(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-19
(45)【発行日】2024-06-27
(54)【発明の名称】ジョセフソン極性および論理インバータゲート
(51)【国際特許分類】
H03K 19/195 20060101AFI20240620BHJP
H03K 19/20 20060101ALI20240620BHJP
H10N 60/10 20230101ALI20240620BHJP
【FI】
H03K19/195 ZAA
H03K19/20
H10N60/10 K
(21)【出願番号】P 2023007928
(22)【出願日】2023-01-23
(62)【分割の表示】P 2020541368の分割
【原出願日】2019-01-23
【審査請求日】2023-01-26
(32)【優先日】2018-02-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520128820
【氏名又は名称】ノースロップ グラマン システムズ コーポレーション
(74)【代理人】
【識別番号】100114775
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ヘール,クエンティン,ピー.
【審査官】竹内 亨
(56)【参考文献】
【文献】特開2001-060862(JP,A)
【文献】特開2005-252400(JP,A)
【文献】米国特許出願公開第2009/0237106(US,A1)
【文献】特表2014-529216(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03K 19/00-19/23
H10N 60/10
G06N 10/00
(57)【特許請求の範囲】
【請求項1】
ジョセフソンインバータゲート回路であって、
前記回路は、
少なくとも1つの単一磁束量子(SFQ)パルスを備える入力信号を供給する入力と、
前記入力信号を出力に伝播するように配置された少なくとも4つのジョセフソン接合を備えるジョセフソン伝送線路(JTL)であって、前記JTLは、前記JTLの中央部分内にフローティングジョセフソン接合を追加的に備え、それにより、前記JTLは前記入力信号を出力信号に反転するように配置される、JTLと、
を備え
、
前記回路は、正極性または負極性のどちらかのSFQパルスを有する逆量子論理(RQL)データ符号化をもって符号化された入力信号を反転することができるRQLインバータである、回路。
【請求項2】
前記フローティングジョセフソン接合に初期化電流を供給するように構成されたDC入力をさらに備える、請求項1に記載の回路。
【請求項3】
前記初期化電流はΦ
0/2の電流である、請求項2に記載の回路。
【請求項4】
AC成分を有するバイアス信号をそれぞれ供給する少なくとも2つのバイアス入力をさらに備える、請求項1に記載の回路。
【請求項5】
前記少なくとも2つのバイアス入力によって供給されるバイアス信号のうちの第1のバイアス信号のAC成分は、前記少なくとも2つのバイアス入力によって供給されるバイアス信号のうちの第2のバイアス信号のAC成分と180°位相がずれている、請求項4に記載の回路。
【請求項6】
前記少なくとも2つのバイアス入力のうちの第1のバイアス入力は、前記回路の出力よりも入力に近く、前記少なくとも2つのバイアス入力のうちの第2のバイアス入力は、前記回路の入力よりも出力に近く、前記第2のバイアス入力のバイアス信号のDCオフセットは-Φ
0/2であり、それにより前記回路は極性インバータである、請求項4に記載の回路。
【請求項7】
前記少なくとも2つのバイアス入力のうちの第1のバイアス入力は、前記回路の出力よりも入力に近く、前記少なくとも2つのバイアス入力のうちの第2のバイアス入力は、前記回路の入力よりも出力に近く、前記第2のバイアス入力のバイアス信号のDCオフセットは+Φ
0/2であり、それにより前記回路は論理インバータである、請求項4に記載の回路。
【請求項8】
前記JTLは、
入力ノードに接続された入力を備える入力端と、
前記入力ノードと第1のノードとの間に接続された第1のインダクタと、
前記第1のノードと回路接地との間に接続された、前記少なくとも4つのジョセフソン接合のうちの第1のジョセフソン接合と、
前記第1のノードと第2のノードとの間に接続された第2のインダクタと、
前記第2のノードと第3のノードとの間に接続された第3のインダクタと、
前記第3のノードと前記回路接地との間に接続された、前記少なくとも4つのジョセフソン接合のうちの第2のジョセフソン接合と、
出力ノードに接続された出力を備える出力端と、
第5のノードと前記回路接地との間に接続された、前記少なくとも4つのジョセフソン接合のうちの第3のジョセフソン接合と、
前記第5のノードと第6のノードとの間に接続された第4のインダクタと、
前記第6のノードと第7のノードとの間に接続された第5のインダクタと、
前記第7のノードと前記回路接地との間に接続された、前記少なくとも4つのジョセフソン接合のうちの第4のジョセフソン接合と、
前記第7のノードと前記出力ノードとの間に接続された第6のインダクタと、
を備え、
前記中央部分は、前記入力端および前記出力端を接続し、前記中央部分は、Φ
0/2の電流を注入するように構成された変圧器結合DC磁束バイアス注入源をさらに備える、請求項1に記載の回路。
【請求項9】
前記第2のノードに接続された第7のインダクタを介して
前記JTLの入力端の近位で第1のAC成分を有する第1のバイアス信号
を供給するように配置された第1のバイアス入力と、
前記第6のノードに接続された第8のインダクタを介して
前記JTLの出力端の近位で第2のAC成分を有する第2のバイアス信号
を供給するように配置された第2のバイアス入力と、
をさらに備える、請求項8に記載の回路。
【請求項10】
前記第1のAC成分は、前記第2のAC成分と180°位相がずれている、請求項9に記載の回路。
【請求項11】
前記第2のバイアス信号のDCオフセットは-Φ
0/2であり、それにより前記回路は極性インバータである、請求項9に記載の回路。
【請求項12】
前記第2のバイアス信号のDCオフセットは+Φ
0/2であり、それにより前記回路は論理インバータである、請求項9に記載の回路。
【請求項13】
単一磁束量子(SFQ)パルス入力に基づいて信号値を論理的に反転する方法であって、前記方法は、
第1の正のSFQパルスをジョセフソン伝送線路(JTL)の入力端に供給して、前記JTLの出力端よりも前記JTLの入力端に近い前記JTL内の入力側ジョセフソン接合を2π超伝導相に設定することであって、前記JTLは、前記JTLの入力端と出力端との間で前記JTLの中央部分内にフローティングジョセフソン接合を有することと、
前記第1の正のSFQパルスを供給する前または後に、ただし前記第1の正のSFQパルスが前記JTLの中央部分を通じて前記JTLの出力端に伝播することができる前に、Φ
0/2の電流を初期化電流として前記フローティングジョセフソン接合内に注入することであって、それにより、前記第1の正のSFQパルスが、前記初期化電流によって消滅し、前記入力側ジョセフソン接合の超伝導相に影響を与えることなく、前記JTLの中央部分を通じて前記JTLの出力端に伝播しないようにすることと、
負のSFQパルスを前記JTLの入力端に供給して、前記入力側ジョセフソン接合を0超伝導相にリセットすることであって、それにより、前記負のSFQパルスが、前記JTLの出力端に伝播して、前記JTLの入力端よりも前記JTLの出力端に近い前記JTL内の出力側ジョセフソン接合の超伝導相を2πに設定することと、
を備える、方法。
【請求項14】
第2の正のSFQパルスを前記JTLの入力端に供給して、前記入力側ジョセフソン接合を2π超伝導相に設定することであって、それにより、前記第2の正のSFQパルスが、前記JTLの出力端に伝播して、前記出力側ジョセフソン接合の超伝導相を0にリセットすること
をさらに備える、請求項13に記載の方法。
【請求項15】
前記JTLの入力端の近位で第2のノードにおいて、第1のAC成分を有する第1のバイアス信号
を供給し、
前記JTLの出力端の近位で第6のノードにおいて、第2のAC成分を有する第2のバイアス信号を前記JTLの出力端に供給することであって、前記第2のバイアス信号のDCオフセットは+Φ
0/2であること
をさらに備える、請求項13に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、2018年2月1日に出願された米国特許出願第15/887524号からの優先権を主張し、その全体が本明細書に組み込まれる。
【0002】
