IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オムロン株式会社の特許一覧

特許7505256画像検査装置、画像検査方法及び学習済みモデル生成装置
<>
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図1
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図2
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図3
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図4
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図5
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図6
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図7
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図8
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図9
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図10
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図11
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図12
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図13
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図14
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図15
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図16
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図17
  • 特許-画像検査装置、画像検査方法及び学習済みモデル生成装置 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-17
(45)【発行日】2024-06-25
(54)【発明の名称】画像検査装置、画像検査方法及び学習済みモデル生成装置
(51)【国際特許分類】
   G06T 7/00 20170101AFI20240618BHJP
【FI】
G06T7/00 350B
G06T7/00 610C
【請求項の数】 10
(21)【出願番号】P 2020085943
(22)【出願日】2020-05-15
(65)【公開番号】P2021179902
(43)【公開日】2021-11-18
【審査請求日】2023-03-08
(73)【特許権者】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(74)【代理人】
【識別番号】100108213
【弁理士】
【氏名又は名称】阿部 豊隆
(72)【発明者】
【氏名】池田 泰之
【審査官】小太刀 慶明
(56)【参考文献】
【文献】特開2020-064364(JP,A)
【文献】特開2020-052520(JP,A)
【文献】国際公開第2019/186915(WO,A1)
【文献】国際公開第02/023480(WO,A1)
【文献】特開2018-205163(JP,A)
【文献】国際公開第2020/065908(WO,A1)
【文献】特開2019-133303(JP,A)
【文献】特開2012-026982(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00
1/00
G01N 21/84 - 21/958
(57)【特許請求の範囲】
【請求項1】
良品の検査対象物の画像を分割した画像である良品分割画像及び前記良品分割画像のラベル情報を入力として復元分割画像を出力するように学習させた学習済みモデルに、検査対象物の画像を分割した画像である検査分割画像及び前記検査分割画像のラベル情報を入力して、前記復元分割画像を生成する分割画像生成部と、
前記分割画像生成部により生成された復元分割画像に基づいて前記検査対象物の検査を行う検査部と、
を備え、
前記検査分割画像に前記検査分割画像のラベル情報を付与するラベル情報付与部をさらに備える、画像検査装置。
【請求項2】
前記分割画像生成部は、前記検査分割画像及び前記検査分割画像のラベル情報からそれぞれ構成される複数の入力データセットを前記学習済みモデルにそれぞれ入力して、複数の前記復元分割画像を生成し、
前記検査部は、前記複数の復元分割画像に基づいて前記検査対象物の検査を行う、
請求項1に記載の画像検査装置。
【請求項3】
前記複数の復元分割画像を合成することにより復元画像を生成する復元画像生成部をさらに備え、
前記検査部は、前記検査対象物の画像と前記復元画像との差分に基づいて、前記検査対象物の検査を行う、
請求項2に記載の画像検査装置。
【請求項4】
前記学習済みモデルは、入力層を含む複数の層を備えたニューラルネットワークであり、
前記分割画像生成部は、前記検査分割画像を前記入力層に入力し、前記ラベル情報を前記入力層の次元よりも低い次元を有する層に入力する、
請求項1から3のいずれか1項に記載の画像検査装置。
【請求項5】
分割画像生成部は、第1検査分割画像が第2検査分割画像と類似している場合には、前記第1検査分割画像及び前記第2検査分割画像のラベル情報を前記学習済みモデルに入力する、
請求項1から4のいずれか1項に記載の画像検査装置。
【請求項6】
前記検査部は、前記検査対象物の良否判定を行う、
請求項1から5のいずれか1項に記載の画像検査装置。
【請求項7】
前記検査部は、前記検査対象物の欠陥を検出する、
