IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士電機株式会社の特許一覧 ▶ 株式会社巴川製紙所の特許一覧

<>
  • 特許-はんだ材および焼結体 図1
  • 特許-はんだ材および焼結体 図2
  • 特許-はんだ材および焼結体 図3
  • 特許-はんだ材および焼結体 図4
  • 特許-はんだ材および焼結体 図5
  • 特許-はんだ材および焼結体 図6
  • 特許-はんだ材および焼結体 図7
  • 特許-はんだ材および焼結体 図8
  • 特許-はんだ材および焼結体 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-24
(45)【発行日】2024-07-02
(54)【発明の名称】はんだ材および焼結体
(51)【国際特許分類】
   H01L 21/52 20060101AFI20240625BHJP
   H01L 21/60 20060101ALI20240625BHJP
   H01L 23/40 20060101ALI20240625BHJP
   B23K 35/26 20060101ALN20240625BHJP
   C22C 12/00 20060101ALN20240625BHJP
   C22C 13/00 20060101ALN20240625BHJP
   C22C 13/02 20060101ALN20240625BHJP
【FI】
H01L21/52 B
H01L21/60 321E
H01L23/40 F
B23K35/26 310A
B23K35/26 310C
C22C12/00
C22C13/00
C22C13/02
【請求項の数】 8
(21)【出願番号】P 2021182888
(22)【出願日】2021-11-09
(62)【分割の表示】P 2019513270の分割
【原出願日】2018-03-14
(65)【公開番号】P2022024016
(43)【公開日】2022-02-08
【審査請求日】2021-11-09
【審判番号】
【審判請求日】2023-05-19
(31)【優先権主張番号】P 2017082415
(32)【優先日】2017-04-18
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(73)【特許権者】
【識別番号】000153591
【氏名又は名称】株式会社巴川コーポレーション
(74)【代理人】
【識別番号】100104190
【弁理士】
【氏名又は名称】酒井 昭徳
(72)【発明者】
【氏名】齊藤 隆
(72)【発明者】
【氏名】谷口 克己
(72)【発明者】
【氏名】望月 英司
【合議体】
【審判長】瀧内 健夫
【審判官】松永 稔
【審判官】中野 浩昌
(56)【参考文献】
【文献】特開2004-174522(JP,A)
【文献】特開2002-301588(JP,A)
【文献】特開2010-179336(JP,A)
【文献】特開2008-004651(JP,A)
【文献】特開2014-175454(JP,A)
【文献】特開2014-117794(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/52, H01L23/40, B23K1/00, B23K35/26, C22C12/00, C22C13/00
(57)【特許請求の範囲】
【請求項1】
半導体素子を積層基板に搭載した組立構造を有する半導体装置に用いられるはんだ材であって、
前記はんだ材は、金属繊維を含み、前記金属繊維間がはんだで充填されて成り、
前記はんだ材は、前記半導体素子と前記積層基板上の電極パターンとを接合する接合層であり、
前記接合層において、前記はんだと前記金属繊維の総量に対して、前記金属繊維の占有率は20~30重量%であり、
前記金属繊維は焼結され、互いに接点を有することを特徴とするはんだ材。
【請求項2】
前記組立構造は、前記積層基板を搭載した放熱板をさらに有し、前記はんだ材は、前記積層基板と前記放熱板とを接合する接合層であることを特徴とする請求項1に記載のはんだ材。
【請求項3】
前記金属繊維の直径は、前記はんだ材の厚さ以下であることを特徴とする請求項1または2に記載のはんだ材。
【請求項4】
前記はんだ材は、前記金属繊維が2層以上折り重ねられていることを特徴とする請求項1~3のいずれか一項に記載のはんだ材。
【請求項5】
前記金属繊維は銅繊維であり、その直径は20μm以下であることを特徴とする請求項1~4のいずれか一項に記載のはんだ材。
