(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-21
(45)【発行日】2024-07-01
(54)【発明の名称】高性能な広視野赤外分光法及びイメージングのための装置及び方法
(51)【国際特許分類】
G01N 21/27 20060101AFI20240624BHJP
G01N 21/3563 20140101ALI20240624BHJP
【FI】
G01N21/27 E
G01N21/3563
G01N21/27 A
(21)【出願番号】P 2022547022
(86)(22)【出願日】2021-02-01
(86)【国際出願番号】 US2021016070
(87)【国際公開番号】W WO2021155363
(87)【国際公開日】2021-08-05
【審査請求日】2023-05-10
(32)【優先日】2020-01-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520460351
【氏名又は名称】フォトサーマル・スペクトロスコピー・コーポレーション
(74)【代理人】
【識別番号】110000394
【氏名又は名称】弁理士法人岡田国際特許事務所
(72)【発明者】
【氏名】プレーター,クレイグ
(72)【発明者】
【氏名】デッカー,デリク
(72)【発明者】
【氏名】グリッグ,デービッド
【審査官】比嘉 翔一
(56)【参考文献】
【文献】特開2018-054450(JP,A)
【文献】特開平05-052741(JP,A)
【文献】米国特許出願公開第2020/0025677(US,A1)
【文献】米国特許出願公開第2018/0088041(US,A1)
【文献】米国特許出願公開第2018/0246032(US,A1)
【文献】米国特許出願公開第2018/0180642(US,A1)
【文献】国際公開第2020/013325(WO,A1)
【文献】韓国公開特許第10-2014-0045628(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N21/00-G01N21/01
G01N21/17-G01N21/74
G01N25/00-G01N25/72
G01N33/48-G01N33/98
G01J 3/00-G01J 4/04
G01J 7/00-G01J 9/04
G02B19/00-G02B21/00
G02B21/06-G02B21/36
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
試料の広視野領域にわたる赤外分析のためのシステムであって、
赤外線源を備え、赤外線源は赤外線放射の励起ビームで試料の領域を照明し、赤外照明領域を生成するようになっており、
プローブ放射源を備え、プローブ放射源は試料の広視野領域を照明するプローブビームを生成するようになっており、広視野領域は少なくとも直径50ミクロンであり、かつ、試料の赤外照明領域に少なくとも部分的に重なっており、
集光レンズを備え、集光レンズは試料と相互作用したプローブビームの少なくとも一部を集光するように配置されており、
非回折ビームスプリッタを含む第一光学系を備え、非回折光スプリッタは試料から集光したプローブビームを少なくとも2つの経路に分割し、第1経路が参照ビーム用で、第2経路が試料ビーム用であり、
4f光学リレーシステムを含む第二光学系を備え、第二光学系は参照ビームを空間フィルタリングするように配置され、アレイ検出器の表面上の試料の領域のイメージの一部として、参照ビームと試料ビームとの間に形成されるインターフェログラムを生成し、これは試料の広視野領域のイメージフレームとして捕捉されるものであり、
分析器を備え、分析器はイメージフレームを分析し、試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっている、システム。
【請求項2】
請求項1に記載のシステムであって、アレイ検出器がカメラであり、カメラが1秒あたり少なくとも100フレームの試料の広視野領域の連続したイメージフレームを捕捉するためのフレームレートを有する、システム。
【請求項3】
試料の広視野領域にわたる赤外分析のためのシステムであって、
赤外線源を備え、赤外線源は赤外線放射の励起ビームで試料の領域を照明し、赤外照明領域を生成するようになっており、
プローブ放射源を備え、プローブ放射源は試料の広視野領域を照明するプローブビームを生成するようになっており、広視野領域は少なくとも直径50ミクロンであり、かつ、試料の赤外照明領域に少なくとも部分的に重なっており、
集光レンズを備え、集光レンズは試料と相互作用したプローブビームの少なくとも一部を集光するように配置されており、
非回折ビームスプリッタを含む第一光学系を備え、非回折ビームスプリッタは試料から集光したプローブビームを少なくとも2つの経路に分割し、第1経路が参照ビーム用で、第2経路が試料ビーム用であり、
4f光学リレーシステムを含む第二光学系を備え、第二光学系は参照ビームを空間フィルタリングするように配置され、アレイ検出器の表面上の試料の領域のイメージの一部として参照ビームと試料ビームとの間に形成されるインターフェログラムを生成し、これは試料の広視野領域のイメージフレームとして捕捉されるものであり、
分析器を備え、分析器はイメージフレームを分析し、試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっており、
アレイ検出器がカメラであり、第一光学系と第二光学系とが少なくとも50%の光学スループット効率を提供するようになっている、システム。
【請求項4】
請求項1または
3に記載のシステムであって、非回折ビームスプリッタが、ウォラストンプリズム、ロションプリズム、反射型のビームスプリッタ、および偏光ビームスプリッタのうちの少なくとも1つを備える、システム。
【請求項5】
請求項1または請求項
4に記載のシステムであって、プローブビームが、少なくともカメラのフレームレートに等しい割合でパルス化される、システム。
【請求項6】
請求項
3に記載のシステムであって、
第一光学系が照明部と撮像部とを備え、
照明部は
、非偏向状態で試料を透過したプローブビームからの光を含み、
撮像部は、試料で散乱、屈折、および反射のうちの少なくともいずれかがなされたプローブビームからの光を含み、
照明部と撮像部とはそれぞれ、試料の特性に対応するイメージデータを含み、
非回折ビームスプリッタは、照明部が参照ビームを構成し、かつ、撮像部が試料ビームを構成するように、プローブビームを分割する、システム。
【請求項7】
請求項
6に記載のシステムであって、第二光学系がレンズ系を備え、レンズ系は、
照明部の第一部分における試料の特性に対応するイメージデータが除去されるように、第1偏光を有する照明部の第一部分の焦点を空間フィルタに合わせるようになっており、
照明部の第二部分が、試料の特性に対応するイメージデータを保持するように、第1偏光とは異なる第2偏光を有する照明部の第二部分の焦点を偏光回転子に合わせるようになっており、
撮像部の第一部分の大部分がブロックされるように、第1偏光を有する撮像部の第一部分を空間フィルタに向けるようになっており、
照明部の第二部分が試料の特性に対応するイメージデータを保持するように、第二偏光を有する撮像部の第二部分を偏光回転子に向けるようになっており、
照明部の第一部分と、照明部の第二部分と、ブロックされていない撮像部の第一部分と、撮像部の第二部分とを干渉させて、アレイ検出器の表面上の試料の領域のイメージとして再結合ビームを形成するようになっており、これは試料の広視野領域のイメージフレームとして捕捉されるものであり、
偏光回転子が、再結合ビームにて、照明部の第二部分と撮像部の第二部分とに第一偏光を付与するようになっている、システム。
【請求項8】
試料の広視野領域にわたる赤外分析のためのシステムであって、
赤外線源を備え、赤外線源は赤外線放射の励起ビームで試料の領域を照明して赤外照明領域を生成するようになっており、
プローブ放射源を備え、プローブ放射源は試料の広視野領域を照明する環状プローブビームを生成するようになっており、広視野領域は少なくとも直径50ミクロンであり、かつ、試料の赤外照明領域に少なくとも部分的に重なっており、
試料からプローブビームを集光するように配置された集光レンズを備え、
4f光学リレーシステムを含む光学系を備え、4f光学リレーシステムは、環状位相シフトパターンを伴って構成される少なくとも1つの可変位相リターダを含み、試料によって散乱されたプローブビームからの光とともに試料を通過する光ビームから直接照明と周囲照明との間に干渉位相差を生成し、アレイ検出器の表面上に干渉画像を生成し、これは試料の広視野領域のイメージフレームとして捕捉されるものであり、
分析器を備え、分析器はイメージフレームを分析して試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっている、システム。
【請求項9】
請求項
8に記載のシステムであって、カメラをさらに備え、カメラが1秒あたり少なくとも100フレームの試料の広視野領域の連続したイメージフレームを捕捉するためのフレームレートを有し、カメラが試料の広視野領域のイメージフレームを受け取るようになっている、システム。
【請求項10】
請求項
8または請求項
9に記載のシステムであって、環状プローブビームが、少なくともカメラのフレームレートに等しい割合でパルス化される、システム。
【請求項11】
請求項
8に記載のシステムであって、非回折ビームスプリッタをさらに備え、非回折ビームスプリッタは、照明部が参照ビームを構成し、撮像部が試料ビームを構成するように、プローブビームを分割するようになっている、システム。
【請求項12】
試料の広視野領域にわたる赤外分析のためのシステムであって、
赤外線源を備え、赤外線源は赤外線放射の励起ビームで試料の領域を照明し、赤外照明領域を生成するようになっており、
プローブ放射源を備え、プローブ放射源は試料の領域を照明するプローブビームを生成するようになっており、その領域は、試料の赤外照明領域と少なくとも部分的に重なっており、
集光レンズを備え、集光レンズは試料と相互作用した後のプローブビーム放射の少なくとも一部を集光するように配置されており、
ビームスプリッタを備え、ビームスプリッタは集光プローブビームを、第一経路と第二経路とを含む、少なくとも2つの経路に分割し、
第一経路上に第一光学マスクを備え、第一光学マスクは第一反射パターンを有し、第一光学マスクは試料によっ
て偏向されなかった集光プローブビーム放射を含む直接光
を反射するように配置されており、
第二経路上に第二光学マスクを備え、第二光学マスクは第二反射パターンを有し、これは第一反射パターンに対応するものであり、かつ、試料によって散乱された集光プローブ放射を含む散乱光
を反射するように配置されており、
カメラを備え、カメラは
、第一光学マスクと相互作用した第一経路からの光と、第二光学マスクと相互作用した第二経路からの光との間のインターフェログラムに対応するイメージフレームを捕捉するようになっており、
位相調整器を備え、位相調整器は
、第一光学マスクと相互作用した第一経路からの光と、第二光学マスクと相互作用した第二経路からの光との間の相対的光学位相を調整するように配置されており、
分析器を備え、分析器は少なくとも2つの相対的光学位相でイメージフレームを分析し、試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっている、システム。
【請求項13】
請求項
12に記載のシステムであって、位相調整器が、第1マスクと第2マスクのうちの少なくとも一つで動作するアクチュエータを備える、システム。
【請求項14】
請求項
13に記載のシステムであって、アクチュエータが圧電アクチュエータとボイスコイルアクチュエータのうちの少なくとも一つで構成されている、システム。
【請求項15】
請求項
12または
14に記載のシステムであって、各フレームの持続時間が100ミリ
秒未満となるように、アクチュエータが相対的光学位相を調整するようになっている、システム。
【請求項16】
請求項
12~
14のいずれか一項に記載のシステムであって、カメラが
、90度の位相オフセットを有する少なくとも2つのイメージフレームを捕捉するようになっている、システム。
【請求項17】
請求項
12に記載のシステムであって、プローブビームによって照明される試料の領域が少なくとも直径50ミクロンである、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示される実施形態は、光学系(すなわち、赤外光、可視光、又は紫外光を使用する)を利用することによる材料の調査又は分析に関する。本明細書に記載される実施形態は、イメージング及び分光法に関し、より具体的には、試料の光学特性や材料若しくは化学組成を示すスペクトル情報、例えば、赤外線(IR)吸収スペクトルに相関する情報を取得するための光熱イメージング及び分光系及び技術に対する機能拡張に関する。
【0002】
関連出願の相互参照
本願は、2020年1月31日に出願された米国仮出願第62/968,900号の利益を主張し、その内容は参照により本明細書に完全に援用される。
【背景技術】
【0003】
フーリエ変換赤外分光法(FTIR)は、赤外分光法の中で最も一般的である。FTIRは、赤外光の波数(IR光の周波数の尺度)の関数として、試料を通る赤外光の透過または試料からのIR光の反射を測定することによって機能する。FTIRを用いた顕微鏡は、FTIR分光器と顕微鏡レンズとを組み合わせて、赤外光の吸収、透過、及び/又は反射を空間分解測定することができる。従来のFTIR顕微鏡の根本的な物理的制約は、使用する赤外光の波長のオーダーでの空間分解能しか得られないということである。この本質的な制限は、光回折によって決められ、赤外光の波長と赤外照明・集光レンズの開口数とによって規定される。実際的な制限により、この空間分解能はさらに低下する可能性がある。FTIR顕微鏡の空間分解能は波長に依存するが、中赤外領域の波長(約2ミクロンより大きい波長に相当)では10ミクロンのオーダーである。FTIR分光法のアプローチの一例は例えば米国特許第7,630,081号に示されており、FTIR干渉計の最近の改良について説明している。従来のFTIR分光法では、中赤外ビームが試料を適切に透過するように、かなりの試料調製が必要となる場合があり、これは、多くの不透明、壊れやすい、または生物物質にとって実用的でないかまたは望ましいことではない。
【0004】
減衰全反射(ATR)分光法は、試料と直接接触する介在する結晶を通るビームの反射に基づくものである。ATR分光法は透過型FTIRよりもやや高い空間分解能を達成できるが、介在する結晶を試料に直接接触させる必要があり、試料の変形や破壊の原因となったり、接触の質(quality of the contact)による測定のばらつきが発生したりする可能性がある。FTIRとATRの両方で、特に反射において動作する場合、サイズや形状に依存する散乱アーチファクトや分散効果を含む、スペクトルを歪める可能性のある様々なアーチファクトに悩まされている。これらの問題は、スペクトルとFTIRライブラリのスペクトルとの比較を非常に難しくしており、したがって材料の同定や定量化を複雑にしている。
【0005】
ラマン分光法は、狭帯域のレーザー光源で試料を照明し、照明領域から散乱する波長シフト光のスペクトルを測定することに基づくものである。ラマン分光法は、理論的には数百(afew hundred)ナノメートルの分解能を実現できるが、通常は数百(severalhundred)ナノメートル以上が実用限界とされている。ラマン分光法のアプローチの初期の例は、例えば米国特許第2,940,355号に示されている。ラマン分光法は、数百ナノメートルの分解能を達成することができるが、試料の蛍光の変動性に基づく制限もあり、FTIRを使用する利用可能なものよりもはるかに小さなスペクトルライブラリも存在する。
【0006】
米国特許第9,091,594号では、化学分光およびイメージングのための光熱分光法の代替となる非破壊アプローチについて説明している。このアプローチでは、サブミクロンの空間分解能を達成するために異なる波長の2つの光ビームを使用するが、非接触の方法で、かつ、上述のFTIR技術に伴う面倒な試料調製をする必要がない。その特許に記載された1つの方法は、少なくとも2.5ミクロンの波長を有するIR光の第1のビームを試料に照射して、第1のビームからエネルギーを吸収することにより試料内の領域に光熱変化を生じさせるステップを含む。次に、試料内の領域の少なくとも一部に2.5ミクロン未満の波長を有する第2の光ビームを照射し、領域内の光熱変化を第1のビームの回折限界よりも小さな分解能で検出するステップを含む。
【0007】