請求項1から6のいずれか1項に記載の画像検査装置。
【請求項8】
前記検査対象物の画像を撮像する撮像部をさらに備える、
請求項1から7のいずれか1項に記載の画像検査装置。
【請求項9】
前記検査対象物の画像を複数の前記検査分割画像に分割する分割部をさらに備える、
請求項1から8のいずれか1項に記載の画像検査装置。
【請求項10】
プロセッサを備えるコンピュータによる画像検査方法であって、
良品の検査対象物の画像を分割した画像である良品分割画像及び前記良品分割画像のラベル情報を入力として復元分割画像を出力するように学習させた学習済みモデルに、検査対象物の画像を分割した画像である検査分割画像及び前記検査分割画像のラベル情報を入力し、前記復元分割画像を生成することと、
前記生成された復元分割画像に基づいて前記検査対象物の検査を行うことと、
を含み、
前記検査分割画像に前記検査分割画像のラベル情報を付与することをさらに含む、画像検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像検査装置、画像検査方法及び学習済みモデル生成装置に関する。
【背景技術】
【0002】
従来、対象物を撮影した画像に基づいて、当該対象物の検査を行う画像検査装置が知られている。
【0003】
例えば、特許文献1には、入力される判定対象画像データに基づいて異常を判定する異常判定を行う異常判定装置において、正常画像データ群から抽出される特徴量から正常画像データを再構成するための再構成用パラメータを用いて、判定対象画像データの特徴量から再構成画像データを生成し、生成した再構成画像データと該判定対象画像データとの差異情報に基づいて異常判定を行うための異常判定処理を実行する処理実行手段を有するものが記載されている。
【0004】
特許文献1の異常判定装置は、判定対象画像データが複数チャネルの画像データを含む場合、再構成用パラメータを用いて各チャネルの画像データの特徴量から再構成画像データをチャネルごとに生成し、生成した各再構成画像データと該判定対象画像データの各チャネルの画像データとの差異情報に基づいて異常判定を行っている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2018-5773号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1では、学習済みモデルである学習したオートエンコーダを用い、判定対象画像から再構成画像を生成している。ここで、例えば、良品の検査対象物の画像に局所的に特殊なパターンが存在する場合、学習済みモデルの表現能力が低いと、当該学習済みモデルの生成する画像において、特殊パターンを復元することができないことがあった。この場合、良品である検査対象物の画像を誤って不良であると判定してしまうおそれがあった。
【0007】
また、良品の検査対象物の画像において、ある位置又は部分で良品であるパターンが別の位置又は部分では不良品である場合、学習済みモデルが生成した画像において不良品のパターンが生成されてしまい、不良品の検査対象物を見逃してしまうことがあった。
【0008】
そこで、本発明は、特殊パターンを復元することができるとともに、不良品のパターンの生成を抑制することのできる画像検査装置、画像検査方法及び学習済みモデル生成装置を提供することを目的の1つとする。
【課題を解決するための手段】
【0009】
本発明の一態様に係る画像検査装置は、良品の検査対象物の画像を分割した画像である良品分割画像及び良品分割画像のラベル情報を入力として復元分割画像を出力するように学習させた学習済みモデルに、検査対象物の画像を分割した画像である検査分割画像及び検査分割画像のラベル情報を入力して、復元分割画像を生成する分割画像生成部と、分割画像生成部により生成された復元分割画像に基づいて検査対象物の検査を行う検査部と、を備える。
【0010】
この態様によれば、検査分割画像とその検査分割画像のラベル情報に応じた復元分割画像を生成することができる。このため、その検査分割画像が特定の位置に特殊パターンを含む場合には、その特殊パターンを復元することが可能となる。さらに、その検査分割画像が部分的に不良品のパターンを含む場合であっても、良品のパターンを含む復元分割画像を生成できるため、不良品のパターンが生成されることが抑制される。
【0011】
上記態様において、分割画像生成部は、検査分割画像及び検査分割画像のラベル情報からそれぞれ構成される複数の入力データセットを学習済みモデルにそれぞれ入力して、複数の復元分割画像を生成し、検査部は、複数の復元分割画像に基づいて検査対象物の検査を行ってもよい。
【0012】
この態様によれば、複数の復元分割画像に基づいた検査を行うことができるため、より正確に検査対象物の検査を行うことが可能になる。
【0013】
上記態様において、複数の復元分割画像を合成することにより復元画像を生成する復元画像生成部をさらに備え、検査部は、検査対象物の画像と復元画像との差分に基づいて、検査対象物の検査を行ってもよい。
【0014】
この態様によれば、検査対象物の画像と復元画像との差分が明確となり、より精度よく検査対象物の検査を行うことが可能になる。
【0015】
上記態様において、学習済みモデルは、入力層を含む複数の層を備えたニューラルネットワークであり、分割画像生成部は、検査分割画像を入力層に入力し、ラベル情報を入力層の次元よりも低い次元を有する層に入力してもよい。
【0016】
この態様によれば、ラベル情報がニューラルネットワークにおける入力層の次元よりも低い次元の層に入力されると、ラベル情報が入力層に入力されるよりも学習済みモデルの出力にラベル情報が大きく寄与する。この結果、より適切に復元分割画像を生成することが可能になる。
【0017】
上記態様において、分割画像生成部は、第1検査分割画像が第2検査分割画像と類似している場合には、第1検査分割画像及び第2検査分割画像のラベル情報を学習済みモデルに入力してもよい。
【0018】
この態様によれば、類似した検査分割画像について、同一のラベル情報を使用することが可能になる。
【0019】
上記態様において、検査部は、検査対象物の良否判定を行ってもよい。
【0020】