【請求項6】
前記金属繊維の長さは50μm以上で10mm以下であることを特徴とする請求項1~5のいずれか一項に記載のはんだ材。
【請求項7】
前記金属繊維は、Niめっきがされていることを特徴とする請求項1~6のいずれか一項に記載のはんだ材。
【請求項8】
前記はんだは、Sn-Sb系はんだ、またはSn-Ag系はんだであることを特徴とする請求項1~7のいずれか一項に記載のはんだ材
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、はんだ材および焼結体に関する。
【背景技術】
【0002】
パワー半導体モジュールは、1つまたは複数のパワー半導体チップを内蔵して変換接続の一部または全体を構成し、かつ、パワー半導体チップと積層基板または金属基板との間が電気的に絶縁された構造を持つパワー半導体デバイスである。パワー半導体モジュールは、産業用途としてエレベータなどのモータ駆動制御インバータなどに使われている。さらに近年では、車載用モータ駆動制御インバータに広く用いられるようになっている。車載用インバータでは、燃費向上のため小型・軽量化や、エンジンルーム内の駆動用モータ近傍に配置されることから、高温動作での長期信頼性が求められる。
【0003】
従来のパワー半導体モジュールの構造を、一般的なIGBT(Insulated Gate Bipolar Transistor)パワー半導体モジュール構造を例にとって説明する。
【0004】
図9は、従来構造のパワー半導体モジュールの構成を示す断面図である。図9に示すように、パワー半導体モジュールは、パワー半導体チップ1と、絶縁基板2と、電極パターン3と、絶縁基板2の裏面に配置される導電性板9、はんだ材14と、放熱板5と、冷却体7と、金属ワイヤ10と、外部端子11と、端子ケース12と、封止材料13と、を備える。
【0005】
パワー半導体チップ1は、IGBTあるいはダイオードチップ等の半導体素子である。絶縁基板2の両面には、電極パターン3と導電性板9が設けられている。電極パターン3上には、接合材であるはんだ材14にてパワー半導体チップ1が接合される。裏面の導電性板9上には、はんだ材14にて放熱板5が接合される。放熱板5は、放熱グリス6を介して放熱フィンが設けられた冷却体7に接合される。なお、絶縁基板2の少なくとも片面に電極パターン3が設けられた基板を積層基板という。また、パワー半導体チップ1の上面には、電気接続用の配線として金属ワイヤ10が電極パターン3との間を接続している。電極パターン3の上面には、外部接続用の金属外部端子11が設けられている。また、パワー半導体チップ1の絶縁保護のため、端子ケース12内には低弾性率のシリコンゲル等の封止材料13が充填され、蓋(不図示)にてパッケージされている。
【0006】
ここで、車載用パワー半導体モジュールは、産業用パワー半導体モジュールに比べ、設置空間の制約から小型、軽量化が求められる。また、モータを駆動するための出力パワー密度が高くなるため、運転時における半導体チップ温度が高くなるとともに、高温動作時の長期信頼性の要求も高まってきている。このため、高温動作・長期信頼性を有したパワー半導体モジュール構造が要求されてきている。
【0007】
上記構成のパワー半導体モジュールは、放熱フィンが設けられた冷却体7が取り付けられ、通電に伴うパワー半導体チップ1の発生熱を放熱フィンに伝熱させて系外に放熱するようにしている。冷却体7の表面と放熱板5の表面との間が密着していないと両者間の接触熱抵抗が増して放熱性が低下する。
【0008】
そこで、従来の半導体装置では、高い放熱性能を確保するために放熱板5および冷却体7の表面平坦度、表面粗さができるだけ小さくなるように仕上げ、さらに冷却体7の表面に放熱グリス6等のサーマルコンパウンドを塗布するなどして放熱板5と冷却体7間の接触熱抵抗を低く抑えるようにしている。
【0009】
また、パワー半導体チップ1と電極パターン3との間、および、導電性板9と放熱板5との間を、はんだ材14を用いて接合している。例えば、パワー半導体チップ1の下の接合には、Pb(鉛)フリーはんだを、フラックス含有したペーストはんだ、または、板はんだで接合している。
【0010】
半導体モジュールに用いるPbフリーはんだとして、半導体チップのダイボンドなどの温度階層接続に用いられる、Cu(銅)からなる金属網が2枚のはんだ箔によって挟まれて圧着された構成からなる複合はんだがある(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0011】