定量位相イメージング(QPI)は、光学顕微鏡の応用のための光学位相の定量的測定値を抽出することを目的とした技術である。この主題に関する有用なレビューを以下に紹介する。(1) Basanta Bhaduri, Chris Edwards, Hoa Pham, Renjie Zhou, Tan H.Nguyen, Lynford L. Goddard,およびGabriel Popescu,"Diffraction phase microscopy: Principles and applications in materialsand life sciences," Adv. Opt. Photon. 6, 57-119 (2014),https://doi.org/10.1364/AOP.6.000057および(2) Park, Y.,Depeursinge, C. & Popescu, G. Quantitative Phase Imaging in biomedicine.Nature Photon 12, 578-589 (2018) doi:10.1038/s41566-018-0253-x。これらはいずれも参照により本明細書に援用される。
【0008】
QPIの1つの形態として、赤外分光法と組み合わせたものがあり、ミウ タマミツ、ケイイチロウ トダ、リョウイチ ホリサキ、及びタクロウ イデグチによる"Quantitative Phase Imaging with molecular vibrationalsensitivity," Opt. Lett. 44, 3729-3732 (2019),https://doi.org/10.1364/OL.44.003729に説明されている。参照により本明細書に援用する。この組み合わせにより、QPIベースのアプローチを用いた広視野赤外分光法を可能にするが、回折レンズを使用して干渉する試料および参照ビームを生成する結果、試料の情報を含む光の大部分が破棄され、したがって、カメラフレームレートが制約され、信号対雑音比が低下し、および/または長期のデータ収集時間が必要になる。
【0009】
位相差顕微鏡は、光学顕微鏡において確立された技術である(例えばM. Pluta, Advanced Light Microscopy.第1巻、第5章、アムステルダム。Elsevier, 1988を参照)。位相差顕微鏡は概して透明度の高い試料(例えば明視野顕微鏡において最小限のコントラストしか作り出さない生体細胞)に振幅(明るさ)のコントラストをつけるために使用される。生体細胞は光をほとんど吸収しないが、その結果として明度対比は極微であり、大きな光学位相変化を招いている。位相差顕微鏡は、生体材料やその他の材料によって引き起こされる位相差を、目やカメラで見える明度対比に変換するためによく利用される。従来の位相差顕微鏡では、試料の高さに対する複雑な非線形依存性、コントラスト反転、ハローアーチファクトおよびその他の問題を含む、さまざまなアーチファクトに起因して、光学位相差を定量的に解析することに課題があった。一方、位相差顕微鏡は非常に広く普及しており、世界中の何千台もの研究用顕微鏡で利用することができる。このような広く普及したプラットフォームで赤外分光法を行うための技術を提供することには大きな利益がある。また、トダ, K.、タマミツ M.、ナガシマ,Y.らのMolecular contrast on phase-contrast microscope. Sci Rep 9, 9957(2019) doi:10.1038/s41598-019-46383-6に記載されているように、赤外分光法は従来の位相差光学顕微鏡と組み合わされてきた。これは参照により援用される。しかしながら、従来の位相差顕微鏡における測定値の定量に関連する課題はまた、従来の位相差顕微鏡によって推定されるIR吸収信号の解釈についても複雑にしている。具体的には、試料の高さ(厚さ)に対する非線形依存性、コントラスト反転、ハローアーチファクトおよび他の問題が、IR吸収の測定感度に影響を与える可能性があり、この技術によって得られたIRスペクトルおよび化学イメージに歪みを生じさせる可能性がある。例えば、本段落で引用したトダによる論文の補足情報には、従来の位相差顕微鏡を用いた場合に光熱イメージに歪みを生じさせる「偽の負信号(spurious negative signal)」の存在について記載されている。
【0010】
本明細書に記載された方法および装置は、赤外分光分析のための従前の装置の性能を向上させ、多くの制限を克服するものである。
【発明の概要】
【0011】
試料の広視野領域にわたる赤外分析のためのシステム及び方法が本明細書に開示されている。一実施形態として、システムは、赤外線源と、プローブ放射源と、集光レンズと、第1光学系と、第2光学系と、分析器とを含む。赤外線源は赤外照明領域を形成するために赤外線放射の励起ビームで試料の領域を照射するようになっている。プローブ放射源は試料の広視野領域を照明するプローブビームを生成するようになっており、その広視野領域は少なくとも直径50ミクロンであり、かつ、試料の赤外照明領域と少なくとも部分的に重なっている。集光レンズは試料からプローブビームを集光するように配置されている。第1光学系は、試料から集光されたプローブビームを少なくとも2つの経路に分割する非回折ビームスプリッタを備える。第1経路は参照ビーム用であり、第2経路は試料ビーム用である。第2光学系は4f光学リレーシステムを備え、これは参照ビームを空間的にフィルタリングし、参照ビームと試料ビームとの間にインターフェログラムを形成するように配置されている。インターフェログラムはアレイ検出器の表面上の試料の領域のイメージ(画像)の一部として形成され、これは試料の広視野領域のイメージフレームとして捕捉される。分析器はイメージフレームを解析して試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっている。
【0012】
別の実施形態として、試料の広視野領域にわたる赤外分析のためのシステムは、赤外線源と、プローブ放射源と、集光レンズと、第1光学系と、第2光学系と、分析器とを含む。赤外線源は赤外照明領域を形成するために赤外線放射の励起ビームで試料の領域を照射するようになっている。プローブ放射源は試料の広視野領域を照明するプローブビームを生成するようになっており、その広視野領域は少なくとも直径50ミクロンであり、かつ、試料の赤外線照明領域と少なくとも部分的に重なっている。集光レンズは試料からプローブビームを集光するように配置されている。第1光学系は、試料から集光されたプローブビームを少なくとも2つの経路上に分割する非回折ビームスプリッタを備える。第1経路は参照ビーム用であり、第2経路は試料ビーム用である。第2光学系は4f光学リレーシステムを備え、参照ビームを空間フィルタリングし、参照ビームと試料ビームとの間にインターフェログラムを形成するように配置されている。インターフェログラムは、アレイ検出器の表面上の試料の領域の画像の一部として形成され、これは試料の広視野領域のイメージフレームとして捕捉される。分析器はイメージフレームを解析して試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっている。ここで、アレイ検出器はカメラであり、第1光学系と第2光学系とが少なくとも50%の光学スループット効率を提供するようになっている。
【0013】
第三実施形態として、試料の広視野領域にわたる赤外分析のためのシステムは、赤外線源と、プローブ放射源と、集束レンズと、光学系と、分析器とを含む。赤外線源は赤外照明領域を形成するために赤外線放射の励起ビームで試料の領域を照明するようになっている。プローブ放射源は試料の広視野領域を照明する環状プローブビームを生成するようになっており、その広視野領域は少なくとも直径50ミクロンであり、かつ、試料の赤外線照明領域と少なくとも部分的に重なっている。集束レンズは試料からプローブビームを集光するように配置されている。光学系は、少なくとも一つの可変位相リターダを含む4f光学リレーシステムを備える。可変位相リターダは環状位相シフトパターンで構成され、直接光と周囲の照明プローブ光との間に位相差干渉を生成する。周囲の照明プローブ光は試料によって散乱されたプローブ光とともに試料を通過し、アレイ検出器の表面上に干渉イメージを生成する。干渉イメージは試料の広視野領域のイメージフレームとして捕捉される。分析器はイメージフレームを解析して試料の広視野領域にわたる光熱赤外吸収を示す信号を測定するようになっている。
【0014】
本開示の1以上の態様の詳細については、添付の図面及び以下の説明に規定する。本開示に記載の技術の他の特徴、目的、及び利益は、明細書及び図面、並びに特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0015】
本明細書に提供した実施形態の側面および利益は、添付の図と併せて以下の詳細な説明に関して説明する。図面全体を通して参照符号を再利用し、参照される部品間の対応を示すことができる。図面は本明細書で説明する例示的実施形態を説明するために提供されるのであり、本開示の範囲を限定しようとするものではない。
【
図1】
図1は、一実施形態による、非回折ビームスプリッタを用いた高性能広視野光熱赤外分光およびイメージングのためのシステムの模式図である。
【
図2A】
図2Aは、高性能広視野光熱赤外分光・イメージングのためのシステムの一実施形態における照明光および撮像光の光路をそれぞれ示す図である。
【
図2B】
図2Bは、高性能広視野光熱赤外分光・イメージングのためのシステムの一実施形態における照明光および撮像光の光路をそれぞれ示す図である。
【
図3A】
図3Aは、一実施形態による、広視野光熱赤外分光法及びイメージングのための位相分離信号解析技術の図である。
【
図3B】
図3Bは、一実施形態による、広視野光熱赤外分光法及びイメージングのための位相分離信号解析技術の図である。
【
図3C】
図3Cは、一実施形態による、広視野光熱赤外分光法及びイメージングのための位相分離信号解析技術の図である。
【
図4】
図4は、
図3で説明した技術に従って実行される計算の結果を示す。
【
図5】
図5は、一実施形態による、非共通光路干渉計を採用した高性能広視野光熱赤外分光・イメージングシステムの模式図である。
【
図6】
図6は、一実施形態による、非共通光路干渉計を採用した高性能広視野光熱赤外分光及びイメージングシステムの模式図である。
【
図7】
図7は、一実施形態による、非回折ビームスプリッタを用いた高性能広視野光熱赤外分光及びイメージングのための別のシステムの模式図である。
【
図8】
図8は、一実施形態による、感度の変動を解消するための空間光変調器を有する位相差顕微鏡を用いた、高性能広視野光熱IR分光及びイメージングのための別のシステムの模式図である。
【
図9】
図9は、一実施形態による、反射モード構成の非回折ビームスプリッタを用いた高性能広視野光熱IR分光及びイメージングのための別のシステムの模式図である。
【
図10】
図10は、一実施形態による、可変位相干渉計を備えた位相差顕微鏡を用いた高性能広視野光熱IR分光及びイメージングのための別のシステムの模式図である。
【
図11】
図11は、
図10の実施形態に関連するタイミング線図の模式図である。 様々な実施形態は、様々な修正および代替形態にすることが可能であるが、それらの詳細は、例として図に示され、かつ、詳細に説明される。しかしながら、その意図は特許請求の範囲に記載の発明を本明細書で説明する特定の実施形態に限定することでないことは理解されたい。それどころか、その意図は、特許請求の範囲によって規定される主題の主旨および範囲内にあるすべての修正物、均等物、および代替物を網羅することにある。
【発明を実施するための形態】
【0016】
定義
本明細書の目的において,以下の用語を特に以下のように定義する。
【0017】
「分析器/コントローラ」とは、光熱赤外分光システムのデータ取得や制御を容易にするためのシステムを指す。分析器/コントローラは、単一の統合された電子筐体であってもよいし、複数の分散された部品を備えていてもよい。制御部品は、ファイバープローブや試料の位置決めや走査のための制御を提供してもよい。また、プローブビームの強度、動き、光学位相または他の応答に関するデータを収集し、励起やプローブ電源、偏光、ステアリング、フォーカスや他の機能に対する制御を提供してもよい。制御要素等は、コンピュータプログラム方式又はデジタル論理方式を含んでもよく、様々な計算装置(コンピュータ、パーソナル電子機器)、アナログ及び/又はデジタル離散回路部品(トランジスタ、抵抗器、キャパシタ、インダクタ、ダイオード等)、プログラマブル論理、マイクロプロセッサ、マイクロコントローラー、シングルボードコンピュータ、特定用途向け集積回路、又は他の回路部品の任意の組み合わせを用いて実施してもよい。コンピュータプログラムを格納するようになっているメモリは、本明細書に記載した1つ以上の処理を実行するために、ディスクリート回路部品と共に実装されてもよい。
【0018】
「ビームスプリッタ」とは、光を少なくとも2つの光路に分割することができる光学素子を指す。ビームスプリッタは、板状、キューブ及び/又はプリズムなど、光ビームを分割することができる形状/構成のものを含むことができる。「非回折ビームスプリッタ」は、ビームを分割するのに回折格子又は回折パターンを使用しないビームスプリッタである。ビームスプリッタは、入射ビームの一部が反射し、別の一部が透過するように、目的の波長で部分的に反射する薄膜を備えることができる。ビームスプリッタは偏光であってもよく、ある偏光の光を実質的に透過させ、直交偏光の光を反射させるものである。ビームスプリッタは偏光に基づいて光を2つの伝送経路に沿って分割してもよい。これは、例えばビームスプリッタが、偏光に基づいて光を小さな角度によって分離された経路に分割するロションプリズム、ノマルスキープリズムまたはウォラストンプリズムの場合である。別の例として、偏光ビームスプリッタキューブは、直交偏光の光を90度離れた2つの光路に分割するものである。ビームスプリッタは非偏光であってもよく、入射光の偏光に実質的に依存することなく光が2つの光路に分割される。ビームスプリッタは光ファイバベースのデバイスであってもよく、例えば、1本の入力光ファイバから少なくとも2本の出力光ファイバに光を分岐するもの、例えば1x2ファイバカプラであってもよい。ビームスプリッタは50:50ビームスプリッタであってもよく、そこでは実質的に等しい光の割合(fractions)が2つの異なる経路に向けられる。また、例えば90:10や70:30など、90%の光を1つの経路に向けて、10%を別の経路に向ける、あるいは70%を1つの経路に向けて、30%を別の経路に向けるような、アンバランスなビームスプリッタであってもよい。ビームスプリッタを用いて2つのビームを同じ光路上に結びつけることもできる。すなわち、ビームスプリッタインターフェースで反射するビームと、ビームスプリッタインターフェースを透過する別のビームとを結合することができる。例えば、ビームスプリッタキューブを、ビームスプリッタとビームコンバイナーの両方として使用することができる。例えば、マッハツェンダー干渉計では、1つのビームスプリッタで入射光を2つの経路に分け、2つ目のビームスプリッタで2つのビームを再結合させる。このとき、2つ目のビームスプリッタはビームコンバイナーとして使用されている。マイケルソン干渉計では、1つのビームスプリッタで入射光を分割し、再合成する。従って、マイケルソン干渉計のビームスプリッタは、ビームスプリッタとビームコンバイナーの両方として使用されている。ビームスプリッタ/コンバイナは光ファイバベースの装置とすることができる。例えばスプリッターまたは2本の入力ファイバからの光を1本の出力ファイバに結合する、例えば1x2ファイバカプラのようなものであってもよい。ひとつの1x2ファイバカプラは、ビームスプリッタとビームコンバイナーの両方として使用することができる。
【0019】
「カメラ」とは、複数の感光性ピクセルを備えるアレイ型光検出器のことである。カメラは、これに限定されないが、CCD、EM-CCD、CMOS、s-CMOS、及び/又は他の感光性アレイ技術を含む1つ以上の技術を備えていてもよい。カメラは、数フレーム/秒、数百フレーム/秒、あるいは数千フレーム/秒以上のフレームレートをサポートしてもよい。「プローブ光の収集」「プローブ放射の収集」とは、試料と相互作用したプローブ光ビームの放射を収集することをいう。プローブ光は、反射、散乱、透過、エバネッセント波合成や、開口プローブを透過した後に収集することができる。
【0020】
「共焦点顕微鏡」とは、光学顕微鏡の一種を指し、検出器に集光される光が、試料上の対物レンズの3次元焦点体積内の小さなボリュームを通過する光に限定されたものである。共焦点顕微鏡では、試料の焦点面と等価な焦点面に「共焦点開口部」を配置し、試料の焦点容積を通過しない迷光を遮断することによって実施されることが多い。
【0021】
「検出器」とは、検出面に入射した光や放射線の出力、強度、および/またはエネルギーを示す信号を生成する装置を指す。信号は概して電気信号であり、例えば電圧、電流及び/又は電荷である。検出器は、フォトダイオード、フォトトランジスタ、電荷結合素子(CCD)であってもよい。場合によっては、検出器は、例えばシリコンPINフォトダイオードなどの半導体検出器であってもよい。また検出器は、アバランシェフォトダイオード、光電子増倍管など、光の入射により電流、電圧、電荷、導電性などの変化を生じる装置であってもよい。検出器は、単一の素子、複数の検出素子、例えばバイセルやクアッドセル、カメラベースの検出器を含む検出素子の線形アレイまたは2次元アレイを備えることができる。