本発明は、概して、量子的および古典的なデジタル超伝導回路に関し、具体的には、ジョセフソン極性および論理インバータゲートに関する。
【背景技術】
【0003】
デジタルロジックの分野では、周知かつ高度に開発された相補型金属酸化膜半導体(CMOS)技術が幅広く使用されている。CMOSが技術として成熟に近づくにつれ、速度、消費電力、計算密度、相互接続帯域幅などの面で高性能化につながる可能性のある代替技術が注目されている。CMOS技術の代替として、典型的な信号出力約4ナノワット(nW)、典型的なデータレート毎秒20ギガビット(Gb/s)以上、動作温度約4ケルビンの超伝導ジョセフソン接合(JJ)を利用した超伝導ベースの単一磁束量子回路が挙げられる。
【0004】
インバータは、入力信号を出力に反転できる電気回路デバイスである。極性インバータは、ある程度の大きさを有する正の入力値を反転させて出力信号を生成するように入力信号の極性を反転させるか、または、入力値と大きさが等しく、符号または極性が反対の負の入力値を有する出力状態を生成するものである。2つの論理センスのみを有するデジタルロジックのコンテキストでは、論理インバータは、論理入力を、論理入力の反対の論理センスを有する論理出力に反転することができるゲートである。したがって、反転した「ロー」または「0」の論理入力は「ハイ」または「1」の論理出力を提供し、その逆も同様である。極性インバータは、多くの場合、論理反転に関連するバイナリ状態よりも多くの状態、例えば3つ以上の状態を含むように、入力信号の極性を反転させることができる。
【発明の概要】
【0005】
一例は、ジョセフソンインバータゲート回路を提供する。回路は、少なくとも1つの単一磁束量子(SFQ)パルスを含む入力信号を供給する入力と、入力信号を出力に伝播し、入力信号を出力信号に反転するように配置された少なくとも4つのジョセフソン接合を含む半ねじれジョセフソン伝送線路(JTL)と、を含む。半ねじれJTLは、中央ループを有することができる。インバータゲート回路は、極性インバータとすることができ、それにより、入力端ジョセフソン接合を2π超伝導相に設定する入力信号の出力への伝播時に、半ねじれJTLの出力端ジョセフソン接合が-2π超伝導相を示し、入力端ジョセフソン接合を0超伝導相にリセットする入力信号の出力への伝播時に、出力端ジョセフソン接合が0超伝導相を示す。あるいは、インバータゲート回路は、論理インバータとすることができ、それにより、過渡的起動期間の後、入力端ジョセフソン接合を2π超伝導相に設定する入力信号の出力への伝播時に、出力端ジョセフソン接合が0超伝導相を示し、入力端ジョセフソン接合を0超伝導相にリセットする入力信号の出力への伝播時に、出力端ジョセフソン接合が2π超伝導相を示す。
【0006】
別の例は、SFQパルス入力に基づいて信号値を論理的に反転する方法を提供する。第1の正のSFQパルスは、半ねじれJTLの入力端に供給されて、半ねじれJTLの入力側ジョセフソン接合(すなわち、半ねじれJTLの出力端よりも半ねじれJTLの入力端に近いジョセフソン接合)を2π超伝導相に設定する。第1の正のSFQパルスを供給する前または後に、ただし第1の正のSFQパルスが半ねじれJTLの中央ループを通じて出力に向かって伝播し得る前に、1つのΦ0の電流が初期化電流として中央ループに注入され、それにより、第1の正のSFQパルスは、初期化電流によって消滅し、中央ループを通じて半ねじれJTLの出力端に向かって伝播しないようにする。これは、入力側ジョセフソン接合の超伝導相には影響しない。次に、負のSFQパルスが半ねじれJTLの入力端に供給されて、入力側ジョセフソン接合を0超伝導相にリセットし、それにより、負のSFQパルスが、半ねじれJTLの出力端に伝播して、半ねじれJTLの出力側ジョセフソン接合(すなわち、半ねじれJTLの入力端よりも半ねじれJTLの出力端に近いジョセフソン接合)の超伝導相を2πに設定する。この方法は、第2の正のSFQパルスを半ねじれJTLの入力端に供給して、入力側ジョセフソン接合を2π超伝導相に設定し、それにより、第2の正のSFQパルスが、半ねじれJTLの出力端に伝播して、出力側ジョセフソン接合の超伝導相を0にリセットすることにより続行できる。
【0007】
別の例は、SFQパルス入力に基づいて信号値を論理的に反転する別の方法を提供する。第1の正のSFQパルスは、JTLの中央部分にフローティングジョセフソン接合を有するJTLの入力端に供給されて、JTLの入力側ジョセフソン接合を2π超伝導相に設定する。第1の正のSFQパルスを提供する前または後に、ただし第1の正のSFQパルスがJTLの中央部分を通じて出力に向かって伝播し得る前に、Φ0/2の電流が初期化電流としてフローティングジョセフソン接合に注入され、それにより、第1の正のSFQパルスは、初期化電流によって消滅し、中央部分を通じてJTLの出力端に向かって伝播しないようにする。これは、入力側ジョセフソン接合の超伝導相には影響しない。次に、負のSFQパルスがJTLの入力端に供給されて、入力側ジョセフソン接合を0超伝導相にリセットし、それにより、負のSFQパルスがJTLの出力端に伝播して、JTLの出力側ジョセフソン接合の超伝導相を2πに設定する。この方法は、第2の正のSFQパルスをJTLの入力端に供給して、入力側ジョセフソン接合を2π超伝導相に設定し、それにより、第2の正のSFQパルスが、JTLの出力端に伝播して、出力側ジョセフソン接合の超伝導相を0にリセットすることにより続行できる。
【0008】
別の例は、SFQパルス入力に基づいて信号値を論理的に反転するさらに別の方法を提供する。第1の負のSFQパルスは、半ねじれJTLの出力端に供給されて、半ねじれJTLの出力側ジョセフソン接合を2π超伝導相に設定する。第1の負のSFQパルスを供給する前または後に、ただし第1の負のSFQパルスが半ねじれJTLの中央ループを通じて入力に向かって伝播し得る前に、1つのΦ0の電流が初期化電流として中央ループに注入され、それにより、第1の負のSFQパルスは、初期化電流によって消滅し、中央ループを通じて半ねじれJTLの入力端に向かって伝播しないようにする。これは、出力側ジョセフソン接合の超伝導相には影響しない。次に、正のSFQパルスが半ねじれJTLの入力端に供給されて、入力側ジョセフソン接合を2π超伝導相に設定し、それにより、第正のSFQパルスが、半ねじれJTLの出力端に伝播して、半ねじれJTLの出力側ジョセフソン接合の超伝導相を0に設定する。この方法は、第2の負のSFQパルスを半ねじれJTLの入力端に供給して、入力側ジョセフソン接合を0超伝導相にリセットし、それにより、第2の負のSFQパルスが、半ねじれJTLの出力端に伝播して、出力側ジョセフソン接合の超伝導相を2πに設定することにより続行できる。
【0009】
別の例は、SFQパルス入力に基づいて信号値を論理的に反転するさらに別の方法を提供する。第1の負のSFQパルスは、JTLの中央部分にフローティングジョセフソン接合を有するJTLの出力端に供給されて、JTLの出力側ジョセフソン接合を2π超伝導相に設定する。第1の負のSFQパルスを提供する前または後に、ただし第1の負のSFQパルスがJTLの中央部分を通じて入力に向かって伝播し得る前に、Φ0/2の電流が初期化電流としてフローティングジョセフソン接合に注入され、それにより、第1の負のSFQパルスは、初期化電流によって消滅し、中央部分を通じてJTLの入力端に向かって伝播しないようにする。これは、出力側ジョセフソン接合の超伝導相には影響しない。次に、正のSFQパルスがJTLの入力端に供給されて、入力側ジョセフソン接合を2π超伝導相に設定し、それにより、第正のSFQパルスが、JTLの出力端に伝播して、JTLの出力側ジョセフソン接合の超伝導相を0にリセットする。この方法は、第2の負のSFQパルスをJTLの入力端に供給して、入力側ジョセフソン接合を0超伝導相にリセットし、それにより、第2の負のSFQパルスが、JTLの出力端に伝播して、出力側ジョセフソン接合の超伝導相を2πに設定することにより続行できる。
【0010】
さらに別の例は、入力端、出力端、および入力端と出力端とを接続する中央部分から構成される超伝導逆量子論理(RQL)インバータ回路を提供する。中央部分は、少なくとも2つのJJを含む中央ループ、および/または1つのΦ0の電流を注入するように構成された変圧器結合DC磁束バイアス注入源と直列のフローティングジョセフソン接合のうちの少なくとも1つを含む。入力端は、入力ノードと第1のノードとの間に接続された第1のインダクタと、第1のノードと回路接地との間に接続された第1のジョセフソン接合と、第1のノードと第2のノードとの間に接続された第2のインダクタと、第2のノードと第3のノードとの間に接続された第2のジョセフソン接合と、第3のノードと回路接地との間に接続された第3のインダクタと、を含む。出力端は、第4のノードと回路接地との間に接続された第4のインダクタと、第4のノードと第5のノードとの間に接続された第3のジョセフソン接合と、第5のノードと第6のノードとの間に接続された第5のインダクタと、第6のノードと回路接地との間に接続された第4のジョセフソン接合と、第6のノードと出力ノードとの間に接続された第6のインダクタと、を含む。