【文献】特開2004-174522号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
ここで、パワー半導体チップ1の下の接合に用いられるはんだ材14の熱伝導率は40~60W/m・Kである。この値は、銅の熱伝導率390W/m・Kと比較すると低い値である。このため、通電に伴うパワー半導体チップ1の発生熱を電極パターン3に十分伝熱できず、発生熱が放熱フィンに到達できないため、パワー半導体チップ1を十分に冷却することができないという課題がある。また、はんだ材14の熱伝導率が低いため、はんだ材14自身の温度が上昇し、はんだ材14中にクラックが発生して熱抵抗が上昇し、放熱性能がさらに低下するという課題がある。
【0013】
この発明は、上述した従来技術による問題点を解消するため、パワー半導体チップの発生熱を効率よく放熱でき、はんだにクラックが発生して熱抵抗が上昇することを抑制できるはんだ材および焼結体を提供することを目的とする。
【課題を解決するための手段】
【0014】
上述した課題を解決し、本発明の目的を達成するため、この発明にかかるはんだ材は、次の特徴を有する。半導体素子を積層基板に搭載した組立構造を有する半導体装置に用いられるはんだ材であって、前記はんだ材は、金属繊維を含み、前記金属繊維間がはんだで充填されて成り、前記はんだ材は、前記半導体素子と前記積層基板上の電極パターンとを接合する接合層である。前記接合層において、前記はんだと前記金属繊維の総量に対して、前記金属繊維の占有率は20~30重量%であり、前記金属繊維は焼結され、互いに接点を有する。
【0015】
また、この発明にかかるはんだ材は、上述した発明において、前記組立構造は、前記積層基板を搭載した放熱板をさらに有し、前記はんだ材は、前記積層基板と前記放熱板とを接合する接合層であることを特徴とする。
【0016】
また、この発明にかかるはんだ材は、上述した発明において、前記金属繊維の直径は、前記はんだ材の厚さ以下であることを特徴とする。
【0017】
また、この発明にかかるはんだ材は、上述した発明において、前記はんだ材は、前記金属繊維が2層以上折り重ねられていることを特徴とする。
【0018】
また、この発明にかかるはんだ材は、上述した発明において、前記金属繊維は銅繊維であり、その直径は20μm以下であることを特徴とする。
【0019】
また、この発明にかかるはんだ材は、上述した発明において、前記金属繊維の長さは50μm以上で10mm以下であることを特徴とする。
【0020】
また、この発明にかかるはんだ材は、上述した発明において、前記金属繊維は、Niめっきがされていることを特徴とする。
【0021】
また、この発明にかかるはんだ材は、上述した発明において、前記はんだは、Sn-Sb系はんだ、またはSn-Ag系はんだであることを特徴とする。
【0025】
また、この発明にかかる半導体装置は、上述した発明において、前記金属繊維は、互いに接点を有することを特徴とする。
【0026】
また、この発明にかかる半導体装置は、上述した発明において、前記はんだは銅を含まないことを特徴とする。
【0027】
また、この発明にかかる半導体装置は、上述した発明において、前記はんだは、Sn-Sb系はんだにNiまたはCoを含有したもの、Sn-Bi系はんだにNiまたはCoを含有したもの、または、Sn-Ag系はんだにNiまたはCoを含有したものであることを特徴とする。
【0028】
また、この発明にかかる半導体装置は、上述した発明において、前記金属繊維は、Niめっきがされていることを特徴とする。
【0029】
また、この発明にかかる半導体装置は、上述した発明において、前記金属繊維は、Coめっきがされていることを特徴とする。
【0030】
また、この発明にかかる半導体装置は、上述した発明において、前記金属繊維間は、AgまたはCuの焼結材で充填されていることを特徴とする。
【0031】
また、この発明にかかる半導体装置は、上述した発明において、前記はんだ材は、前記金属繊維が2層以上折り重ねられていることを特徴とする。
【0032】
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、金属繊維を含み、前記金属繊維間がはんだで充填されているはんだ材を用いて、積層基板上の電極パターンと半導体素子とを接合して、前記積層基板に前記半導体素子を搭載する工程を行う。前記積層基板を積層組立体に組み立てる工程を行う。次に、前記半導体素子と、前記積層基板上の電極パターンとを、電気的に接続する工程を行う。次に、前記積層組立体に、樹脂ケースを組み合わせる工程を行う。
【0033】
