(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-18
(45)【発行日】2024-06-26
(54)【発明の名称】亜鉛二次電池
(51)【国際特許分類】
H01M 10/28 20060101AFI20240619BHJP
H01M 4/24 20060101ALI20240619BHJP
H01M 50/434 20210101ALI20240619BHJP
H01M 50/466 20210101ALI20240619BHJP
H01M 50/449 20210101ALI20240619BHJP
H01M 50/44 20210101ALI20240619BHJP
H01M 50/454 20210101ALI20240619BHJP
H01M 50/531 20210101ALI20240619BHJP
H01M 50/54 20210101ALI20240619BHJP
H01M 50/446 20210101ALI20240619BHJP
H01M 4/32 20060101ALI20240619BHJP
H01M 10/30 20060101ALI20240619BHJP
H01M 12/08 20060101ALI20240619BHJP
【FI】
H01M10/28 Z
H01M4/24 H
H01M50/434
H01M50/466
H01M50/449
H01M50/44
H01M50/454
H01M50/531
H01M50/54
H01M50/446
H01M4/32
H01M10/30 Z
H01M12/08 K
(21)【出願番号】P 2022565052
(86)(22)【出願日】2021-08-05
(86)【国際出願番号】 JP2021029118
(87)【国際公開番号】W WO2022113434
(87)【国際公開日】2022-06-02
【審査請求日】2023-03-03
(31)【優先権主張番号】P 2020194748
(32)【優先日】2020-11-24
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020200578
(32)【優先日】2020-12-02
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】100113365
【氏名又は名称】高村 雅晴
(74)【代理人】
【識別番号】100209336
【氏名又は名称】長谷川 悠
(74)【代理人】
【識別番号】100218800
【氏名又は名称】河内 亮
(72)【発明者】
【氏名】松矢 淳宣
(72)【発明者】
【氏名】権田 裕一
(72)【発明者】
【氏名】八木 毅
(72)【発明者】
【氏名】鬼頭 賢信
(72)【発明者】
【氏名】横山 昌平
(72)【発明者】
【氏名】犬飼 直子
(72)【発明者】
【氏名】山本 翔
【審査官】松嶋 秀忠
(56)【参考文献】
【文献】国際公開第2019/077953(WO,A1)
【文献】国際公開第2017/163906(WO,A1)
【文献】国際公開第2018/062360(WO,A1)
【文献】国際公開第2020/255856(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/24-32
H01M 50/40-598
H01M 12/06-08
H01M 4/24-34
(57)【特許請求の範囲】
【請求項1】
正極活物質層及び正極集電体を含む正極板と、
亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む負極活物質層、及び負極集電体を含む負極板と、
前記負極活物質層の全体を覆う又は包み込む、層状複水酸化物(LDH)様化合物を含むLDH様化合物セパレータと、
電解液と、
を含む電池要素を備えた、亜鉛二次電池であって、
前記正極活物質層、前記負極活物質層、及び前記LDH様化合物セパレータがそれぞれ四辺形状であり、
前記正極集電体が前記正極活物質層の1辺から延出する正極集電タブを有し、かつ、前記負極集電体が前記負極活物質層の前記正極集電タブと反対側の1辺から前記LDH様化合物セパレータの端部を超えて延出する負極集電タブを有し、それにより前記電池要素が前記正極集電タブ及び前記負極集電タブを介して互いに反対の側から集電可能とされており、かつ、
前記LDH様化合物セパレータの互いに隣接する少なくとも2辺の外縁(ただし前記負極集電タブと重なる1辺を除く)が閉じられている、亜鉛二次電池。
【請求項2】
前記LDH様化合物が、
(a)Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物である、又は
(b)(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、又は
(c)Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であり、該(c)において前記LDH様化合物がIn(OH)
3との混合物の形態で存在する、請求項1に記載の亜鉛二次電池。
【請求項3】
前記負極活物質層と前記LDH様化合物セパレータの間に介在し、かつ、前記負極活物質層の全体を覆う又は包み込む保液部材をさらに備える、請求項1又は2に記載の亜鉛二次電池。
【請求項4】
前記保液部材が不織布である、請求項3に記載の亜鉛二次電池。
【請求項5】
前記正極板、前記負極板、及び前記LDH様化合物セパレータがそれぞれ縦向きとなり、かつ、前記LDH様化合物セパレータの閉じられた外縁の1辺が下端となるように、前記電池要素が配置されており、その結果、前記正極集電タブ及び前記負極集電タブが前記電池要素の互いに反対の側端部から横に延出している、請求項1~4のいずれか一項に記載の亜鉛二次電池。
【請求項6】
前記LDH様化合物セパレータの上端となる1辺の外縁が開放されている、又は前記LDH様化合物セパレータの上端となる1辺の外縁が閉じられており、該閉じられた外縁の一部に通気孔が設けられる、請求項5に記載の亜鉛二次電池。
【請求項7】
前記亜鉛二次電池が、前記電池要素を収容するケースをさらに備える、請求項6に記載の亜鉛二次電池。
【請求項8】
前記正極集電タブの先端に接続する正極集電板と、前記負極集電タブの先端に接続する負極集電板とをさらに備えた、請求項1~7のいずれか一項に記載の亜鉛二次電池。
【請求項9】
前記電池要素の数が2以上であり、該2以上の電池要素がケースに一緒に収容される、請求項1~8のいずれか一項に記載の亜鉛二次電池。
【請求項10】
前記LDH様化合物セパレータの外縁の閉じられた状態が、前記LDH様化合物セパレータの折り曲げ及び/又は前記LDH様化合物セパレータ同士の封止により実現されている、請求項1~9のいずれか一項に記載の亜鉛二次電池。
【請求項11】
前記LDH様化合物セパレータが
前記LDH
様化合物と多孔質基材とを含み、前記LDH様化合物セパレータが水酸化物イオン伝導性及びガス不透過性を呈するように前記LDH
様化合物が前記多孔質基材の孔を塞いでいる、請求項1~10のいずれか一項に記載の亜鉛二次電池。
【請求項12】
前記多孔質基材が高分子材料製である、請求項11に記載の亜鉛二次電池。
【請求項13】
前記LDH
様化合物が前記多孔質基材の厚さ方向の全域にわたって組み込まれている、請求項12に記載の亜鉛二次電池。
【請求項14】
前記正極活物質層が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより前記亜鉛二次電池がニッケル亜鉛二次電池をなす、請求項1~13のいずれか一項に記載の亜鉛二次電池。
【請求項15】
前記正極活物質層が空気極層であり、それにより前記亜鉛二次電池が空気亜鉛二次電池をなす、請求項1~13のいずれか一項に記載の亜鉛二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、亜鉛二次電池に関するものである。
【背景技術】
【0002】
ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。
【0003】
上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。さらに、特許文献3(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。
【0004】
ところで、特許文献4(国際公開第2019/077953号)には、正極板、負極板、LDHセパレータ、及び電解液を備え、電池要素が正極集電タブ及び負極集電タブを介して互いに反対の側から集電可能とされた、亜鉛二次電池が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2013/118561号
【文献】国際公開第2016/076047号
【文献】国際公開第2016/067884号
【文献】国際公開第2019/077953号
【発明の概要】
【0006】
上述したようなLDHセパレータを用いてニッケル亜鉛電池等の亜鉛二次電池を構成した場合、亜鉛デンドライトによる短絡等を防止できる。そして、この効果を最大限に発揮させるためには、LDHセパレータで正極と負極を確実に隔離することが望まれる。特に、かかる構成を確保しながら、高電圧や大電流を得るために、複数の正極及び複数の負極を組み合わせて積層電池を容易に組み立てることができれば極めて好都合である。しかしながら、従来の亜鉛二次電池におけるLDHセパレータによる正極と負極の隔離は、LDHセパレータと電池容器とを液密性を確保するように樹脂枠や接着剤等を用いて巧妙かつ入念に封止接合することにより行われており、電池構成や製造工程が複雑化しやすかった。このような電池構成や製造工程の複雑化は積層電池を構成する場合にはとりわけ顕著なものとなりうる。これは積層電池を構成する複数の単電池の各々に対して液密性確保のための封止接合を行う必要があるためである。
【0007】
本発明者らは、今般、従来のLDHの代わりに、水酸化物イオン伝導物質として、後述するLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能な水酸化物イオン伝導セパレータ(LDH様化合物セパレータ)を提供できるとの知見を得た。また、負極活物質層の全体を覆う又は包み込むLDH様化合物セパレータを採用し、かつ、正極集電タブと負極集電タブを互いに反対方向に延出させる構成とすることで、LDH様化合物セパレータと電池容器との煩雑な封止接合を不要として、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を、組み立てやすく且つ集電もしやすい簡素な構成で提供できるとの知見も得た。
【0008】
したがって、本発明の目的は、耐アルカリ性に優れ、かつ、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を、組み立てやすく且つ集電もしやすい簡素な構成で提供することにある。
【0009】
本発明の一態様によれば、
正極活物質層及び正極集電体を含む正極板と、
亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む負極活物質層、及び負極集電体を含む負極板と、