この態様によれば、検査対象物の検査をより詳細に行うことができる。
【0021】
上記態様において、検査部は、検査対象物の欠陥を検出してもよい。
【0022】
この態様によれば、検査対象物の検査をより詳細に行うことができる。
【0023】
上記態様において、検査対象物の画像を撮像する撮像部をさらに備えてもよい。
【0024】
この態様によれば、検査対象物の画像を簡便に取得することができる。
【0025】
上記態様において、検査対象物の画像を複数の検査分割画像に分割する分割部をさらに備えてもよい。
【0026】
この態様によれば、検査対象物の画像が予め分割されていなくとも、検査対象物の検査を行うことが可能になる。
【0027】
本発明の他の態様に係る画像検査方法は、プロセッサを備えるコンピュータによる画像検査方法であって、プロセッサが、良品の検査対象物の画像を分割した画像である良品分割画像及び良品分割画像のラベル情報を入力として復元分割画像を出力するように学習させた学習済みモデルに、検査対象物の画像を分割した画像である検査分割画像及び検査分割画像のラベル情報を入力し、復元分割画像を生成することと、生成された復元分割画像に基づいて検査対象物の検査を行うことと、を含む。
【0028】
この態様によれば、検査分割画像とその検査分割画像のラベル情報に応じた復元分割画像を生成することができる。このため、その検査分割画像が特定の位置に特殊パターンを含む場合には、その特殊パターンを復元することが可能となる。さらに、その検査分割画像が部分的に不良品のパターンを含む場合であっても、良品のパターンを含む復元分割画像を生成できるため、不良品のパターンが生成されることが抑制される。
【0029】
本発明の他の態様に係る学習済みモデル生成装置は、良品の検査対象物の画像を分割した良品分割画像及び良品分割画像のラベル情報の組み合わせによりそれぞれ構成される複数の学習データセットを用いて学習処理を実施し、良品分割画像及びラベル情報を入力として復元分割画像を出力する学習済みモデルを生成するモデル生成部、備える。
【0030】
この態様によれば、検査分割画像とその検査分割画像のラベル情報に応じた復元分割画像を生成することができる。このため、その検査分割画像が特定の位置に特殊パターンを含む場合には、その特殊パターンを復元することが可能となる。さらに、その検査分割画像が部分的に不良品のパターンを含む場合であっても、良品のパターンを含む復元分割画像を生成できるため、不良品のパターンが生成されることが抑制される。
【発明の効果】
【0031】
本発明によれば、特殊パターンを復元することができるとともに、不良品のパターンの生成を抑制することのできる画像検査装置、画像検査方法及び学習済みモデル生成装置を提供することができる。
【図面の簡単な説明】
【0032】
図1】本発明の一実施形態に係る画像検査システムの概略構成図である。
図2】同実施形態に係る学習済みモデル生成装置の構成を示す機能ブロック図である。
図3】学習データ生成部が生成する学習データセットについて説明する図である。
図4】良品画像の一例を示す図である。
図5図4の良品画像に含まれる複数の良品分割画像のそれぞれに付与されるラベル情報の一例を示す図である。
図6図4の良品画像に含まれる複数の良品分割画像のそれぞれに付与されるラベル情報の一例を示す図である。
図7図4の良品画像に含まれる複数の良品分割画像のそれぞれに付与されるラベル情報の一例を示す図である。
図8】本発明の一実施形態に係るモデル生成部が学習させるモデルを説明するための図である。
図9】同実施形態に係る画像検査装置の構成を示す機能ブロック図である。
図10】同実施形態に係る処理部の構成を示す機能ブロック図である。
図11】処理部が検査画像に基づいて復元画像を生成するまでの処理を説明するための図である。
図12】検査画像の一例を示す図である。
図13】検査画像に基づき生成された復元画像の一例を示す図である。
図14】検査画像と復元画像の差である差分画像を示す図である。
図15】本実施形態に係る画像検査装置及び学習済みモデル生成装置の物理的構成を示す図である。
図16】学習済みモデル生成装置が学習済みモデルを生成する流れの一例を示すフローチャートである。
図17】画像検査装置が、検査対象物の画像に基づき、学習済みモデルを用いて検査対象物の検査を実行する流れの一例を示すフローチャートである。
図18】検査画像の一例を示す図である。
【発明を実施するための形態】
【0033】
添付図面を参照して、本発明の好適な実施形態について説明する。
【0034】
図1は、本発明の一実施形態に係る画像検査システム1の概略構成図である。画像検査システム1は、画像検査装置20及び照明25を含む。照明25は、検査対象物30に光Lを照射する。画像検査装置20は、反射光Rを撮影し、検査対象物30の画像(以下、「検査画像」とも称する。)に基づいて、検査対象物30の検査を行う。画像検査装置20は、通信ネットワーク15を介して、学習済みモデル生成装置10に接続されている。学習済みモデル生成装置10は、画像検査装置20が検査対象物30の検査を行うために用いる学習済みモデルを生成する。
【0035】
図2は、本実施形態に係る学習済みモデル生成装置10の構成を示す機能ブロック図である。学習済みモデル生成装置10は、記憶部100、学習データ生成部110、モデル生成部120及び通信部130を備える。
【0036】
記憶部100は、各種の情報を記憶する。本実施形態では、記憶部100は、良品画像DB102、学習用データDB104及び学習済みモデルDB106を備える。良品画像DB102には、複数の良品画像が格納されている。良品画像は、良品の検査対象物の画像である。また、学習用データDB104には、良品画像を分割した分割良品画像及び良品分割画像のラベル情報の組み合わせによりそれぞれ構成される、複数の学習データセットが格納されている。さらに、学習済みモデルDB106には、後述する学習済みモデル生成装置10により生成された学習済みモデルが格納されている。
【0037】
学習データ生成部110は、モデル生成部120が学習処理を行うために用いられる学習データセットを生成することができる。図3を参照して、学習データ生成部110が生成する学習データセットについて説明する。