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記電気的に接続する工程では、前記はんだ材を用いて、前記半導体素子と、前記積層基板上の電極パターンとを、電気的に接続することを特徴とする。
【0034】
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記組み立てる工程では、前記積層基板を、前記はんだ材を用いて、前記積層組立体の放熱板に接合することを特徴とする。
【0035】
上述した発明によれば、パワー半導体素子と電極パターンとを接合する接合部は、銅繊維を含み、銅繊維間がはんだで充填されている銅繊維含有はんだ材である。これにより、熱伝導率が、フラックスを含有したペーストはんだや板はんだより向上するため、パワー半導体チップの発生熱を効率よく放熱できる。また、はんだの中に銅繊維が含まれているため、はんだ中にクラックが発生しても、クラックが迂回して進展するため、はんだの寿命が向上する。さらに、はんだの中に銅繊維が含まれているため、フィレットが発生することを防止でき、はんだが脇にはみ出ることが少なくなる。また、銅繊維が互いに接点を有し熱パスを形成しているため、はんだにクラックが発生しても熱抵抗の上昇を抑制できる。また、銅繊維部材に、はんだをしみこませて板はんだとすることで、従来と同様の取り扱いができ、従来よりもはんだ厚さを均一に制御することが可能になる。
【発明の効果】
【0036】
本発明にかかるはんだ材および焼結体によれば、パワー半導体チップの発生熱を効率よく放熱でき、はんだにクラックが発生して熱抵抗が上昇することを抑制できるという効果を奏する。
【図面の簡単な説明】
【0037】
図1図1は、実施の形態にかかるパワー半導体モジュールの構成を示す断面図である。
図2図2は、パワー半導体チップと電極パターンを接合するはんだ材の詳細を示す断面図である(その1)。
図3図3は、パワー半導体チップと電極パターンを接合するはんだ材の詳細を示す断面図である(その2)。
図4図4は、実施の形態にかかるはんだのパワーサイクル試験の結果を示す表である。
図5図5は、はんだ厚と等価熱伝導率との関係を示すグラフである。
図6図6は、銅占有率と等価熱伝導率との関係を示すグラフである。
図7図7は、銅繊維含有はんだ材の実施例を示す断面図である。
図8図8は、銅繊維含有はんだ材の実施例の接合部の断面図である。
図9図9は、従来構造のパワー半導体モジュールの構成を示す断面図である。
【発明を実施するための形態】
【0038】
以下に添付図面を参照して、この発明にかかるはんだ材および焼結体の好適な実施の形態を詳細に説明する。図1は、実施の形態にかかるパワー半導体モジュールの構成を示す断面図である。
【0039】
(実施の形態)
図1に示すように、パワー半導体モジュールは、パワー半導体チップ1と、絶縁基板2と、電極パターン3と、接合部4と、放熱板5と、リードフレーム配線8と、絶縁基板2の裏面に配置される導電性板9、を備える。ここでは、従来構造のパワー半導体モジュールと同様のため、冷却体7、外部端子11、端子ケース12、封止材料13等の記載は省略する。図1では、リードフレーム配線8を用いて、パワー半導体チップ1と電極パターン3とを接続しているが、従来構造と同様に金属ワイヤ10を用いて接続してもよい。
【0040】
パワー半導体チップ1は、IGBTあるいはダイオードチップ等の半導体素子である。絶縁性を確保するセラミック基板等の絶縁基板2のおもて面(パワー半導体チップ1側)および裏面(放熱板5側)には、銅(Cu)等の導電性の板などからなる電極パターン3等が設けられている。なお、絶縁基板2の少なくとも片面に電極パターン3が設けられた基板を積層基板とする。電極パターン3上には、接合部4にてパワー半導体チップ1が接合される。裏面の導電性板9上には、接合部4にて放熱板5が接合される。放熱板5は、放熱フィンが設けられた冷却体(不図示)に接合される。なお、積層基板のおもて面の銅などの導電性板を電極パターンといい、裏面の銅等の導電性板を導電性板という。また、パワー半導体チップ1の上面(接合部4と接する面と反対側の面)には、電気接続用の配線としてリードフレーム配線8の一端が接合部4にて接合される。リードフレーム配線8の他端は、電極パターン3と接合される。また、上述の箇所以外においても、従来の半導体モジュールにおいてはんだ材が用いられる箇所において、本発明の接合部は用いられる。
【0041】