前記負極活物質層の全体を覆う又は包み込む、層状複水酸化物(LDH)様化合物を含むLDH様化合物セパレータと、
電解液と、
を含む電池要素を備えた、亜鉛二次電池であって、
前記正極活物質層、前記負極活物質層、及び前記LDH様化合物セパレータがそれぞれ四辺形状であり、
前記正極集電体が前記正極活物質層の1辺から延出する正極集電タブを有し、かつ、前記負極集電体が前記負極活物質層の前記正極集電タブと反対側の1辺から前記LDH様化合物セパレータの端部を超えて延出する負極集電タブを有し、それにより前記電池要素が前記正極集電タブ及び前記負極集電タブを介して互いに反対の側から集電可能とされており、かつ、
前記LDH様化合物セパレータの互いに隣接する少なくとも2辺の外縁(ただし前記負極集電タブと重なる1辺を除く)が閉じられている、亜鉛二次電池が提供される。
【図面の簡単な説明】
【0010】
【
図1】本発明の亜鉛二次電池の内部構造の一例を示す斜視図である。
【
図2】
図1に示される亜鉛二次電池の層構成を概念的に示す模式断面図である。
【
図3】
図1に示される亜鉛二次電池の外観及び内部構造を示す。
【
図4A】本発明の亜鉛二次電池で用いられる、負極活物質層がLDH様化合物セパレータで覆われた負極板の一例を示す斜視図である。
【
図4B】
図4Aに示される負極板の層構成を示す模式断面図である。
【
図5】
図4Aに示される負極板における、LDH様化合物セパレータで覆われる領域を説明するための模式図である。
【
図6A】例A1~A5で使用されたHe透過度測定系の一例を示す概念図である。
【
図6B】
図6Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。
【
図7】例A1~A5で用いた電気化学測定系を示す模式断面図である。
【
図8A】例A1において作製されたLDH様化合物セパレータの表面SEM像である。
【
図8B】例A1において作製されたLDH様化合物セパレータのX線回折結果である。
【
図9A】例A2において作製されたLDH様化合物セパレータの表面SEM像である。
【
図9B】例A2において作製されたLDH様化合物セパレータのX線回折結果である。
【
図10A】例A3において作製されたLDH様化合物セパレータの表面SEM像である。
【
図10B】例A3において作製されたLDH様化合物セパレータのX線回折結果である。
【
図11A】例A4において作製されたLDH様化合物セパレータの表面SEM像である。
【
図11B】例A4において作製されたLDH様化合物セパレータのX線回折結果である。
【
図12A】例A5において作製されたLDH様化合物セパレータの表面SEM像である。
【
図12B】例A5において作製されたLDH様化合物セパレータのX線回折結果である。
【
図13A】例A6において作製されたLDH様化合物セパレータの表面SEM像である。
【
図13B】例A6において作製されたLDH様化合物セパレータのX線回折結果である。
【
図14】例A7において作製されたLDH様化合物セパレータの表面SEM像である。
【
図15A】例A8(比較)において作製されたLDHセパレータの表面SEM像である。
【
図15B】例A8(比較)において作製されたLDHセパレータのX線回折結果である。
【
図16】例B1において作製されたLDH様化合物セパレータの表面SEM像である。
【
図17】例C1において作製されたLDH様化合物セパレータの表面SEM像である。
【
図18】例C2において作製されたLDH様化合物セパレータの表面SEM像である。
【発明を実施するための形態】
【0011】
亜鉛二次電池
本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、アルカリ電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、空気亜鉛二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が空気亜鉛二次電池をなしてもよい。
【0012】
図1~3に本発明の亜鉛二次電池の一例が示される。
図1~3に示される亜鉛二次電池10は、電池要素11を備えており、電池要素11は、正極板12、負極板16、層状複水酸化物(LDH)様化合物セパレータ22、及び電解液(図示せず)を含む。正極板12は、正極活物質層13及び正極集電
体を含む。負極板16は、負極活物質層17及び負極集電体18を含み、負極活物質層17は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。LDH様化合物セパレータ22は負極活物質層17の全体を覆う又は包み込んでいる。なお、本明細書において「LDH様化合物セパレータ」は、LDH様化合物を含むセパレータであって、専らLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。また、「LDH様化合物」とは、LDHとは呼べないがそれに類する層状結晶構造の水酸化物及び/又は酸化物であり、X線回折法においてLDHに起因するピークが検出されないものとして定義される。正極活物質層13、負極活物質層17、及びLDH様化合物セパレータ22はそれぞれ四辺形状(典型的には四角形状)である。そして、正極集電
体が正極活物質層13の1辺から延出する正極集電タブ14aを有し、かつ、負極集電体18が負極活物質層17の正極集電タブ14aと反対側の1辺からLDH様化合物セパレータ22の端部を超えて延出する負極集電タブ18aを有する。その結果、電池要素11が正極集電タブ14a及び負極集電タブ18aを介して互いに反対の側から集電可能とされている。その上、LDH様化合物セパレータ22の互いに隣接する少なくとも2辺Cの外縁(ただし負極集電タブと重なる1辺を除く)は閉じられている。このように負極活物質層17の全体を覆う又は包み込むLDH様化合物セパレータ22を採用し、かつ、正極集電タブ14aと負極集電タブ18aを互いに反対方向に延出させる構成とすることで、LDH様化合物セパレータ22と電池容器との煩雑な封止接合を不要として、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を、組み立てやすく且つ集電もしやすい簡素な構成で提供することができる。しかも、従来のLDHの代わりに、水酸化物イオン伝導物質として、後述するLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能な水酸化物イオン伝導セパレータ(LDH様化合物セパレータ)、さらにはそのような利点を有する亜鉛二次電池を提供することができる。
【0013】
すなわち、前述のとおり、従来の亜鉛二次電池におけるLDHセパレータによる正極と負極の隔離は、LDHセパレータと電池容器とを液密性を確保するように樹脂枠や接着剤等を用いて巧妙かつ入念に封止接合することにより行われており、電池構成や製造工程が複雑化しやすかった。このような電池構成や製造工程の複雑化は積層電池を構成する場合にはとりわけ顕著なものとなりうる。この点、本発明の亜鉛二次電池10においては、負極活物質層17の全体がLDH様化合物セパレータ22で覆う又は包み込まれているので、LDH様化合物セパレータ22で覆う又は包み込まれた負極板16自体で亜鉛デンドライトによる短絡等を防止できる機能を備えている。したがって、正極板12と負極板16(これはLDH様化合物セパレータ22で覆う又は包み込まれている)を積層するだけでLDH様化合物セパレータによる正極板12と負極板16の隔離を実現することができる。しかも、正極集電タブ14aと負極集電タブ18aを互いに反対方向に延出させる構成とすることで、正極集電体と負極集電体18の不用意な接触を確実に回避可能な、極めて集電しやすい構造となっている。とりわけ、複数の単電池を備えた積層電池を作製する際には、正極板12と負極板16を交互に積層するだけで所望の構成を実現することができる点で極めて有利といえる。これは、LDHセパレータで正極と負極を隔離するために従来行われていた巧妙かつ入念な封止接合が不要になるからである。この積層電池の場合、複数の正極集電タブ14aを束ねて1つの正極集電板14bないし正極端子14cに接続でき、かつ、複数の負極集電タブ18aを束ねて1つの負極集電板18bないし負極端子18cに接続できるという点で、とりわけ集電しやすいといえる。
【0014】
電池要素11は、正極板12、負極板16、LDH様化合物セパレータ22、及び電解液(図示せず)を含む。
【0015】
正極板12は、正極活物質層13を含む。正極活物質層13は、亜鉛二次電池の種類に応じて公知の正極材料を適宜選択すればよく、特に限定されない。例えば、ニッケル亜鉛二次電池の場合には、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極を用いればよい。あるいは、空気亜鉛二次電池の場合には、空気極を正極として用いればよい。正極板12は正極集電体(図示せず)をさらに含み、正極集電体は正極活物質層13の1辺から延出する正極集電タブ14aを有する。正極集電体の好ましい例としては、発泡ニッケル板等のニッケル製多孔質基板が挙げられる。この場合、例えば、ニッケル製多孔質基板上に水酸化ニッケル等の電極活物質を含むペーストを均一に塗布して乾燥させることにより正極/正極集電体からなる正極板を好ましく作製することができる。その際、乾燥後の正極板(すなわち正極/正極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。なお、
図2に示される正極板12は正極集電体(例えば発泡ニッケル)を含むものであるが図示されていない。これは、正極集電体が正極活物質層13と渾然一体化しているため、正極集電体を個別に描出できないためである。亜鉛二次電池10は、正極集電タブ14aの先端に接続する正極集電板14bをさらに備えるのが好ましく、より好ましくは複数枚の正極集電タブ14aが1つの正極集電板14bに接続される。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、正極端子14cへの接続もしやすくなる。また、正極集電板14b自体を
正極端子として用いてもよい。
【0016】
負極板16は負極活物質層17を含む。負極活物質層17は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。すなわち、亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属及び酸化亜鉛の混合物がより好ましい。負極活物質層17はゲル状に構成してもよいし、電解液と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。
【0017】
亜鉛合金として、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。例えば、インジウムを0.01~0.1質量%、ビスマスを0.005~0.02質量%、アルミニウムを0.0035~0.015質量%を含む亜鉛合金が水素ガス発生の抑制効果があるので好ましい。とりわけ、インジウムやビスマスは放電性能を向上させる点で有利である。亜鉛合金の負極への使用は、アルカリ性電解液中での自己溶解速度を遅くすることで、水素ガス発生を抑制して安全性を向上できる。
