によって画定され得る。一実施形態では、最適な1D幾何学的形状が導出または学習されることができ、そのことが3D血流シミュレーションと比較した1D血流シミュレーションの最適性能をもたらすことになる。
【0043】
幾何学的形状が画定されると、各中心線点
【化6】
におけるインピーダンス値は、画定された幾何学的形状に基づいて計算されることができる。従って、ステップ314は、領域(複数可)を通る血流についての1つ以上のインピーダンス値を決定することを含み得る。インピーダンスは、例えば、血流特性(例えば、圧力、流量など)またはそれらの類似表現もしくは単純化(例えば、抵抗、静電容量、インダクタンスなど)を含むことができる。従って、ステップ314は、領域(複数可)を通る血流についての1つ以上のインピーダンス値を決定することを含み得る。例えば、流体力学インピーダンスはデータから推定され得る。場合によっては、そのようなデータは、(例えば、ステップ306または
図2のステップ210B、212B、及び214Bのように)3D血流シミュレーションから推定されることができ、またはそれらデータは、(例えば、ステップ304Bのように)流量及び圧力の測定からのデータや測定から導かれたデータであり得る。インピーダンスは、流れに対する抵抗(血圧対流速の比)314A、冠状動脈が(動脈の弾性から)脈動する能力314Bなどを含むことができる。
【0044】
各中心線点x
iにおける圧力は、所与の大動脈圧から開始して、
【数1】
によって計算されることができ、式中、以下の通りである。
【0045】
【0046】
【0047】
【0048】
【0049】
【0050】
【0051】
【0052】
【0053】
【化7】
は様々な方法で決定され得る。例えば、
【化8】
は、任意の経験モデルを使用して決定されるか、または機械学習を使用して学習された所定の値(例えば、ゼロ)として選択され得る。
【0054】
この次数低減モデルにおける(完全な3D CFD計算と比較した)例示的な誤差は、(1)次数低減抵抗モデルにおける無効な仮定、及び(2)幾何学的形状の単純化プロセスによって生じた幾何学的誤差の2つの主なカテゴリに分類され得る。第1のタイプの誤差に対する主な寄与は、両方の抵抗モデルの精度の根底にある層流の仮定にあることができる。仮定は分岐位置から離間した健康な動脈領域で機能し得るが、高度な非層流が、分岐位置と狭窄領域後の拡張領域の中の両方に存在し得る。ROM誤差の第2のカテゴリは、単純化された幾何学的形状を作成するのに使用された方法、例えば、中心線点を作成し、各点で半径を画定することに依存し得る。
【0055】
全体として、システムは次式のように表すことができる。
【0056】
【0057】
式中、
【化9】
は、データから計算されることができ、これらは流速に依存し得る。いくつかの実施形態では、抵抗の差は、例えば、次式の機械学習近似値を用いて近似することができる。
【0058】
【0059】
ステップ316では、領域(複数可)を通る血流について決定された1つ以上のインピーダンス値は、統合されることができ、及び/または次数低減モデルに組み込まれることができる。
【0060】
本明細書で説明される血流特性を推定及び/または決定するために(例えば、
図4Cの方法400Cのように)統合された次数低減モデルが使用され得る。統合された次数低減モデルはまた、例えば、インピーダンス値または(3D画像データから単純化された)幾何学的特徴を変更することによって、及び/または血流をシミュレートすることによって、病変の治療を計画するために使用され得る。いくつかの実施形態では、統合された次数低減モデルは、電子記憶媒体及び/またはサーバシステム106のディスプレイに出力され得る。
【0061】
図4A~4Cは、本開示の例示的実施形態による、次数低減モデルを使用した血流特性推定のための機械学習アルゴリズムを訓練及び適用する例示的方法400A~400Cのブロック図である。さらに、