接合部4は、金属繊維部材を含んだ金属繊維含有はんだ材により形成される。金属繊維含有はんだ材は、繊維状の金属(以下、金属繊維と称する)を含み、その金属繊維が互いに接点を有し熱パスを形成し、さらに、金属繊維間がはんだで充填されている。金属としては、熱伝導率の高い金属、例えば銅であることが好ましい。以下、繊維状の銅を銅繊維と称し、接合部4を銅繊維含有はんだ材4と称する。以降は銅繊維について説明する。なお、ここで、繊維状とは、細長い形状、つまり直径に対して長さがきわめて大きいものをいう。実施の形態では、1本の銅繊維の直径が20μm以下であることが好ましい。また、銅繊維の長さは50μm以上が好ましく、1mm以上がより好ましい。前記長さであると、銅繊維間の接触がより多くなり、3次元的な構造になり易いからである。また、長さは銅繊維部材の長さ程度である10mm以下であることが好ましい。
【0042】
また、接点とは、銅繊維含有はんだ材4の銅繊維が、他の銅繊維と接触している点のことである。銅繊維部材は、複数の銅繊維により形成される。銅繊維部材は、織物のように銅繊維が織られた布状でもよく、網状またはメッシュ状に形成されても良い。これらの、布状または網状の銅繊維が複数枚積層されてもよい。また、複数の繊維がランダムに集積され積層されてシート状に形成されていてもよい。さらに、積層されたシート状を加圧し、銅繊維同士を圧着してもよい。また、これらはシート状に成形されていることが好ましい。シート状の銅繊維部材の厚さは、50μmから200μmが好ましい。50μmより厚くすると所定の接合強度を得られるためである。また、200μm以上にすると熱抵抗自体が増加するとともに、ボイドが発生し、熱伝導率が低下し、熱抵抗を増加させてしまう。なお、銅繊維間は、はんだで充填するのではなく、銀(Ag)またはCuの焼結材で充填してもよい。
【0043】
このように、実施の形態の銅繊維含有はんだ材4は、互いに接点を有し熱パスを形成した銅繊維を含み、球状の銅を含んだはんだ材とは異なる。なお、熱パスとは、パワー半導体チップ等の発生熱を伝熱するための経路である。球状の銅を含んだはんだ材は、銅繊維に比べて熱パスが少なく、熱抵抗は大きく、接合強度もはんだ自体と変わらない。なお、単に板状あるいは箔状の銅などの金属をはんだ中に配置しても、銅繊維部材含有はんだのような接合強度や熱伝導率は得られない。銅板等をはんだ中に配置しても、所定の接合強度を得るためには、はんだ層自体の厚さは変わらないからである。つまり、熱抵抗は変わらない。3次元的な銅繊維間にはんだが含浸することにより、熱抵抗は低下し、さらに接合強度も向上することができる。
【0044】
銅繊維含有はんだ材4は、銅繊維を織り込み、焼結させて繊維間が互いに接点を有するよう折り重ねられている銅繊維部材を形成し、銅繊維部材に、はんだをしみこませて形成したはんだ材でもよい。予め、はんだをしみこませることで、板はんだとして取り扱うことができる。具体的には、予め、銅繊維部材にはんだを含浸させた銅繊維含有はんだを形成し、それを被接合材間に配置し、加熱し接合することができる。また、半導体モジュールを組み立てる際に、はんだと銅繊維部材を被接合材の間に配置して、加熱し接合してもよい。ここで、銅繊維は2層以上折り重ねられていることが好ましい。2層以上折り重ねられているとは、厚み方向(パワー半導体チップ1から放熱板5への方向)に互いに接点を有する銅繊維が2本以上存在することである。図1の例では、銅繊維は3層に折り重ねられている。ここで、銅が繊維状で折り重なっているために、メッシュ状に加工したものより、銅占有率が高く、例えば、銅繊維含有はんだ材4では、はんだと銅繊維部材の総量に対して、銅繊維部材の銅占有率は22~30重量%である。銅繊維部材の銅占有率は高い方が熱伝導性が優れるが、はんだの含浸量が少ないと接合性が悪くなる。従って、様々な形態の銅繊維部材の銅占有率は5~50重量%が好ましく、更に好ましくは、20~30重量%である。
【0045】
このように、銅繊維部材がはんだ中に配置されることにより、銅繊維含有はんだ材4の熱伝導率は向上し、発生熱を効率よく放熱することができる。また、はんだの中に銅繊維が含まれているため、はんだ中にクラックが発生しても、クラックが迂回して進展するため、接合強度は向上する。また、銅繊維自体に強度があるため、接合強度は高い。ひいては、はんだの寿命が向上する。また、上記のシート状の銅繊維部材を用いることにより、銅繊維含有はんだ材4の厚さを均一にすることができる。従来のはんだ材のみの接合の場合、パワー半導体チップ1をはんだ材上に配置する際に位置ずれをおこしたり、加熱接合時にはんだ材が流れてしまったりし、はんだ材1014の厚さを均一にすることが難しかった。しかし、銅繊維部材を導入することで、上記の不具合が解消され、銅繊維含有はんだ材4の厚さを均一にすることができる。