【0018】
負極材料の形状は特に限定されないが、粉末状とすることが好ましく、それにより表面積が増大して大電流放電に対応可能となる。好ましい負極材料の平均粒径は、亜鉛合金の場合、短径で3~100μmの範囲であり、この範囲内であると表面積が大きいことから大電流放電への対応に適するとともに、電解液及びゲル化剤と均一に混合しやすく、電池組み立て時の取り扱い性も良い。
【0019】
負極板16は負極集電体18をさらに含み、負極集電体18は負極活物質層17の正極集電タブ14aと反対側の1辺からLDH様化合物セパレータ22の端部を超えて延出する負極集電タブ18aを有する。その結果、電池要素11が正極集電タブ14a及び負極集電タブ18aを介して互いに反対の側から集電可能とされている。亜鉛二次電池10は、負極集電タブ18aの先端に接続する負極集電板18bをさらに備えるのが好ましく、より好ましくは複数枚の負極集電タブ18aが1つの負極集電板18bに接続される。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、負極端子18cへの接続もしやすくなる。また、負極集電板18b自体を負極端子として用いてもよい。典型的には、負極集電タブ18aの先端部分がLDH様化合物セパレータ22及び(存在する場合には)保液部材20で覆われない露出部分をなす。これにより露出部分を介して負極集電体18(特に負極集電タブ18a)を負極集電板18b及び/又は負極端子18cに望ましく接続することができる。この場合、
図5に示されるように、LDH様化合物セパレータ22が負極活物質層17の負極集電タブ18a側の端部を十分に隠すように所定のマージンM(例えば1~5mmの間隔)を伴って覆う又は包み込むのが好ましい。こうすることで、負極活物質層17の負極集電タブ18a側の端部又はその近傍からの亜鉛デンドライトの伸展をより効果的に防止することができる。
【0020】
負極集電体18の好ましい例としては、銅箔、銅エキスパンドメタル、銅パンチングメタルが挙げられるが、より好ましくは銅エキスパンドメタルである。この場合、例えば、銅エキスパンドメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極/負極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。
【0021】
亜鉛二次電池10は、負極活物質層17とLDH様化合物セパレータ22の間に介在し、かつ、負極活物質層17の全体を覆う又は包み込む保液部材20をさらに備えるのが好ましい。こうすることで、負極活物質層17とLDH様化合物セパレータ22との間に電解液を万遍なく存在させることができ、負極活物質層17とLDH様化合物セパレータ22との間における水酸化物イオンの授受を効率良く行うことができる。保液部材20は電解液を保持可能な部材であれば特に限定されないが、シート状の部材であるのが好ましい。保液部材の好ましい例としては不織布、吸水性樹脂、保液性樹脂、多孔シート、各種スペーサが挙げられるが、特に好ましくは、低コストで性能の良い負極構造体を作製できる点で不織布である。保液部材20は0.01~0.20mmの厚さを有するのが好ましく、より好ましくは0.02~0.20mmであり、さらに好ましくは0.02~0.15mmであり、特に好ましくは0.02~0.10mmであり、最も好ましくは0.02~0.06mmである。上記範囲内の厚さであると、負極構造体の全体サイズを無駄無くコンパクトに抑えながら、保液部材20内に十分な量の電解液を保持させることができる。
【0022】
負極活物質層17の全体はLDH様化合物セパレータ22で覆う又は包み込まれている。
図4A及び4Bに負極活物質層17がLDH様化合物セパレータ22で覆われた又は包み込まれた負極板16の好ましい態様が示される。
図4A及び4Bに示される負極構造体は、負極活物質層17、負極集電体18、及び所望により保液部材20を備えており、負極活物質層17の全体が(必要に応じて保液部材20を介して)LDH様化合物セパレータ22で覆う又は包み込まれている。このように、負極活物質層17の全体を(必要に応じて保液部材20を介して)LDH様化合物セパレータ22で覆う又は包み込むことにより、前述したように、LDH様化合物セパレータ22と電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することが可能となる。
【0023】
図4A及び4Bにおいて保液部材20はLDH様化合物セパレータ22よりも小さいサイズとして描かれているが、保液部材20はLDH様化合物セパレータ22(又は折り曲げられたLDH様化合物セパレータ22)と同じサイズであってもよく、保液部材20の外縁はLDH様化合物セパレータ22の外縁に到達しうる。すなわち、外周部分を構成するLDH様化合物セパレータ22の間に、保液部材20の外周部分が挟み込まれる構成としてもよい。こうすることで、後述するLDH様化合物セパレータ22の外縁封止を熱溶着又は超音波溶着により、効果的に行うことができる。すなわち、LDH様化合物セパレータ22同士を直接的に熱溶着又は超音波溶着するよりも、LDH様化合物セパレータ22同士をそれらの間に熱溶着性の保液部材20を介在させて間接的に熱溶着又は超音波溶着する方が、保液部材20自体の熱溶着性を利用できる結果、より効果的な封止を行うことができる。例えば、保液部材20の封止されるべき端部をあたかもホットメルト接着剤かのごとく利用することができる。この場合における保液部材20の好ましい例としては不織布、特に熱可塑性樹脂(例えばポリエチレン、ポリプロピレン)製の不織布が挙げられる。
【0024】
LDH様化合物セパレータ22は、LDH様化合物と多孔質基材とを含む。前述のとおり、LDH様化合物セパレータ22が水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDH様化合物セパレータとして機能するように)LDH様化合物が多孔質基材の孔を塞いでいる。多孔質基材は高分子材料製であるのが好ましく、LDH様化合物は高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDH様化合物セパレータ22の各種好ましい態様については後に詳述するものとする。
【0025】
1つの負極活物質層17に対するLDH様化合物セパレータ22の枚数は、片面につき、典型的には1(両面では向かい合う2枚又は折り曲げられた1枚)であるが、2以上であってもよい。例えば、数枚重ねのLDH様化合物セパレータ22で負極活物質層17(保液部材20で覆う又は包み込まれていてよい)の全体を覆う又は包み込む構成としてもよい。
【0026】
前述のとおり、LDH様化合物セパレータ22は四辺形(典型的には四角形)の形状を有する。そして、LDH様化合物セパレータ22の互いに隣接する少なくとも2辺Cの外縁(ただし負極集電タブ18aと重なる1辺を除く)が閉じられている。こうすることで、負極活物質層17を正極板12から確実に隔離することができ、亜鉛デンドライトの伸展をより効果的に防止することができる。なお、閉じられるべき辺Cから負極集電タブ18aと重なる1辺が除かれているのは、負極集電タブ18aの延出を可能とするためである。
【0027】
本発明の好ましい態様によれば、正極板12、負極板16、及びLDH様化合物セパレータ22がそれぞれ縦向きとなり、かつ、LDH様化合物セパレータ22の閉じられた外縁の1辺Cが下端となるように、電池要素11が配置されており、その結果、正極集電タブ14a及び負極集電タブ18aが電池要素11の互いに反対の側端部から横に延出している。こうすることで、より一層集電しやすくなるとともに、LDH様化合物セパレータ22の外縁の上端1辺を開放させる場合(これについては後述する)に、上部開放部に障害物が無くなるため、正極板12と負極板16との間でのガスの流出入がより一層しやすくなる。
【0028】
ところで、LDH様化合物セパレータ22の外縁の1辺又は2辺は開放されていてもよい。例えば、LDH様化合物セパレータ22の外縁の上端1辺を開放させておいても、亜鉛二次電池作製時にその上端1辺に電解液が達しないように液を注入すれば、当該上端1辺には電解液が無いことになるため、液漏れや亜鉛デンドライト伸展の問題を回避することができる。これに関連して、電池要素11は密閉容器でありうるケース28内に正極板12とともに収容され、所望により蓋26で塞がれることにより、密閉型亜鉛二次電池の主要構成部品として機能しうる。このため、密閉性は最終的に収容されることになるケース28において確保すれば足りるので、電池要素11自体は上部開放型の簡素な構成であることができる。また、LDH様化合物セパレータ22の外縁の1辺を開放させておくことで、そこから負極集電タブ18aを延出させることもできる。
【0029】
LDH様化合物セパレータ22の上端となる1辺の外縁は開放されているのが好ましい。この上部開放型の構成はニッケル亜鉛電池等における過充電時の問題への対処を可能とするものである。すなわち、ニッケル亜鉛電池等において過充電されると正極板12で酸素(O2)が発生しうるが、LDH様化合物セパレータ22は水酸化物イオンしか実質的に通さないといった高度な緻密性を有するが故に、O2を通さない。この点、上部開放型の構成によれば、ケース28内において、O2を正極板12の上方に逃がして上部開放部を介して負極板16側へと送り込むことができ、それによってO2で負極活物質層17のZnを酸化してZnOへと戻すことができる。このような酸素反応サイクルを経ることで、上部開放型の電池要素11を密閉型亜鉛二次電池に用いることで過充電耐性を向上させることができる。なお、LDH様化合物セパレータ22の上端となる1辺の外縁が閉じられている場合であっても、閉じられた外縁の一部に通気孔を設けることで上記開放型の構成と同様の効果が期待できる。例えば、LDH様化合物セパレータ22の上端となる1辺の外縁を封止した後に通気孔を開けてもよいし、封止の際、通気孔が形成されるように上記外縁の一部を非封止としてもよい。
【0030】
いずれにしても、LDH様化合物セパレータ22の外縁の閉じられた辺Cが、LDH様化合物セパレータ22の折り曲げ及び/又はLDH様化合物セパレータ22同士の封止により実現されているのが好ましい。封止手法の好ましい例としては、接着剤、熱溶着、超音波溶着、接着テープ、封止テープ、及びそれらの組合せが挙げられる。特に、高分子材料製の多孔質基材を含むLDH様化合物セパレータ22はフレキシブル性を有するが故に折り曲げやすいとの利点を有するため、LDH様化合物セパレータ22を長尺状に形成してそれを折り曲げることで、外縁の1辺Cが閉じた状態を形成するのが好ましい。熱溶着及び超音波溶着は市販のヒートシーラー等を用いて行えばよいが、LDH様化合物セパレータ22同士の封止の場合、外周部分を構成するLDH様化合物セパレータ22の間に保液部材20の外周部分を挟み込むようにして熱溶着及び超音波溶着を行うのが、より効果的な封止を行える点で好ましい。一方、接着剤、接着テープ及び封止テープは市販品を用いればよいが、アルカリ電解液中での劣化を防ぐため、耐アルカリ性を有する樹脂を含むものが好ましい。かかる観点から、好ましい接着剤の例としては、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤、及び変成シリコーン樹脂系接着剤が挙げられ、中でもエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点でより好ましい。エポキシ樹脂系接着剤の製品例としては、エポキシ接着剤Hysol(登録商標)(Henkel製)が挙げられる。