【0022】
光ビームの「回折限界」とは、検出器で識別可能な2つの光源の最小の間隔を意味する。開口数NAを有し、波長λで動作する顕微鏡のアッベ回折限界dは、d=λ/(2・NA)で定義される。顕微鏡の開口数には物理的な制約があり、開口数をあまり大きくできないようになっているため、顕微鏡の回折限界は検出に用いる波長に強く依存し、波長が大きいと分解能が相対的に低くなり、波長が大きいと精度が高くなる。
【0023】
「直接光」と「周辺光(surroundlight)」は、いずれも試料と相互作用した後、実質的に屈折しない光を指す。
【0024】
「復調する(Demodulate)」または「復調(demodulation)」とは、通常、特定の周波数においてである必要はないが、全体の信号から情報を担う信号を抽出することを指す。例えば、本願では、光検出器で収集されたプローブ光は、全体的な信号を表している。復調処理では、試料に吸収された赤外光によってかき乱された部分をピックアップする。復調は、ロックイン増幅器、高速フーリエ変換(FFT)、所望の周波数での離散フーリエ成分の計算、共振増幅器、狭帯域バンドパスフィルター、または変調と同期しないバックグラウンドやノイズ信号を抑制しながら目的の信号を大きく強調する他の技術で行うことができる。
【0025】
「復調器」とは、復調を行う装置またはシステムをいう。
【0026】
「フィギュア・オブ・メリット」とは、信号または測定値の相対的な品質の任意のメトリックまたは指標を指す。フィギュア・オブ・メリットは、例えば測定感度、信号強度、ノイズレベル、信号対ノイズ比、バックグラウンドレベル、信号対バックグラウンド比、これらの任意の組み合わせ、または信号や測定値の相対的な品質をランク付けできるその他のメトリックであり得る。さらに、本明細書に記載された実施形態に関連するフィギュア・オブ・メリットは、画像取得率、横方向分解能、時間位相感度、および空間位相感度を含む。
【0027】
「集束レンズ」とは、光を集束させる能力を持つ1つ以上の光学素子を指す。集束レンズは、1つ以上の屈折レンズ、曲面鏡、回折レンズ、フレネルレンズ、体積ホログラム、メタマテリアル、またはそれらの任意の組み合わせ、あるいは放射線を集束することができる任意の他の装置または部品を含むことができる。「平行化レンズ」とは、放射線を概ね平行にするように配置された上記の光学素子のいずれかを指す。場合によっては、同じレンズが集束レンズと平行化レンズの両方の役割を果たすことがあり、例えば、伝播の1つの方向に光を集束した後、その光を伝播の反対方向に再平行化することがある。図面では、単純化するために、単一の単純なレンズとして図示されることが多い。実際には、それらはしばしばレンズ群であってもよい。例えば、通常、複雑な配置の多数のレンズからなる顕微鏡対物レンズは、単一のレンズアイコンで示されるだけである。同様に、図面上でレンズアイコンを使用することは、設計目標を達成するためにレンズのみが使用可能であることを意味するものではない。なお、上記で定義した、いずれかの代替の集束レンズ(例えば、湾曲ミラー等)又はそれらの任意の組み合わせが、図中に示された単純なレンズの代わりに使用され得ることは理解されたい。
【0028】
本願の文脈における「4f光学リレーシステム」とは、少なくとも2つの集束レンズを有し、かつ、2つの集束レンズの間に中間のフーリエ変換面を有する光学系をいう。この文脈における最も単純な4f中継システムでは、中間のフーリエ変換面から焦点距離の間隔を置いた2つのレンズを備えることができる。2つのレンズは同じ焦点距離を有していてもよく、その場合、システムは単倍率を有し、あるいはレンズは異なる焦点距離を有して中継システムにおいて付加的な拡大または縮小を可能にする。集光素子はレンズである必要はなく、代わりに曲面鏡や「集束レンズ」という用語で定義される他のレンズであってもよい。
【0029】
「蛍光」とは、蛍光の励起と発光の過程により、ある波長で励起されることに起因して、試料から光が放出されることをいう。
【0030】
「照明する」、「照明すること」、「照明」とは、物体、例えば試料、プローブチップ、および/またはプローブ試料の相互作用する領域の表面への直接放射を意味する。照明には、赤外波長範囲、可視、ならびに紫外からミリメートル以上の範囲の他の波長における放射を含むことができる。照明には、任意の構成の放射源、反射レンズ、集束レンズ、および他の任意のビーム操縦または調整素子を含めることができる。
【0031】
「赤外吸収スペクトル」とは、試料の赤外吸収係数や吸光度またはこれらに類似する試料のIR吸光特性の指標の波長依存性に比例するスペクトルのことをいう。赤外吸収スペクトルの例としては、FTIR(フーリエ変換赤外分光法)により得られる吸収測定値(すなわち、FTIR吸収スペクトル)などがある。概して、赤外光は、吸収される(すなわち、赤外吸収スペクトルの一部)か、透過される(すなわち、赤外透過スペクトルの一部)か、または反射されるかのいずれかとなる。集束されたプローブ光の反射または透過スペクトルは、プローブ光源のその波長における強度と比較して、各波長で異なる強度を有し得る。IR測定では、吸収された光の量を示す代わりに、透過した光の量を示すプロットがよく行われる。この定義では、IR透過スペクトルとIR吸収スペクトルは、2つの測定値の間に単純な関係があるため、2つのデータセットとして同等と見なされる。
【0032】
「赤外線源」および「赤外線放射源」とは、赤外線波長範囲、概して2~25ミクロンの波長範囲の放射物を生成または放出する1つ以上の光源を指す。放射源は、熱源またはグローバー源、スーパーコンティニウムレーザー源、周波数コム、差周波数発生器、和周波数発生器、高調波発生器、光パラメトリック発振器(OPOs)、光パラメトリック発生器(OPGs)、量子カスケードレーザー(QCLs)、帯域間空洞(interband cavity)レーザー(ICLs)、シンクトロン赤外線源、ナノ秒、ピコ秒、フェムト秒およびアト秒レーザーシステム、CO2レーザー、微視的ヒーター(microscopic heaters)、電気的にまたは化学的に生成されるスパークや、赤外線放射を生成するその他の光源を含む多数の放射源のうちの1つであってもよい。好ましい実施例として光源は赤外線を放射するが、他の波長範囲、例えば紫外線からTHzまでの波長範囲のものも放射できる。光源は、例えば、スペクトル幅が10cm-1未満または1cm-1未満の狭帯域であってもよく、または例えばスペクトル幅が10cm-1より大きいか、100cm-1より大きいか、または500cm-1より大きい広帯域であってもよい。広帯域の光源は、フィルター、回折格子、モノクロメーター、その他の装置で狭帯域にすることができる。また、赤外線源は、別々の発光線(例えば、標的種の特定の吸収帯に同調したもの)の一つで構成することも可能である。
【0033】
試料との相互作用の文脈における「相互作用」とは、試料を照らす光が、試料によって、試料を通って、及び/又は試料から、散乱されるか、屈折されるか、吸収されるか、減速さるか、収差されるか、方向転換されるか、回折されるか、透過されるか、及び反射されるか、のうちの少なくとも1つの状態であることを意味する。
【0034】
「ロックインアンプ」は、(上に定義した)「復調器」の一例であり、1つまたは複数の基準周波数でシステムの応答を復調する装置やアルゴリズムである。ロックインアンプは、アナログ電子機器、デジタル電子機器、およびその2つの組み合わせを備える電子アセンブリであってもよい。それらはまた、マイクロプロセッサ、フィールドプログラマブルゲートアレイ(FPGAs)、デジタル信号プロセッサ、シングルボードコンピュータ、およびパーソナルコンピュータなどのデジタル電子装置に実装される計算アルゴリズムであってもよい。ロックインアンプは、相成分(X)および直交成分(Y)における振幅成分、位相成分または上記の任意の組み合わせを含む、共振系のさまざまなメトリックを示す信号を生成できる。この文脈でのロックインアンプはまた、基準周波数および基準周波数の高調波の両方で、および/または基準周波数のサイドバンド周波数で、そのような測定値を生成することができる。
【0035】
試料に入射する放射に言及する場合の「変調(Modulating)」または「モジュレーション(modulation)」は、ある位置での赤外レーザー強度を周期的に変化させることをいう。光ビーム強度の変調は、ビームの機械的チョッピング、制御されたレーザーパルス、および/または、ピエゾアクチュエータを備え、例えば静電的に、電磁気的に駆動される傾斜ミラー、またはミラーを傾けたり変形させたりする他の手段、または高速回転ミラーデバイスによって達成することが可能である。変調は、音響光学変調器、電気光学変調器、光弾性変調器、ポッケルスセルなどのような時間的に変化する伝送を提供する装置によっても達成することができる。また、回折効果、例えば回折型MEMSベースの変調器、高速シャッター、減衰器、その他試料に入射するレーザー強度の強度、角度、位相を変化させる機構によっても、変調を行うことができる。
【0036】
「近赤外光」とは、概して赤外線(IR)のうち0.75~2μmに相当する波長域の光を指す。
【0037】
「光学的特性」とは試料の光学的特性を指し、これらに限定されないが、屈折率、吸収係数、反射率、吸収率、散乱、屈折率の実数成分や虚数成分、試料の誘導関数の実数成分や虚数成分、および/またはこれらの光学特性の1つ以上から数学的に導き出せる任意の特性を含む。
【0038】
「光学的応答」とは、放射物と試料との相互作用の結果を指す。光学的応答は、上で定義した1つ以上の光学的特性に関連する。光学的応答は、放射物の吸収、温度上昇、熱膨張、光誘起力、光の反射や散乱、明るさの変化、強度、光学位相、または照明放射物との相互作用による材料の他の応答であり得る。
【0039】
「狭帯域光源」とは、帯域幅または線幅が狭い光源である。たとえば、線幅が8cm-1未満の光であるが、概して、線幅が目的試料のスペクトル範囲をカバーしないほど十分に狭い線幅を有する光源であってもよい。
【0040】
「OPTIR」とは光学的光熱赤外分光法を指し、プローブビームを用いて、赤外光の吸収による試料の光熱変形を測定する技術である。プローブビームの波長が短いほど、従来のIR分光法よりはるかに高い空間分解能が得られる。OPTIR技術では、概して赤外吸収スペクトルや赤外吸収イメージの少なくとも一方を得ることができる。
【0041】
「光熱歪み」とは、光エネルギーの吸収、例えばIR放射の吸収による試料の特性の変化を指す。光熱歪みは、屈折率、反射率、熱膨張、表面歪み、またはプローブビームで検出できるその他の効果における変化を指す場合もある。光熱歪みは、試料のIR吸収領域と相互作用するプローブビームの強度、サイズ、放射分布、方向、光学位相に変化を与え得る。
【0042】
「プローブ源」、「プローブ光源」または「プローブ放射源」とは、試料の光学的特定の検知に用いることのできる放射源を指す。プローブ光源を用いて赤外光源から出る光の入射に対する試料の応答を検知することができる。放射源は、例えば、ガスレーザー、レーザーダイオード、ダイオード励起固体レーザー(DPSS)、スーパールミネッセントダイオード(SLD)、近赤外レーザー、和周波発生または差周波発生によって生成されるUVおよび/または可視レーザービームを含むことができる。また放射源は、2.5マイクロメートルよりも小さい、または1マイクロメートルよりも小さい、場合によっては0.5ミリメートルよりも小さいスケールの分解能でスポットに集束されたり画像化されたりすることのできる任意のまたは他の近赤外光、UV光、可視光も含み得る。実施例によっては、プローブ光源は、赤外光源の調整範囲や放射範囲から外れた波長で動作することもあるが、実際には赤外光源の調整範囲と重なる選択波長で固定波長光源とすることもできる。プローブ光源から放射される光は元々「プローブ光ビーム」または「センシング光ビーム」と呼ばれる。
【0043】
「プローブビーム」とは試料に向けられる光ビームまたは放射であり、試料とIR放射との相互作用から生じる光熱歪みまたは他の光学的変化を検出するためのものであり、例えば試料によるIR放射の吸収を検出する。プローブビームは、密に集束されたスポットであってもよいし、試料の広い範囲を照明するものであってもよい。
【0044】
「ラマン」とは、ラマン散乱によって励起波長とは異なる1つ以上の波長で試料から非弾性散乱される光を指す。「ラマン分光」とは、ラマン散乱光の分光内容(ラマンスペクトル)を測定することをいい、例えばラマン散乱光の強度をラマンシフトの関数として測定することである。「ラマン分光装置」とは、試料から集束した光のラマンシフトを調べ、ラマンスペクトルやラマンイメージを生成する装置である。
【0045】
「散乱光」とは、回折など、試料との相互作用により光の伝搬角度が変化した光をいう。位相差顕微鏡の文脈では「回折光」とも呼ばれることがある。
【0046】
「~を示す信号」とは、目的の特性に対して数学的に関連する信号を指す。その信号は、アナログ信号、デジタル信号、および/またはコンピュータまたは他のデジタル電子機器に格納された1つ以上の数字であってもよい。その信号は、電圧、電流または容易に変換および記録され得る他の任意の信号であってもよい。その信号は、例えば明確に測定される特性と数学的に同一であってもよく、例えば絶対位相信号または吸収係数などであってもよい。それはまた、目的の1つ以上の特性に数学的に関連する信号であってもよく、例えば線形スケーリングまたは他のスケーリング、オフセット、反転、または複雑な数学的操作を含む。
【0047】
「リターダ」とは、光路に相対的な光学位相遅れを誘導する光学素子をいう。リターダの例としては、半波長板、4分の1波長板、8波長板などの波長板がある。1つ以上のリターダ/波長板を使用して、例えば直交干渉計の2つの経路間に位相差を導入するため、光の2つの偏光の間に光学位相差を導入することができる。「可変リターダ」とは、外部信号を介して制御可能な光学位相遅れを導入できるリターダであり、例えば、液晶可変リターダが挙げられる。
【0048】
「空間光変調器」は、反射または透過する光ビームの振幅および/または光学位相を位置アドレス指定可能に制御する装置である。空間光変調器は、液晶可変リターダを含む電子的にアドレス指定可能な可変リターダの2Dアレイを備えることができる。空間光変調器はまた、シリコン上の液晶(LCOS)などの反射装置、およびマイクロミラーアレイ装置などのMEMSベースの装置を含むことができる。
【0049】
「スペクトル」とは、波長の関数として、または同等に(そしてより一般的には)波数の関数として、試料の1つ以上の特性の測定値を指す。
【0050】
「広視野」とは、カメラやアレイ検出器を用いて複数の試料位置を実質的に同時に測定することをいい、試料上の1点を一度に測定するシングルポイント検出器のことではない。言い換えれば、広視野検出システムは、試料の単一点からのデータというよりむしろ、試料の広範囲な領域に対応するフレームまたは画像全体を捕捉して見ることができる。広視野領域は、少なくとも50μm幅、少なくとも100μm幅、または少なくとも500μm幅の試料の領域に対応することができる。
【0051】
「約」または「おおよそ」などの用語は同義であり、その用語によって修飾された値はそれに関連すると理解できる範囲を伴うことを示すために用いられ、その範囲は±20%、±15%、±10%、±5%、または±1%とすることができる。
【0052】
「実質的」という用語は、結果(例えば測定値など)が目標値に近いことを示すために用いられ、ここで近いとは、例えばその結果が目標値の80%以内、90%以内、95%以内、または99%以内などを意味してもよい。
【0053】
本明細書に記載の実施形態は、より迅速な試料の特性評価を提供し、QPIシステムにつきもののアーチファクトを排除し、従来システムの負担の大きい試料調製方法を必要としないという点で、これまでの光熱特性評価システムを改善するものである。高速度カメラなどの高価な装置を使用しながら、従来の最先端技術であるOPTIRおよびQPIシステムと比較したときの光学効率とともに信号対雑音を向上させることができる。
【0054】
高性能広視野光熱IR光学位相分光法
図1は、干渉光学位相測定を用いた広視野化学分析のための光学的光熱赤外(OPTIR)分光及びイメージングシステムの一実施形態の簡略化された概略図である。赤外線源100は、試料110の領域108に赤外線102を放射する。赤外線ビーム102は、IR源100から直接出たビームであってもよいし、必要に応じて集光レンズ104によって集光(あるいは拡大)されてもよい。いずれにしてもIRビームは、IR源のパワーレベル及び測定領域の所望のサイズに応じて、試料の広い領域、例えば少なくとも25μm幅、好ましくは少なくとも50μm幅、あるいは100μm超または500μm超の幅の領域を照明するように配置される。赤外線放射102の波長が、試料領域108の1つ以上のIR吸収帯に対応する波長に設定されると、吸収領域が加熱され、試料のIR吸収領域において光熱歪み(photothermal distortions)が引き起こされる。これらの光熱歪みは、加熱されたIR吸収領域の熱膨張、偏向、変形、サイズ、形状、曲率、反射率、及び/又は屈折率の変化を含み得る。これらの光熱歪みが生じた結果、試料と相互作用するプローブビーム放射の振幅や光学位相を変化させ得る。これらは試料のIR照射領域のIR吸収特性を示す信号を生成するために測定される。