【0046】
また、銅繊維含有はんだ材4は、パワー半導体チップ1の発生熱を効率よく拡散するために、パワー半導体チップ1の下、つまり、パワー半導体チップ1と電極パターン3との接合層に使用することが好ましい。また、銅繊維含有はんだ材4は、導電性板9と放熱板5との接合層、パワー半導体チップ1とリードフレーム配線8との接合層に使用してもよい。
【0047】
パワー半導体モジュールの製造方法では、まず、銅繊維含有はんだ材4を用いて、パワー半導体チップ1を積層基板に接合することで、積層基板にパワー半導体チップ1を実装する。ここで、銅繊維含有はんだ材4は、パワー半導体モジュールの製造より前に、銅繊維部材に、はんだをしみこませて作成しておいてもよい。また、パワー半導体チップ1を積層基板に接合する際、銅繊維部材とはんだを重ねて、例えば、銅繊維部材をはんだで挟むようにして、銅繊維含有はんだ材4を作成するようにしてもよい。
【0048】
次に、パワー半導体チップ1と、絶縁基板2上に設けられた電極パターン3とを、リードフレーム配線8で電気的に接続する。次に、銅繊維含有はんだ材4を用いて、これらを放熱板5に接合して、パワー半導体チップ1、積層基板および放熱板5からなる積層組立体を組み立てる。この積層組立体に樹脂ケースをシリコンなどの接着剤で接着する。なお、金属ワイヤで、パワー半導体チップ1と、絶縁基板2上に設けられた電極パターン3と、を電気的に接続してもよい。
【0049】
次に、金属ワイヤで電極パターン3と金属外部端子11との間を接続し、樹脂ケース内にエポキシなどの硬質樹脂等の封止材料を充填する。これにより、図1に示す実施の形態にかかるパワー半導体モジュールが完成する。なお、封止材料がエポキシ樹脂等の封止材料でない場合、封止材料が外に漏れないようにするため、蓋を取り付けるようにする。
【0050】
次に、銅繊維含有はんだ材4について説明する。パワー半導体チップの裏面のほぼ全面に銅繊維含有はんだ材4が配置される。図2図3は、パワー半導体チップと電極パターンを接合するはんだ材の詳細を示す断面図である。図2に示すように、銅繊維含有はんだ材4の内部に銅繊維部材20を中央部に配置される。また、銅繊維を含まないはんだ23をパワー半導体チップ1や電極パターン3側に配置してもよい。この場合のそれぞれのはんだ23の厚さは、25μmから100μmが好ましい。この範囲にすることで、接合強度とボイドの低減を両立できるからである。これは、パワー半導体チップ1の発生熱が、銅繊維部材20が配置された中央部から放熱されるためである。ここで、銅繊維部材20を銅繊維含有はんだ材4の端部から所定の距離dだけ離すことで、ボイドを低減し、接合性も向上させることができる。銅繊維部材20は銅繊維が複雑に折れ曲がり、互いに交差した構造で、空乏が存在する。加熱接合する際に、はんだは、銅繊維部材20中に含浸するが、前記空乏近傍でボイドになりやすい。しかし、所定の距離dだけ離すことで、ボイドが排出されやすく、結果としてボイドが低減されると推定される。距離dは、パワー半導体チップ1のサイズに関係なく、0.1mm以上1mm以下であることが好ましい。より好ましくは。0.2mm以上である。これは、0.1mmより短いと、ボイドが生じ、電極パターン3との接合性が悪化し、制御も困難になるためである。
【0051】
また、図3に示すように、銅繊維含有はんだ材4の内部に銅繊維部材20ではんだ23を挟んで配置してもよい。この場合、銅繊維部材の層の間に所定の厚さtのはんだ23の層がある。この形態では、パワー半導体チップ1や電極パターン3側に銅繊維部材20が配置されるため熱伝導性が向上する。例えば、図3の形態は、はんだ23がパワー半導体チップ1や電極パターン3側に存在する図2の形態よりも熱伝導性が向上する。また、この構造とすることで、銅繊維部材20近傍でボイドが生じにくくなる。中央部の厚さtは、5μm以上20μm以下であることが好ましい。20μm以上だと熱抵抗が増し、5μm以下だとボイドが生じやすいためである。また、厚さtは、銅繊維含有はんだ材4の厚さに対する比率が、5%から20%であることが好ましい。
【0052】
また、銅繊維含有はんだ材のはんだにおいて、特定の組成のはんだを用いることで、接合強度および熱物性の効果を生じさせることができる。例えば、銅繊維含有はんだ材4のはんだでは、銅繊維により伝熱するため、銅繊維の銅および銅合金の拡散を抑制するCuフリーのはんだが好ましい。例えば、銅繊維の銅がスズ(Sn)と合金化して拡散すると伝熱する部分が減少し、熱伝導率が下がるため、銅および銅合金の拡散を抑制できるニッケル(Ni)、コバルト(Co)をはんだに入れることが好ましい。なお、Cuフリーとは、不純物程度以外にCuを含まないということである。