【0031】
電解液はアルカリ金属水酸化物水溶液を含むのが好ましい。電解液は図示していないが、これは正極板12(特に正極活物質層13)及び負極板16(特に負極活物質層17)の全体に行き渡っているためである。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛及び/又は酸化亜鉛の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液は正極活物質及び/又は負極活物質と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミドなどのポリマーやデンプンが用いられる。
【0032】
図3に示されるように、亜鉛二次電池10は、電池要素11を収容するケース28をさらに備えうる。また、電池要素11の数が2以上であり、該2以上の電池要素11がケース28に一緒に収容されてもよい。これはいわゆる組電池ないし積層電池の構成であり、高電圧や大電流が得られる点で有利である。電池要素11を収容するケース28は樹脂製であるのが好ましい。ケース28を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂、ABS樹脂、又は変性ポリフェニレンエーテルであり、さらに好ましくはABS樹脂又は変性ポリフェニレンエーテルである。また、2以上のケース28が配列されたケース群を外枠内に収容して、電池モジュールの構成としてもよい。
【0033】
LDH様化合物セパレータ
LDH様化合物セパレータは層状複水酸化物(LDH)様化合物を含むセパレータであり、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。すなわち、LDH様化合物セパレータは水酸化物イオン伝導セパレータとしての機能を呈する。好ましいLDH様化合物セパレータはガス不透過性及び/又は水不透過性を有する。換言すれば、LDH様化合物セパレータはガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献2及び3に記載されるように、水中で測定対象物の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献2及び3に記載されるように、測定対象物の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDH様化合物セパレータがガス不透過性及び/又は水不透過性を有するということは、LDH様化合物セパレータが気体又は水を通さない程の高度な緻密性を有することを意味し、透水性又はガス透過性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDH様化合物セパレータは、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDH様化合物セパレータは水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。
【0034】
LDH様化合物セパレータは、単位面積あたりのHe透過度が3.0cm/min・atm以下であるのが好ましく、より好ましくは2.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。He透過度が3.0cm/min・atm以下であるセパレータは、電解液中においてZnの透過(典型的には亜鉛イオン又は亜鉛酸イオンの透過)を極めて効果的に抑制することができる。このように本態様のセパレータは、Zn透過が顕著に抑制されることで、亜鉛二次電池に用いた場合に亜鉛デンドライトの成長を効果的に抑制できるものと原理的に考えられる。He透過度は、セパレータの一方の面にHeガスを供給してセパレータにHeガスを透過させる工程と、He透過度を算出して水酸化物イオン伝導セパレータの緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータに加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH2分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもH2ガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、セパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価5に示される手順に従って好ましく行うことができる。
【0035】
本発明のLDH様化合物セパレータにおいては、LDH様化合物が多孔質基材の孔を塞いでおり、好ましくは多孔質基材の孔がLDH様化合物で完全に塞がれている。好ましくは、LDH様化合物は、
(a)Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物である、又は
(b)(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、又は
(c)Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であり、該(c)において前記LDH様化合物がIn(OH)3との混合物の形態で存在する。
【0036】
本発明の好ましい態様(a)によれば、LDH様化合物は、Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物でありうる。したがって、典型的なLDH様化合物は、Mg、Ti、所望によりY及び所望によりAlの複合水酸化物及び/又は複合酸化物である。LDH様化合物の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物はNiを含まないのが好ましい。例えば、LDH様化合物は、Zn及び/又はKをさらに含むものであってもよい。こうすることで、LDH様化合物セパレータのイオン伝導率をより一層向上することができる。
【0037】
LDH様化合物はX線回折により同定することができる。具体的には、LDH様化合物セパレータは、その表面に対してX線回折を行った場合、典型的には5°≦2θ≦10°の範囲に、より典型的には7°≦2θ≦10°の範囲にLDH様化合物に由来するピークが検出される。前述のとおり、LDHは積み重なった水酸化物基本層の間に、中間層として交換可能な陰イオン及びH2Oが存在する交互積層構造を有する物質である。この点、LDHをX線回折法により測定した場合、本来的には2θ=11~12°の位置にLDHの結晶構造に起因したピーク(すなわちLDHの(003)ピーク)が検出される。これに対して、LDH様化合物をX線回折法により測定した場合、典型的にはLDHの上記ピーク位置よりも低角側にシフトした上述の範囲でピークが検出される。また、X線回折におけるLDH様化合物に由来するピークに対応する2θを用いてBraggの式により、層状結晶構造の層間距離を決定することができる。こうして決定されるLDH様化合物を構成する層状結晶構造の層間距離は0.883~1.8nmであるのが典型的であり、より典型的には0.883~1.3nmである。
【0038】
上記態様(a)によるLDH様化合物セパレータは、エネルギー分散型X線分析(EDS)により決定される、LDH様化合物におけるMg/(Mg+Ti+Y+Al)の原子比が0.03~0.25であるのが好ましく、より好ましくは0.05~0.2である。また、LDH様化合物におけるTi/(Mg+Ti+Y+Al)の原子比は0.40~0.97であるのが好ましく、より好ましくは0.47~0.94である。さらに、LDH様化合物におけるY/(Mg+Ti+Y+Al)の原子比は0~0.45であるのが好ましく、より好ましくは0~0.37である。そして、LDH様化合物におけるAl/(Mg+Ti+Y+Al)の原子比は0~0.05であるのが好ましく、より好ましくは0~0.03である。上記範囲内であると、耐アルカリ性により一層優れ、かつ、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+
1-xM3+
x(OH)2An-
x/n・mH2O(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物における上記原子比は、LDHの上記一般式から概して逸脱している。このため、本態様におけるLDH様化合物は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。
【0039】
本発明の別の好ましい態様(b)によれば、LDH様化合物は、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物でありうる。したがって、典型的なLDH様化合物は、Ti、Y、添加元素M、所望によりAl及び所望によりMgの複合水酸化物及び/又は複合酸化物である。添加元素Mは、In、Bi、Ca、Sr、Ba又はそれらの組合せである。LDH様化合物の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物はNiを含まないのが好ましい。
【0040】
上記態様(b)によるLDH様化合物セパレータは、エネルギー分散型X線分析(EDS)により決定される、LDH様化合物におけるTi/(Mg+Al+Ti+Y+M)の原子比が0.50~0.85であるのが好ましく、より好ましくは0.56~0.81である。LDH様化合物におけるY/(Mg+Al+Ti+Y+M)の原子比は0.03~0.20であるのが好ましく、より好ましくは0.07~0.15である。LDH様化合物におけるM/(Mg+Al+Ti+Y+M)の原子比は0.03~0.35であるのが好ましく、より好ましくは0.03~0.32である。LDH様化合物におけるMg/(Mg+Al+Ti+Y+M)の原子比は0~0.10であるのが好ましく、より好ましくは0~0.02である。そして、LDH様化合物におけるAl/(Mg+Al+Ti+Y+M)の原子比は0~0.05であるのが好ましく、より好ましくは0~0.04である。上記範囲内であると、耐アルカリ性により一層優れ、かつ、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+
1-xM3+
x(OH)2An-
x/n・mH2O(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物における上記原子比は、LDHの上記一般式から概して逸脱している。このため、本態様におけるLDH様化合物は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。