図1はIR吸収により局所的に試料を加熱することとなる、光学位相における動的変化の広視野測定値を抽出する一実施形態を示す。光学位相変化におけるこれらの測定値を分析し、化学イメージ148及び/又はIR吸収スペクトル150を生成することができる。
【0055】
赤外吸収を示す信号を測定するため、プローブビーム源101からのプローブビーム103を、IR照明領域108と少なくとも部分的に重なるように試料110を透過させる。プローブビーム103はまた、試料の広視野領域を照明するように配置される。プローブビーム103は、例えば平行とされた(collimated)レーザービームとして、プローブビーム源から直接発することができる。また、それは所望により集光レンズ(図示せず)を用いて集光又は拡張することができる。一実施形態として、プローブビーム103は、まず、コンデンサー又は対物レンズの後側焦点面に集束させて、例えばケーラー照明方式で用いられるように、試料110にて平行な照明ビームを形成することができる。プローブビーム103が試料110のIR照明領域を通過すると、差込
図Aに模式的に示されるように、試料の光学特性のパターンが透過プローブ放射107に転写される。差込
図Aは、入射平面波160が周囲と異なる屈折率の材料162に直面して、その結果、透過波面に歪み164が生じる様子を示している。差込
図Aは、より高い光学密度(例えば、より高い屈折率)の領域を通過する透過平面波の光学位相における遅延(retardations)を模式的に示している。差込
図Aは概念図であり、縮尺通りではなく、あるいは実際のデータに対応することを意図していない。差込
図Aはシンプルで静的な場合を示しているが、IR吸収による光熱歪みによって光学位相が動的に変化する場合にも、同様の物理学が適用される。本実施形態では、試料の領域ごとのIR吸収による光学位相の微妙な変化を広視野で迅速に測定できるため、試料の空間分解化学分析が可能である。例えば生体材料などの多くの試料は、可視光に対して透明性が高いため、光学位相に基づく測定は特に有利となる可能性がある。そのため、光が透過したときの強度(振幅)の変化は非常に小さい。しかし、生物材料は可視光に対して高い透明性を持つことができるにもかかわらず、光学位相の大きな変化を蓄積し得る。例えば典型的な生体細胞は、透過時に約90°の光学位相変化を誘導し得る。例えば厚さが5μmで典型的な屈折率1.36の生体細胞に対し、周囲の水性媒体の屈折率が1.335である場合を考えてみる。この厚みと屈折率の変化により、5μm×(1.36-1.335)=0.125μm、つまり約0.23λ、または約1/4波長(~90°)の遅延が生じる。生体試料では、場合によっては、この比較的大きな光学位相における光熱変化を測定する方が、透明度の高い試料の光強度における比較的小さな光熱変化を測定する場合よりも、感度が高くなり得る。
【0056】
入射プローブ放射103上の試料転写(sample imprint)の測定を行うために、試料110を通過した透過プローブ放射107は集光レンズ109によって集光される。集光レンズ109は典型的には高開口率の顕微鏡対物レンズであるが、他の任意の集光レンズでもよい。集光されたプローブ放射111は、必要に応じて第1集光レンズ114に対してミラー112で反射される(または、図示しない他の任意のレンズによって方向づけられる/導かれる)。なお、第1集光レンズ114は典型的には光学顕微鏡のチューブレンズである。その代わりに、第1集光レンズ114は、例えば光学顕微鏡本体の外部に取り付けられる別のレンズであってもよい。第1集光レンズ114は概して試料を透過したプローブ放射の照明ビームを平行化する。(なお、
図1に示した光路は、照明プローブビームの経路を表していることに留意されたい。
図2A~Bは、照明ビームとイメージングビームの経路を別々に図示している)。次に、概ね平行とされたプローブビーム115は、透過して平行化されたプローブビーム115を2つの別々のビーム118及び120に分離する非回折ビームスプリッタ116を通過し、ビーム118及び120のそれぞれは、光の異なる偏光に対応する。
図1に示される実施形態では、ビームスプリッタ116は、ロションプリズム(すなわち1つのビーム118を偏向させずにそのままとし、第2のビーム120をある角度θだけ方向転換させるプリズム)として図示されている。代替のビームスプリッタを使用してもよく、例えば、2つのビームを±θで対称にするウォラストンプリズムを使用してもよい。
【0057】
両ビーム118、120はその後、第2集光レンズ122(例えば4fリレーシステムにおける第1レンズ)に入射される。集光レンズ122は、偏向されていない透過ビーム124と偏向されたビーム134の両方を集光する。ビーム124の焦点126は、空間フィルタ128を通過するように配置される。空間フィルタは、例えば小開口ピンホール、ガラス上のメタルマスクにおける透明領域、空間光変調器上のパターン、又は小さくて透過可能な開口を有する他の装置であってもよい。
図2に関連してより詳細に説明するように、空間フィルタ128の開口は、空間フィルタを通過する透過プローブビームから、試料の全てのインプリントを実質上消去するように選択される。これは、フィルタリングされたビーム129が、角度偏向ビーム134が干渉されることとなる、実質的に特徴のない(feature-free)参照ビームとして機能できるように行われる。ビームスプリッタ116に戻ると、示している実施形態において、このビームスプリッタは偏光によって2つのビームに分割し、その結果、一方の偏光は偏向されず(ビーム118)、直交偏光のビーム120は角度θだけ偏向されている。これは、ビーム134がビーム124と比較して、名目上直交的に偏光されていることを意味する。本実施形態では、偏向されていない参照ビームと偏向された試料ビームとが再干渉するため、ビーム134の経路に偏光回転子135が配置される。偏光回転子135は、例えば、ビーム134の偏光を90°回転させる半波長板とすることができる。その代わりに偏光回転子135は、ビーム134の位相遅延を調整することができる透過型空間光変調器によって形成することができる。(空間フィルタ128はまた、空間光変調器を用いて形成することができ、及び/又は単一の空間光変調器は、空間フィルタリング及び偏光回転タスクの両方を行うことができる。)必要に応じて任意のNDフィルタ(Neutral density filter)136を用いて試料経路上のプローブビーム137を減衰させ、参照ビーム129と同様の強度又は同等の強度となるようにすることも可能である。NDフィルタ136は、固定減衰または可変減衰であってもよく、例えば可変NDフィルタホイールであってもよい。偏光回転子を透過するビーム137は、次に、空間的にフィルタリングされた参照ビーム129と本質的に同じDC光学位相を有するようにアレンジされる。両方のビームは、次に、第3集光レンズ130を通過して、検出器132(典型的にはカメラ132又は他のアレイベースの検出器)の表面138で再合成される。集光レンズ130を透過した2つのビーム131及び139は、カメラ132の表面138で合成し、多数の干渉縞142(2つの縞で示されている)からなるインターフェログラム140を形成する。このインターフェログラム140の断面144は振動パターン146を示しており、これは照明プローブビームの経路における試料上の対象の光学遅延に起因する任意の位相ラグから生じるピーク位置のわずかなシフトを有する。(インターフェログラム140/146の図は簡略化された概念的な図であり、縮尺通りではない)。画像インターフェログラム140は、IR光をオンにして(「ホットフレーム」)得られたインターフェログラムを、IR光をオフにして(「コールドフレーム」、又は少なくとも低いIR出力レベルで)得られたインターフェログラムと比較するコントローラ/分析器152によって解析される。コントローラ/分析器152は、ホットフレームとコールドフレームとの間のインターフェログラムの差を解析して、IR吸収を示す信号、例えばIRスペクトル150やIR吸収画像148を生成する。IRスペクトル150は、IR源100の波長(又はこれに等しい波数)の関数としてホット/コールドインターフェログラムから分析されたIR吸収を示す信号をプロットすることによって生成される。IR吸収画像148は、プローブ及びIRビーム102、103の下で試料110を並進させることによって試料の複数の位置にわたってIR光の1以上の波長に対するIR吸収を示す信号をプロットすることにより作成される。例えばそのような試料の位置として、アレイセンサ132上の複数のピクセル位置や、試料110に対するIR/プローブビームの複数の相対的な位置などが挙げられる。後述するように、ホットフレーム及びコールドフレームの分析もまた、アレイセンサ132に組み込まれたオンボードコントローラ/分析器、例えばカメラセンサアセンブリに組み込まれたフィールドプログラマブルゲートアレイ上でも実行可能である。
【0058】
干渉パターン140は、2つの別々の経路に到達する、カメラ138に当たるビームの間に生じる。(a)試料の光インプリントを運ぶ偏向経路、(b)偏向されていない経路であって、空間フィルタによって試料のインプリントが消去されている。試料ビーム139と参照ビーム131とが角度θで互いに干渉するため、カメラ132に現れるインターフェログラムパターン140は一連の線形干渉縞142を有する。インターフェログラムパターン140は、下記式の一般形を有することができる。
【数1】
【0059】
ここで、I(x,y)はカメラセンサのx,y位置で測定された強度、Irは参照フィールド強度、Isは試料フィールド強度、kは波動ベクトルすなわちk=2/λ、φ(x,y)は試料と参照経路との間の局所的な光路差であり、これは試料を透過する光によって導入される位相差を含む。
【0060】
干渉縞の周期Δxは、下記式2で推定することができる。
【数2】
【0061】
このインターフェログラム画像は「位相の再構成と差動位相計算」と題する次のセクションで説明するように解析することで、広い領域にわたる試料によるIR吸収を示す信号を生成することができる。
【0062】
下の表1は、ミウ タマミツ、ケイイチロウ トダ、リョウイチ ホリサキ、及びタクロウ イデグチによる「Quantitative Phase Imaging with molecular vibrational sensitivity」Opt.Lett.44,3729-3732(2019)(https://doi.org/10.1364/OL.44.003729)という論文から最もよく識別されるように、タマミツらの装置から推定される性能と比較して、
図1の実施形態で達成することのできる性能を推定している。タマミツらの論文に関する表のデータは、論文から直接、または特定したコンポーネントのメーカー仕様書のいずれかから得たものである。最低値の性能因子は、1秒間に各カメラピクセルに到達する光子の数で示されている。表1から分かるように、
図1の実施形態では、1秒あたり3桁以上多くの光子を獲得することができる。十分に最適化された光学系では、SNRは光子束の平方根のようにスケールする。したがって、本実施形態ではタマミツの論文の推定性能よりもSNRにおける次式の改善を提供する。
【0063】
【0064】
以下は、本実施形態のより高い光子束を支持する、いくつかの重要な要因の概要である。一実施形態として、プローブ源は、ダイオード励起固体レーザーであり、波長532nm、少なくとも200mWの光パワーを有するものである。このようなレーザーは、例えば、コボルト社(ヒューブナー)及びコヒレント社から入手可能である。レーザーは、連続波(CW)であってもパルスであってもよい。CWレーザーの場合、変調器を使用して、IRパルスの開始後にプローブパルスを所望の遅延時間になるようにゲートで制御することができる。タマミツにおいて使用されたプローブ源には130nsecのパルス制限があった一方、電気光学変調器付きのCWレーザーを使用すれば、IR源の繰り返し率まで実質的に無制限のパルス幅を提供することができる。上の表では、IRパルスの反復率を50kHzとしたが、例えばデイライト・ソリューションズ社やブロック・エンジニアリング社の量子カスケードレーザー源を使用すれば、反復率は数MHzまで利用可能である。ポッケルスセルやドライブエレクトロニクスなどの適切な電気光学変調器は、Eksma Optics社、ConOptics社、G&H社などのベンダーから入手できる。ダイオード励起固体レーザーとともにポッケルスセルを使用する大きな利点として、このアレンジメントにより、高い光学スループットで非常に小さな集光スポットを達成できることである。例えばCobolt社のDPSSレーザーは、多くのダイオードレーザーによって作り出される楕円ビームに比べ、小さな円形ビームを有し、かつ、レーザービーム品質係数M
2が1.1未満である。これにより、例えば空間フィルタやリレーレンズなどを通した、より効率的な光結合(optical coupling)が可能になる。またもう一つの重要な要素として、暗電流ノイズやピクセルショットノイズを上回る十分な光量をカメラに供給する。本明細書で議論する光熱変調のような小さな変化を検出するためには、カメラの飽和限界付近で動作するように、露光あたりの十分な光量を確保することが望ましい。フレームレートが1秒あたり約60フレームであっても、タマミツのアプローチでは、露光あたり3000個程度の光子を有すると推定される。ノイズは光子数の平方根と同様に動くため、これは最も良い単一フレームのSNRである
を提供するであろう。これに対し、本実施形態では、単一フレームのSNRが
という高い値を達成することができた。さらに、本実施形態では、1秒間により多くのフレームを捕捉することができる。1秒間に3300以上のフレームを共平均化(co-average)できるため、さらにSNRを57倍向上することとなり、1秒間のSNRは57×360=20,600となる。これに対し、タマミツの限界である1秒あたり60フレームでは、SNRが~7.7倍向上、つまり全体で54×7.7=420のSNRしか得られない。しかしながら実際には、タマミツの論文では、これよりもかなり悪い結果を報告しており、1秒間の露光で最終的な光熱検出感度が5程度のSNRを達成している。本実施形態がより高いSNRを達成できる要因としては、高い光学スループットに基づく高フレームレートカメラを使用できることと、光熱位相変化の高速計算ができることとの2点が挙げられる。これらの両方は、本明細書で後述する。
【0065】
図2は、
図1の光路の一部をより詳細に示す。具体的には
図2Aおよび
図2Bは、照明ビーム(
図2A)およびイメージングビーム(
図2B)の光路を並べて示している。
図2は、光路が直線的な構成、すなわち、簡単のために垂直に配向され、すなわち、
図1の折り返しミラー112を省略して配置されている。なお実際には、所望により光学配置をよりコンパクトに配置するために2次元または3次元に折り畳むことができることを理解されたい。
図2Aの照明経路から始めて、照明ビーム200を用いて試料202上の領域201を照明する。照明ビーム200は、実施形態によっては、実質的に平行化され、試料202の広い領域、例えば、直径が25ミクロン超、50ミクロン超、100ミクロン超、500ミクロン超、又は1000ミクロン超の領域を照明することができる。照明ビームは、例えば
図1のIR源100によって放射されるIRビーム204と少なくとも部分的に重なるように配置される。IRビーム204を用いて、例えば分子振動に関連する試料における共鳴を励起することができる。試料202を通過する照明プローブ光200は、集光レンズ206(例えば顕微鏡対物レンズ)によって集められて、点208に集光されて、結果として集光レンズ212(例えば顕微鏡チューブレンズ)に衝突する拡大ビーム210を生じさせることができる。集点208は、集光レンズ212の下流に平行照明ビーム214が現れるように、集光レンズ212の焦点距離にあるように配置することができる。
【0066】
再平行化された照明ビーム214は、非回折ビーム分割素子216(例えばウォラストンプリズムやロションプリズムのようなビームスプリッタプリズム)に向けられてもよい。またビーム分割素子216の中心は、試料215の像がビーム分割素子216に重ね合わされるように、試料202の共焦点面にあるように配置することもできる。(これは