【0053】
具体的なはんだの組成として、Sn-Sb(アンチモン)系のはんだにNi、Coを入れたSn-(5~10)Sb-(0.1~1)Ni、Coのはんだ(実施例1)を用いることが好ましい。ここでの単位は、重量%(wt%)である。例えば、実施例1では、Sbは、はんだ中に5~10重量%含まれる。また、Ni、Coは、同様の効果を有するため、Niのみを入れてもよいし、Coのみを入れてもよい。さらに、Ni、Coは、はんだ中に0.2~0.5重量%含まれるのがより好ましい。
【0054】
また、Sn-Bi(ビスマス)系のはんだにNi、Coを入れたSn-(40~70)Bi-(0.1~1)Ni、Coのはんだ(実施例2)を用いることも好ましい。この組成のはんだは、脆いため通常ではパワー半導体チップ1の接合に用いることはできないが、実施の形態のように銅繊維部材と一緒に用いることで十分な強度を持ち、パワー半導体チップ1の接合に用いることができる。また、Ni、Coに関しては、Sn-Sb系のはんだと同様である。
【0055】
また、Sn-Ag(銀)系のはんだにNi、Coを入れたSn-(1~6)Ag-(0.1~1)Ni、Coのはんだ(実施例3)を用いることも好ましい。また、Ni、Coに関しては、Sn-Sb系のはんだと同様である。
【0056】
また、上記でははんだにNi、Coを入れることにより、銅繊維の銅および銅合金の拡散を抑制していたが、銅繊維にNiめっきまたはCoめっきをすることにより、同様の効果を得ることができる。
【0057】
図4は、実施の形態にかかるはんだのパワーサイクル試験の結果を示す表である。上記の実施例1から実施例3のはんだに加え、比較例として、Sn-Sb-Cu-Ni系のはんだも試験した。また、実施例1の場合は、Ni、Coが、はんだ中に0.4重量%含まれる場合も試験した。パワーサイクル試験は、電源のオン/オフを繰り返して、熱抵抗が初期より20%以上上昇した回数を測定した。
【0058】
図4に示すように、実施例1から実施例3の場合、電源のオン/オフを10万回以上繰り返しても、熱抵抗が初期より20%以上上昇しなかった。特に、Ni、Coが、はんだ中に0.4重量%含まれる場合は、20万回以上繰り返しても、熱抵抗が初期より20%以上上昇しなかった。これに対して、比較例の場合、5万回以下の繰り返しで熱抵抗が初期より20%以上上昇した。これにより、実施例1から実施例3のはんだを用いることで、接合強度および熱物性の効果を生じさせることがわかった。
【0059】
次に、本発明の効果を実際の例により確かめた。まず、銅繊維部材20に、はんだを上下から挟んで形成する際のはんだの厚さを決定する。図5は、はんだ厚と等価熱伝導率との関係を示すグラフである。横軸は、上下のはんだの厚さの合計であり、単位はμmであり、縦軸は等価熱伝導率であり、単位は、W/m・Kである。ここで、等価熱伝導率とは、複数の材質で構成される部品を、1つのブロックとみなして与える熱伝導率のことである。なお、銅繊維含有はんだ材4の端部から銅繊維部材の端までの距離dは0.5mmとした。
【0060】
図5は、はんだの熱伝導率を40W/m・K、銅の熱伝導率を390W/m・Kとして、銅繊維部材の銅占有率を22%、銅繊維部材の厚さを100μmにした場合の計算結果である。図5に示すように、等価熱伝導率yと上下のはんだの厚さの合計xとの関係は、
y=113.04x-0.151
で表される。例えば、上側のはんだの厚さ、銅繊維部材の厚さ、下側のはんだの厚さをそれぞれ、10μm、100μm、10μmとした場合、等価熱伝導率は約80W/m・Kとなり、はんだ単体の40W/m・Kの約2倍となる。また、それぞれ20μm、100μm、20μmとした場合、等価熱伝導率は約72W/m・Kとなる。
【0061】
図6は、銅占有率と等価熱伝導率との関係を示すグラフである。横軸は、銅占有率であり、単位は重量%であり、縦軸は等価熱伝導率であり、単位は、W/m・Kである。ここで、銅占有率とは、銅繊維部材に含まれる銅の重量%であり、残りは、はんだの重量である。図6において、●の直線は、上側のはんだの厚さ、銅繊維部材の厚さ、下側のはんだの厚さをそれぞれ、10μm、100μm、10μmとした場合の銅占有率xと等価熱伝導率yとの関係であり、この場合、
y=3.25x+6.6667
で表される。また、○の直線は、それぞれ、50μm、100μm、50μmとした場合の銅占有率xと等価熱伝導率yとの関係であり、この場合、