【0041】
本発明の更に別の好ましい態様(c)によれば、LDH様化合物は、Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であり、LDH様化合物がIn(OH)3との混合物の形態で存在するものでありうる。この態様のLDH様化合物は、Mg、Ti、Y、及び所望によりAl及び/又はInを含む、層状結晶構造の水酸化物及び/又は酸化物である。したがって、典型的なLDH様化合物は、Mg、Ti、Y、所望によりAl、及び所望によりInの、複合水酸化物及び/又は複合酸化物である。なお、LDH様化合物に含まれうるInは、LDH様化合物中に意図的に添加されたもののみならず、In(OH)3の形成等に由来してLDH様化合物中に不可避的に混入したものであってもよい。LDH様化合物の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物はNiを含まないのが好ましい。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+
1-xM3+
x(OH)2An-
x/n・mH2O(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物における原子比は、LDHの上記一般式から概して逸脱している。このため、本態様におけるLDH様化合物は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。
【0042】
上記態様(c)による混合物はLDH様化合物のみならずIn(OH)3をも含む(典型的にはLDH様化合物及びIn(OH)3で構成される)。In(OH)3の含有により、LDH様化合物セパレータにおける耐アルカリ性及びデンドライト耐性を効果的に向上することができる。混合物におけるIn(OH)3の含有割合は、LDH様化合物セパレータの水酸化物イオン伝導性を殆ど損なわずに耐アルカリ性及びデンドライト耐性を向上できる量であるのが好ましく、特に限定されない。In(OH)3はキューブ状の結晶構造を有するものであってもよく、In(OH)3の結晶がLDH様化合物で取り囲まれている構成であってもよい。In(OH)3はX線回折により同定することができる。X線回折測定は、後述する実施例に示される手順に従って好ましく行うことができる。
【0043】
前述したとおり、LDH様化合物セパレータはLDH様化合物と多孔質基材とを含み(典型的には多孔質基材及びLDH様化合物からなり)、LDH様化合物セパレータは水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDH様化合物セパレータとして機能するように)LDH様化合物が多孔質基材の孔を塞いでいる。LDH様化合物は高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDH様化合物セパレータの厚さは、好ましくは5~80μmであり、より好ましくは5~60μm、さらに好ましくは5~40μmである。
【0044】
多孔質基材は高分子材料製である。高分子多孔質基材には、1)可撓性を有する(それ故薄くしても割れにくい)、2)気孔率を高くしやすい、3)伝導率を高くしやすい(気孔率を高めながら厚さを薄くできるため)、4)製造及びハンドリングしやすいといった利点がある。また、上記1)の可撓性に由来する利点を活かして、5)高分子材料製の多孔質基材を含むLDH様化合物セパレータを簡単に折り曲げる又は封止接合することができるとの利点もある。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。より好ましくは、加熱プレスに適した熱可塑性樹脂という観点から、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、ナイロン、ポリエチレン及びそれらの任意の組合せ等が挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。特に好ましい高分子材料は、耐熱水性、耐酸性及び耐アルカリ性に優れ、しかも低コストである点から、ポリプロピレン、ポリエチレン等のポリオレフィンであり、最も好ましくはポリプロピレン又はポリエチレンである。多孔質基材が高分子材料で構成される場合、LDH様化合物層が多孔質基材の厚さ方向の全域にわたって組み込まれている(例えば多孔質基材内部の大半又はほぼ全部の孔がLDH様化合物で埋まっている)のが特に好ましい。このような高分子多孔質基材として、市販の高分子微多孔膜を好ましく用いることができる。
【0045】
製造方法
LDH様化合物セパレータの製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料の製造方法(例えば特許文献1~4を参照)の諸条件(特にLDH原料組成)を適宜変更することにより作製することができる。例えば、(1)多孔質基材を用意し、(2)多孔質基材に、チタニアゾル(あるいはさらにイットリウムゾル及び/又はアルミナゾル)を含む溶液を塗布して乾燥することでチタニア含有層を形成させ、(3)マグネシウムイオン(Mg2+)及び尿素(あるいはさらにイットリウムイオン(Y3+))を含む原料水溶液に多孔質基材を浸漬させ、(4)原料水溶液中で多孔質基材を水熱処理して、LDH様化合物含有機能層を多孔質基材上及び/又は多孔質基材中に形成させることにより、LDH様化合物含有機能層及び複合材料(すなわちLDH様化合物セパレータ)を製造することができる。また、上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物及び/又は酸化物を形成することによりLDH様化合物を得ることができるものと考えられる。
【0046】
特に、多孔質基材が高分子材料で構成され、LDH様化合物が多孔質基材の厚さ方向の全域にわたって組み込まれている複合材料(すなわちLDH様化合物セパレータ)を作製する場合、上記(2)における混合ゾル溶液の基材への塗布を、混合ゾル溶液を基材内部の全体又は大部分に浸透させるような手法で行うのが好ましい。こうすることで最終的に多孔質基材内部の大半又はほぼ全部の孔をLDH様化合物で埋めることができる。好ましい塗布手法の例としては、ディップコート、ろ過コート等が挙げられ、特に好ましくはディップコートである。ディップコート等の塗布回数を調整することで、混合ゾル溶液の付着量を調整することができる。ディップコート等により混合ゾル溶液が塗布された基材は、乾燥させた後、上記(3)及び(4)の工程を実施すればよい。
【0047】
多孔質基材が高分子材料で構成される場合、上記方法等によって得られたLDH様化合物セパレータに対してプレス処理を施すのが好ましい。こうすることで、緻密性により一層優れたLDH様化合物セパレータを得ることができる。プレス手法は、例えばロールプレス、一軸加圧プレス、CIP(冷間等方圧加圧)等であってよく、特に限定されないが、好ましくはロールプレスである。このプレスは加熱しながら行うのが高分子多孔質基材を軟化させることで、多孔質基材の孔をLDH様化合物で十分に塞ぐことができる点で好ましい。十分に軟化する温度として、例えば、ポリプロピレンやポリエチレンの場合は60~200℃で加熱するのが好ましい。このような温度域でロールプレス等のプレスを行うことで、LDH様化合物セパレータの残留気孔を大幅に低減することができる。その結果、LDH様化合物セパレータを極めて高度に緻密化することができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。ロールプレスを行う際、ロールギャップ及びロール温度を適宜調整することで残留気孔の形態を制御することができ、それにより所望の緻密性のLDH様化合物セパレータを得ることができる。
【実施例】
【0048】
本発明に用いることが可能なLDH様化合物セパレータを以下の例によってさらに具体的に説明する。
【0049】
[例A1~A8]
以下に示す例A1~A7はLDH様化合物セパレータに関する参考例である一方、例A8はLDHセパレータに関する比較例である。LDH様化合物セパレータ及びLDHセパレータをまとめて水酸化物イオン伝導セパレータと総称する。なお、以下の例で作製される水酸化物イオン伝導セパレータの評価方法は以下のとおりとした。
【0050】
評価1:表面微構造の観察
水酸化物イオン伝導セパレータの表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。
【0051】
評価2:層状構造のSTEM解析
水酸化物イオン伝導セパレータの層状構造を走査透過電子顕微鏡(STEM)(製品名:JEM-ARM200F、JEOL社製)を用いて、200kVの加速電圧で観察した。
【0052】
評価3:元素分析評価(EDS)
水酸化物イオン伝導セパレータ表面に対してEDS分析装置(装置名:X-act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Mg:Ti:Y:Alの組成比(原子比)を算出した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行った。
【0053】
評価4:X線回折測定
X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:5~40°の測定条件で、水酸化物イオン伝導セパレータの結晶相を測定してXRDプロファイルを得た。また、LDH様化合物に由来するピークに対応する2θを用いてBraggの式により、層状結晶構造の層間距離を決定した。
【0054】
評価5:He透過測定
He透過性の観点から水酸化物イオン伝導セパレータの緻密性を評価すべくHe透過試験を以下のとおり行った。まず、
図6A及び
図6Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持された水酸化物イオン伝導セパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
【0055】
試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、水酸化物イオン伝導セパレータ318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、水酸化物イオン伝導セパレータ318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。
【0056】
次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持された水酸化物イオン伝導セパレータ318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm3/min)、Heガス透過時に水酸化物イオン伝導セパレータに加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm2)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm3/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。