図4Aは、画像データから導出されたモデル(例えば、次数低減モデルまたは集中定数モデル)の血流特性を予測するために機械学習アルゴリズムを訓練する例示的方法400Aを示す。
図4Bは、血流特性を使用して画像データから導出されたモデルの幾何学的特徴(例えば、次数低減モデルまたは集中定数モデルの単純化された幾何学的特徴)を予測するための機械学習アルゴリズムを訓練する例示的方法400Bを示す。
図4Cは、次数低減モデルまたは集中定数モデルを使用して(例えば、より正確に)血流特性を決定するために、またはモデルの幾何学的特徴を決定するために訓練された機械学習アルゴリズムを適用する例示的方法400Cを示す。
【0062】
ここで血流特性を予測するために機械学習アルゴリズムを訓練する例示的方法を開示する
図4Aを参照すると、ステップ402は、電子記憶媒体において患者の少なくとも1つの関心対象脈管構造の画像データを受信することを含み得る。受信された画像データは、例えば、少なくとも関心対象脈管構造の患者特有の3D解剖学的モデルを生成するために(例えば、404Cにおけるように)使用され得る。ステップ406Cは、生成された3D解剖学的モデルに境界条件を適用することを含み得る。さらに、ステップ408Cは、計算流体力学(CFD)を使用して(例えば、ナビエ-ストークス方程式を使用して)患者特有の3D解剖学的モデルの1つ以上の点における血流特性を決定することを含み得る。いくつかの実施形態において、ステップ406C及び408Cは、
図2に示されるように、方法200のステップ206、210B及び212Bに記載された方法を使用することができる。
【0063】
受信した画像データはまた、(例えば、ステップ404Bにおけるように)少なくとも関心対象脈管構造の対応する母集団由来の3D解剖学的モデルを決定及び/または受信するために使用されることができる。そのような実施形態では、ステップ408Bは、母集団由来の3D解剖学的モデルの1つ以上の点で血流特性を受信することを含み得る。
【0064】
いくつかの実施形態では、独立して、または受信した画像データを使用して、ステップ404Aは、複数の個人のそれぞれから少なくとも関心対象脈管構造の個人特有の3D解剖学的モデルを受信することを含み得る。そのような実施形態では、ステップ408Aは、複数の個人の各々から、個人特有の3D解剖学的モデルの1つ以上の点における血流特性を受信することを含み得る。
【0065】
いくつかの実施形態では、解剖学的モデルに関する生理学的及び/または表現型パラメータも、例えば、ステップ404Cにおける患者から、404Bからの母集団由来のデータから、または404Aにおける複数の個人の各々から受信され得ることが企図される。これらの生理学的パラメータ及び/または表現型パラメータは、本明細書に記載のステップ410Aで特徴ベクトルを形成するために使用される特徴に含まれ得る。
【0066】
ステップ404A及び404Bの場合、選択された解剖学的モデルのタイプまたは受信されたモデルの個人は、(例えばステップ402からの)元の受信された画像データまたは患者によって導かれ得る。従って、ステップ404A~404Cは、機械学習アルゴリズム用訓練データセットのためのドメインの一部として特徴ベクトルを開発するための3D解剖学的モデルを受信するためのステップの例である。ステップ408A~408Cは、ステップ404A~404Cからの3D解剖学的モデルの1つ以上の点についての血流特性を受信するためのステップの例であることができ、ステップ408A~408Cにおいて決定された血流特性は、機械学習アルゴリズムの訓練データセットの範囲として機能を果たし得る。
【0067】