【0011】
さらに別の例は、ジョセフソンインバータゲート回路を提供する。回路は、少なくとも1つの単一磁束量子(SFQ)パルスを含む入力信号を供給する入力と、入力信号を出力に伝播し、入力信号を出力信号に反転するように配置された少なくとも5つのジョセフソン接合を含むJTLと、を含み、そのうちの1つは、JTLの中央にあるフローティングジョセフソン接合である。インバータゲート回路は、フローティングジョセフソン接合に初期化電流を供給する単一のDC磁束バイアス入力を有することができる。インバータゲート回路は、第1の例に関して定義されたように、極性インバータまたは論理インバータとすることができる。
【0012】
さらに別の例は、入力端、出力端、および入力端と出力端とを接続する中央部分で構成される超伝導逆量子論理(RQL)インバータ回路を提供し、中央部分は、フローティングジョセフソン接合と、1つのΦ0の電流を注入するように構成された変圧器結合DC磁束バイアス注入源と、を含む。入力端は、入力ノードと第1のノードとの間に接続された第1のインダクタと、第1のノードと回路接地との間に接続された第1のジョセフソン接合と、第1のノードと第2のノードとの間に接続された第2のインダクタと、第2のノードと第3のノードとの間に接続された第3のインダクタと、第3のノードと回路接地との間に接続された第2のジョセフソン接合と、を含む。出力端は、第5のノードと回路接地との間に接続された第3のジョセフソン接合と、第5のノードと第6のノードとの間に接続された第7のインダクタと、第6のノードと第7のノードとの間に接続された第8のインダクタと、第7のノードと回路接地との間に接続された第4のジョセフソン接合と、第7のノードと出力ノードとの間に接続された第10のインダクタと、を含む。回路は、それぞれがAC成分を有するバイアス信号を供給する2つのバイアス入力をさらに含むことができ、第1のバイアス入力が、第2のノードで回路に接続された第4のインダクタを介して接続され、第2のバイアス入力が、第6のノードで回路に接続された第9のインダクタを介して接続される。
【図面の簡単な説明】
【0013】
【
図1A】半ねじれジョセフソン伝送線路(JTL)を有する例示的なジョセフソンインバータゲートのブロック図である。
【
図1B】フローティングジョセフソン接合を含むJTLを有する別の例示的なジョセフソンインバータゲートのブロック図である。
【
図2】
ACバイアスされたジョセフソン接合で構成される「半ねじれ」を備えたJTLのトポロジである。
【
図3A】半ねじれJTLを使用した例示的なジョセフソン極性インバータゲートの回路図である。
【
図3B】
図3Aの例示的なゲートのシミュレーション結果のグラフである。
【
図3C】例示的な回路の機能を示す
図3Aの例示的なジョセフソン極性インバータゲートの注釈付き回路図である。
【
図3D】例示的な回路の機能を示す
図3Aの例示的なジョセフソン極性インバータゲートの注釈付き回路図である。
【
図3E】例示的な回路の機能を示す
図3Aの例示的なジョセフソン極性インバータゲートの注釈付き回路図である。
【
図3F】例示的な回路の機能を示す
図3Aの例示的なジョセフソン極性インバータゲートの注釈付き回路図である。
【
図3G】例示的な回路の機能を示す
図3Aの例示的なジョセフソン極性インバータゲートの注釈付き回路図である。
【
図4A】半ねじれJTLを使用した例示的なジョセフソン論理インバータゲートの回路図である。
【
図4B】
図4Aの例示的なゲートのシミュレーション結果のグラフである。
【
図4C】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4D】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4E】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4F】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4G】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4H】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4I】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4J】回路の第1の機能例を示す
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4K】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4L】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4M】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4N】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4O】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4P】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4Q】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図4R】回路の第2の機能例を示す、
図4Aの例示的なジョセフソン論理インバータゲートの注釈付き概略図である。
【
図5】半ねじれJTLと直接結合を使用した例示的なジョセフソン論理インバータゲートの回路図である。
【
図6】半ねじれJTLを使用した例示的なジョセフソン論理インバータゲートの別の回路図である。
【
図7】フローティングジョセフソン接合を含むJTLを使用したジョセフソン極性インバータゲートの回路図である。
【
図8】フローティングジョセフソン接合を含むJTLを使用したジョセフソン論理インバータゲートの回路図である。
【
図9】正の中央DC磁束バイアスを有する
図8の例示的な論理インバータゲートのシミュレーション結果のグラフである。
【
図10】負の中央DC磁束バイアスを有する
図8の例示的な論理インバータゲートのシミュレーション結果のグラフである。
【
図11A】単一磁束量子(SFQ)パルス入力に基づいて信号値を論理的に反転する方法を示すフローチャートである。
【
図11B】単一磁束量子(SFQ)パルス入力に基づいて信号値を論理的に反転する方法を示すフローチャートである。
【発明を実施するための形態】
【0014】
CMOS技術における反転には、概して、低電圧から高電圧への変換、またはその逆の変換が含まれる。位相モードロジック(PML)を使用する回路での信号の反転では、PML回路において論理状態はジョセフソン接合などの超伝導相として符号化され、このような位相が回路を伝播する正または負のパルス、例えば単一磁束量子(SFQ)パルスで設定またはリセットされるため、より困難な問題が発生する。符号化パラダイムの違いは、CMOS反転方法の手法および構造がPML反転の実現に役立つものではないことを意味しており、シンプルで効果的なPMLインバータを実装するには、新しい手法および構造を考案する必要がある。逆量子論理(RQL)超伝導論理回路のファミリからの回路などの位相モード回路で信号反転を実現するための既存の手法は、極性反転変圧器と後続の論理「ハイ」に初期化するJTLの使用に依存している。ただし、変圧器は物理的に大きく、高効率とする必要がある。
【0015】
したがって、本開示は、概して、超伝導システムで使用するための論理ゲート回路に関する。いくつかの例では、1入力1出力の超伝導インバータゲートは、位相モード論理入力の極性反転を提供することができる。他の例では、1入力1出力の超伝導インバータゲートは、位相モード論理入力の論理反転を提供することができる。したがって、例えば、「ロー」および「ハイ」の論理状態がジョセフソン接合の0および2π超伝導相としてそれぞれ符号化される場合、RQL超伝導回路などの超伝導回路のゲートは、ゲート入力の正のSFQパルスに応答するゲート出力の負のSFQパルス、およびゲート入力の負のSFQパルスに応答するゲート出力の正のSFQパルスを送信するように構成することができる。これらのパルスは、対応する論理「ロー」または「ハイ」状態を符号化するジョセフソン接合の位相を設定またはリセットできる。本明細書で説明するインバータは、信号経路上に物理的に大きな高効率変圧器を必要としない。