【0057】
評価6:イオン伝導率の測定
電解液中での水酸化物イオン伝導セパレータの伝導率を
図7に示される電気化学測定系を用いて以下のようにして測定した。水酸化物イオン伝導セパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、5.4MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片を水酸化物イオン伝導セパレータ試料Sの抵抗とした。上記同様の測定を水酸化物イオン伝導セパレータ試料S無しの構成で行い、ブランク抵抗も求めた。水酸化物イオン伝導セパレータ試料Sの抵抗とブランク抵抗の差を水酸化物イオン伝導セパレータの抵抗とした。得られた水酸化物イオン伝導セパレータの抵抗と、水酸化物イオン伝導セパレータの厚み及び面積を用いて伝導率を求めた。
【0058】
評価7:耐アルカリ性評価
0.4Mの濃度で酸化亜鉛を含む5.4MのKOH水溶液を用意した。用意したKOH水溶液0.5mLと、2cm四方のサイズの水酸化物イオン伝導セパレータ試料をテフロン(登録商標)製密閉容器に入れた。その後、90℃で1週間(すなわち168時間)保持した後、水酸化物イオン伝導セパレータ試料を密閉容器から取り出した。取り出した水酸化物イオン伝導セパレータ試料を室温で1晩乾燥させた。得られた試料について、評価5と同様の方法でHe透過度を算出し、アルカリ浸漬前後におけるHe透過度の変化の有無を判定した。
【0059】
評価8:デンドライト耐性の評価(サイクル試験)
水酸化物イオン伝導セパレータの亜鉛デンドライトに起因する短絡の抑制効果(デンドライト耐性)を評価すべくサイクル試験を以下のとおり行った。まず、正極(水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む)と負極(亜鉛及び/又は酸化亜鉛を含む)の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、水酸化物イオン伝導セパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液(5.4MのKOH水溶液中に0.4Mの酸化亜鉛を溶解させたもの)を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施しながら、正極及び負極間の電圧を電圧計でモニタリングし、正極及び負極間における亜鉛デンドライトに起因する短絡に伴う急激な電圧低下(具体的には直前にプロットされた電圧に対して5mV以上の電圧低下)の有無を調べ、以下の基準で評価した。
・短絡なし:300サイクル後も充電中に上記急激な電圧低下が見られなかった。
・短絡あり:300サイクル未満で充電中に上記急激な電圧低下が見られた。
【0060】
例A1(参考)
(1)高分子多孔質基材の準備
気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
【0061】
(2)高分子多孔質基材へのチタニアゾルコート
酸化チタンゾル溶液(M6、多木化学株式会社製)を上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、ゾル溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0062】
(3)原料水溶液の作製
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3
-(モル比)=48の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0063】
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で24時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物を形成させた。こうして、LDH様化合物セパレータを得た。
【0064】
(5)ロールプレスによる緻密化
上記LDH様化合物セパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDH様化合物セパレータを得た。
【0065】
(6)評価結果
得られたLDH様化合物セパレータに対して評価1~8を行った。結果は以下のとおりであった。
【0066】
‐評価1:例A1で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図8Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg及びTiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg及びTiの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図8Bに例A1で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=9.4°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は0.94nmであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0067】
例A2(参考)
上記(3)の原料水溶液の作製を以下のように行ったこと、及び上記(4)における水熱処理の温度を90℃にしたこと以外は例A1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0068】
(原料水溶液の作製)
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.03mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した後、溶液中に尿素/NO3-(モル比)=8の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0069】
‐評価1:例A2で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図9Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg及びTiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg及びTiの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図9Bに例A2で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=7.2°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.2nmであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0070】
例A3(参考)
上記(2)の代わりに高分子多孔質基材へのチタニア・イットリアゾルコートを以下のように行ったこと以外は、例A1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0071】
(高分子多孔質基材へのチタニア・イットリアゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=4となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0072】
‐評価1:例A3で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図10Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Ti及びYの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図10Bに例A3で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=8.0°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.1nmであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・at
mであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0073】
例A4(参考)
上記(2)の代わりに高分子多孔質基材へのチタニア・イットリア・アルミナゾルコートを以下のように行ったこと以外は、例A1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0074】
(高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0075】
‐評価1:例A4で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図11Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti及びYの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図11Bに例A4で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=7.8°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.1nmであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0076】
例A5(参考)
上記(2)の代わりに高分子多孔質基材へのチタニア・イットリアゾルコートを以下のように行ったこと、及び上記(3)の原料水溶液の作製を以下のように行ったこと以外は例A1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0077】
(高分子多孔質基材へのチタニア・イットリアゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=18となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0078】
(原料水溶液の作製)
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した。この溶液中に尿素/NO3
-(モル比)=96の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0079】
