(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-25
(45)【発行日】2024-07-03
(54)【発明の名称】窒化ホウ素ナノチューブの製造方法および製造装置
(51)【国際特許分類】
C01B 21/064 20060101AFI20240626BHJP
B01J 23/745 20060101ALI20240626BHJP
【FI】
C01B21/064 G
B01J23/745 M
(21)【出願番号】P 2021039571
(22)【出願日】2021-03-11
【審査請求日】2023-11-16
(31)【優先権主張番号】P 2020044670
(32)【優先日】2020-03-13
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】899000068
【氏名又は名称】学校法人早稲田大学
(74)【代理人】
【識別番号】110002675
【氏名又は名称】弁理士法人ドライト国際特許事務所
(72)【発明者】
【氏名】野田 優
(72)【発明者】
【氏名】沢田 哲郎
(72)【発明者】
【氏名】清 智弘
(72)【発明者】
【氏名】高橋 宏夢
(72)【発明者】
【氏名】蛭子 蒼太
【審査官】佐藤 慶明
(56)【参考文献】
【文献】中国特許出願公開第102849694(CN,A)
【文献】中国特許出願公開第1587030(CN,A)
【文献】特開昭63-095113(JP,A)
【文献】韓国公開特許第10-2019-0103693(KR,A)
【文献】Bikramjeet SINGH et al.,“Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy”,Scientific Reports,2016年10月19日,Vol. 6,No. 1,35535, p.1-10,DOI: 10.1038/srep35535
【文献】Roland Yingjie TAY et al.,“Facile Synthesis of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Forests by Template-Assisted Chemical Vapor Deposition”,Chemistry of Materials,2015年09月29日,Vol. 27,No. 20,p.7156-7163,DOI: 10.1021/acs.chemmater.5b03300
(58)【調査した分野】(Int.Cl.,DB名)
C01B 21/064
B01J 21/00 - 38/74
JSTPlus/JST7580/JSTChina(JDreamIII)
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
反応器に収容されている触媒に対しアンモニアガスとホウ酸蒸気とを供給し、窒化ホウ素ナノチューブを合成する窒化ホウ素ナノチューブの製造方法。
【請求項2】
ホウ酸を80℃以上500℃以下の温度で加熱し、前記ホウ酸から前記ホウ酸蒸気を生成する請求項1に記載の窒化ホウ素ナノチューブの製造方法。
【請求項3】
前記ホウ酸を不活性ガス中で加熱する請求項2に記載の窒化ホウ素ナノチューブの製造方法。
【請求項4】
前記触媒を加熱する温度を600℃以上1400℃以下とする請求項1~3のいずれか1項に記載の窒化ホウ素ナノチューブの製造方法。
【請求項5】
ホウ酸又はホウ酸アンモニウムを含む溶液のミストを前記反応器に供給して、前記反応器内で前記ホウ酸蒸気を生成する請求項1に記載の窒化ホウ素ナノチューブの製造方法。
【請求項6】
ホウ酸又はホウ酸アンモニウムを含む粉末を前記反応器に供給して、前記反応器内で前記ホウ酸蒸気を生成する請求項1に記載の窒化ホウ素ナノチューブの製造方法。
【請求項7】
600℃以上1400℃以下に加熱可能な反応器と、
前記反応器にアンモニアガスを供給するアンモニア供給部と、
前記反応器にホウ酸蒸気を供給するホウ酸供給部と、
前記反応器に触媒を供給する触媒供給機構とを備える窒化ホウ素ナノチューブの製造装置。
【請求項8】
前記ホウ酸供給部は、ホウ酸又はホウ酸アンモニウムを含む溶液の霧化供給機構である請求項7に記載の窒化ホウ素ナノチューブの製造装置。
【請求項9】
前記ホウ酸供給部は、ホウ酸又はホウ酸アンモニウムを含む粉末の供給機構である請求項7に記載の窒化ホウ素ナノチューブの製造装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、窒化ホウ素ナノチューブの製造方法および製造装置に関する。