ステップ410Aは、(例えば、ステップ404C、406C、及び/または408Cに続いて)患者特有の3D解剖学的モデルの1つ以上の点において1つ以上の特徴を含む特徴ベクトルを作成することを含み得る。いくつかの実施形態において、特徴ベクトルは、(例えば、ステップ404B及び/または408Bに続いて)母集団由来の3D解剖学的モデルの1つ以上の点に対して形成されることができる。代替的にまたは追加的に、特徴ベクトルは、(例えば、ステップ404A及び/または408Aに続いて)個人特有の3D解剖学的モデルの各々またはいくつかのうちの1つ以上の点に対して形成され得る。特徴ベクトルは、受信または決定された血流特性がある3D解剖学的モデル内の複数の点に対して形成され得る。特徴ベクトルの特徴は、その時での患者特有の幾何学的形状の数値的記述、及び解剖学的モデルが受信される患者または個人の生理学的または表現型パラメータの推定値を含み得る。生理学的及び/または表現型のパラメータは、例えば、(i)患者の年齢、性別、身長、体重などの人の特徴、(ii)糖尿病や心筋梗塞の有無、悪性及びリウマチの状態、末梢血管の状態などの疾患の特徴、(iii)現在の投薬/薬物の有無、喫煙者/非喫煙者などのライフスタイルの特徴、(iv)軸方向プラーク応力、壁せん断応力などの血行力学的力、(v)収縮期血圧及び拡張期血圧、(vi)血漿、赤血球(red blood cell)(赤血球(erythrocyte))、ヘマトクリット、白血球(white blood cell)(白血球(leukocyte))及び血小板(platelet)(血小板(thrombocyte))、粘度、降伏応力を含む血液特性、を含むことができるが、これらに限定されない。特徴ベクトルは、全体的及び局所的な生理学的または表現型パラメータの両方を含むことができ、ここで、全体パラメータについては、すべての点は同じ数値を有し、局所パラメータについては、値(複数可)は特徴ベクトル内の異なる点で変化し得る。サーバシステム106は、次いで、この特徴ベクトルを、この点における受信したか、またはシミュレートした血流特性の値と関連付けることができる。従って、ステップ412Aは、特徴ベクトルを、患者特有の3D解剖学的モデル、母集団由来の3D解剖学的モデル、及び/または個人特有の3D解剖学的モデルのそれぞれの1つ以上の点における血流特性と関連付けることを含み得る。
【0068】
ステップ414Aは、1つ以上の点における特徴ベクトル(複数可)からの画像データから導出されたモデルの1つ以上の点における血流特性を予測するために機械学習アルゴリズムを訓練することを含み得る。訓練は、例えば、関連性及び/または特徴の重みを決定するために、ステップ412Aからの関連する特徴を使用することができる。このタスクを実行することができる機械学習アルゴリズムの例は、サポートベクトルマシン(SVM)、ニューラルネットワーク、多層パーセプトロン(MLP)、多変量回帰(MVR)(例えば、重み付き線形またはロジスティック回帰)、及び/または当業者に知られている他の教師あり機械学習技術が挙げられる。サーバシステム106は、次いで、機械学習アルゴリズムの結果(例えば、特徴重み)を、デジタル表現(例えば、コンピュータ、ラップトップ、DSP、サーバなどの計算装置のメモリまたはデジタルストレージ(例えば、ハードドライブ、ネットワークドライブ))に保存することができる。格納された特徴重みは、特徴(例えば、幾何学的記述、境界条件、生理学的パラメータ及び/または表現型パラメータ、解剖学的特徴など)が血流及び/または血圧をモデルまたはモデルによって表されるシステムの1つ以上の点で予測可能である程度を定義することができる。
【0069】
ステップ416Aは、訓練された機械学習アルゴリズムを(例えば、電子記憶媒体に)出力することを含み得る。訓練された機械学習アルゴリズムは、
図4Cの方法400Cにおいて使用されることができ、例えば、単純化された幾何学的形状を有するモデル(例えば、次数低減モデルまたは集中定数モデル)から血流特性を決定する。
【0070】