【0016】
図1Aは、入力IN102および入力IN102の反転に対応する出力OUT104を有する例示的なジョセフソンインバータゲート100のブロック図である。ジョセフソンインバータゲート100の構成に応じて、出力OUT104は、入力IN102の極性反転または論理反転を提供することができる。インバータゲート100は、半ねじれジョセフソン伝送線路(JTL)106を含み、これは、少なくとも4つのジョセフソン接合(JJ)108-1、108-2、108-3、108-4を含み、互いに逆位相の2つのACバイアスライン110、112から入力を受け取る。「半ねじれJTL」とは、従来のJTLの構造に半ねじれが適用されており、出力の接地基準が入力に対してJTLの反対側にあり、半ねじれJTLが、印加されたSFQ電圧パルスの極性を反転させることを意味する。インバータゲート100は、4つ以上のジョセフソン接合を含むことができる。インバータゲート100はまた、システム起動時に半ねじれJTL106の初期化条件を確立するために供給され得る1つ以上のDC入力114、116を含み得る。例えば、DC入力114、116はそれぞれ、Φ
0/2相当の電流を半ねじれJTL106の中央ループに注入できる。いくつかの例では、2つのΦ
0/2の電流を供給して、互いに打ち消しあうことができる。他の例では、2つのΦ
0/2の電流を供給し、合計して完全なΦ
0にして、1つの全体のΦ
0相当の電流を中央ループに配置することができる。入力IN102および出力OUT104に供給される信号は、アサートまたはデアサートされた論理状態にそれぞれ対応する正または負の単一磁束量子(SFQ)パルスから構成することができる。対応する入力および出力論理状態は、JTLジョセフソン接合108-1から108-4の超伝導相に記憶(すなわち、符号化)することができる。
【0017】
図1Bは、入力IN152および入力IN152の反転に対応する出力OUT154を有する別の例示的なジョセフソンインバータゲート150のブロック図である。ゲート100と同様に、ジョセフソンインバータゲート150の構成に応じて、出力OUT154は、入力IN152の極性反転または論理反転を提供することができる。インバータゲート150は、少なくとも4つのジョセフソン接合(JJ)108-1、108-2、108-3、108-4、さらに、減衰振動フローティングジョセフソン接合158-5を含むJTL156を含む。このコンテキストでの「フローティング」とは、ジョセフソン接合端子のどちらも接地されていないことを意味する。JTL156は、2つのACバイアスライン160、162から入力を受け取り、これらは、必ずしも正確ではないが、機能的には互いに逆位相である。インバータゲート150は、4つ以上のジョセフソン接合を含むことができる。インバータゲート150はまた、システム起動時にJTL156の初期化条件を確立するために供給され得るDC入力164を含み得る。例えば、DC入力164は、Φ
0/2の電流をフローティングJJ158-5に注入することができる。入力IN152および出力OUT154に供給される信号は、アサートまたはデアサートされた論理状態にそれぞれ対応する正または負の単一磁束量子(SFQ)パルスから構成することができる。対応する入力および出力論理状態は、JTLジョセフソン接合158-1から158-4の超伝導相に記憶(すなわち、符号化)することができる。
【0018】
図2は、前述のように、ACバイアスされたジョセフソン接合で構成される「半ねじれ」を備えたJTLのトポロジ200を示しており、誘導性相互接続が、ねじれ点202で電気的に接続せずにねじれ点202で交差する上部および下部の太線で示されている。トポロジ200は、RQLデータ符号化に対応することができ、全ての正のSFQパルスの後に負のパルスが続く。
【0019】
JTL200の各端は、電圧ノードではなく誘導性相互接続である上部信号伝播側および下部接地側を有しており、適切な絶縁および入力と出力との間の利得がある。JTL200の半ねじれ202は、JTL200が入力から出力に進むにつれて信号伝播側が接地側になることを意味する。入力RQL Inと出力RQL Outとの間の接続は誘導性であるため、トポロジ200を短絡させることなく、入力の信号伝播側を出力で接地できる。各ジョセフソン接合は、ACバイアス204、206、208、210によって提供されるバイアスによって部分的に規定される時間で局所的にトリガされ、信号が出力に伝播するまでに、電圧極性が反転する。半ねじれ202のため、ACバイアス208および210は、ACバイアス204、206とは方向が反対である(すなわち、AC位相が反転している)。論理ハイへの出力の初期化は、信号反転ステージ内で磁束バイアスを使用して実行できる(
図2には図示せず)。
【0020】
RQL回路は、SFQパルスまたはそのようなパルスの列として論理変化を伝播する。したがって、信号の反転は、信号列を反転するためのSFQパルスの作成または消滅を伴うように概念化されている可能性があるが、そのような機能の実装形態は物理的には困難である。したがって、論理信号をSFQパルスで概念化するのではなく、論理状態は、論理要素として使用されるジョセフソン接合の超伝導相として概念化でき、位相は、全てのノードでの電圧の時間積分として定義される。トポロジ200は、パルスを生成または消滅させようとする代わりに、入力と出力との間でジョセフソン接合位相極性を上下逆にするため、半ねじれJTLトポロジ200は、ハイ位相をロー位相に、またはその逆に変換し、それにより、端子RQL Inで供給される次に来るSFQ電圧パルスの極性を反転することができる。
図2は、8つのジョセフソン接合を有するものとして半ねじれJTL200を示しているが、本開示によるインバータは、より少ないジョセフソン接合を用いて作製することができる。
【0021】
図3Aは、
図2の半ねじれトポロジモデルに従う、直接結合を備えたRQL信号極性インバータ300の、
図3Bに示すシミュレーション結果プロットを伴う概略図を示す。ジョセフソン接合J
1、J
2、J
3、J
4の近くに配置されたドットを参照すると、正の入力パルスが出力に伝播した後の回路300が最終状態で示されている。初期状態(
図3Bの0ピコ秒付近)から、ジョセフソン接合J
1、J
2、J
3、J
4の全てが0超伝導相にあり、INPUTラインで正のSFQパルスとして供給される入力信号により、第1のジョセフソン接合J
1がトリガ(2π超伝導相に配置)され、次に、第2のジョセフソン接合J
2がトリガされ、次に、第3のジョセフソン接合J
3がトリガされ、次に、第4のジョセフソン接合J
4がトリガ(-2π超伝導相に配置)される。第4のジョセフソン接合J
4は、各ジョセフソン接合近くのジョセフソン接合超伝導相ドットの相対配置によって
図3Aに示されるように、第1のジョセフソン接合J
1のトリガと比較して「反対」の極性でトリガする。したがって、OUTPUTラインは、INPUTでの正のSFQパルスに応答して負のSFQパルスを送信し、その逆も同様である。
【0022】
入力(例えば、第1のジョセフソン接合J
1で測定される)および出力(例えば、第4のジョセフソン接合J
4で測定される)における超伝導相は、
図3Bのグラフにプロットされている。入力超伝導相は破線でプロットされ、出力超伝導相は実線でプロットされている。グラフからわかるように、入力超伝導相が0から2πに遷移した後(約200ピコ秒付近)、短遅延時間で、出力超伝導相が0から-2πに遷移する。続いて、負のパルスが入力に到着して入力超伝導相を0に復元すると(約350ピコ秒付近)、出力超伝導相も0に戻る。次に、入力に別の正のパルスが到着して入力超伝導相を再び2π(約400ピコ秒付近)に上げると、出力超伝導相は短い伝播時間後に再び-2π位相の極性反転を示す。その後、別の負のパルスが入力に到着して入力超伝導相を再び0にすると(約450ピコ秒付近)、出力超伝導相も0に戻る。したがって、
図3Bのグラフは、
図3Aの極性インバータ300の挙動を正確に特徴付けている。
【0023】
さらに
図3Aに関して、第2および第3の接合J
2およびJ
3は、回路300の中心にある超伝導ループの一部である。ACバイアス信号AC
INおよびAC