【0038】
学習データ生成部110は、良品画像DB102から良品画像を取得して、良品画像40を分割することにより複数の良品分割画像を生成する。本実施形態では、学習データ生成部110は、良品画像40を縦及び横にそれぞれ4分割することにより、計16個の良品分割画像を生成する。なお、良品画像40は、2~15個の良品分割画像に分割されてもよいし、17個以上の良品分割画像に分割されてもよい。また、良品分割画像の形状は矩形に限定されるものではなく、いかなる形状であって良い。
【0039】
また、学習データ生成部110は、複数の良品分割画像のそれぞれにラベル情報を付与して、良品分割画像及び付与されたラベル情報によりそれぞれ構成される複数の学習データセットを生成する。学習データ生成部110は、予め指定されたアルゴリズムに基づきラベル情報を良品分割画像に付与してもよいし、ユーザの操作に基づいてラベル情報を良品分割画像に付与してもよい。
【0040】
例えば、互いに異なる複数の良品画像のそれぞれについて、良品分割画像が生成されているとする。この場合、生成された良品分割画像のうち、良品画像における位置が同一である良品分割画像のすべてには、同一のラベル情報が付与される。
【0041】
また、良品画像における位置が互いに異なるものの、互いに類似する2つの良品分割画像のそれぞれに付与されるラベル情報は、同一のラベル情報であって良いし、異なるラベル情報であってもよい。ここで、2つの良品分割画像が類似しているか否かの判定は、例えば、2つの良品分割画像の一致度が所定の閾値以上であるか否かに基づいて行われてもよい。
【0042】
学習データ生成部110は、良品分割画像にラベル情報を付与すると、どの位置の良品分割画像にどのラベル情報を付与したのかを表す情報を、学習済みモデルDB106に格納してもよい。
【0043】
例えば、第1良品分割画像400には、ラベル情報(A)が付与されており、第1良品分割画像400及びラベル情報(A)が1つの学習データセットを構成している。同様にして、学習データ生成部110は、第2良品分割画像402及びラベル情報(B)の学習データセット、及び第3良品分割画像404及びラベル情報(C)の学習データセット等、16個の良品分割画像のそれぞれに基づく学習データセットを生成する。
【0044】
ここで、図4図7を参照して、学習データ生成部110が良品分割画像に付与するラベル情報の具体例を説明する。図4は、良品画像300の一例を示す図である。図4に示す良品画像300は、4つのパターン(第1パターン302、第2パターン304、第3パターン306及び第4パターン308)が含まれている。また、図4に示す良品画像300は、図3に示した良品画像40と同様に、縦及び横にそれぞれ4分割されており、合計16個の良品分割画像に分割される。
【0045】
図5図7のそれぞれは、16個の良品分割画像のそれぞれに付与されるラベル情報の一例を示す図である。なお、図5図7では、図4に示した4つのパターンを省略して示している。また、図5図7の良品分割画像に示されている数字は、ラベル情報を表しているものとする。
【0046】
図5に示す良品画像300では、ラスタスキャンの順番で、16個の良品分割画像のそれぞれにラベル情報が付与されている。すなわち、図5に示す良品画像300では、矢印で示した順番に、16個の良品分割画像のそれぞれに、0~15のラベル情報が付与されている。例えば、一番上の行の4つの良品分割画像のそれぞれには、左端の良品分割画像320から順番に、0~3のラベル情報が付与されている。また、一番上から2番目の行の4つの良品分割画像のそれぞれには、一番左側の良品分割画像322から順番に、4~7のラベル情報が付与されている。さらに、一番上から3番目及び4番目の行のそれぞれの4つの良品分割画像には、8~15のラベル情報が矢印の順番で付与されている。
【0047】
なお、ここでは、一番上の左端の良品分割画像320をラベル情報が0となる開始の良品分割画像であるものとして説明したが、いずれの良品分割画像が開始の良品分割画像であってもよい。また、ラベル情報の数値は、ラスタスキャンの順番に限らず、いかなる順番で良品分割画像に付与されてもよい。
【0048】
図6に示す良品画像300では、16個の良品分割画像のそれぞれに、整数X及びYの組みを示す(X,Y)の直交座標系の形式でラベル情報が付与されている。ここで、Xは、列の番号を示しており、Yは、行の番号を示している。また、Xは、左端の列の番号を0として、右側に行くにつれて1ずつ大きくなる。さらに、Yは、一番上の行の番号を0として、下側に行くにつれて1ずつ大きくなる。したがって、(X,Y)は、左端から(X-1)番目の列の一番上から(Y-1)番目に位置する良品分割画像を示している。例えば、左端から2番目の列の一番上から4番目に位置する良品分割画像346には、(1,3)のラベル情報が付与されている。
【0049】
なお、X及びYの値は、上述した数値に限定されるものではなく、良品分割画像の位置(すなわち、行および列)を特定することができる数値であれば、いかなる数値であってもよい。また、上述の例では、ラベル情報が、(X,Y)の直交座標系の形式で表されるものとして説明したが、ラベル情報の形式はこれに限らず、例えば、(ρ,θ)の極座標系の形式であってもよい。
【0050】
図7では、16個の良品分割画像のそれぞれには、良品分割画像が属するカテゴリに応じたラベル情報が付与されている。具体的には、16個の良品分割画像のそれぞれは、良品分割画像同士の類似度に応じてカテゴリに分類され、それぞれの良品分割画像にはカテゴリに応じたラベル情報が付与されている。より具体的には、類似する複数の良品分割画像のそれぞれは、同一のカテゴリに分類される。このとき、同一のカテゴリに属する良品分割画像には、同一のラベル情報が付与されている。
【0051】