図2Bに関連してより詳細に説明する。)ビーム分割素子216は、照明ビームを、角度θだけ分離された2つの経路218及び220に分割する。図示した例では、一方のビーム218は偏向されておらず、他方のビーム220は、ロションプリズムを使用する場合のように、角度θだけ偏向されている。その代わりに、ウォラストンプリズムを使用することができ、これは両方のビームを±θだけ偏向させる。ロションまたはウォラストンまたは同様の偏光感受型ビームスプリッタの場合、出現する2つのビームは実質的に直交偏光を有することになる。ビーム218及び220の両方は、集光レンズ222(典型的には4fリレーシステムにおける第1レンズ)の方に向けられる。集光レンズ222は、透過ビーム224及び240をそれぞれ集点226及び242に再集光させる。ビームの一方の焦点に空間フィルタ228が配置される。空間フィルタは、試料についてのすべての情報をビームから実質的に消去する大きさとされており、干渉のための参照ビームを形成する、実質的に特徴のない平面波ビーム230を生成する。他方のビーム242は、必要に応じて偏光回転子244(例えば半波長板)を通過し、透過ビーム246を、それらが干渉するように参照ビーム230と一致する偏光に戻す。ビーム230と246の両方は、最後の集光レンズ232(例えば4fリレーシステムの第2レンズ)を通して方向づけられる。集光レンズ232は、照明ビームをビーム234及び248に再平行化する。前述したように、参照ビーム234は本質的に特徴のない平面波である一方、ビーム238は試料のインプリントを持っている。両ビームはある角度(例えば角度θ)で干渉されて、広域検出器238(典型的にはカメラまたは他のアレイセンサ)の表面236で画像インターフェログラムを生成する。
【0067】
図2Bは、
図2Aの光学レイアウトと同じものを用いたイメージングビームの光路を示す。この場合、試料202上の単一の像点249から散乱される光について検討する。試料202上の単一の像点249から現れる散乱光250は、
図2Aで説明したのと同じ集光レンズ206(例えば顕微鏡対物レンズ)によって集光される。試料は、通常は集光レンズ206の焦点距離に配置されるので、集光レンズ206から現れるイメージングビーム251は、実質的に平行化されることになる。平行化されたビーム251は、集光レンズ212(例えば顕微鏡チューブレンズ)に向けられ、これは次に、透過ビーム252を点253に再集束させる。そして今度は、対物レンズ206の視野内にある試料202における他の各像点が、チューブレンズ212によって対応する点に集束され、チューブレンズの焦点で拡大画像215を生成することになる。
図2Aに関連して上述したように、非回折ビーム分割素子216は、この焦点にまたは焦点の近くに配置され、角度θだけ分離された2つの出現ビーム(emerging beams)254および256を生成する。一方のビーム、この場合のビーム258は、小さな開口を有する空間フィルタ228に当たるように配置される。空間フィルタ228は、典型的には、例えば25ミクロン程度の小さな孔を有し、したがって空間フィルタ228を通過するイメージングビームが示されていないことからわかるように、イメージングビームのほとんどを通過させないようになっている。(空間フィルタの大きさについての詳細は、入力プローブビームのサイズと、例えば対物レンズ、チューブレンズ及び4f光学系によって生成される倍率を含む、使用する集光レンズの焦点距離とに依存する。)なお、
図2Aに示されるように、光によっては実際にこの空間フィルタを通過するが、偏向されていない照明光の一部のみであり、一方、イメージング光/散乱光の大部分はブロックされることに留意されたい。他方で、偏向ビーム260は、空間フィルタのない経路を通過するため、この第2経路上の散乱光からの画像情報を保護している。
図2Aで説明したように、ビーム260は必要に応じて偏光回転子244及びNDフィルタ245を通過する。次に、イメージビーム262は、集光レンズ232によって、例えばカメラの表面で、広域検出器238の表面236に再集束される。イメージングビーム264と
図2Aの参照ビーム234との干渉及び照明ビーム248との干渉により、カメラ238の表面236にインターフェログラムが生成される。試料によるいかなる散乱もない場合、イメージングビーム264は存在せず、その結果としてインターフェログラムは一貫した縞間隔を有する本質的に平行な線から構成されることになる。光が試料によって散乱される場合、ビーム248及び/又は264は、干渉縞のずれをもたらす試料のインプリントを持っていることとなる。これらのずれを解析して、試料の光学位相マップを作成することができる。さらに、これらの位相マップは、照明ビーム200及びイメージングビーム250と少なくとも部分的に重なるIRビーム204を例えばパルス化したり変調したりすることによって、IR照明の有無にかかわらず作成することができ、干渉縞のシフトの分析を用いて、試料によるIR吸収を示す信号を測定することができる。なお、
図1、
図2A及び
図2Bにおいて、例えば偏向ビームが空間フィルタを通過して参照ビームとなるように、試料経路と参照経路とが反転されてもよいことに留意されたい。実施形態によっては、ウォラストンプリズムの場合のように、両方のビームが反対方向に等しく偏向されることが好ましい場合もある。これは、試料ビーム及び参照ビームの両方が実質的に同じ経路長であることを保証する際に利点となり得るが、これは、低コヒーレンス長の照明源を使用する場合に望ましいことがある。追加の補償光学部品(図示せず)をビーム経路に配置して、例えば偏光回転子244及びNDフィルタ245のような1つの経路内のアイテムに関連する任意の位相差を考慮することもできる。これらは、他の経路に配置される任意の光学素子と同様の光路長差を提供するために選択された厚さ及び指数を有する例えばガラス片などとすることができる。
【0068】
位相の再構成と差動位相計算
このインターフェログラムから局所位相を計算する方法はさまざまあり、いくつかはフーリエ変換(ミツオ タケダ、ヒデキ イナ、及びセイジ コバヤシ、「Fourier-transform method of fringe-pattern analysis forcomputer-based topography and interferometry」、J. Opt. Soc. Am. 72, 156-160 (1982), https://doi.org/10.1364/JOSA.72.000156)、ヒルベルト変換(タカヒロ イケダ、ガブリエル ポペスク、ラマンチャンドラ R.ダサリ、及びミカエル S.フェルド「Hilbert phase microscopy for investigating fast dynamics intransparent systems」Opt. Lett. 30,1165-1167 (2005), https://doi.org/10.1364/OL.30.001165,及び米国特許第8,772,693号)、及び誘導法(バサンタ バドゥーリ、ガブリエル・ポペスク「Derivative method for phase retrieval in off-axis quantitative phaseimaging」Opt. Lett. 37,1868-1870 (2012) https://doi.org/10.1364/OL.37.001868)を用いる方法などを含む、定量的位相イメージング(QPI)の文献に記載されており、それぞれ参照により援用される。
【0069】
赤外分光法と定量的位相イメージング(QPI)技術を組み合わせる場合、IR光が存在する場合と存在しない場合との測定位相の差を迅速に計算することが望ましい。例えば、IR光がオンの状態とIR光がオフの状態の2つの画像を取得することができる。次に、両方の画像を解析して、IR光がある場合とない場合の2つの位相画像を再構成することができる。そして2つの画像を差し引き、2つの位相画像の差は、試料によるIR吸収を示す。高い信号対雑音比および/または高い測定スループットを達成するために、例えば1秒あたり1000フレーム超、10000フレーム超、あるいは100000フレーム超といった高いフレームレートをサポートできるカメラまたは他のセンサーアレイを使用することが望ましい場合がある。画像インターフェログラムから局所位相を計算するためにQPIコミュニティ内で使用されているアプローチによっては、計算量が多く、広視野OPTIR技術にとって望ましい高カメラフレームレートでの実装は困難となる可能性がある。次のセクションでは、試料によるIR吸収に伴って生じる位相差の高速測定をサポートする、非常に効率的な手法について概説する。
【0070】
まず、数式1を単一のx,y点についてここに書き換えたものについて検討する。
【数3】
【0071】
数式3はIr+Isによって設定されるDCオフセットを伴うcos(2kxsinθ)の項によって、概して振動波形を示唆している。試料によって導入される光学位相φは、インターフェログラムの振動運動の周期に変化を引き起こす。以下で説明するのは、DCオフセットと光学位相φの両方を抽出する効率的な方法である。
【0072】
図3は、インターフェログラムから光学位相を迅速に計算する方法を示す。
図3Aは、センサーアレイにおけるセンサの列300の一部、例えばカメラベースの検出器におけるピクセルを示す。例としてピクセルは、301、302、303、および304とラベル付けされている。
図3Bと
図3Cは、センサーアレイ上の異なる行(例えばカメラセンサチップ上の異なる行)に入射するインターフェログラム305b及び305cの断面を示している。実際には、センサーアレイは、各行及び各列において数百又は数千ピクセルを有することができる。インターフェログラム305b及び305cは、例えば異なる行に撮像された領域における光学位相差に起因して、カメラピクセルの格子点(grid)に対して異なる相対的位相関係を有してもよい。そこで、ピクセル強度から相対的な位相差を算出することを目的とする。一実施形態として、ピクセルの間隔とインターフェログラムの角度とは、隣接するピクセル間におおよそ90°の差が存在するようにアレンジされる。あるいは、N個のピクセルにわたって90°の位相差を有するようにアレンジすることができる(ここでNは整数である)。例えば、複数のピクセルのビンは、ビン間の平均位相差が90°になるように選択することができる。ここでいう90°の位相差とは、試料による光学的な位相変化ではなく、参照波と試料波とが、ある角度、すなわち数式3の余弦における(2kxsinθ)の項で干渉することに起因して横方向に蓄積される位相である。より具体的には、光学系は次の式4のようにアレンジされる。
【0073】
【0074】
ここで、Δxはピクセル間の距離、すなわちピクセルサイズである。この条件は、カメラのピクセルサイズ、4fシステムおよびチューブレンズの倍率、波長、ならびに干渉ビームの角度θを適切に選択することによって満たすことができる。
図3は、N=1、すなわち各カメラピクセルが2kxsinθ項の位相を90°(π/2)ずつ進める場合の条件を示す。カメラピクセル301~304によって捕捉されたインターフェログラムからの光の強度は、値I
1、I
2、I
3、I
4で示される。これらの値を用いて光学位相φを計算する。またこの光学系は、顕微鏡の分解素子(resolution element)ごとに複数のカメラピクセルが存在するように十分な倍率でアレンジされる。この場合、光学位相φは、試料強度I
rと参照強度I
sと同様に、多数の隣接ピクセルにわたってほぼ一定の値を有する。具体的には、少なくともピクセル301~303、または交互に(alternately)ピクセル301~304について、これらの値が略一定であると仮定する。この場合、強度I
1、I
2、I
3、I
4の式は次のように書くことができる。
【0075】
【0076】
式5は、x=0と仮定し、式6~8は式3の2kxsinθの項の位相をピクセルごとに90°(π/2)増加するように進めたものである。三角関数の恒等式を用いると、これらの式は次のように書き直すことができる。
【数9】
【数10】
【数11】
【数12】
【0077】
これらの式の3つ以上を組み合わせて光学位相φを解くことができる。例えば式9及び11を加えると次のようになる。
【数13】
そして、その後、
【数14】
【0078】
式9と式10を再整理すると、次のようになる。
【数15】
【数16】
【0079】
式16を式17で割ると、次のようになる。
【数17】
【0080】
式14を式17に代入すると、次のようになる。
【数18】
【0081】
そして、位相φについて式18を解くことができる。
【数19】
【0082】
ここでatan2は2つの引数の逆正接である。逆正接の他の形式が使用されてもよい。位相の不連続性を除去するために、位相アンラップ技術を適用することができる。なお、式19は、3ピクセル程度の少ない強度値で位相を示す信号を計算するので、非常に高速に計算することができることに留意されたい。より多くのピクセルを使用する(例えば垂直方向(y方向)にピクセルをビニングする)ことで、より多くのノイズ除去を行うことができる。DCオフセット(Ir+Is)をより正確に測定することは、例えば式9~12の他の組み合わせ、例えば式9及び11に加えて式10及び12の和を使用することによっても可能である。また前述したように、I1~I4値の測定のためにX方向のピクセルをビニングできるように、ピクセル間の位相増分を90°未満とすることも可能である。
【0083】
IR光のオンとオフでの位相の変化Δφを測定することで、差分光熱信号を構築することができる。すなわち、
【数20】
【0084】
この量Δφは、試料によるIR吸収の結果として生じる光学位相の変化を示している。次に量Δφは、1つ以上のIR励起波長の位置の関数としてプロットされ、異なる化学種の分布を示すマップを作成することができる。Δφはまた、異なる励起波長(または同等に波数)の関数としてプロットされて、試料のIR吸収特性を示す信号、例えば赤外吸収スペクトルを生成することができる。
【0085】
図4は、上記の位相計算を用いて算出した結果を示す。データは、式3の2kxsinθの項からのカメラピクセルあたりの位相シフト90°ごとに1ピクセルを使用してシミュレーションしたものである。プロット400は、入力光学位相を変化させながら、90°位相シフトした隣接ピクセルの強度402、404、406を示す。(前述したように、式3の2kxsinθ項で、90°の平均位相差を持つX軸において共にビニングされた2組のピクセルである限り、個々のピクセルの代わりに、X方向及び/またはY方向において複数のピクセルをまとめてビニングしてもよい。)このアレンジメントからわかるように、トレース402、404および406は互いに直交関係を有する(すなわち、これら2つのトレースも90°位相がずれている)。プロット408は、上記の式19を用いて、プロット400の各入力光学位相に対する3つの強度値から位相φを再構成したものを示している。トレース410は、入力位相の実質的に正確な再構成を示す。このシミュレーションは、各カメラピクセルについて4%のピークツーピークのノイズ振幅で実行された。SNRの改善は、複数のカメラフレームの結果を共平均化することによって、及び/又は、上述したように、より多くのピクセルをビニングすることによって達成することができる。
【0086】
次のセクションでは、IR吸収を示す信号を抽出する別の方法について概説する。この場合、試料上のどの点でも光学位相はDC値φ
0を有し、これは小さな増分δだけDC位相が変化するIR吸収によって乱されると仮定する。すなわち、
【数21】
ここで、δは小さい。
【0087】
これを式3のcos(2kxsinθ+φ)の項に代入すると、次のようになる。
【数22】
【0088】
次に、加法定理が適用されてcos(A+B)=cosAcosB-sinAsinBとなる。ここでA=2kxsinθ+φ
0、B=δである。その結果、次のようになる。
【数23】
【0089】
小角度展開(smallangle expansions)cosδ≒1及びsinδ≒δと使うと、式23は次のように書き換えることができる。
【数24】
【0090】
これについて今度はδについて解くと次のようになる。
【数25】
【0091】
ここで、x=0から始まる式9~12を用いて、IR光がオンの状態(「ホット」、添え字h)と、IR光がオフの状態(「コールド」、添え字c)との
図3Aのカメラピクセルの強度を考えてみる。
【数26】
【数27】
【数28】
【数29】
【数30】
【0092】
式26から式27を引くと次のようになる。
【数31】
これは、式25の分子に比例する。式28から式30を引くと次のようになる。
【数32】
これは、式25の分母に比例する。
【0093】
式31を式32で割ると、次のようになる。
【数33】
これは、2の因数とマイナス記号とを除けば、式25と同じである。これを調整すると次のようになる。
【数34】
【0094】