OUTは、例えば、記号中の矢印の相対的なポインティングによって示されるように、大きさが等しく、必ずしも正確ではないが、機能的にはAC位相が反対であるAC正弦波信号であり得る。他の相対的なAC位相割り当ても、動作回路300をもたらすことができる。適切なバイアスを供給するために、DCオフセット源DC
INおよびDC
OUTは、それぞれ、変圧器結合L
9/L
10およびL
11/L
12を介してジョセフソン接合J
2およびJ
3によって共有される中央ループにΦ
0/2の電流を置くことができ、Φ
0は約2.07ミリアンペア-ピコヘンリーに等しい。これらのΦ
0/2磁束バイアスは、接地へのインダクタL
3およびL
4を考慮して、二重ウェル電位の対称性を維持するのに役立ち、回路は、インダクタL
3およびL
4を介して信号を直接グラウンドに送信することを補償するために、DC磁束バイアスなしで厳しい負荷がかけられる。しかしながら、回路300では、中央ループに供給される任意の初期化電流に関して、2つのDC源DC
INおよびDC
OUTによって供給される機能的に等しく反対の電流が互いに打ち消しあう。第1の接合J
1は、インダクタL
3を通じて回路300の底部で接地するのではなく、インダクタL
4を通じて回路300の上部で接地するように負荷がかけられる。
図3Aの極性インバータでは、信号経路に高効率変圧器がないことにさらに留意されたい。(ここで使用する「高効率」変圧器とは、結合係数kが0.5より大きい変圧器である。すなわち、k=L
m/√(L
pL
s)>0.5であり、式中、L
mは相互インダクタンスであり、L
pおよびL
sは、一次インダクタおよび二次インダクタのそれぞれの自己インダクタンスである。回路300では、L
9/L
10変圧器およびL
11/L
12変圧器は信号経路にない。これは、一次インダクタL
10およびL
12が、信号振幅に関係なく任意の振幅を有し得るDCバイアスを送信するためである。)したがって、DCバイアス電流の比例スケーリングを使用して、結合を任意に小さくすることができる。
【0024】
図3Cから3Gは、
図3Aの極性反転回路300の機能例を示す。
図3Cは、極性インバータ300の入力に導入されて電流302を生じさせる正の入力パルスを示す。これにより、第1のジョセフソン接合J
1がトリガされ、
図3Dの第1のジョセフソン接合J
1の上に配置されたドットで示されているように、その超伝導相が0から2πに上昇する。第1のジョセフソン接合J
1のトリガにより、機能的に等しく反対の電流304が初期入力パルス302を消滅させ、電流306を介して回路300を通じて初期パルスを順方向に伝播し、次に第2のジョセフソン接合J
2をトリガする。
図3Eに示されるように、第2のジョセフソン接合J
2のトリガは、別の消滅電流308および伝播電流310をもたらし、これにより、第3のジョセフソン接合J
3がトリガされる。
図3Fは、電流310と機能的に等しく反対であり、伝播電流314を引き起こす、消滅電流312の第3のトリガを示している。最後に、同じ方法で、第4のジョセフソン接合J
4がトリガされ、316で電流314が消滅し、
図3Gの出力から負のパルス318が伝播する。
【0025】
したがって、正の入力パルス302は負の出力パルス318をもたらすことになる。
図3Gの信号伝播ラインの反対側にある第4のジョセフソン接合J
4のドットに示されているように、第4のジョセフソン接合J
4は、
図3Bに示されている極性反転機能と一致して、結論として-2π超伝導相にある。すなわち、入力が2πのとき、出力は-2πになる。同様に、回路300の入力に導入される後続の負のパルスは、回路300の出力から出る正のパルスになり、全てのジョセフソン接合J
1~J
4を0超伝導相に戻す。
【0026】
図4Aは、
図4Bに示される、直接結合を備えたRQL論理インバータの、付随するシミュレーション結果プロットを伴う概略図を示す。
図4Aの論理インバータは、
図3Aの極性インバータ300と同様であるが、入力および出力を反対の論理状態に初期化することができ、例えば、入力をハイに初期化することができる。この初期化は、
図3Aの回路300と比較して、2つのDC磁束バイアスのうちの1つ(図示の場合ではDC
OUT)の極性を逆にすることによって部分的に実行することができる。
【0027】
一例として、システムの起動時に、最初の正の入力SFQパルスをINPUTラインに導入でき、その後すぐに、入力信号が回路400を通じてOUTPUTラインに伝播し得る前に、DCINおよびDCOUTバイアスが印加され、一緒に、ジョセフソン接合J2およびJ3を含む中央ループへの1つの完全なΦ0の電流が注入される。第1の正の入力パルスが先に導入されていないと、注入された中央ループ電流によって不安定な状態が発生する可能性がある。なぜならば、他のJTLと同様に、Φ0の電流を受け取ったジョセフソン接合はそれを渡そうとするが、それが入力に戻される(すなわち、第2のジョセフソン接合J2から第1のジョセフソン接合J1に戻る)のか、出力に(すなわち、第3のジョセフソン接合J3から第4のジョセフソン接合J4へ)渡されるのかは不明だからである。中央ループに完全なΦ0の電流を注入する直前に第1の正の入力SFQパルスを供給することにより、正の入力パルスは、機能的に等しく反対の中央ループ電流によって「食われ」(消滅し)、出力側ジョセフソン接合J3とJ4の超伝導相を、初期の0超伝導相(例えば、論理「ロー」状態)から変更することなく、入力側ジョセフソン接合J1およびJ2を2π超伝導相(例えば、論理「ハイ」状態)に保持する。したがって、初期化DC注入パルスが出力に伝播される可能性は、回路400に第1の入力パルスを供給した後、適時にDCINおよびDCOUT初期化電流をオンにすることによって回避できる。
【0028】
図4C-4Jにより完全に示されている上記の初期化の例は、
図4Bのプロットでは、同期間中に出力を変更することなく、DC磁束バイアスターンオンに関連する初期入力信号(すなわち、正のSFQパルス)の供給によってトリガされる入力ジョセフソン接合位相の過渡期440として現れる。その後、後続の負のSFQパルスが入力(約50ピコ秒付近)に供給されると、出力が初めて論理「ハイ」になる。初期化中の入力側ジョセフソン接合J
1およびJ
2の過渡2π超伝導相は、ジョセフソン接合J
1およびJ
2の点描で満たされた超伝導相ドットによって
図4Aに示されている。入力でのハイからローへの、および出力でのローからハイへ(約50ピコ秒付近)遷移は、
図4Aのジョセフソン接合J
1およびJ
2の近くの中実ドットによって示されている。これらのドットは、ジョセフソン接合の点描で満たされた超伝導相ドットとは反対側に配置されているが、これらは0超伝導相への復元を示すことのみを意図しており、ジョセフソン接合が-2π超伝導相に遷移したことを意味するものではない。
【0029】
入力に正のパルスを導入すると(約200ピコ秒付近)、入力ジョセフソン接合超伝導相が0から2πに上昇し、出力ジョセフソン接合超伝導相が短い伝播時間の後に2πから0に低下する。入力(350ピコ秒付近)で負のパルスが発生すると、入力ジョセフソン接合超伝導相が2πから0に低下し、逆に、出力ジョセフソン接合超伝導相が0から2πに上昇する。入力に導入された第2の正のパルス(約400ピコ秒付近)により、入力ジョセフソン接合超伝導相が再び0から2πに上昇し、逆に、出力ジョセフソン接合超伝導相が再び2πから0に低下する。入力(約450ピコ秒付近)に到達する第2の負のパルスが発生すると、入力ジョセフソン接合超伝導相が再び2πから0に低下し、逆に、出力ジョセフソン接合超伝導相が再び0から2πに上昇する。したがって、
図4Bのプロットは、
図4Aの論理インバータ400の挙動を正確に特徴付けている。
【0030】
図4Bに示されていない、
図4Aの回路の別の初期化の例として、システムの起動時に、最初の負のSFQパルスをOUTPUTラインを介して導入でき、その後すぐに、信号が回路400を通じてINPUTラインに伝播し得る前に、DC
INおよびDC
OUTバイアスが印加され、ジョセフソン接合J
2およびJ
3を含む中央ループへの1つの完全なΦ
0の電流が注入される。負のパルスは、機能的に等しく反対の中央ループ電流によって「食われ」(消滅し)、入力側ジョセフソン接合J
1とJ
2の超伝導相を、初期の0超伝導相(例えば、論理「ロー」状態)から変更することなく、出力側ジョセフソン接合J
3およびJ
4を2π超伝導相(例えば、論理「ハイ」状態)に保持する。この初期化の例は、
図4K~4Rにより完全に示されている。どちらの初期化の例でも、初期化パルスが印加される前または後にDCバイアスを印加できる。
【0031】
図4C~4Jは、
図4Aの論理インバータ回路400の第1に説明された機能例を示し、初期化パルスは、INPUTを通じて供給され、中央ループで「食われる」。