例えば、図4に示すように、左端の4つの良品分割画像のうち、3つの良品分割画像320,322及び326は類似している。このため、これらの3つの良品分割画像320,322及び326のそれぞれは、同一のカテゴリに分類される。また、3つの良品分割画像320,322及び326のそれぞれには、同一のラベル情報として、0のラベル情報が付与されている。同様に、左端から2番目の列の4つの良品分割画像のうち、3つの良品分割画像340,342及び346も類似している。このため、これらの3つの良品分割画像340,342及び346のそれぞれには、同一のラベル情報として、1のラベル情報が付与されている。また、左端の列の上から3番目の良品分割画像324は、他の良品分割画像のいずれとも類似しないため、他の良品分割画像のラベル情報とは異なるラベル情報として、3のラベル情報が付与されている。さらに、パターンを含まない良品分割画像には、同一のラベル情報として、2のラベル情報が付与されている。
【0052】
ここでは、良品分割画像同士の類似度に基づいて、ラベル情報が生成されるものとして説明したが、ラベル情報の生成方法はこれに限られない。例えば、良品画像が複数の部位を含んでいる場合には、それぞれの部位ごとにラベル情報が付与されてもよい。一例として、スマートフォンが検査対象物として外観検査される場合について説明する。この場合、良品画像に含まれる複数の良品分割画像のそれぞれが、スマートフォンのディスプレイの領域(以下、「第1領域」と称する。)と、ディスプレイ以外の部分の領域(以下、この領域を「第2領域」と称する。)とに分類されるものとする。例えば、第1領域のカテゴリに分類される良品分割画像には1のラベル情報が付与され、第2領域のカテゴリに分類される良品分割画像には2のラベル情報が付与されてもよい。
【0053】
学習データ生成部110は、生成した学習データセットを学習用データDB104に格納する。本実施形態では、学習データ生成部110は、複数の良品画像について生成した学習データセットを学習用データDB104に格納するものとする。
【0054】
モデル生成部120は、複数の学習データセットを用いて学習処理を実施し、良品分割画像及びラベル情報を入力として復元分割画像を出力する学習済みモデルを生成する。ここで、復元分割画像は、良品分割画像を復元する画像である。
【0055】
図8は、本実施形態に係るモデル生成部120が学習させるモデルを説明するための図である。本実施形態では、モデル生成部120は、モデルに良品分割画像及びラベル情報を同時に入力することにより、モデルを学習させる。画像とその付加情報をニューラルネットワークに同時に入力することによりニューラルネットワークを学習させる技術は、例えば参考文献1に記載されている。
(参考文献1)村瀬, 平川, 山下, 藤吉, 「自己状態を付与したCNNによる自動運転制御の高精度化」, PRMU2017-82, vol. 117, no. 238, pp. 85-90
【0056】
図8には、モデル生成部120による学習処理の対象となるモデル50が示されている。本実施形態では、モデル50は、入力層を含む複数の層を備えたニューラルネットワークを含む。より具体的には、モデル50は、オートエンコーダであり、入力層500、出力層508及び入力層500と出力層508との間に配置されている複数の層から構成されている。入力層500に入力データが入力されると、入力データは中間層504において特徴ベクトルに圧縮され、出力層508から出力データが出力される。なお、学習済みモデルを構築するために用いられるモデルは、オートエンコーダに限定されるものではない。また、ニューラルネットワークを構成する層の数は、5層に限定されるものではない。
【0057】
モデル生成部120は、モデル50に良品分割画像及びラベル情報を入力する。良品分割画像を入力することは、良品分割画像に含まれる複数の画素値のそれぞれを入力することである。これにより、モデル50の出力層508から画像が出力データとして出力される。モデル生成部120は、出力データが良品分割画像を復元するデータとなるように、モデル50に含まれる各層の間の重みづけパラメータを更新することにより、モデル50を学習させる。まとめると、モデル生成部120は、複数の学習データセットをモデル50にそれぞれ入力して、重みづけパラメータを更新することにより、学習済みモデルを生成する。モデル生成部120は、生成した学習済みモデルを学習済みモデルDB106に格納する。
【0058】
なお、本実施形態では、モデル生成部120は、モデル50の入力層500に良品分割画像を入力し、ラベル情報を入力層の次元よりも低い次元を有する中間層504に入力する。これにより、ラベル情報が、良品分割画像の画素よりも大きく学習に寄与するようになり、より適切な学習済みモデルを生成することが可能になる。
【0059】
なお、ラベル情報は、中間層504とは異なる層に入力されてもよい。ラベル情報は、例えば入力層500に入力されてもよい。また、モデル50に入力される良品分割画像及びラベル情報の少なくともいずれかは、モデル50に入力される前に、必要に応じて重みづけがされていてもよい。これにより、より適切にモデル50が学習され得る。
【0060】
図2に戻って、学習済みモデル生成装置10が備える通信部130について説明する。通信部130は、各種の情報を送受信することができる。例えば、通信部130は、通信ネットワーク15を介して、学習済みモデルを画像検査装置20に送信することができる。このとき、良品画像におけるどの位置の良品分割画像にどのラベル情報が付与されたのかを表す情報も、画像検査装置20に送信される。
【0061】
図9は、本実施形態に係る画像検査装置20の構成を示す機能ブロック図である。画像検査装置20は、通信部200、記憶部210、撮像部220及び処理部230を備える。
【0062】
通信部200は、各種の情報を送受信することができる。例えば、通信部200は、通信ネットワーク15を介して、学習済みモデル生成装置10から学習済みモデルを受信することができる。また、通信部200は、学習済みモデルなどを記憶部210に格納することができる。
【0063】
記憶部210は、各種の情報を記憶している。本実施形態では、記憶部210は、学習済みモデルDB106を備える。学習済みモデルDB106には、学習済みモデルが格納されている。また、学習済みモデルDB106には、良品画像におけるどの位置の良品分割画像にどのラベル情報が付与されたのかを表す情報も格納されている。記憶部210に記憶されている各種の情報は、必要に応じて処理部230により参照される。