式34は、IR吸収δを示す信号が、ホット/コールド状態下で近接するピクセルの強度のみを用いて、極めて簡単な計算で、いかに極めて迅速に計算できるかを示している。このアプローチにより、IR吸収による差分の光学位相変化の定量測定を実際に提供する高感度の干渉計技術を使用するための手段を提供するが、計算量の多いタスクとなり得るDC光学位相の別の定量測定を実行する必要はない。また、式34に至るアプローチは、位相不連続性を気にしたり、位相アンラップ技術を適用したりする必要性を排除する。この簡略化は、差動位相変化δが小さい小角度近似を使用するために生じる。しかしながら、この近似は、光熱効果の性質上、ほぼすべてのケースで正当化される。典型的な材料では、10-4/℃程度の温度変化の屈折率変化をもたらす。試料の温度が10℃上昇しただけでも、試料の屈折率変化は最大で10-3程度となる。また、位相変化もそれに比例して小さくなる。先ほどの生物細胞の例で、光路の変化が約0.125μmで、結果としてDC位相変化が~90°またはπ/2であることを考えよう。細胞全体がIR光を吸収して10℃加熱された場合、その結果生じる光学位相の変化は約π/2×1E‐3=0.001570796となる。この場合、sin(0.001570796)=0.001570796、すなわちsinδ=δとなり非常に高い精度であるため、小角近似は適切である。薄い試料、細胞内成分や温度上昇が小さい試料(生体試料にとって望ましい)の場合、差動位相変化はさらに小さくなる。したがって、ほとんどの場合、小角度近似は適切であり、式34が適用可能である。なお、例えば前述のようにX方向およびまたはY方向に複数のピクセルをビニングするなど、ピクセル強度の他の定式化も利用可能である。信号対ノイズは、複数のカメラフレームおよび/または式34の複数回の計算を併合(coadding)/共平均化(coaveraging)することにより改善することができる。なお、式30は式27と同じ余弦項を含むので、式34のI1hおよびI1cの項に加えて、またはその代わりに、I3hおよび/またはI3cの項を使用できることにも留意されたい。
【0095】
また上述のアプローチは、隣接するピクセルの位相を90°ずらして測定する代わりに、同じピクセルで強度を測定する場合にも適用できるが、これは連続的な光路差、例えば90°離れた3つの光学位相で測定する場合である。例えば、1つ以上の参照ビームと試料ビームの経路に透過型の可変位相リターダを含めて、連続的な位相シフトを導入することができる。適切な可変リターダは、例えば、ソーラボ社、エドモンド・オプティクス社、メドウラーク・オプティクス社等から販売されている。例えば、1つのホットフレームと1つのコールドフレームを0度の位相シフトで測定して式26と式27の強度を得た後、90度と270度で2つのコールドフレームを測定して式30と式31の強度を得ることができる。次に、これらの強度を組み合わせて、式34に従って差動位相を計算することができる。このアプローチにより、隣接するピクセル間に特定の位相関係をアレンジする必要がなくなる。
【0096】
IR吸収δを示す信号は、計算が簡単なため、例えば式34を用いて極めて高速に計算することができる。この効率的な計算は、高いカメラフレームレートと高い信号対雑音比を可能にするために重要である。より具体的には、連続して動作する場合、実用的なカメラフレームレートは、付随する差動光熱位相変化δの計算をいかに迅速に行うことができるかによって制約を受ける。本明細書に記載の実施形態では、1秒あたり100フレーム(fps)超、1,000fps超、又は10,000fps超のカメラフレームレートを可能にするのに十分な計算効率を達成することができる。下の表は、式34の計算と、QPI文献に記載されているような定量的位相イメージングにおいて一般的な他の計算アルゴリズム、例えばヒルベルト変換や高速フーリエ変換(FFT)とを比較したベンチマークとなる計算時間及び利用可能なフレームレートをまとめたものであり、これはミツオ タケダ、ヒデキ イナ、及びセイジ コバヤシによる「Fourier-transform method of fringe-pattern analysis forcomputer-based topography and interferometry」J. Opt. Soc.Am.72,156-160(1982),https://doi.org/10.1364/JOSA.72.000156)、タカヒロ イケダ、Gabriel Popescu、Ramachandra R. Dasari、Michael S. Feldによる「Hilbert phase microscopy for investigating fast dynamics intransparent systems」 Opt. Lett. 30,1165-1167 (2005), https://doi.org/10.1364/OL.30.001165,および米国特許第US 8,772,693号に記載されている。
【0097】
3.00GHzで動作するIntel Xeon CPU E5-1607v2を用いるデスクトップパソコンで、512×512ピクセルを使って、LabVIEWを用いて異なるアルゴリズムでベンチマークとなる計算を行った。その結果を下表に示す。
【表2】
【0098】
式34の計算が簡単であるため、計算時間が大幅に短縮され、フレームレートが大幅に向上することは明らかである。ピクセル数が少ない場合は、さらに高いフレームレートを実現することができる。例えば128×128ピクセルを用いる場合、式34の計算時間は0.03msecであり、最高で33,333fpsのフレームレートに相当する。計算時間の高速化とフレームレートの高速化は信号対雑音比に大きな影響を有する。例えば、取得時間が1秒の場合を検討すると、ヒルベルト変換では最大66カメラフレームが取得されるが、式34では714フレームが可能になる。概してSNRは、共平均化または共加算されたカメラフレーム数の平方根で改善される。ヒルベルト変換では、√66=8.1のSNR改善を支援するのみであるが、式34では、√714=26.7のSNR改善が得られる。33,333fpsを可能にする128×128ピクセルを使用すると、√33,333=182のSNR改善が得られる。これらの高いフレームレートは、後述するように、本実施形態の著しく高い光学スループットによっても可能になる。
【0099】
なお、上の表の計算時間は、多数のピクセル計算を並行して行うことのできる専用の組み込みプロセッサ、例えばフィールドプログラマブルゲートアレイ(FPGA)を用いることで劇的に改善することができる。カメラセンサーシステムは購入したり、またはFPGAを搭載したものを組み立てたりすることができる。例えば、ファステック社の高速度カメラIL5は、式34のような計算を実行するようにプログラムできるFPGAを搭載しており、640×480ピクセルで3300fps、320×230ピクセルで6300fpsのカメラフレームレートをサポートしている。ナックイメージテクノロジー社のMEMREMCAM HX-7sは、640×480ピクセルで12000fpsという高いフレームレートをサポートしている。
【0100】
図5は、OPTIR光学位相測定のための広視野セットアップの代替実施例を示す。
図5は
図1に基づいており、同じ数字の符号を用いている場合、
図1からの関連する説明が適宜適用される。
図5は、試料によるIR吸収の広視野測定のための非共通経路マッハツェンダー干渉計の使用を示している。マッハツェンダーアプローチは、例えばChristopher J.Mann,Lingfeng Yu,Chun-Min Lo,及びMyung K.Kimの「High-resolution quantitative phase-contrast microscopy by digitalholography,」Opt.Express 13,8693-8698(2005)で説明されている定量位相イメージングに用いられているが、これは参照により本明細書に援用される。
図5の実施形態では、プローブビーム源101から出たプローブビーム103は、ビームスプリッタ500によって2つの経路に分割される。1つの経路502は、
図1を用いて説明したように、試料及び対物レンズを通過する。参照ビームとして機能するビームの第2部分は別の経路504に方向づけられ、ビームは必要に応じて1つ以上のミラー506によって方向転換される。参照ビームはまた、ビーム径が平行化されたプローブビーム115のものと同様となるように、集光レンズ506及び508(又は任意の同等のビーム拡大スキーム)によって必要に応じて拡大・再平行化されてもよい。参照ビームはまた必要に応じて空間フィルタ507を通過し、参照ビームが本質的に特徴のない参照ビームであることを保証することもできる。参照ビームは必要に応じて可変位相リターダ510を通過し、試料ビームに対する参照ビームの相対的位相を調整することができる。試料ビームの経路及び参照ビームの経路のうちの1つ以上はまた、一方又は両方のアーム上の相対強度を調整するための可変減衰器又はNDフィルタを含んでもよい。参照ビーム512は、次に、ビームコンバイナー516で試料ビーム514と再合成される。(ビームコンバイナー516は概して逆さまにして利用されるビームスプリッタにすぎない。)再合成された試料ビームと参照ビームは、アレイ検出器(例えばカメラなど)132の表面138で干渉する。なお、この場合、照明ビームが描かれており、試料イメージビーム経路はより
図2Bに近いことに留意されたい。アレイ検出器132における試料ビームと参照ビームの組み合わせは、検出器のピクセル上に広がる干渉パターンを引き起こす。2つのビームが共線(collinear)である場合、特徴のない試料については、ほぼ一定の位相が存在することになる。散乱体/位相遅延体を有する試料では、試料経路と参照経路との間の光学位相差を示す干渉パターンが試料上に形成される。すなわち、試料によってもたらされる位相歪みのインプリントを捕捉する。試料ビームと参照ビームとが小さな角度で干渉した場合、
図1の146と同様の振動するインターフェログラムが、試料によってもたらされた位相歪みに重ね合わされる。いずれの場合も、上述した位相再構成処理を適用することができる。試料ビームと参照ビームとがある角度で干渉する場合、式19/20及び/又は式33を適用することができ、ここで、強度I
1~I
4は、90°の位相オフセットを有する隣接するピクセル又はピクセルのビン上の強度を表す。試料ビームと参照ビームとが平行ビームで干渉される場合、それらの式を適用することができ、ここで強度I
1~I
4は同じピクセル又はピクセルのビンの強度を表すが、可変位相リターダ508の位相遅延を変化させることなどにより、連続的に異なる光学位相遅延で測定される。さらに、参照経路において1つ以上のミラーを移動させて参照経路長を変えることによって、位相関係を変化させることができる。また、1つ以上のミラー、例えば506や510を回転させて干渉の角度を変えることもできる。可変減衰器(図示せず)を試料ビーム及び/又は参照ビームに含めて、試料及び参照ビームの強度を実質的に一致させることができる。
【0101】
図6は、OPTIR光学位相測定のための広視野セットアップの代替実施形態を示す。
図6は、
図1及び
図5に基づいており、同じ数字の符号が使用される場合、
図1/5から関連する説明が適宜適用される。
図6は、広視野直角(quadrature)位相検出のためのマルチカメラ配置を示す。
図6のビーム経路は、参照ビームが参照アームのビームエキスパンダーにおける第2レンズで、集光レンズ508から現れるまでは、
図5と同様に進行する。1/4波長板600が参照アームに挿入され、円偏光参照ビーム602が生成される。このビームは、ビームスプリッタ604(典型的には非偏光ビームスプリッタ)において、試料ビーム514と再合成する。再合成された試料ビームと参照ビームは、ビームスプリッタによって2つの異なる経路606と608に分けられる。これらの経路のそれぞれは偏光ビームスプリッタ610および612であり、これらは合成された参照ビームおよび試料ビームを最大4台のカメラ614、616、618、620に向かう4つの経路に分割する。干渉パターンは、これらの4つのカメラ表面の各々に現れる。1/4波長板600と偏光ビームスプリッタとを配置することにより、各カメラは、実質的に90°離れた異なる位相でインターフェログラムを捕捉することが保証される。カメラフレームは、異なるカメラ間での高い時間相関を確保する同期化フレームグラバ621で同期的に捕捉され得る。同期フレームを捕捉することで、試料経路と参照経路との間の振動や温度ドリフトについての環境に関する懸念が実質的に解消される。すべてのフレームが同時に捕捉されるため、複数のカメラから来る信号を使用して、全体的な位相シフトを容易に測定することができる。定量的位相やIR吸収による差動位相は、前述の方法を使用して測定することができるが、この場合、I
1、I
2、I
3、およびI
4は、4つのカメラ上の一致するピクセルの強度をいい、すなわち、I
1はカメラ1上のピクセル強度に対応し、I
2はカメラ2上の対応するピクセル強度に対応するなどし、カメラの各々は光学位相において90°離れている。このような、微分干渉顕微鏡と共に使用するマルチカメラ直角位相アプローチについては、例えば(1)William C. Warger II, Judith A. Newmark, Bing Zhao, Carol M. WarnerおよびCharles A. DiMarzio「Accurate cell counts in live mouse embryosusing optical quadrature and differential interference contrast microscopy」, Proc. SPIE 6090, Three-Dimensional andMultidimensional Microscopy. Image Acquisition and Processing XIII, 609009 (23February 2006); https://doi.org/10.1117/12.644922および(2)Willie S. Rockward, Anthony L. Thomas, Bing Zhao,およびCharles A. DiMarzio,「Quantitative phase measurements using opticalquadrature microscopy」 Appl. Opt. 47,1684-1696 (2008)に記載されている。これらの両方は参照により援用される。
【0102】
図7は、広視野光学位相ベースOPTIRのためのレンズの代替実施形態を示す。
図7は
図2Aに基づいており、同一の数字の符号が使用される場合、
図2Aに関連する議論が適宜適用される。
図7は、試料ビームおよび参照ビームを2つの経路に分割する代替手段を示す。
図7は、試料202が、プローブビーム200によって読み出される試料中の分子共鳴を励起するIRビーム204によって照明される点で
図2Aと同じである。プローブビームは試料202を通過し、透過光と散乱光が集光レンズ206によって集光される。前と同様、このビームは集光レンズ212(典型的には顕微鏡のチューブレンズ)により拡大される。チューブレンズまたは他の集光レンズから現れるビーム214は、次にビームスプリッタ700に入射する。
図1~2とは異なり、この場合のビームスプリッタ700は、非偏光ビームスプリッタ、例えば単に僅かな角度で傾斜している部分反射鏡とすることができる。ビーム214の一部分702はビームスプリッタ700を透過する一方、別の部分704はビームスプリッタの2倍の角度で方向転換される。ビーム704は、次に、反射器706、典型的には、近接して間隔を置いたビームを分離するために用いられる「D型ミラー」またはピックオフミラーによって反射される。正味の結果は、ビーム702に対して偏った角度でアレンジされたビーム220である。これら2つのビームは、アレイ検出器/カメラ238の表面236で再合成されるまで、
図2Aのビーム218及び220と同様に伝搬する。
図7の実施形態と
図2Aとの間のもうひとつの違いとして、2つのビーム702及び704が偏光によって分離されず、したがって同じ偏光を維持するので、
図7の実施形態は
図2の偏光回転子244を必要としないということである。次いで、上記の様々なアルゴリズムで説明したように、表面236におけるインターフェログラムを分析し、試料のIR吸収に起因する位相の変化を抽出することができる。
【0103】
図8は、試料による赤外線吸収の広視野測定を行うための、動的位相調整を伴う位相差顕微鏡の修正形態を採用した代替実施形態を示している。