図4Cは、論理インバータ400のINPUTに導入されて電流402を生じさせる正の入力パルスを示す。これにより、第1のジョセフソン接合J
1がトリガされ、
図4Dの第1のジョセフソン接合J
1の上に配置されたドットで示されているように、その超伝導相が0から2πに上昇する。第1のジョセフソン接合J
1のトリガにより、機能的に等しく反対の電流404が初期電流402を消滅させ、電流406を介して回路400を通じて初期パルスを順方向に伝播し、次に第2のジョセフソン接合J
2をトリガする。
図4Eに示されるように、第2のジョセフソン接合J
2のトリガは、別の消滅電流408および伝播電流412をもたらす。
【0032】
しかしながら、
図3Aの極性インバータ300の機能とは対照的に、伝播電流412が回路を通じて伝播し得る前に、機能的に等しく反対の電流410がDC電流源DC
INおよびDC
OUTによって回路400の中央ループに引き起こされ、第3のジョセフソン接合J
3をトリガさせ得る前に電流412を消滅させる。したがって、第1のジョセフソン接合J
1の超伝導相が2πであるにもかかわらず、第4のジョセフソン接合J
4の超伝導相は0のままである。前述したように、代替として、初期化電流402の入力の前に、DC源によって引き起こされる中央ループ電流410を導入することができる。
【0033】
図4Eに続いて、
図4Fは、電流414を引き起こすために回路400のINPUTに印加される負の入力パルスの後続の導入を示す。したがって、
図4Gでは、第1のジョセフソン接合J
1は、電流416と機能的に等しく反対の消滅電流414をトリガ解除する。負の入力パルスは、負の電流418を介して伝播し、それにより、
図4Hに示されるように、第2のジョセフソン接合J
2がトリガ解除される。同時に、消滅電流420および伝播電流422は、第2のジョセフソン接合J
2のトリガ解除によって生成され、この時点で、第1および第2のジョセフソン接合J
1およびJ
2の両方が、初期超伝導相0を再び示す。
【0034】
次に、第2のジョセフソンJ
2のトリガ解除および回路400の中央ループを通じた負パルス422の伝播により、
図4Iに示すように、第3のジョセフソン接合J
3をトリガして、電流422を機能的に等しく反対の電流424で消滅させ、また、伝播電流426を引き起こす。
図4Iを
図3Fと比較すると、第3のジョセフソン接合J
3は、極性インバータ構成300と比較して、論理インバータ構成400において反対方向にトリガされており、したがって、それぞれの図面の第3のジョセフソン接合J
3の周りのドットの相対配置で示されているように、第3のジョセフソン接合J
3は、
図3Fで取得した-2π超伝導相と比較して、
図4Iで2π超伝導相を取得している。最後に、同じ方法で、第4のジョセフソン接合J
4がトリガして、それ自体の2π超伝導相を取得し、428が電流426を消滅させ、
図4JのOUTPUTから電流430を介して正のパルスを伝播させる。
【0035】
したがって、負の入力パルス414が正の出力パルス430をもたらすことになる。さらに、
図4Jの信号伝播ラインの手前にある第4のジョセフソン接合J
4のドットに示されているように、第4のジョセフソン接合J
4は、このシーケンスの終端に2π超伝導相にあり、これは、
図4Bに示される過渡期440の終端に対応する。上記の機能は、
図4Bに示される極性反転機能と一致する。すなわち、入力が0のとき、出力は2πになる。同様に、回路400のINPUTに導入された後続の正のパルスは、回路400のOUTPUTから負パルスを発生させ、ジョセフソン接合J
1およびJ
2を2π超伝導相に配置し、ジョセフソン接合
3およびJ
4を0超伝導相に戻し、再び
図4Bおよび所望の極性インバータ機能と一致する。
【0036】
図4K~4Rは、
図4Aの論理インバータ回路400の第2に説明された機能例を示し、初期化パルスは、OUTPUTを通じて供給され、中央ループで「食われる」。初期状態から、
図4Kは、論理インバータ400のOUTPUTに導入されて電流450を引き起こす負のパルスを示す。これにより、第4のジョセフソン接合J
4がトリガされ、
図4Lの第4のジョセフソン接合J
4の下に配置されたドットで示されているように、その超伝導相が0から2πに上昇する。第4のジョセフソン接合J
4のトリガにより、機能的に等しく反対の電流452が初期入力電流450を消滅させ、電流454を介して回路400を通じて初期パルスを逆方向に伝播し、次に第3のジョセフソン接合J
3をトリガする。
図4Mに示されるように、第3のジョセフソン接合J
3のトリガは、別の消滅電流456および伝播電流460をもたらす。
【0037】
同様に、前述の機能に加えて、
図4Eで前述したように、電流460はさらに伝播することはできないが、回路400の中央ループにおいて、DC電流源DC
INおよびDC
OUTによって回路400によって中央ループに引き起こされる機能的に等しく反対の電流458によって「食われる」。したがって、第4のジョセフソン接合J
4の超伝導相が2πであるにもかかわらず、第2のジョセフソン接合J
2の超伝導相は0のままである。
【0038】
図4Mに続いて、
図4Nは、電流462を引き起こすために回路400のINPUTに印加され正の入力パルスの後続の導入を示す。したがって、
図4Oでは、第1のジョセフソン接合J
1は、電流462と機能的に等しく反対の消滅電流464をトリガする。正の入力パルスは、正の電流466を介して伝播し、それにより、
図4Pに示されるように、第2のジョセフソン接合J
2がトリガされる。同時に、消滅電流468および伝播電流470は、第2のジョセフソン接合J
2のトリガによって生成され、この時点で、4つのジョセフソン接合J
1~J
4は全て2π超伝導相を示す。
【0039】
次に、第2のジョセフソンJ
2のトリガおよび回路400の中央ループを通じた正のパルス470の伝播により、
図4Qに示すように、第3のジョセフソン接合J
3をトリガ解除して、電流470を機能的に等しく反対の電流472で消滅させ、また、伝播電流474を引き起こす。
図4Qを
図4Iと比較すると、第3のジョセフソン接合J
3は、前述の動作シーケンス(
図4C~4Jに示す)と比較して、この動作シーケンス(
図4K~4Rに示す)によって反対方向にトリガされており、したがって、それぞれの図面の第3のジョセフソン接合J
3の周りのドットの相対配置で示されているように、ジョセフソン接合J
3は、
図4Iで示された2π超伝導相と比較して、
図4Qで0超伝導相を示す。最後に、同じ方法で、第4のジョセフソン接合J
4がトリガ解除して、それ自体の0超伝導相を示し、476が電流474を消滅させ、
図4Rの論理インバータ回路400のOUTPUTから負のパルス478を伝播させる。
【0040】
したがって、正の入力パルス462は負の出力パルス478をもたらすことになる。さらに、
図4Rの第4のジョセフソン接合J
4の近くにドットがないことにより示されるように、第4のジョセフソン接合J
4は、このシーケンスの終端に0超伝導相にある。上記の機能は、所望の極性インバータ機能と一致する。すなわち、入力が2πのとき、出力は0になる。同様に、回路400のINPUTに導入された後続の負のパルスは、回路400のOUTPUTから正のパルスを発生させ、ジョセフソン接合J
1およびJ
2を0超伝導相に戻し、ジョセフソン接合J
3およびJ
4を2π超伝導相に配置し、再び所望の極性インバータ機能と一致する。
【0041】
図5は、各側の追加の接合、すなわちジョセフソン接合J
5およびJ
6を使用した磁束バイアスの注入を有する直接結合を備えたRQL論理インバータ500の例示的な概略図を示す。この実装形態は、「デジタル磁束バイアス」実装形態とも呼ばれ得る。この構成500では、バイアスDC
INおよびDC
OUTは、ジョセフソン接合J
5およびJ
6におけるそれぞれの2π位相前進をトリガする。回路500の中央ループの左側で、L
9分岐およびJ
5/L
10分岐のインダクタンスが類似している場合、DC
INの値に対する感度を下げて、所望のΦ
0/2磁束バイアスが取得される。同様に、回路500の中央ループの右側で、L
12分岐およびJ
6/L
13分岐のインダクタンスが類似している場合、DC
OUTの値に対する感度を下げて、所望の
Φ0/2磁束バイアスが取得される。その他の点では、回路500は、
図4Aの前述の論理インバータ400と同様に動作し、入力ジョセフソン接合J
1、J
2対出力ジョセフソン接合J
3、J
4における反対の超伝導相は、所望の論理反転機能を達成するために、回路400に関して既に説明したように回路500で実現することができる。
【0042】