‐評価1:例A5で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図12Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Ti及びYの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図12Bに例A5で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=8.9°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は0.99nmであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0080】
例A6(参考)
上記(2)の代わりに高分子多孔質基材へのチタニア・アルミナゾルコートを以下のように行ったこと、及び上記(3)の原料水溶液の作製を以下のように行ったこと以外は例A1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0081】
(高分子多孔質基材へのチタニア・アルミナゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/Al(モル比)=18となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0082】
(原料水溶液の作製)
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硝酸イットリウムn水和物(Y(NO3)3・nH2O、富士フイルム和光純薬株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0015mol/Lとなるように秤量してビーカーに入れた。さらに、硝酸イットリウムn水和物を0.0075mol/Lとなるように秤量して上記ビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した。この溶液中に尿素/NO3
-(モル比)=9.8の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0083】
‐評価1:例A6で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図13Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti及びYの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図13Bに例A6で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=7.2°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.2nmであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0084】
例A7(参考)
上記(3)の原料水溶液の作製を以下のように行ったこと以外は例A6と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0085】
(原料水溶液の作製)
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硝酸イットリウムn水和物(Y(NO3)3・nH2O、富士フイルム和光純薬株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0075mol/Lとなるように秤量してビーカーに入れた。さらに、硝酸イットリウムn水和物を0.0075mol/Lとなるように秤量して上記ビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した。この溶液中に尿素/NO3
-(モル比)=25.6の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
【0086】
‐評価1:例A7で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図14に示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti及びYの組成比(原子比)は表1に示されるとおりであった。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表1に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0087】
例A8(比較)
上記(2)の代わりにアルミナゾルコートを以下のように行ったこと以外は、例A1と同様にしてLDHセパレータの作製及び評価を行った。
【0088】
(高分子多孔質基材へのアルミナゾルコート)
無定形アルミナゾル(Al-ML15、多木化学株式会社製)を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、無定形アルミナゾル100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0089】
‐評価1:例A8で得られたLDHセパレータ(ロールプレス前)の表面微構造のSEM画像は
図15Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH構成元素であるMg及びAlが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg及びAlの組成比(原子比)は表1に示されるとおりであった。
‐評価4:
図15Bに例A8で得られたXRDプロファイルを示す。得られたXRDプロファイルにおける2θ=11.5°付近のピークから、例A8で得られたLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。この同定は、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて行った。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。
‐評価5:表1に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表1に示されるとおり、高いイオン伝導率が確認された。
‐評価7:90℃もの高温で1週間にわたるアルカリ浸漬の結果、評価5で0.0cm/min・atmであったHe透過度が10cm/min・atmを超えてしまったことから、耐アルカリ性に劣ることが判明した。
‐評価8:表1に示されるとおり、300サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、デンドライト耐性に劣ることが判明した。
【0090】
【0091】
[例B1~B9]
以下に示す例B1~B9はLDH様化合物セパレータに関する参考例である。なお、以下の例で作製されるLDH様化合物セパレータの評価方法は、評価3でMg:Al:Ti:Y:添加元素Mの組成比(原子比)を算出したこと以外は、例A1~A8と同様とした。
【0092】
例B1(参考)
(1)高分子多孔質基材の準備
気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
【0093】
(2)高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート
酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0094】
(3)原料水溶液(I)の作製
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3
-(モル比)=48の割合で秤量した尿素を加え、更に攪拌して原料水溶液(I)を得た。
【0095】
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(I)とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で22時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物を形成させた。
【0096】
(5)原料水溶液(II)の作製
原料として、硫酸インジウムn水和物(In2(SO4)3・nH2O、富士フイルム和光純薬株式会社製)を用意した。硫酸インジウムn水和物を0.0075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
【0097】
(6)浸漬処理によるインジウム添加
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりインジウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、インジウムが添加されたLDH様化合物セパレータを得た。
【0098】
(7)ロールプレスによる緻密化
上記LDH様化合物セパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDH様化合物セパレータを得た。
【0099】
(8)評価結果
得られたLDH様化合物セパレータに対して各種評価を行った。結果は以下のとおりであった。
【0100】
‐評価1:例B1で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図16に示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0101】
例B2(参考)
上記(6)の浸漬処理によるインジウム添加において、浸漬処理の時間を24時間に変更したこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0102】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0103】
例B3(参考)
上記(2)の代わりにチタニア・イットリアゾルコートを以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0104】
(高分子多孔質基材へのチタニア・イットリアゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=2となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0105】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるTi、Y及びInが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のTi、Y及びInの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0106】
例B4(参考)
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるビスマス添加を以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0107】
(原料水溶液(II)の作製)