図4Bは、機械学習アルゴリズムを訓練する例示的方法400Bを示しており、画像データから導出されたモデルの1つまたは複数の点、例えば、1つ以上の点における血流特性を含む特徴ベクトルから幾何学的特徴を予測する。
図4に示す方法400Aのステップ402、408A~C、406、及び/または408A~Cは、
図4Bに示す方法400Bのステップの前に実行されることができる。
【0071】
ステップ410Bは、(例えば、ステップ404C、406C、及び/または408Cに続く)患者特有の3D解剖学的モデルの1つ以上の点における血流特性を含む特徴ベクトルを作成することを含み得る。いくつかの実施形態において、特徴ベクトルは、(例えば、ステップ404B及び/または408Bに続いて)母集団由来の3D解剖学的モデルの1つ以上の点に対して形成されることができる。代替的にまたは追加的に、特徴ベクトルは、(例えば、ステップ404A及び/または408Aに続いて)個人特有の3D解剖学的モデルの各々またはいくつかのうちの1つ以上の点に対して形成され得る。特徴ベクトルは、既知の幾何学的特徴がある3D解剖学的モデル内の点に対して形成され得る。これらの幾何学的特徴は、その点での患者特有の幾何学的形状の数値的記述を含み得る。特徴ベクトルは、全体的及び局所的な生理学的または表現型パラメータの両方を含むことができ、ここで、全体パラメータについては、すべての点は同じ数値を有し、局所パラメータについては、値(複数可)は特徴ベクトル内の異なる点で変化し得る。サーバシステム106は、次いで、この特徴ベクトルを、この点における受信したか、またはシミュレートした血流特性の値と関連付けることができる。従って、ステップ412Bは、患者特有の3D解剖学的モデルの、及び/または個人特有の3D解剖学的モデルのそれぞれの1つ以上の点における血流特性を含む特徴ベクトルを、1つ以上の点における幾何学的特徴と関連付けることを含み得る。
【0072】
ステップ414Bは、1つ以上の点における血流特性を含む特徴ベクトル(複数可)からの画像データから導出されたモデルの1つ以上の点における幾何学的特徴を予測するために機械学習アルゴリズムを訓練することを含み得る。訓練は、例えば、関連性及び/または特徴の重みを決定するために、ステップ412Bからの関連する特徴を使用することができる。このタスクを実行することができる機械学習アルゴリズムの例は、サポートベクトルマシン(SVM)、ニューラルネットワーク、多層パーセプトロン(MLP)、多変量回帰(MVR)(例えば、重み付き線形またはロジスティック回帰)、及び/または当業者に知られている他の教師あり機械学習技術が挙げられる。サーバシステム106は、次いで、機械学習アルゴリズムの結果(例えば、特徴重み)を、デジタル表現(例えば、コンピュータ、ラップトップ、DSP、サーバなどの計算装置のメモリまたはデジタルストレージ(例えば、ハードドライブ、ネットワークドライブ))に保存することができる。格納された特徴の重みは、血流特性がモデルまたはモデルによって表されるシステムの1つ以上の点における幾何学的特徴を予測する程度を定義することができる。
【0073】
ステップ416Bは、訓練された機械学習アルゴリズムを(例えば、電子記憶媒体に)出力することを含み得る。訓練された機械学習アルゴリズムは、
図4Cの方法400Cにおいて使用されることができ、例えば、画像データから導出されたモデルの幾何学的特徴を更新し、さらに洗練し、及び/または生成する。このモデルは、2Dまたは3D解剖学的モデルであることができるか、または単純化された幾何学的形状(例えば、次数低減モデルまたは集中定数モデル)を有することができる。
【0074】
図4Cは、次数低減モデルまたは集中定数モデルを使用して(例えば、より正確に)血流特性を決定するために、またはモデルの幾何学的特徴を決定するために訓練された機械学習アルゴリズムを適用する例示的方法400Cを示す。
【0075】