図6は、前述の例と比較してより高い出力駆動を生成するRQL論理インバータ600の例示的な概略図を示す。入力および出力は、前の例と比較して接地に関してより絶縁されているが、トレードオフにより、インバータ600は前の例と比較してより高いコンポーネント数を有している。その他の点では、回路600は、
図4Aの前述の論理インバータ400と同様に動作し、入力ジョセフソン接合J
1、J
2対出力ジョセフソン接合J
3、J
4における反対の超伝導相は、所望の論理反転機能を達成するために、回路400に関して既に説明したように回路600で実現することができる。
【0043】
図7は、トリガされたときに2つのSFQパルスを生成する単一のフローティング接合J
Fを使用し、次いで負極性で出力をトリガする(すなわち、正の入力信号が入力ジョセフソン接合J
1を2π超伝導相にした後、出力ジョセフソン接合J
4が-2π超伝導相を示す)例示的なRQL極性インバータ回路700の概略図である同様に、
図8は、負の入力信号が入力ジョセフソン接合J
1を0超伝導相にした後、出力ジョセフソン接合J
4が2π超伝導相を示すことを除いて同様に動作する、例示的なRQL論理インバータ回路800の概略図である。したがって、回路700および800は、
図2に概念的に示されている半ねじれJTL構造には依存しない。
図8の論理インバータは、変圧器結合L
10/L
9を通じて供給される回路の中央にあるDC電流源の方向に関係なく機能することができ、そのため、論理インバータ800と極性インバータ700を区別するのは、実際にはAC
OUTに関連するDCオフセットの極性となる。極性インバータ700において、上記DCオフセットは-Φ
0/2であるのに対し、論理インバータ800において、上記DCオフセットは+Φ
0/2である。極性インバータ700のAC
OUTにおけるこの負のDCオフセットは、回路700のOUTPUT上の第1の遷移が負(0から-2πまで)になるようにする。いずれかの回路700または800において、AC
Inは+Φ
0/2のDCオフセットを有する。
【0044】
回路700および800におけるフローティングジョセフソン接合JFの動作は、ジョセフソン接合デバイスの振り子の機械的類推を参照して説明することができる。ジョセフソン接合の運動方程式は、中央の揺動点に吊り下げられた物理的な振り子の運動方程式と同型であり、振り子がこの中央の揺動点の周りを1回または複数回回転することを妨げるものはない。この類推では、ジョセフソン接合の超伝導相は振り子の機械的相に例えることができ、ジョセフソン接合の電流は、振り子のトルクに相当し、ジョセフソン接合の電圧は、振り子の角速度に類似し、回路のジョセフソン接合に関連するインダクタは、類推ではねじりばねになる。
【0045】
振り子のようなジョセフソン接合は、発振器として機能することができる。多くの回路の実装形態では、ジョセフソン接合にダンピング抵抗が備えられているため、臨界減衰に近くなる。ジョセフソン接合は、振り子式箱型大時計の振り子のように前後に揺れ動くのではなく、トリガされると、「上限を超えて一周」して、2π超伝導相回転を行い、その後安定する。例えば、ダンピング抵抗の値を大きくするか、その抵抗を完全に削除する(開回路を作成するなど)ことにより減衰振動している場合は、次に、トリガされると、減衰振動ジョセフソン接合が「上限を超えて」転がり、振り子式箱型大時計のように振動し始め、2回、すなわち4π超伝導相まで転がることさえあり得る。
【0046】
図7を参照すると、INPUTラインに正のSFQパルスを導入すると、第1のジョセフソン接合J
1がトリガされ、続いて第2のジョセフソン接合J
2がトリガされ、次に、フローティングジョセフソン接合J
Fがトリガされる。フローティングジョセフソン接合J
Fは、例えば、ジョセフソン接合をそのシャント抵抗なしで構成することにより、かつ、回路700の中央にあるDC電流源から供給される磁束バイアスを、Φ
0/2の電流をフローティングジョセフソン接合
J
Fに(すなわち、第2のジョセフソン接合J
2、フローティングジョセフソン接合J
F、インダクタL
9
、および第3のジョセフソン接合J
3によって形成される中央ループに)注入するように構成することにより、一度転がってはまた転がる振り子のように、減衰振動となるように配置されている。フローティングジョセフソン接合J
Fが初めてトリガされるとき、中央ループの電流は-Φ
0/2になり、フローティングジョセフソン接合J
Fに「負荷」をかけることなく別のポテンシャル井戸に入れて、フローティングジョセフソン接合J
Fは開始時と同じエネルギーレベルに留まる。
【0047】
したがって、フローティングジョセフソン接合J
Fの「運動量」は、
図7のフローティングジョセフソン接合J
Fの近くにある二重ドットで示されるように、2回目に「上限を超えて」、すなわち4π超伝導相まで運ぶことができる。結果の状態は安定せず、ジョセフソン接合J
Fのフローティングが負のトリガになる。結果として生じる負のパルスは回路700を通って伝播し、それにより、入力側ジョセフソン接合J
1およびJ
2での正の入力パルスおよび2π超伝導相により、出力側ジョセフソン接合J
3およびJ
4が-2π超伝導相になり、負パルスがOUTPUTラインから伝播する。
図7に示すように、出力ACバイアス信号AC
OUTは、入力ACバイアス信号AC
INと極性が正確に反対ではない(例えば、AC位相が180°異なる)場合に機能的になるように構成される。
【0048】
図8の論理インバータ800は、
図8の極性インバータ700と同様に機能して、フローティングジョセフソン接合J
Fを利用して反転を提供する。ただし、
図3Aの極性反転回路300と比較して
図4Aの論理反転回路400と同様に、
図8の論理反転回路800は、極性反転ではなく論理反転を実行する。回路800は、構造的にも機能的にも回路700とは異なる。構造的には、極性インバータ700の-Φ
0/2とは対照的に、AC
OUTは+Φ0/2のDCオフセットを有するように構成されている。機能的には、回路800は、
図4Aの回路400の機能に関して説明したものと同様の初期化プロセスによって機能する。
【0049】
一例として、正のSFQパルスが回路800のINPUTに導入された直後であって、それがフローティングジョセフソン接合J
Fを通じて伝播できる前に、Φ
0/2相当の初期化電流が、ソースDCおよび変圧器結合L
10/L
9を介してフローティングジョセフソン接合J
Fに導入されており、入力から出力に伝播するときに、初期化電流が次に来る正の入力SFQパルスを消滅させ、しかし、一方で、
図8のジョセフソン接合J
1およびJ
2における点描で満たされた超伝導相ドットによって示されるように、入力側ジョセフソン接合J
1およびJ
2を2π超伝導相に維持している。INPUTで導入される後続の負の入力SFQパルスは、入力側ジョセフソン接合J
1およびJ
2を0超伝導相にリセットし、出力まで伝播して、出力側ジョセフソン接合J
3およびJ
4を2π超伝導相に設定する。伝播遅延の影響を受けて、後続の交互の正と負の入力SFQパルスはそれぞれ、回路を論理反転させる。すなわち、入力接合が2π超伝導相を示しているとき、回路が出力接合で0超伝導相を示し、逆も同様である。入力でのハイからローへの、および出力でのローからハイへ(約50ピコ秒付近)遷移は、
図4Aのジョセフソン接合J1およびJ2の近くの中実ドットによって示されている。ジョセフソン接合J
1およびJ
2の点描で満たされた超伝導相ドットの反対側に配置された中実ドットは、0超伝導相への復元を示すことのみを意図しており、ジョセフソン接合が-2π超伝導相に遷移したことを意味するものではない。
【0050】
別の初期化の例として、負のSFQパルスが回路800のOUTPUTに導入された直後であって、それがフローティングジョセフソン接合JFを通じて伝播できる前に、Φ0/2相当の初期化電流が、ソースDCおよび変圧器結合L10/L9を介してフローティングジョセフソン接合JFに導入されており、出力から入力に伝播するときに、初期化電流が次に来る負のSFQパルスを消滅させ、しかし、一方で、出力側ジョセフソン接合J3およびJ4を2π超伝導相に維持している。INPUTで導入される後続の正のSFQパルスは、入力側ジョセフソン接合J1およびJ2を2π超伝導相に設定し、出力まで伝播して、出力側ジョセフソン接合J3およびJ4を0超伝導相にリセットする。伝播遅延の影響を受けて、後続の交互の負と正の入力SFQパルスはそれぞれ、回路を論理反転させる。すなわち、入力接合が0超伝導相を示しているとき、回路が出力接合で2π超伝導相を示し、逆も同様である。
【0051】
図9は、正の中央DC磁束バイアスを有する