【背景技術】
【0002】
カーボンナノチューブ(CNT;carbon nanotube)や窒化ホウ素ナノチューブ(BNNT;boron nitride nanotube)は、優れた耐熱性、軽量性、柔軟性、自立性、高比表面積を有する1次元ナノ材料である。導電性材料としてのCNTと、絶縁性材料としてのBNNTとを組み合わせて用いることで、電子デバイス等の設計の自由度を高めることができる。CNTについては過去に膨大な数の研究がなされているが、BNNTについては研究が遅れている状況である。近年、固体のホウ素原料を用い、数1000℃以上の高温プロセスにより合成したBNNTが市販されている。このような高温プロセスを用いたBNNTの製造方法では、BNNTにホウ素(B)の粒子や窒化ホウ素(BN)の粒子が多量に混入し、高純度のBNNTが得られないという問題があった。また、安価に大量に生産できないという問題もあった。
【0003】
触媒を用いたCVD(chemical vapor deposition)法は、原理的には高純度のBNNTが得られるため、BNNTの製造方法として期待できるが、現状では安価で安全なホウ素原料が報告されていないため実用化に至っていない。
【0004】
非特許文献1には、基板上に合成したCNTの垂直配向膜を鋳型(テンプレート)として窒化ホウ素を堆積した後、CNTを加熱して除去することにより、BNNTを合成する技術が開示されている。この方法では、予めCNTを合成し、さらにBNNT合成後にCNTを除去する必要があり、工程が非常に複雑である。また、ホウ酸(H3BO3)を用いているが、ホウ酸は300℃で加熱して供給されるため、ホウ酸が分解し脱水することにより生成される酸化ホウ素(B2O3)が実質的なホウ素原料であると考えられる。
【0005】
非特許文献2には、湿式化学法を用いて作製した前駆体を反応器に収容し、1200℃のアンモニア(NH3)ガス気流中で前駆体を熱分解させることにより、BNNTを合成する技術が開示されている。前駆体は、水溶液中でホウ酸とエチレンジアミン(C2H8N2)とを反応させたものを、触媒原料としての硝酸鉄(Fe(NO3)3)の水溶液と反応させ、乾燥することにより作製している。
【0006】
非特許文献3には、ジボラン(B2H6)とアンモニアとを用いてBNNTを合成する技術、ボラジン(B3N3H6)を用いてBNNTを合成する技術等が開示されている。
【0007】
特許文献1には、ホウ素原料と窒素原料と触媒からBNNTを製造する方法が開示されている。
【先行技術文献】
【特許文献】
【0008】
【非特許文献】
【0009】
【文献】R.Y. Tay, et al., Chemistry of Materials 27, 7156 (2015).
【文献】J. Wu, et al., Ceramics International 43, 5145 (2017).
【文献】P. Ahmad, et al., RSC Advances 5, 35116 (2015).
【発明の概要】
【発明が解決しようとする課題】
【0010】
非特許文献1に開示されている技術はCNTを予め合成するプロセスが必要であり、非特許文献2に開示されている技術は前駆体を予め作製するプロセスが必要であり、BNNTを大量に合成するには不向きである。また、非特許文献2に開示されている技術は、ホウ素原料と触媒との混合物である前駆体を用いているため、BNNTの直径や層数等の構造を制御することが難しいという問題もある。非特許文献3に記載されている技術も、ホウ素原料であるジボランやボラジンは、毒性、安全性、コストのいずれかに問題があり、BNNTの量産には不向きである。
【0011】
そこで本発明は、高純度のBNNTを安全かつ安価に大量に合成できる窒化ホウ素ナノチューブの製造方法および製造装置を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明に係る窒化ホウ素ナノチューブの製造方法は、反応器に収容されている触媒に対しアンモニアガスとホウ酸蒸気とを供給し、BNNTを合成する。
【0013】
本発明に係る窒化ホウ素ナノチューブの製造装置は、600℃以上1400℃以下に加熱可能な反応器と、前記反応器にアンモニアガスを供給するアンモニア供給部と、前記反応器にホウ酸蒸気を供給するホウ酸供給部と、前記反応器に触媒を供給する触媒供給機構とを備える。
【発明の効果】
【0014】