ステップ402は、(例えば方法400A及び400Bにおけるように)電子記憶媒体内の患者の少なくとも1つの関心対象脈管構造の画像データを受信することを含むことができる。画像データは、1つ以上の画像走査型撮影装置(例えば、コンピュータ断層撮影、血管造影法、磁気共鳴、X線など)、電子記憶媒体、第三者装置から、またはクラウドを介して受信され得る。
【0076】
方法400A及び/または400Bで機械学習アルゴリズムを訓練するためのステップを完了するか、またはこれらの方法で説明されるように訓練された機械学習アルゴリズムを受信すると、ステップ418から430は、例えば、血流特性及び/または幾何学的特徴を決定するための、これらの訓練された機械学習アルゴリズムの適用を説明する。
【0077】
例えば、ステップ418は、(ステップ402で受信された)画像データを1つ以上の領域(複数可)に分割することを含み得る。ステップ418は、
図2に示される方法200のステップ204または210A、または
図3のステップ308に類似し得る。いくつかの実施形態では、この分割は、推定された血流特性に基づいてよく、または様々な領域(例えば、冠状動脈の内腔への大動脈)に属するボクセルを識別するために手動または自動で行われてもよい。
【0078】
ステップ420は、各領域について単純化された幾何学的形状を導出することを含み得る。ステップ420は、
図3に示されるように、方法300のステップ312に類似し得る。
【0079】
ステップ422は、単純化された幾何学的形状を使用して各(または1つ以上の)領域(複数可)について次数低減モデル及び/または集中定数モデル(複数可)を生成することを含み得る。
図3の方法300は、この生成ステップについての少なくともいくつかの実施形態を広く説明している。
【0080】
ステップ426は、次数低減モデル及び/または集中定数モデルの1つ以上の点に1つ以上の特徴を含む特徴ベクトルを作成することを含み得る。特徴は、方法400Aに記載された訓練段階で使用された特徴を反映することができるか、またはそれに類似し得る。いくつかの実施形態では、これらの特徴は、局所的な半径または直径、狭窄の重症度の局所的な指標(例えば、百分率)、最小の上流側の直径、最小の上流側の狭窄の重症度の指標、最小の下流側の直径、最小の下流側の狭窄の重症度の指標、最も近い分岐までの距離、最も近い上流分岐の直径、小孔までの距離、下流出口の平均的直径、下流出口の最小の直径、最小、最大、平均、または中心値の下流抵抗(例えば、または境界条件)、大動脈圧、及び、上述の生理学的及び/または表現型パラメータを含むことができるが、これらに限定されない。
【0081】
いくつかの実施形態では、特徴ベクトルは、例えば、次数低減モデル及び/または集中パラメータモデル(複数可)を使用して推定された1つ以上の点における血流特性を特徴として含むことができる。そのような実施形態では、ステップ424は、次数低減モデル及び/または集中パラメータモデル(複数可)を使用して、領域(複数可)の1つ以上の点における血流特性を推定することを含み得る。
【0082】
ステップ428は、訓練された機械学習アルゴリズムを(例えば、
図4Aの方法400Aから)使用して、次数低減モデル及び/または集中パラメータモデルの1つ以上の点における血流特性を決定することを含み得る。血流特性は、各領域の1つ以上の点について個々に決定されることができ、または脈管構造全体または血管系全体について解かれることができる。いくつかの実施形態では、血流特性は、例えば解剖学的モデル上に表示されることができ、または血流のシミュレーションの一部として使用されることもできる。さらなる実施形態では、血流特性は、灌流及び/または組織生存率の重要な指標(例えば、心筋灌流リスク指数)を決定するために使用され得る。同様に、脈管構造が1つ以上の病変または狭窄領域を有する場合、血流特性を用いて、病変または狭窄領域の重症度の指標(例えばプラーク脆弱性指数)を決定することができる。
【0083】