原料として、硝酸ビスマス五水和物(Bi(NO3)3・5H2O)を用意した。硝酸ビスマス五水和物を0.00075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
【0108】
(浸漬処理によるビスマス添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりビスマス添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ビスマスが添加されたLDH様化合物セパレータを得た。
【0109】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0110】
例B5(参考)
上記浸漬処理によるビスマス添加において、浸漬処理の時間を12時間に変更したこと以外は、例B4と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0111】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0112】
例B6(参考)
上記浸漬処理によるビスマス添加において、浸漬処理の時間を24時間に変更したこと以外は、例B4と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0113】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0114】
例B7(参考)
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるカルシウム添加を以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0115】
(原料水溶液(II)の作製)
原料として、硝酸カルシウム四水和物(Ca(NO3)2・4H2O)を用意した。硝酸カルシウム四水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
【0116】
(浸漬処理によるカルシウム添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりカルシウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、カルシウムが添加されたLDH様化合物セパレータを得た。
【0117】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びCaが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びCaの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0118】
例B8(参考)
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるストロンチウム添加を以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0119】
(原料水溶液(II)の作製)
原料として、硝酸ストロンチウム(Sr(NO3)2)を用意した。硝酸ストロンチウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
【0120】
(浸漬処理によるストロンチウム添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりストロンチウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ストロンチウムが添加されたLDH様化合物セパレータを得た。
【0121】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びSrが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びSrの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0122】
例B9(参考)
上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるバリウム添加を以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0123】
(原料水溶液(II)の作製)
原料として、硝酸バリウム(Ba(NO3)2)を用意した。硝酸バリウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
【0124】
(浸漬処理によるバリウム添加)
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりバリウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、バリウムが添加されたLDH様化合物セパレータを得た。
【0125】
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びBaが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のAl、Ti、Y及びBaの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0126】
【0127】
[例C1及びC2]
以下に示す例C1及びC2はLDH様化合物セパレータに関する参考例である。なお、以下の例で作製されるLDH様化合物セパレータの評価方法は、評価3でMg:Al:Ti:Y:Inの組成比(原子比)を算出したこと以外は、例A1~A8と同様とした。
【0128】
例C1(参考)
(1)高分子多孔質基材の準備
気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
【0129】
(2)高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート
酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0130】
(3)原料水溶液の作製
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硫酸インジウムn水和物(In2(SO4)3・nH2O、富士フイルム和光純薬株式会社製)及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物及び硫酸インジウムn水和物をそれぞれ0.0075mol/L、尿素を1.44mol/Lとなるように秤量してビーカーへ入れた後に、イオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液を得た。
【0131】
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で22時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物及びIn(OH)3含有機能層を形成させた。こうして、LDH様化合物セパレータを得た。
【0132】
(5)ロールプレスによる緻密化
上記LDH様化合物セパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDH様化合物セパレータを得た。
【0133】
(6)評価結果
得られたLDH様化合物セパレータに対して評価1~8を行った。結果は以下のとおりであった。
【0134】
‐評価1:例C1で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図17に示されるとおりであった。
図17に示されるように、LDH様化合物セパレータ表面には、キューブ状の結晶が存在することが確認された。後述するEDS元素分析及びX線回折測定の結果から、このキューブ状の結晶はIn(OH)
3であると推定される。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータが層状結晶構造の化合物を含むことが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物ないしIn(OH)
3の構成元素であるMg、Al、Ti、Y及びInが検出された。また、LDH様化合物セパレータ表面に存在するキューブ状の結晶中において、In(OH)
3の構成元素であるInが検出された。なお、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びInの組成比(原子比)は表3に示されるとおりであった。
‐評価4:得られたXRDプロファイルのピークから、In(OH)
3がLDH様化合物セパレータ中に存在することが同定された。この同定は、JCPDSカードNo.01-085-1338に記載されるIn(OH)
3の回折ピークを用いて行った。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0135】
例C2(参考)
上記(2)の代わりにチタニア・イットリアゾルコートを以下のように行ったこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
【0136】
(高分子多孔質基材へのチタニア・イットリアゾルコート)
酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=2となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
【0137】
‐評価1:例C2で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は
図18に示されるとおりであった。
図18に示されるように、LDH様化合物セパレータ表面には、キューブ状の結晶が存在することが確認された。後述するEDS元素分析及びX線回折測定の結果から、このキューブ状の結晶はIn(OH)
3であると推定される。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータが層状結晶構造の化合物を含むことが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物ないしIn(OH)
3の構成元素であるMg、Ti、Y及びInが検出された。また、LDH様化合物セパレータ表面に存在するキューブ状の結晶中において、In(OH)
3の構成元素であるInが検出された。なお、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Ti、Y及びInの組成比(原子比)は表3に示されるとおりであった。
‐評価4:得られたXRDプロファイルのピークから、In(OH)
3がLDH様化合物セパレータ中に存在することが同定された。この同定は、JCPDSカードNo.01-085-1338に記載されるIn(OH)
3の回折ピークを用いて行った。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
【0138】