y=1.95x+20
で表される。図6より、●の直線の場合で、銅占有率を22重量%にすると等価熱伝導率は約80W/m・Kとなることがわかる。
【0062】
以上の結果に基づいて、厚さ100μmの銅繊維部材20に、それぞれ厚さ10μmのSn-Sb系のはんだを上下から挟んで形成した結果を示す。図7は、銅繊維含有はんだ材4の実施例を示す断面図である。図7に示すように、銅繊維含有はんだ材4は、銅繊維間が互いに接点を有するよう折り重ねられている銅繊維部22と、銅繊維部材20の間にはんだがしみこんだはんだ浸漬部21とからなる。
【0063】
図8は、銅繊維含有はんだ材の実施例の接合部の断面図である。図8において、右図は左図の中央を拡大したものである。図8に示すように、銅繊維部材20は互いに接点を持ち、銅繊維部材20間がはんだ23で充填されていることがわかる。このように作成した銅繊維含有はんだ材の熱伝導率は、計算上で72.2W/m・Kである。レーザーフラッシュ法により実測した結果、Sn-Sb系のはんだのみでは、熱伝導率が約40W/m・Kであるところ、銅繊維含有はんだ材では、熱伝導率が75.8W/m・Kまで向上したことを確認した。ここで、レーザーフラッシュ法とは、断熱真空中に置かれた平板状試料の表面を均一にパルス加熱し、表面から裏面への1次元の熱拡散現象を観測することにより、熱拡散率を求める方法である。
【0064】
以上、説明したように、実施の形態にかかるはんだ材および焼結体によれば、パワー半導体素子と電極パターンとを接合する接合部は、銅繊維を含み、銅繊維間がはんだで充填されている銅繊維含有はんだ材である。これにより、熱伝導率が、フラックスを含有したペーストはんだや板はんだより向上するため、パワー半導体チップの発生熱を効率よく放熱できる。また、はんだの中に銅繊維が含まれているため、はんだ中にクラックが発生しても、クラックが迂回して進展するため、はんだの寿命が向上する。さらに、はんだの中に銅繊維が含まれているため、フィレットが発生することを防止でき、はんだが脇にはみ出ることが少なくなる。また、銅繊維が互いに接点を有し熱パスを形成しているため、はんだにクラックが発生しても熱抵抗の上昇を抑制できる。また、銅繊維部材に、はんだをしみこませて板はんだとすることで、従来と同様の取り扱いができ、従来よりもはんだ厚さを均一に制御することが可能になる。
【0065】
また、銅繊維含有はんだ材は、内部の銅繊維を中央部に配置し、内部の銅繊維がパワー半導体素子および電極パターンから離れて配置され、銅繊維含有はんだ材の端部には、銅繊維が配置されない。これにより、パワー半導体チップの発生熱を、銅繊維が配置された中央部から放熱し、ボイドを低減し、接合性も向上させることができる。
【0066】
また、銅繊維含有はんだ材は、銅繊維ではんだを挟んで接合し、パワー半導体チップや電極パターン側に銅繊維が配置される。これにより、熱伝導性がさらに向上する。銅繊維部材ではんだを挟んだ構造にした場合、はんだで銅繊維部材を挟んだ上記の結果に比べて、熱伝導率は約5%向上した。なお、銅繊維部材およびはんだを同じ厚さとした。また、銅繊維近傍でボイドが生じにくくなる。
【0067】
また、銅繊維含有はんだ材に含まれるはんだの組成は、Sn-(5~10)Sb-(0.1~1)Ni、Co、Sn-(40~70)Sb-(0.1~1)Ni、Co、または、Sn-(1~6)Sb-(0.1~1)Ni、Coである。Ni、Coにより銅繊維の銅および銅合金の拡散を抑制することができ、熱伝導率が下がることを抑制できる。さらに、これらのはんだを用いることで、接合強度および熱物性の効果を生じさせることができる。
【0068】
また、銅繊維にNiめっきまたはCoめっきをしてもよい。Ni、Coにより銅繊維の銅および銅合金の拡散を抑制することができ、熱伝導率が下がることを抑制できる。
【産業上の利用可能性】
【0069】
以上のように、本発明にかかるはんだ材および焼結体は、インバータなどの電力変換装置や種々の産業用機械などの電源装置や自動車のイグナイタなどに使用されるパワー半導体装置に有用である。
【符号の説明】
【0070】
1 パワー半導体チップ
2 絶縁基板
3 電極パターン
4 接合部(銅繊維含有はんだ材)
5 放熱板
6 放熱グリス
7 冷却体
8 リードフレーム配線
9 導電性板
10 金属ワイヤ
11 外部端子
12 端子ケース
13 封止材料
14 はんだ材
20 銅繊維部材
21 はんだ浸漬部
22 銅繊維部
23 はんだ
図1
図2
図3
図4
図5
図6
図7
図8
図9