追加的にまたは代替的に、ステップ430に示すように、次数低減モデル及び/または集中定数モデルの単純化された幾何学的形状を更新するために(例えば、
図4Bの方法400Bからの)訓練された機械学習アルゴリズムが使用されることができる。いくつかの実施形態では、単純化されていないモデル(例えば、2Dまたは3Dの解剖学的モデル)を生成するための幾何学的特徴を決定するためにステップ430が使用され得る。いくつかの実施形態では、更新されたモデル(複数可)、または決定された幾何学的特徴は、電子記憶媒体またはディスプレイに出力されることができる。
【0084】
例えば、
図4Aの方法400A、及び
図4Bの方法400Cでの特徴ベクトルの形成では、特徴ベクトルは、(vii)血管形状の特性(大動脈の入口及び出口の断面積、大動脈の表面積及び体積、最小、最大、及び平均の断面積など)、(viii)冠状分岐形状の特性、(ix)1つ以上の特徴セットを含み得るが、これらに限定されない。
【0085】
一実施形態では、冠状動脈分岐形状の特徴は、(i)冠状動脈分岐点の上流/下流の大動脈の体積、(ii)冠状動脈/大動脈分岐点、すなわち冠状動脈分岐への入口の断面積、(iii)血管分岐部の総数、及び上流/下流血管分岐部の数、(iv)平均、最小、及び最大の上流/下流の断面積、(v)最小及び最大の上流/下流断面積の中心線点までの(血管中心線に沿った)距離、(vi)最も近い上流/下流血管分岐部の断面、及び最も近い上流/下流血管分岐部までの(血管中心線に沿った)距離、(vii)最も近い冠状動脈出口及び大動脈入口/出口の断面積、及び最も近い冠状動脈出口及び大動脈入口/出口までの(血管中心線に沿った)距離、(viii)最小/最大の断面積を有する下流冠状動脈出口の断面積、及び最小/最大の断面積を有する下流冠状動脈出口までの(血管中心線に沿った)距離、(ix)冠状動脈血管の上流/下流の体積、及び(x)ユーザ特定の許容量を下回る断面積を有する冠状動脈血管の上流/下流の体積分率を含み得る。
【0086】
一実施形態では、第1の特徴セットは、断面積特徴を画定することができ、それらには、冠状動脈中心線に沿った内腔断面積、累乗した管腔断面積、主要小孔(LM、RCA)に対する内腔断面積の比、主要小孔に対する内腔断面積の累乗比、中心線に沿った内腔断面積のテーパーの程度、狭窄病変の位置、狭窄病変の長さ、50%、75%、90%の面積縮小に対応する病変の位置と数、狭窄病変から主小孔までの距離、及び/または断面内腔境界の不規則性(または円形度)が挙げられる。
【0087】
一実施形態では、冠状動脈中心線に沿った内腔断面積は、構築された幾何学的形状から中心線を抽出し、必要に応じて中心線を平滑化し、各中心線点で断面積を計算し、対応する表面及び体積のメッシュ点にマッピングすることによって計算され得る。一実施形態では、累乗した内腔断面積は、スケーリング則の様々なソースから決定され得る。一実施形態では、主要小孔(LM、RCA)に対する内腔断面積の比は、LM小孔での断面積を測定し、左冠状動脈の断面積をLM小孔面積で正規化し、RCA小孔での断面積を測定し、右冠状動脈の断面積をRCA小孔面積によって正規化することによって計算されることができる。一実施形態では、主要小孔に対する内腔断面積の累乗比は、スケーリング則の様々なソースから決定することができる。一実施形態では、中心線に沿った内腔断面積のテーパーの程度は、一定の間隔内(例えば、血管直径の2倍)の中心線の点をサンプリングし、線形にフィットする断面積の勾配を計算することによって算出されることができる。一実施形態では、狭窄病変の位置は、断面積曲線の最小値を検出し、面積曲線の一次導関数がゼロであり二次導関数が正である位置を検出し、主要小孔からの距離(中心線のパラメトリック円弧長)を計算することによって算出されることができる。一実施形態では、狭窄病変の長さは、断面積が回復する狭窄病変からの近位及び遠位の位置を計算することによって算出されることができる。