図1及び他の前述した図に関連して先に説明したように、赤外線ビーム800は、試料804の領域802を照明するように配置される。位相差顕微鏡は、赤外線照射領域802と少なくとも部分的に重なる試料804の領域を照明するように配置される。具体的には、照明プローブビーム806は、照明プローブ光のリング810を生成する環808を通過する。この光リング810は、次に、集光レンズ812(典型的には顕微鏡コンデンサー)によって集束され、IR照明領域802と少なくとも部分的に重なる、試料804上のプローブ光の集光スポットを形成する。次に、試料804に当たったプローブ光は、2つの経路のうちの1つをとることができる。試料によって偏向されないプローブ光は経路814をたどり、照明光パターンを写し出す光の輪に再び拡大する。これは典型的には、「直接」又は「周囲(surround)」光と呼ばれる。直接/周囲光に加えて、照射光の一部は試料によって広範な角度で散乱される。この散乱光の一部は集光レンズ818(典型的には顕微鏡対物レンズ)によって集光される。レンズ818によって集光された散乱光の円錐は、816とラベル付けされた破線で示されている。従来の位相差顕微鏡では、以下に説明するように、直接/周囲光を散乱光と干渉させるように配置する。透過した直接光814及び散乱光816は、レンズ818(例えば顕微鏡対物レンズ)により平行化されるか又は再集束された後、位相リング824を通過する。位相リング824は概して2つの異なる位相遅延を有する領域に分割される。例えば領域824a及び824cは、1つの遅延値を有することができ、領域824bは第2の遅延値を有することができる。位相遅延における差は概して、直接/周囲光820と位相リング824を通過する散乱光822との間に90°の位相変化を誘導するようにアレンジされる。次いで、直接/周囲光の両方が、集光レンズ826(典型的には顕微鏡チューブレンズ)によって集束されて試料の像830を形成する。この像平面では、位相シフトした直接/周囲光が散乱光と干渉し、試料によって散乱光に導入された位相シフトに応じた輝度コントラストを生成する。例えば、生体細胞を通過し、前述したように細胞と周囲の媒体との指数の違いに起因する約90°の位相遅れが生じている散乱光について検討する。直接光や周辺光が位相リングの薄い部分を通過する場合、その位相は約90°進み、結果として直接光/周辺光と散乱光との間でトータル最大180°の位相シフトが発生する。この180°の位相シフトにより相殺的干渉が起こり、明るい背景に対して細胞の上部が暗いイメージを生成する。細胞の薄い領域は、散乱ビーム上の位相変化が少ないため、相殺的干渉が少なくなり、これらの領域はより明るくなる。なお、イメージ830の明るさは、試料の厚さと単純な関係を有するわけではないことに留意されたい。細胞の非常に薄い領域は明るく、厚い領域は暗くなるが、さらに厚い領域であっても光路差が90°を超えると再び明るくなる可能性がある。これは、背景セクションで述べた位相差顕微鏡のアーチファクトの原因の一つとなるコントラストの反転につながる。これらのコントラスト反転、厚みに対する非線形な感度、及び他のアーチファクトは、カメラセンサが像平面830に配置された場合、赤外線画像及びスペクトルの解釈に重大な問題を引き起こすことになる。具体的には、IR吸収測定の感度は、試料の厚さに複雑な形で依存することになる。そして厚さによっては、IR吸収測定の感度が実際にはゼロになる可能性がある。
図8および以下の説明における残りの光路は、この問題を克服し、光路差に依存しない均一な感度を提供する手段を提供する。
【0104】
この問題とその解決策をより詳しく理解するために、位相差画像における、ある点の明るさについて検討する。ここでは、直接光と散乱光との間の単純な干渉だけを考える。(この単純なモデルから出発することについては後述する。)干渉波形の強度の一般形は次式で与えられる。
【数35】
【0105】
この場合、I
dは直接光の強度を指し、I
sは散乱光の強度であり、φはこれら2つの波の間の相対位相である。さて、位相リング824は2つの波の間に90°の位相差を導入するので、式35は次のように書き換えることができる。
【数36】
【0106】
ここで、φ
sは試料によって誘導される位相差である。(なお、位相差顕微鏡の形態によっては、直接光の位相は進まずに遅れるため、干渉項の符号が変わる)。IR光の吸収による光熱励起の場合、試料位相φ
sは、試料の所定領域の屈折率と厚みに依存する一定のDC項φ
0と、試料によるIR吸収から生じる小さな変化δとを有する。すなわち、次の式となる。
【数37】
【0107】
これを(例えばIRビームがオンの)「ホットフレーム」の式34に挿入すると、次のようになる。
【数38】
【0108】
合成角の式sin(A+B)=sinAcosB+cosAsinBを用いると、次ようになる。
【数39】
【0109】
小さな位相変化δに対して前述の小角度近似を用いると、次のようになる。
【数40】
【0110】
そして、IR照明がない「コールドフレーム」の強度は次のようになる。
【数41】
【0111】
ホットフレームの強度(式40)からコールドフレームの強度(式41)を引くと次のようになる。
【数42】
【0112】
これは、光熱位相変化δについて解くことができる。
【数43】
【0113】
式43は、カメラを像面830に単に配置した場合の問題点を示している。問題は、光熱位相変化δを測定する感度がDC位相φ
0に依存することである。cosφ
0項は、感度が試料の厚さと屈折率とに依存する場合、±1の間で変化し得る。具体的には、DC位相変化φ
0は次式で与えられる。
【数44】
【0114】
ここで、nsは試料の指数、nmは周囲媒体の指数、tsは試料の厚さ、λは照明プローブビームの波長である。前述したように、生体細胞が約90°のDC位相シフトφ0を蓄積している場合、cosφ0項がゼロ付近となり、光熱位相変化の計算に特異点(singularity)が発生する。したがって、他を修正せずにカメラを試料像面830に配置すると、光熱位相変化δに対する感度が非常に不均一になってしまう。
【0115】
これに対処するため、複数の位相値での測定を可能にする可変位相リターダを備えた4fリレーシステムが
図8に含まれている。これにより、DC位相φ
0の任意の値に対して、光熱位相変化δの連続的かつ一貫した測定を可能にする。
【0116】
第1リレー集光レンズ832は、レンズ832の焦点距離に対応する距離に名目上配置されているため、直接/周囲ビームと散乱ビームとを実質的に平行化している。平行化されたビームは、次に、例えば空間光変調器のような位置指定可能な可変位相リターダ836を通過する。環状レターデーションパターンは可変位相リターダ上にプログラムされており、位相リング824における環状リングのアスペクト比を実質的に一致させている(なお位相リング824は省略することもできるし、全ての位相調整は、可変位相リターダ836によって提供され得ることに留意されたい)。そのパターン及び/又は位相遅延振幅は、例えば、可変位相リターダ836の位相遅延素子に対して異なる電圧レベルのパターンを適用することによって、位相コントローラ838によって制御される。可変位相リターダから現れる直接ビーム842及び散乱ビーム840は、今や、φ
0+φ
rに等しい新たな全体DC位相差を有する。ここでφ
rはリターダによって導入される位相変化である。両方のビームは、次に、第2リレー集光レンズ844(4fリレーシステムの第2レンズ)によって再集束され、その後、集束されてカメラ850の表面上に干渉画像848を形成する。なお、4f位相遅延システムは反射でアレンジすることもできる。例えば、位相リターダ836は、反射型空間光変調器、液晶オンシリコン(LCOS)位相リターダとすることができる。この場合、
図8の光路は、例えばV字型形状に折り畳まれることになる。コントローラ852を用いてカメラ850からの画像フレームの取得と位相調整ステップとを同期させてもよい。位相コントローラ838及びコントローラ852はまた、実施例によっては、単一の制御ユニットに統合されてもよい。実施例として、任意の他の作動可能な固定パターンマスク(例えばLCDや物理的障害物など)を使用することができ、又はプローブビーム806によって使用される光の約1/8波長以上の光路長を選択的に付加する任意の他の構造を使用することができる。
【0117】
次に、カメラ850は、典型的には90°離れた2つ以上の光学位相遅延で画像を記録する。例えば、ホットフレームが0、90、180、及び270度の遅延(レターデーション)で撮影される場合、結果として生じるピクセル強度I
h1、I
h2、I
h3、及びI
h4は、次の式によって与えられる。
【数45】
【数46】
【数47】
【数48】
【0118】
これを簡略化すると、次のようになる。
【数50】
【数51】
【数52】
【数53】
【0119】
同様に、90°位相オフセットでのコールドフレーム(IRオフ)のピクセル強度は、以下のように書ける。
【数54】
【数55】
【数56】
【数57】
【0120】
式50から式54を引くと、次のようになる。
【数58】
【0121】
【0122】
ここで、δ
1項の添え字は,第一位相の遅延を0°として計算されたことを示す。式51から式55を差し引くと次のようになる。
【数60】
【0123】
【0124】
ここで、δ
2項の添え字は、第2位相の遅延を90°として計算されたことを示す。式59と式61は、直流位相φ
0に対する従属性が異なり、それぞれの式を単独で使用すると特異点を持つことになる。位相項φ
0をなくすことは可能であるから、特異点をなくすことができる。0°と90°の位相オフセットでの測定が、十分に短い時間間隔でかつ同じ条件下で行われた場合、2つの光熱差振幅は同じであり、すなわちδ
1=δ
2=δとなる。(この条件は、0/90°位相での測定が、測定系の任意の大きなドリフトに比べて短い時間内に行われれば満たされ得る)。式59と式61を並べ替えると、次のようになる。
【数62】
【数63】
【0125】
式62、63で恒等式、cos
2φ
0+sin
2φ=1を用いると、以下のようになる。
【数64】
【0126】
これを順番に解くことで、次の式が得られる。
【数65】
【0127】
係数1/√(IdIs)は単なるDCスケーリング係数であり,状況によってはこれを測定する必要はない。例えば、測定系の強度が比較的安定しており、位置に対する相対的なIR吸収スペクトルを測定したい場合、90°離れた2つの位相(例えば(Ih1-Ic1)と(Ih2-Ic2))でホットフレームからコールドフレームを引いた量を測定するだけで十分であり得る。なお、式65は二乗平均平方根(RMS)和の形をとっており、実際には相(0°)と直角(90°)の光熱差画像のRMS和である。そして、これをIR源の複数の波長で繰り返すことができる。式65は重要な結果である。なぜなら、光学位相φ0やId項、Is項を測定する必要なく、試料のIR吸収スペクトルを示す信号を迅速に計算可能とするためである。この場合、より定量的なδの測定を行うことが望ましく、式54~57の組み合わせを用いて1/√(IdIs)項を解くことができる。Id、Is、およびφ0の3つの未知数があるので、式54~57の少なくとも3つからのピクセル値を使用すれば、すべての未知数について解くことが可能である。一例を以下に式66~76で説明する。
【0128】
式56から式54を、式57から式55を引くと、次のようになる。
【数66】
【数67】
【0129】
式66を式67で割ると、次のようになる。
【数68】
【0130】
【0131】
式54と式56を足すと、次のようになる。
【数70】
および
【数71】
【0132】
式71を式69に代入すると、以下のようになる。
【数72】
【0133】
なお、この中間結果は、必要であればDC位相の定量的な測定も可能にすることに留意されたい。
【0134】
式66は、次のように再整理することができる。
【数73】
【0135】
式72を式73に代入すると、次のようになる。
【数74】
【0136】
恒等式
を用いると、式71は次のように書き換えられる。
【数75】
【0137】
【0138】
これを式65に代入すると次のようになる。
【数76】
【0139】
なお、光熱差δは式37を反転して求めることも可能であることに留意されたい。
【数78】
【0140】
これは、試料にIR光が照射されているときの光学位相φsと、IR光がオフのときの位相φ0(すなわちホットイメージフレームとコールドイメージフレーム)を測定する必要がある。位相値を抽出するためには、干渉計の2つ以上の位相オフセット(例えば0°と90°)についてホットイメージとコールドイメージを測定する必要があり、例えば、逆正接またはatan2関数を用いて位相値を抽出することができる。しかしながら、式62~65で概説したスキームの利点としては、DC位相値φ0またはφsの計算を必要としないことである。式65の単純なRMS和計算は概して逆正接よりはるかに速く計算することができ、測定時間を短くすることができる。
【0141】
図9は、試料が反射モード構成で撮像されるように落射照明スキームを使用する代替実施形態を示している。このアレンジメントは、IRビーム及びプローブビームの少なくとも一方に対して不透明である試料にとって望ましい。
図9は
図1に基づいており、同一の数値の符号が使用されている場合、
図1に関する議論が適宜適用される。なお、
図9に関連して説明する落射照明スキームは、
図5~
図8の実施形態にも同様に適用できることに留意されたい。他の図と同様に、赤外線源100は、試料110の領域108を照明する赤外線放射のビーム102を生成し、試料のIR吸収領域における分子共鳴を励起し、プローブビームによってマッピングされる局所加熱を引き起こす。プローブビーム源101は、プローブ放射のビーム103を放出し、この場合、ビームスプリッタ900に入射される。プローブビーム103の少なくとも一部は、次に集束レンズ109に入射される。この場合、集束レンズ109は、通常、顕微鏡対物レンズであり、このエピ構成では、照明と集光の両方に使用されることになる。一実施形態として、プローブ放射103は、集束レンズ109の後側焦点面に集束され、IR照明領域108に少なくとも部分的に重なる広い照明領域を試料110上に生成する。試料から反射・散乱された光は、集束レンズ109(あるいは図示しない別の集光レンズ)によって再集光される。集束レンズ109によって集光される場合、集められた光はビームスプリッタ900に戻る。ビームスプリッタ900では、反射・散乱光の少なくとも一部111が任意のミラー112に向けられ、その光は、
図1および
図2に関連して説明したように共通の経路干渉計セットアップを通過する。光学スループットを改善するために、ビームスプリッタ900は1/4波長板(図示せず)と組み合わせて使用される偏光ビームスプリッタであってもよく、高効率で入射ビーム及び出射ビームを分離することができる。前と同様に、試料ビームと参照ビームの干渉により、カメラ132の表面138で集光されたピクセル強度を用いて、広い領域にわたる試料によるIR吸収を示す信号を生成することができる。この落射照明/反射モード方式は、
図5及び
図6のマッハツェンダーアプローチ、
図7のビームスプリッタ/Dミラーアプローチ、及び
図8の位相コントラストアプローチに適用することもできる。
図7の場合、ビームスプリッタ900は、位相環状体808と集束レンズ812との間に挿入されることになる。
【0142】
図10は、位相コントラスト検出スキームを使用する代替の実施形態を示す。
図10は、
図8に基づいており、同一の数値の符号が使用される場合、
図8に関する議論が適宜適用される。
図8と同様に、
図10の実施形態は、環状体808から(例えば位相コントラストコンデンサなどから)の光のリング810で始まる。
図8と同様に、試料804に当たる光は、「直接」又は「周囲」光のための経路814と、散乱光のための経路816との2つの経路のうちの1つを取ることができる。両方の経路の光は対物レンズ818によって集光される。従来の位相差顕微鏡では、対物レンズ818の後側焦点面に位相リングが配置される。本実施形態では、4f光学リレーシステム(例えば集束レンズ826及び832を有する)を用いて、対物レンズ818の後側焦点面の画像を、可変位相干渉計が配置される新たな場所に中継する。具体的には、4fリレーシステムを出た光ビーム1000は、ビームスプリッタ1001に当たり、2つの異なる経路1002と1003に分岐する。ビームスプリッタ1001として板状のビームスプリッタが示されているが、代わりに立方体のビームスプリッタ(例えば偏光ビームスプリッタキューブ)を用いてもよい。その光は、光学マスク(optical mask)1004及び1005に向かう経路上にある。光学マスク1004及び1005は、1004a及び1005aにおいてそれらのおおよその位置での断面で示される相補的な反射パターンを有し、1004b及び1005bにおいては正面から見た図で別々に示されている。断面で示される反射パターンの見かけ上の厚さは、
図10において明確にするために非常に誇張されている。反射コーティングは、入射光ビーム1002及び1003の大部分を反射するのに十分な厚さであることのみを要する。マスク1005上の反射パターン1005aは、位相差対物レンズの後側焦点面で従来使用されているものと同様の形状を有する(すなわち主として「直接」光または非散乱光と相互作用するマスク)。パターン1004bを有するマスク1004は、主に散乱光と相互作用する、実質的に相補的なマスクである。図示されているように、マスクパターン1004a及び1005aの黒の円形領域は高反射性である領域を表し、白い領域は、高い透過性又は吸収性のいずれかである。
【0143】
ここでの重要な違いとして、従来の位相差顕微鏡では、対物レンズの後側焦点面にある位相マスクによって、固定の光学位相シフト(典型的には約90°)を導入する点である。しかしながら、