図8の例示的な論理インバータゲートのシミュレーション結果のグラフであり、
図10は、負の中央DC磁束バイアスを有する
図8の例示的な論理インバータゲートのシミュレーション結果のグラフである。論理インバータ800は、中央のDC磁束バイアスが正または負のΦ
0/2を導入するかどうかにかかわらず機能する。唯一の違いは、ターンオン過渡期1000である。
【0052】
図11Aおよび11Bのフローチャートは、単一磁束量子(SFQ)パルス入力に基づいて信号値を論理的に反転する方法1100、1150を示す。方法1100、1150は、例えば、それぞれ
図4Aまたは
図8の回路400または800のいずれかと共に使用することができる。
図11Aの方法1100では、第1の正のSFQパルスは、1102でJTLの入力端に供給されて、JTLの入力側ジョセフソン接合(JJ)(すなわち、JTLの出力端よりもJTLの入力端に近いジョセフソン接合)を2π超伝導相に設定する。JTLは、
図4Aの回路400に示されるような半ねじれJTL、または
図8の回路800のように、中央にフローティングジョセフソン接合を有するJTLのいずれかであり得る。入力SFQパルスが半ねじれJTLの中央ループを通じて出力に伝播し得る前、または入力SFQパルスがJTLの中央フローティングジョセフソン接合を通じて伝播し得る前に、該当する場合は1つのΦ
0の電流が中央ループに注入されるか(1104)、または、例えば、1つ以上のDCバイアス電流をオンにすることにより、Φ
0/2の電流が初期化電流としてフローティングジョセフソン接合に注入される(1106)。これにより、第1の正のSFQパルスが初期化電流によって消滅するため、第1の正のSFQパルスはJTLの出力端まで伝播しない。ただし、入力側ジョセフソン接合の超伝導相は影響を受けず、2πのままである。あるいは、DCバイアス電流をオンにして印加可能な量の電流を注入(1104、1106)することは、第1のSFQパルスを供給する(1102)前に実行することができ、動作1102と1104/1106を並べ替えることができる。
【0053】
次に、負のSFQパルスがJTL(該当する場合は、半ねじれまたは中央フローティングジョセフソン接合を有する)の入力端に供給されて(1108)、入力側ジョセフソン接合を0超伝導相にリセットし、それにより、負の入力SFQパルスが、JTLの出力端に伝播して(1110)、出力側ジョセフソン接合(すなわち、JTLの入力端よりもJTLの出力端に近いJTLのジョセフソン接合)の超伝導相を2πに設定する。したがって、論理反転が提供される。
【0054】
図11Aの方法1100は、第2の正のSFQパルスをJTL(半ねじれまたはその他)の入力端に供給して(1112)、入力側ジョセフソン接合を2π超伝導相に設定し、それにより、第2の正のSFQパルスが、JTLの出力端に伝播して(1114)、出力側ジョセフソン接合の超伝導相を0にリセットすることをさらに含むことができる。これは、論理反転機能が正しく実装されていることを示している。
【0055】
図11Bの方法1150では、第1の負のSFQパルスは、JTLの出力端に供給されて(1152)、JTL内の出力側ジョセフソン接合を2π超伝導相に設定する。JTLは、
図4Aの回路400に示されるような半ねじれJTL、または
図8の回路800のように、中央にフローティングジョセフソン接合を有するJTLのいずれかであり得る。出力SFQパルスが半ねじれJTLの中央ループを通じて入力に伝播し得る前、または出力SFQパルスがJTLの中央フローティングジョセフソン接合を介して伝播し得る前に、該当する場合は1つのΦ
0の電流が中央ループに注入されるか(1154)、または、例えば、1つ以上のDCバイアス電流をオンにすることにより、Φ
0/2の電流が初期化電流としてフローティングジョセフソン接合に注入される(1156)。これにより、第1の負のSFQパルスが初期化電流によって消滅するため、第1の負のSFQパルスはJTLの入力端まで伝播しない。ただし、出力側ジョセフソン接合の超伝導相は影響を受けず、2πのままである。あるいは、DCバイアス電流をオンにして印加可能な量の電流を注入(1154、1156)することは、第1のSFQパルスを供給する(1152)前に実行することができ、動作1152と1154/1156を並べ替えることができる。
【0056】
次に、正のSFQパルスがJTL(該当する場合は、半ねじれまたは中央フローティングジョセフソン接合を有する)の入力端に供給されて(1158)、入力側ジョセフソン接合を2π超伝導相に設定し、それにより、第正の入力SFQパルスが、JTLの出力端に伝播して(1160)、出力側ジョセフソン接合の超伝導相を0にリセットする。したがって、論理反転が提供される。あるいは、JTLの入力端に第1の正のパルスを提供(1152)するのではなく、印加される第1のパルス1102は、入力への第1の正のパルスの出力に印加される負のパルスであり得、互いに反対に初期化された入力および出力に到達するものは全て良好となる。
【0057】
図11Bの方法1150は、第2の負のSFQパルスをJTL(半ねじれまたはその他)の入力端に供給して(1162)、入力側ジョセフソン接合を0超伝導相にリセットし、それにより、第2の負のSFQパルスが、JTLの出力端に伝播して(1164)、出力側ジョセフソン接合の超伝導相を2πに設定することをさらに含むことができる。これは、論理反転機能が正しく実装されていることを示している。方法1100または1150のいずれかは、様々な方法で修正できることが理解されよう。入力ジョセフソン接合と出力ジョセフソン接合が互いに反対の超伝導相を持つように初期化される(すなわち、他方が2πであるときに一方が0である、またはその逆)という結果をもたらす動作の再順序付けまたは変更は、その後、所望の論理的反転をもたらす。
【0058】
上述の方法1100、1150はまた、本開示において前述したように、適切なACバイアスを供給してJTLにおけるジョセフソン接合の適時のトリガを引き起こし、これにより入力から出力への信号伝播を引き起こす動作を含むことができる。
【0059】
本明細書でゲート回路図および添付の説明によって記載される例示的なインバータゲートは、RQLデータ符号化を使用するジョセフソン回路の論理反転を実行することができる。これらは、論理反転の効率的な実装形態を実現すると同時に、信号経路に磁気変圧器を必要としない。
【0060】
本明細書で説明するジョセフソンインバータゲートは、非常に優れたパラメトリック動作マージン、少ないコンポーネント数を備え、他のインバータの実装形態と比較して効率とコストの利点を提供する。本明細書で説明するジョセフソンインバータゲートは、その設計において高効率変圧器を排除することで、プロセスのステップ数および歩留まりを設定しコストを決定する製造プロセスにおいて、多くの金属層(2つの金属層など)を節約することができる。本明細書で説明するジョセフソンインバータゲートは、信号の位置を切り替えて出力で接地して信号の反転を生成することを含む、半ねじれJTL信号経路のアプローチ、または、信号ラインに非シャントフローティングジョセフソン接合を使用して、SFQ入力信号によってトリガされたときに2つのSFQパルスを生成し、極性が逆の出力SFQ信号を生成するアプローチに従って製造することができる。
図7および8に示すように、この後者の実装形態は、
図3Aおよび4Aに示す半ねじれJTLの実装形態よりも概略的に単純であるが、パラメトリック動作マージンが狭い。
【0061】
上記で説明したのは、本発明の例である。当然、本発明を説明する目的でコンポーネントまたは方法の考えられる全ての組み合わせを説明することは不可能であるが、当業者は、本発明の多くのさらなる組み合わせおよび置換が可能であることを認識するであろう。したがって、本発明は、添付の特許請求の範囲を含む、本出願の範囲内にあるそのような全ての変更、修正、および変形を包含することが意図されている。さらに、本開示または請求項が「1つの(a)」、「1つの(an)」、「第1の」、「別の」要素、またはそれらの同等物を引用する場合、そのような要素を1つ以上含むと解釈されるべきであり、そのような要素を2つ以上必要とせず、除外もしない。本明細書で使用される場合、「含む(includes)」という用語は、限定することなく含むことを意味し、「含んでいる(including)」という用語は、限定することなく含んでいることを意味する。「に基づく(based on)」という用語は、少なくとも部分的に基づくことを意味する。本明細書で使用される「機能的に等しい(functionally equal)」という用語は、説明されたインバータ機能が実現されるように十分に等しいことを意味し、必ずしも正確に等しいとは限らない。