【0088】
一実施形態では、別の特徴セットは、例えば、中心線に沿った強度変化(線形にフィットした強度変化の勾配)を定義する強度特徴を含むことができる。一実施形態では、別の特徴セットは、例えば、幾何学的形状の3次元表面曲率(ガウス、最大、最小、平均)を定義する表面特徴を含むことができる。一実施形態では、別の特徴セットは、例えば、心筋容積に対する総冠状動脈容積の比を定義する容積特徴を含み得る。一実施形態では、別の特徴セットは、例えば、冠状動脈中心線の曲率(曲がり)を定義する中心線特徴を含むことができ、例えば、以下のフレネ曲率を計算することによって得られる。
【0089】
【0090】
または、中心線の点に沿って外接円の半径の逆数を算出することによって得られる。冠状動脈中心線の曲率(曲がり)はまた、冠状動脈中心線の捻じれ(非平面性)に基づいて、例えば以下のフレネ曲率を計算することによって算出され得る。
【0091】
【0092】
一実施形態では、別の特徴セットは、例えば、大動脈小孔病変の存在、大動脈からの冠状動脈の起点に位置する病変の検出、及び/または(左か右)の優位を含む、SYNTAXスコアリング特徴を含むことができる。
【0093】
一実施形態では、別の特徴セットは、例えば、ハーゲン・ポアズイユ流れの仮定
【化10】
から導出された冠血流予備量比値を含む単純化された物理的特徴を含むことができる。例えば、一実施形態では、サーバシステム106は、
【化11】
を用いて
【化12】
から冠状動脈の起点(LM小孔またはRCA小孔)の断面積を計算することができ、サンプリングされた各
【化13】
で冠状血管の
【化14】
を計算することができ、
【化15】
の下で抵抗境界条件を用いて血管の各セグメントにおける冠状動脈血流量を決定することができ、下式に基づいて、各
【化16】
での抵抗を推定することができる。
【0094】
【0095】
【0096】
サーバシステム106は、
【化17】
として概算することができ、サンプリングされた各位置でのFFRを
【化18】
として算出することができる。最小断面積または血管半径よりも小さい間隔の位置がサンプリング位置として使用されることができる。サーバシステム106は、
【化19】
を使用して中心線に沿ってFFRを補間することができ、FFR値を3D表面メッシュノードに投影することができ、訓練のために必要に応じて
【化20】
を変化させ、新しいセットのFFR推定値を得ることができ、上で定義した特徴セットを使用してパラメータを摂動することなどによって、ここで
【化21】
は、罹患長、狭窄の程度及び先細血管を説明するためのテーパー比の関数であることができ、
【化22】
は、
【化23】
と同じスケーリング則に基づいて各出口の分布流を合計することによって決定されることができる。しかし、新しいスケーリング則及び充血仮定が採用されることができ、この特徴ベクトルは、その点でのFFRの測定値またはシミュレート値と関連付けられることができる。
【0097】
いくつかの実施形態では、特徴ベクトルから血流特性または幾何学的特徴を予測する訓練された機械学習アルゴリズムは、例えば、電子記憶媒体で単に受信されることができ、
図4Cの方法400Cで容易に実施され得ることが企図される。そのような実施形態では、サーバシステム106によるそのような機械学習アルゴリズムの訓練は不要とされ得る。
【0098】
様々な実施形態において、本明細書に提示されるステップのいずれかにおいて、3D解剖学的モデル以外の他のモデルが使用され得ることがさらに企図される。例えば、2Dモデルが使用されてもよく、及び/または時間成分がモデルに追加されてもよい。
【0099】
本発明の他の実施形態は、本明細書の考察及び本明細書に開示された本発明の実施から当業者には明らかであろう。明細書及び実施例は例示としてのみ考慮されることを意図しており、本発明の真の範囲及び趣旨は特許請求の範囲によって示されている。