図10の配置によって、直接光と散乱光との間に任意の光学位相シフトを生成し、かつ、迅速に調整できるようにしている。これは、経路1002及び1003上の光がビームスプリッタ1001を通して反射され、光路1007上で再合成された後、集束レンズ844でカメラ850の表面上に集束されるときに達成される。このようにして、カメラ850の表面上にインターフェログラム848が現れる。ここでインターフェログラムは、経路1002上に反射した光と経路1003上に反射した光との光干渉パターンを備え、これは光路1002及び1003上の光路長の差によってもたらされる2経路間の任意の光学位相オフセットを伴う。位相調整器は、カメラ表面での光干渉パターンの位相を変化させるために使用される。例えば、アクチュエータ1006を用いて、光学マスク1005及び/又は光学マスク1004の相対位置を調整することができる。アクチュエータは、例えば圧電アクチュエータ、ボイスコイルアクチュエータ、又はマスク1004に対してマスク1005を正確に相対運動させることのできる任意の他のアクチュエータとすることができる。必要に応じて位相コントローラ838を用いてアクチュエータ1006を所望の経路長差、ひいては所望の光学位相シフトに調整するための制御信号を生成することができる。位相コントローラ838によって、1以上の電圧、電流、又は他の制御信号を生成し、所望の位相シフトを生成することができる。コントローラ852を用いて、位相調整ステップとカメラ850からの画像(イメージ)フレームの取得とを同時に行ってもよい。また実施形態によっては、位相コントローラ838とコントローラ852とを単一の制御ユニットに統合させてもよい。その後、カメラ850での画像フレームは、
図8に関する説明に従って、IR光のオン及びオフの条件下で複数の光学位相で取得することができる。とりわけ、この場合、光学位相を極めて迅速に調整することができる。例えば圧電トランスデューサーは、特に小さな作動範囲しか必要としない場合、kHzから数百kHz、あるいはMHzの範囲の作動周波数で利用可能である。90°の位相シフトを達成するためには、反射マスク1004または1005の一方をλ/8だけ移動させることのみ要する。ここで、λは位相差検出に用いられる光の波長である。例えば532nmの波長の場合、90°の位相シフトには66.5nmの移動が必要なだけである。これは、例えばThorlabs社のモデルPA2ABピエゾアクチュエータを用いれば容易に達成可能であり、これは700nmの範囲と1.35MHzの共振周波数を有するものである。その他にも多くの適切な圧電アクチュエータが利用可能である。なお、干渉計の性能を最適化するために、図示されていない様々な追加の光学素子を含むことが望ましい場合があることに留意されたい。例えば、偏光ビームスプリッタを使用する場合、半波長板及び4分の1波長板を使用することで、異なる干渉計アームからカメラへの光の透過を最適化することができる。また、直接光1003の経路に減衰器を配置して、直接光1003の経路上と散乱光経路上とでカメラが受け取る光をよりよく一致させることが望ましい場合がある。(分散光は通常、実質的には直接光未満である。)プレート型ビームスプリッタの場合、光が通過するビームスプリッタの厚みが、他方の干渉計アームよりも一方の干渉計アームで数倍厚いという事実を補正するため、干渉計アームの一方に補正板を含むことが望ましい場合がある。なお、補正板と減衰器の両方の役割を果たす単一の光学素子を実装することも可能である。
【0144】
図10の実施形態の高い作動速度には具体的な利益がある。すなわち、2以上の光学位相での測定がほぼ同時に起こり得るように、あるいはより具体的には、干渉計の2つのアーム間のドリフトや振動が最小限となるように十分に短い時間だけ分離されるように、この位相差検出の干渉計の光学位相を極めて迅速に調整可能にできる。
図11は、2つの光学位相での光熱測定を立て続けに達成することができる例示的なタイミング線図である。トレース1100は、カメラフレームの取得を開始するためのトリガーパルスを表す。トレース1102は、試料を照明するためのIR光をオン・オフするためのゲートパルスを示す。(実際には、赤外レーザーは通常、典型的なカメラフレームレートよりもはるかに速いレートでパルスを発することができるので、ゲート上のIRは多くのサブパルスを含むことができる。例えば、高速度カメラは1秒あたり2000フレームで動作するが、量子カスケードレーザーは100kHzまたはMHzの周波数でパルス化されてもよい。このように、IR源は、カメラホットフレームあたり多くのパルスを提供することができる)。トレース1104は、
図10の干渉計の光学位相を、例えば0°と90°のような2つの連続する相対位相φ
1及びφ
2の間で行き来する制御信号を表すが、代替の実施形態として、異なる相対位相が使用され得る。2つの光学位相における2つの測定値間の時間差は非常に短くすることができる。例えば、1秒あたり2000フレームのレートで、カメラ850で画像を取得することを考える。ここで、トレース1102に示されるように、IR光はフレーム1つおきにゲートがオン・オフされる。この場合、光学位相は、例えば1000Hzなどの、各ホット/コールドイメージ対の後に調整されることとなる。したがって、連続する光学位相ステップ間の測定は1msecとなり、その間の干渉計のドリフト/振動は最小限度となる。圧電アクチュエータなどの高速アクチュエータを使用すると、このような短い時間スケールで、例えば100msec未満、10msec未満、あるいは1msec未満で所望の位相調整を達成することが可能となる。このアプローチは、典型的なピクセル化された空間光変調器よりもさらに速い時間スケールで位相調整をすることができ、また実質的に低コストであるため有利である。また、位相オフセットとIRオン/オフのゲーティングとを反転させることも可能で、例えば、カメラ画像1つおきに位相を変えて、次に各2つの位相測定後にIRオン/オフのゲーティングを行うことも可能である。この後者の方式では、2つの異なる位相間に500μ秒を達成し、干渉計のドリフトや振動に対する耐性をさらに高めることができる。(どちらの方法が望ましいかは、プローブ光源/顕微鏡と干渉計との相対的な安定性による)。
【0145】
光学効率
以下のセクションでは、高フレームレートで高SNR測定を可能にするための重要な要素である光学効率について説明する。
図1、2、5~9で説明した実施形態は、42%~88%の範囲の光学スループットをアレンジする光学的に効率的なデザインを採用している。この効率の鍵は、試料ビームと参照ビームを分離するために非回折ビームスプリッタを使用することである。例えば、
図1~2の実施形態では、偏光ビームスプリッタプリズム(例えば、ロション又はウォラストンの回折格子)を採用している。
図1~2の実施形態では、光学部品表面での反射損失及び空間フィルタを通したスループットを考慮して、試料及び参照アームのそれぞれで約44%(合計88%)の光学スループットを達成することができる。(なお、散乱光の集光・透過効率は試料に大きく依存するため、この推定値ではこれを考慮していない)。
図5の構成の光学スループットは、合計で約42%の光学スループットを達成することができる。光学スループットが低い主な理由は、ビームスプリッタ516を使用することにある。ビームスプリッタ516は下方向に反射/伝達される光のおよそ半分を廃棄するものであるから、カメラ132に当たらない。しかしながら、第2のカメラをビームスプリッタ516の下方に配置することができ、したがって、代替経路上の光を捕捉し、合計の光学効率を84%にすることができる。
【0146】
本明細書で説明した様々な構成のための光学スループットは、下の表にまとめられている。これは、ミウ タマミツ、ケイイチロウ トダ、リョウイチ ホリサキ、及びタクロウ イデグチによる「Quantitative Phase Imaging with molecular vibrational sensitivity」Opt. Lett. 44, 3729-3732 (2019), https://doi.org/10.1364/OL.44.003729に説明される回折ビーム分離アプローチによって達成されるものよりもかなり良い結果である。JamesE. Harvey, Richard N. Pfistererによる「Understanding diffraction grating behavior: including conicaldiffraction and Rayleigh anomalies from transmission grating」 Opt. Eng. 58(8) 087105 (2019年8月28日)https://doi.org/10.1117/1.OE.58.8.087105に記載されているロンキー回折格子の伝達効率の分析に見られるように、試料ビームと参照ビーム用の光を回折するためにロンキールーリングを使用することは、高光学スループットにはつながらない。例えば、Harveyの文献の
図15及び表2を参照されたい。回折ビームの分離を利用することで、光の約25%のみが参照経路の回折次数0で、約10%が+1次で伝わるため、トータルの光学効率は35%未満である。(50%の光は回折格子によって完全にブロックされ、さらに10%の光は-1次で廃棄される。実際には、その他の光学的損失により、光学スループットは最良の場合で33%程度となる。このアプローチは、試料と相互作用する入射光の10%のみが検出器に到達することを考慮すると、光学効率の観点から特に不利であるが、非回折ビームスプリッタを用いた本明細書に記載の実施形態では、試料と相互作用する光の80%超が検出器に入射する。
【0147】
【0148】
本明細書に記載の実施形態は例示的なものである。修正例、再配置、代替プロセス、代替要素などがこれらの実施形態に対してなされてもよく、それでも本明細書に記載の教示に含まれる。本明細書に記載の1つまたは複数のステップ、プロセス、または方法は、適切にプログラムされた1つまたは複数の処理やデジタル装置によって実行され得る。
【0149】
実施形態に応じて、本明細書に記載の方法ステップのいずれかの特定の行為、イベント、または機能は、異なる順序で実行することができるとともに、追加、併合、または完全に省略することができる(例えば、記載した行為またはイベントのすべてが、アルゴリズムの実行に必要というわけではない)。さらに、特定の実施形態では、行為またはイベントは順次ではなく同時に実行することができる。
【0150】
本明細書に開示された実施形態に関連して説明した様々な例示的な論理ブロック、光学素子、制御部品、および方法ステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組み合わせとして実装することができる。ハードウェアとソフトウェアのこの互換性を明確に説明するために、さまざまな例示的な構成要素、ブロック、モジュール、およびステップを、概してそれらの機能の観点から上で説明した。このような機能がハードウェアとして実装されるかソフトウェアとして実装されるかは、システム全体に課せられる特定の用途と設計上の制約による。説明した機能は、特定の用途ごとにさまざまな方法で実装できるが、そのような実装の決定は、本開示の範囲からの逸脱の原因になるものと解釈されるべきではない。
【0151】
本明細書に開示される実施形態に関連して説明した様々な例示的な論理ブロックおよびモジュールは、特定の命令で構成されるプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラム可能なロジックデバイス、個別のゲートまたはトランジスタロジック、個別のハードウェア部品、または本明細書に記載の機能を実行するように設計されたそれらの任意の組み合わせなどの機械によって実装または実行することができる。プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは、コントローラ、マイクロコントローラー、またはステートマシン、それらの組み合わせなどであり得る。プロセッサはまた、コンピューティング装置の組み合わせ、例えば、DSPとマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、または任意の他のそのような構成として実装することができる。
【0152】
本明細書に開示される実施形態に関連して説明した方法、プロセス、またはアルゴリズムの要素は、ハードウェア、プロセッサによって実行されるソフトウェアモジュール、またはその2つの組み合わせで直接具体化することができる。ソフトウェアモジュールは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、または当技術分野で知られている他の形式のコンピュータ可読記憶媒体に常駐することができる。例示的な記憶媒体は、プロセッサが記憶媒体から情報を読み取り、記憶媒体に情報を書き込むことができるように、プロセッサに合成することができる。別の方法として、記憶媒体をプロセッサに統合することもできる。プロセッサと記憶媒体はASICに常駐できる。ソフトウェアモジュールは、ハードウェアプロセッサにコンピュータが実行可能な命令を実行させるコンピュータ実行可能命令を含むことができる。
【0153】
とりわけ、「できる」、「かもしれない」、「してもよい」、「例えば」などの本明細書で使用される条件付き文言(Conditional language)は、特に明記しない限り、または使用した文脈内で理解されない限り、概して特定の実施形態が特定の特徴、要素や状態を含むが、他の実施形態はそれらを含まない旨を伝えることを意図している。したがって、そのような条件付き文言は概して、特徴、要素や状態が1つまたは複数の実施形態にとって何らかの形で必要であること、または1つまたは複数の実施形態が、作成者(author)の入力またはプロンプティングの有無にかかわらず、これらの特徴、要素や状態が任意の特定の実施形態に含まれるかどうか、または任意の特定の実施形態において実行されるかどうかを決定するためのロジックを必ずしも含むことを意味しない。「備える」、「含む」、「有する」、「関与する」などの用語は同義語であり、制限のない方法(open-ended fashion)で包括的に使用され、追加の部品、機能、行為、操作などを除外するものではない。同様に「または」という用語は、その包括的な意味で(排他的な意味ではなく)使用されるため、例えば部品のリストを接続するために使用する場合、「または」という用語はリスト内の部品の1つ、一部、またはすべてを意味する。
【0154】
「X、YまたはZの少なくとも1つ」というフレーズなどの選言的言語(Disjunctive language)は、特に明記しない限り、項目、用語などがX、YまたはZのいずれか、またはそれらの任意の組み合わせ(例えば、X、Yおよび/またはZ)であり得るということを示すために概して用いられるものとして文脈で理解されたい。したがって、そのような選言的言語は、概して特定の実施形態が、それぞれに対してXの少なくとも1つ、Yの少なくとも1つ、またはZの少なくとも1つが存在することを必要とすることを意図するものでなく、意図するべきではない。
【0155】
特に明記されていない限り、「a」や「an」などの冠詞は概して1つ以上の説明した項目を含むと解釈されるべきである。したがって「するように構成された装置」などのフレーズは、記載した装置を1つ以上含むことを意図している。そのような1つ以上の記載された装置はまた、規定した記載を実行するように集合的に構成され得る。例えば、「記載A、BおよびCを実行するように構成されたプロセッサ」は、記載BおよびCを実行するように構成された第2のプロセッサと共に動作して記載Aを実行するように構成された第1のプロセッサを含むことができる。
【0156】
上記の文書の参照による援用は、本明細書の明示的な開示に反する主題が援用されないように限定される。上記の文書の参照によるいかなる援用も、文書に含まれるいかなる請求項も本明細書に参照により援用されないように、さらに限定される。上記の文書の参照によるいかなる援用も、文書に提供されたいかなる定義も、本明細書に明示的に含まれない限り、本明細書に参照により援用されないように、さらに制限される。
【0157】
請求項の解釈のために、35U.S.C.第112条第6項の規定は、請求項に「means for」または「step for」という特定の用語が記載されていない限り、適用されないことが明示的に意図されている。
【0158】
上記の詳細な説明は、例示的な実施形態に適用されるような新規の特徴を示し、説明し、指摘しているが、説明した装置または方法の形態および詳細において様々な省略、置換、および変更は、本開示の主旨から逸脱することなく行うことができるということは理解されよう。認識されるように、一部の特徴を他の特徴とは別に使用または実施できるため、本明細書に記載の特徴および利点のすべてを提供するわけではない形態内で本明細書に記載の特定の実施形態を具体化することができる。クレームの意味および均等な範囲におけるすべての変更は、それらの範囲内に含まれるものとする。