【0064】
撮像部220は、各種の公知の撮像装置を含み、検査対象物30の画像を撮像する。本実施形態では、撮像部220は、検査対象物30からの反射光Rを受光し、検査対象物30の画像を撮像する。撮像部220は、撮像した画像を処理部230に伝達する。
【0065】
処理部230は、各種の処理を検査対象物の画像に施し、検査対象物の検査を行うことができる。図10は、本実施形態に係る処理部230の構成を示す機能ブロック図である。処理部230は、前処理部231、分割部232、ラベル情報付与部233、分割画像生成部234、復元画像生成部235、後処理部236及び検査部237を備える。
【0066】
前処理部231は、検査対象物の画像に各種の前処理を施す。前処理部231は、例えば、検査対象物の画像に位置ずれを補正する処理を施すことができる。前処理部231は、前処理を施した画像を分割部232に伝達する。
【0067】
分割部232は、検査対象物の画像を分割して、複数の検査分割画像を生成することができる。本実施形態では、分割部232は、学習済みモデル生成装置10における良品画像の分割と同様の方法により、検査対象物の画像を分割する。具体的には、分割部232は、検査対象物の画像を、縦及び横にそれぞれ4分割して、16個の検査分割画像を生成する。分割部232は、生成した検査分割画像をラベル情報付与部233に伝達する。
【0068】
ラベル情報付与部233は、検査分割画像にラベル情報を付与する。ラベル情報付与部233は、学習済みモデルDB212を参照して、学習済みモデルの生成の際に、良品画像におけるどの位置の良品分割画像にどのラベル情報が付与されたのかを表す情報を参照し、検査分割画像に、対応する位置の良品分割画像のラベル情報を付与する。検査分割画像及び付与されたラベル情報の組みは、入力データセットとなる。ラベル情報付与部233は、複数の検査分割画像のそれぞれにラベル情報を付与して複数の入力データセットを生成し、複数の入力データセットを分割画像生成部234に伝達する。
【0069】
分割画像生成部234は、学習済みモデルに入力データセット(検査分割画像及びラベル情報の組み)を入力して、復元分割画像を生成することができる。学習済みモデルは、学習済みモデル生成装置10により生成された、良品分割画像及びラベル情報を入力として復元分割画像を出力するように学習させた学習済みモデルである。
【0070】
本実施形態では、分割画像生成部234は、検査分割画像及びラベル情報からそれぞれ構成される複数の入力データセットを学習済みモデルにそれぞれ入力して、複数の復元分割画像を生成する。生成される複数の復元分割画像のそれぞれは、複数の入力データセットのそれぞれに対応している。復元分割画像は、良品分割画像を復元した画像である。このため、検査分割画像に欠陥などが含まれている場合には、欠陥が除去された画像が復元分割画像として学習済みモデルから出力される。本実施形態では、分割画像生成部234は、検査画像に基づき生成された16個の検査分割画像のそれぞれについて復元分割画像を生成し、生成した16個の復元分割画像を復元画像生成部235に伝達する。
【0071】
復元画像生成部235は、複数の復元分割画像を合成することにより復元画像を生成する。本実施形態では、復元画像生成部235は、分割画像生成部234により生成された16個の復元分割画像を合成することにより、復元画像を生成する。具体的には、復元画像生成部235は、生成した16個の復元分割画像のそれぞれを対応する検査分割画像の位置に配置して合成することにより、復元画像を生成する。復元画像は、良品画像を復元した画像である。このため、検査画像に欠陥が含まれている場合には欠陥が除去された画像が復元画像として生成される。
【0072】
図11を参照して、処理部230が検査画像42に基づいて復元画像44を生成するまでの処理の一例を説明する。
【0073】
分割部232は、検査画像42を縦及び横にそれぞれ4分割し、16個の検査分割画像を生成する。ラベル情報付与部233は、生成された16個の検査分割画像のそれぞれにラベル情報を付与する。例えば、第1検査分割画像420にはラベル情報(A)が付与され、第2検査分割画像422にはラベル情報(B)が付与され、第3検査分割画像424にはラベル情報(C)が付与される。検査分割画像とラベル情報の組みが入力データセットとなる。
【0074】
なお、上述したように類似している検査分割画像には同一のラベル情報が付与されていてもよい。このため、例えば、第1検査分割画像420及び第2検査分割画像422が互いに類似している場合には、第1検査分割画像420に第2検査分割画像422のラベル情報(B)が付与されてもよい。あるいは、第2検査分割画像422に第1検査分割画像のラベル情報(A)が付与されてもよい。
【0075】
分割画像生成部234は、生成された16個の入力データセットを学習済みモデルにそれぞれ入力し、16個の復元分割画像を生成する。例えば、第1復元分割画像440は第1検査分割画像420に基づき生成され、第2復元分割画像442は第2検査分割画像422に基づき生成され、第3復元分割画像444は第3検査分割画像424に基づき生成されている。復元画像生成部235は、生成された16個の復元分割画像を合成することにより復元画像44を生成する。
【0076】
図10に戻って、後処理部236について説明する。後処理部236は、復元画像に後処理を施すことができる。例えば、後処理部236は、復元画像と検査画像との差分を算出して、差分画像を生成することができる。具体的には、後処理部236は、復元画像を構成する複数の画素値のそれぞれから、検査画像のそれぞれ対応する画素値の差分を算出することにより差分画像を生成することができる。
【0077】
図12図14を参照して、後処理部236が生成する差分画像について説明する。図12は、本実施形態に係る検査対象物30の画像60の一例を示す図である。また、図13は、画像60に基づき生成された復元画像62の一例を示す図である。さらに、図14は、検査対象物の画像60と復元画像62との差分である差分画像64を示す図である。図12に示すように、画像60には、線状の欠陥画像600が含まれている。欠陥画像は、検査対象物の欠陥の画像である。一方、図13に示すように、復元画像62では、欠陥画像が除去されている。このため、検査対象物の画像60と復元画像62との差分を示す差分画像64には、主に欠陥画像640が含まれている。本実施形態では、この欠陥画像640を含む差分画像64に基づき、検査対象物の検査が行われる。
【0078】
図10に戻って、検査部237について説明する。検査部237は、分割画像生成部234により生成された復元分割画像に基づいて、検査対象物30の検査を行うことができる。本実施形態では、検査部237は、複数の復元分割画像に基づいて検査対象物30の検査を行う。
【0079】
本実施形態では、検査部237は、検査画像と復元画像との差分に基づいて、検査対象物を検査する。具体的には、検査部237は、後処理部236により生成された差分画像に基づいて検査対象物の検査を行う。
【0080】
また、検査部237は、検査対象物30の欠陥を検出することができる。例えば、検査部237は、図14に示した差分画像64に含まれる欠陥画像640を検出することにより、検査対象物30の欠陥を検出することができる。あるいは、検査部237は、検査対象物30の良否判定を行ってもよい。具体的には、検査部237は、差分画像64に含まれる欠陥画像の大きさに基づいて、検査対象物30の良否判定を行ってもよい。より具体的には、検査部237は、差分画像64に含まれる欠陥画像の大きさが所定の閾値を超える場合には、検査対象物が不良品であることを判定することができる。
【0081】
図15は、本実施形態に係る学習済みモデル生成装置10及び画像検査装置20の物理的構成を示す図である。学習済みモデル生成装置10及び画像検査装置20は、演算部に相当するCPU(Central Processing Unit)10aと、記憶部に相当するRAM(Random Access Memory)10bと、記憶部に相当するROM(Read only Memory)10cと、通信部10dと、入力部10eと、表示部10fと、を有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。
【0082】
なお、本例では、学習済みモデル生成装置10及び画像検査装置20のそれぞれが、一台のコンピュータで構成されるものとして説明するが、学習済みモデル生成装置10及び画像検査装置20のそれぞれは、複数のコンピュータが組み合わされて実現されてもよい。また、画像検査装置20及び学習済みモデル生成装置10が一台のコンピュータで構成されてもよい。また、図15で示す構成は一例であり、学習済みモデル生成装置10及び画像検査装置20は、これら以外の構成を有してもよいし、これらの構成のうち一部を有さなくてもよい。
【0083】
CPU10aは、RAM10b又はROM10cに記憶されたプログラムの実行に関する制御やデータの演算、加工を行う演算部である。学習済みモデル生成装置10が備えるCPU10aは、学習データを用いて学習処理を実施して、学習済みモデルを生成するプログラム(学習プログラム)を実行する演算部である。また、画像検査装置20が備えるCPU10aは、検査対象物の画像を用いて、検査対象物の検査を行うプログラム(画像検査プログラム)を実行する演算部である。CPU10aは、入力部10eや通信部10dから種々のデータを受け取り、データの演算結果を表示部10fに表示したり、RAM10bに格納したりする。
【0084】
RAM10bは、記憶部のうちデータの書き換えが可能なものであり、例えば半導体記憶素子で構成されてよい。RAM10bは、CPU10aが実行するプログラム、学習データ、学習済みモデルといったデータを記憶してよい。なお、これらは例示であって、RAM10bには、これら以外のデータが記憶されていてもよいし、これらの一部が記憶されていなくてもよい。
【0085】
ROM10cは、記憶部のうちデータの読み出しが可能なものであり、例えば半導体記憶素子で構成されてよい。ROM10cは、例えば画像検査プログラム、学習プログラム及び書き換えが行われないデータを記憶してよい。
【0086】
通信部10dは、画像検査装置20を他の機器に接続するインターフェースである。通信部10dは、インターネット等の通信ネットワークに接続されてよい。
【0087】
入力部10eは、ユーザからデータの入力を受け付けるものであり、例えば、キーボード及びタッチパネルを含んでよい。入力部10eは、例えば良品分割画像又は検査分割画像のラベル情報等の入力を受け付けてもよい。
【0088】
表示部10fは、CPU10aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)により構成されてよい。表示部10fは、例えば、検査対象物の検査結果等を表示してよい。
【0089】
画像検査プログラムは、RAM10bやROM10c等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部10dにより接続される通信ネットワークを介して提供されてもよい。学習済みモデル生成装置10では、CPU10aが学習プログラムを実行することにより、図2等を用いて説明した様々な動作が実現される。また、画像検査装置20では、CPU10aが画像検査プログラムを実行することにより、図9及び図10等を用いて説明した様々な動作が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、学習済みモデル生成装置10及び画像検査装置20のそれぞれは、CPU10aとRAM10bやROM10cが一体化したLSI(Large-Scale Integration)を備えていてもよい。
【0090】
図16は、学習済みモデル生成装置10が学習済みモデルを生成する流れの一例を示すフローチャートである。
【0091】
まず、学習データ生成部110が、良品画像DB102に格納されている良品画像を、複数の良品分割画像に分割する(ステップS101)。このとき、良品画像DB102に複数の良品画像が格納されている場合には、学習データ生成部110は、複数の良品画像のそれぞれを分割して、それぞれの良品画像に対応する良品分割画像を生成してもよい。
【0092】
次いで、学習データ生成部110は、ステップS103において生成した良品分割画像のそれぞれにラベル情報を付与し、複数の学習データセットを生成する(ステップS103)。学習データ生成部110は、生成した学習データセットを学習用データDB104に格納する。
【0093】
次いで、モデル生成部120は、学習用データDB104に格納されている複数の学習データセットを用いて学習処理を実行し、良品分割画像及びラベル情報を入力として復元分割画像を出力する学習済みモデルを生成する(ステップS105)。モデル生成部120は、生成した学習済みモデルを学習済みモデルDB106に格納する。
【0094】
次いで、通信部130は、ステップS105において生成された学習済みモデルを画像検査装置20に送信する(ステップS107)。これにより、画像検査装置20は、学習済みモデル生成装置10により生成された学習済みモデルを使用できるようになる。
【0095】
図17は、画像検査装置20が、検査対象物の画像に基づき、学習済みモデルを用いて検査対象物の検査を行う流れの一例を示すフローチャートである。
【0096】
まず、画像検査装置20が備える撮像部220が、検査対象物の画像を撮像する(ステップS201)。撮像部220は、撮像した画像を処理部230に伝達する。
【0097】
次いで、処理部230が備える前処理部231が、ステップS201において撮像された画像に前処理を施す(ステップS203)。次いで、分割部232が、ステップS203において前処理を施された検査画像を分割して、複数の検査分割画像を生成する(ステップS205)。次いで、ラベル情報付与部233は、ステップS205において生成された複数の検査分割画像のそれぞれにラベル情報を付与し、複数の入力データセットを生成する(ステップS207)。
【0098】
次いで、分割画像生成部234は、ステップS207において生成された複数の入力データセットを学習済みモデルにそれぞれ入力して、複数の復元分割画像を生成する(ステップS209)。次いで、復元画像生成部235は、ステップS209において生成された複数の復元分割画像を合成することにより、復元画像を生成する(ステップS211)。次いで、後処理部236は、ステップS201において撮像された検査画像と、ステップS211において生成された復元画像との差分を算出して差分画像を生成する(ステップS213)。
【0099】
次いで、検査部237は、ステップS213において生成された差分画像に基づいて検査対象物の検査を行う(ステップS215)。
【0100】
本実施形態によれば、検査分割画像のラベル情報に応じて、復元分割画像が生成される。このため、部分的に特殊パターンが含まれている場合であっても、特殊パターンを復元することができると。また、ある位置又は部分で良品であるパターンが別の位置又は部分では不良品であっても、良品のパターンを適切に復元することができる。この結果、不良品のパターンの生成を抑制することができる。
【0101】
図18を参照して、本実施形態の効果についてより具体的に説明する。図18は、検査画像70の一例を示す図である。検査画像70は、6個の検査分割画像700、702、704、706、708及び710に分割される。この6個の検査分割画像の中で、検査分割画像702、706及び708は互いに類似しているものとする。また、検査分割画像704は、他の検査分割画像と異なる特殊パターンを含んでいる。
【0102】
仮にラベル情報を用いずに、これら6個の検査分割画像を学習データとして学習済みモデルを生成したとする。この学習済みモデルに検査分割画像704を入力すると、学習済みモデルの表現能力が低い場合には、検査分割画像702、704又は708が出力され、特殊パターンが復元されない可能性がある。
【0103】
一方、本実施形態に係る画像検査装置20は、検査分割画像に加えてラベル情報を用いる。このため、検査分割画像とその検査分割画像の位置に応じた復元分割画像を生成することができる。その結果、その検査分割画像が特定の位置に特殊パターンを含む場合であっても、特殊パターンを復元することが可能となる。例えば、検査分割画像704のように特殊なパターンを示す検査分割画像であっても、適切に復元することが可能になる。
【0104】
また、良品の検査対象物の画像において、ある位置又は部分で良品であるパターンが別の位置又は部分では不良品である場合がある。このような場合にも、本実施形態に係る画像検査装置20によれば、不良品のパターンを含む検査分割画像を良品の復元分割画像を生成できるため、不良品のパターンが生成されることが抑制される。この結果、不良品の見逃しを抑制することができる。
【0105】
以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
【0106】
[附記]
良品の検査対象物の画像を分割した画像である良品分割画像及び良品分割画像のラベル情報を入力として復元分割画像を出力するように学習させた学習済みモデルに、検査対象物(30)の画像を分割した画像である検査分割画像及び検査分割画像のラベル情報を入力して、復元分割画像を生成する分割画像生成部(234)と、
分割画像生成部(234)により生成された復元分割画像に基づいて検査対象物の検査を行う検査部(237)と、
を備える画像検査装置(20)。
【符号の説明】
【0107】
1…画像検査システム、10…学習済みモデル生成装置、110…学習データ生成部、120…モデル生成部、20…画像検査装置、210…記憶部、220…撮像部、230…処理部、231…前処理部、232…分割部、233…ラベル情報付与部、234…分割画像生成部、235…復元画像生成部、236…後処理部、237…検査部、25…照明、30…検査対象物、40…良品画像、42…検査画像、62…復元画像、64…差分画像、400…第1良品分割画像、402…第2良品分割画像、404…第3良品分割画像、420…第1検査分割画像、422…第2検査分割画像、424…第3検査分割画像、440…第1復元分割画像、442…第2復元分割画像、444…第3復元分割画像、500…入力層、504…中間層、508…出力層、600…欠陥画像
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18