本発明によれば、触媒、窒素原料としてのアンモニアガス、及びホウ素原料としてのホウ酸蒸気が、それぞれ個別に反応器へ供給される。窒素原料とホウ素原料とが気体の状態で触媒に供給されるので、BNNTにホウ素の粒子や窒化ホウ素の粒子等の不純物が含まれない。アンモニアガスとホウ酸蒸気とは、いずれも安価で安全な原料である。
【0015】
反応器に収容されている触媒に対しアンモニアガスとホウ酸蒸気とを供給することにより、高純度のBNNTを安全かつ安価に大量に合成できる。
【図面の簡単な説明】
【0016】
【
図1】実施例1のBNNTの製造方法に使用するBNNT製造装置の概略図である。
【
図2】実施例1のBNNT製造装置で製造したBNNTを示すSEM像である。
【
図3】実施例2のBNNTの製造方法に使用するBNNT製造装置の概略図である。
【
図4】実施例2のBNNT製造装置で製造したBNNTを示すSEM像である。
【
図5】触媒を加熱する温度を900℃として製造したBNNTを示すSEM像である。
【
図6】触媒を加熱する温度を950℃として製造したBNNTを示すSEM像である。
【
図7】触媒を加熱する温度を1000℃として製造したBNNTを示すSEM像である。
【
図8】実施例3のBNNTの製造方法に使用するBNNT製造装置の概略図である。
【
図9】ホウ酸を加熱する温度を500℃として製造したBNNTを示すSEM像である。
【
図10】ホウ酸を加熱する温度を430℃として製造したBNNTを示すSEM像である。
【
図11】ホウ酸を加熱する温度を260℃として製造したBNNTを示すSEM像である。
【
図12】実施例4のBNNTの製造方法に使用するBNNT製造装置の概略図である。
【
図13】実施例4のBNNT製造装置で製造したBNNTを示すSEM像である。
【
図14】実施例5のBNNTの製造方法に使用するBNNT製造装置の概略図である。
【
図15】実施例5のBNNT製造装置で製造したBNNTを示すSEM像である。
【発明を実施するための形態】
【0017】
本発明の窒化ホウ素ナノチューブ(BNNT)の製造方法は、反応器に収容されている触媒に対しアンモニアガスとホウ酸蒸気とを供給し、窒化ホウ素ナノチューブを合成するものである。BNNTの製造方法として、CVD法を用いる。触媒の存在下でアンモニアガスとホウ酸蒸気とを反応させることにより、触媒上にBNNTを合成及び成長させることができる。BNNTは、優れた耐熱性、軽量性、柔軟性、自立性、透明性、絶縁性及び熱伝導性を有し、高比表面積、高機械的強度を有するため、例えば、割れないガラス、高耐熱電池セパレータ、絶縁性熱界面材料等、多様な応用が期待できる。
【0018】
触媒は、BNNTの合成及び成長を促進するためのものである。触媒は、反応器の内部に収容され、反応器に設けられたヒータにより加熱される。触媒としては、カーボンナノチューブ(CNT)の製造にも使用できる金属の粒子(触媒粒子ともいう)を用いることができる。例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)等の金属元素を含む触媒が用いられる。触媒粒子の粒径を調整することにより、BNNTの直径を制御することができる。触媒を反応器に供給する方法は特に限定されない。例えば、スパッタリング法を用いて基板上に金属の膜を形成し、基板を反応器の内部に設置して熱処理することにより、反応器内で金属の膜から触媒粒子を形成してもよい。触媒粒子が設けられた基板を反応器に供してもよい。基板は例えばグラファイトやシリコン、セラミックスから構成される。基板を用いずに、触媒粒子を反応器内に供してもよい。
【0019】
アンモニアガスは、触媒に窒素(N)を供給するための窒素原料として用いられる。アンモニアガスは、例えば、キャリアガスと混合した状態で触媒に供給される。キャリアガスとしては、アルゴン(Ar)ガス、窒素ガス等の不活性ガスや水素(H2)ガスが用いられる。
【0020】
ホウ酸蒸気は、触媒にホウ素(B)を供給するためのホウ素原料として用いられる。ホウ酸蒸気は、例えば、キャリアガスと混合した状態で触媒に供給される。ホウ酸蒸気のキャリアガスとしては、アルゴンガス、窒素ガス等の不活性ガスや水素ガスが用いられる。
【0021】
ホウ酸蒸気は、ホウ酸を加熱することにより生成される。例えば、粉末の形態のホウ酸を加熱し、固体状態から昇華させることにより、または溶融状態から蒸発させることにより、ホウ酸蒸気を生成することができる。ホウ酸粉末の粒径は、特に限定されず、例えば直径1μm以上1000μm以下としてもよい。
【0022】
ホウ酸からホウ酸蒸気を生成する。ホウ酸を80℃以上500℃以下の温度で加熱し、ホウ酸からホウ酸蒸気を生成することが好ましい。ホウ酸を加熱する温度は、80℃以上250℃以下がより好ましく、80℃以上168℃以下が一層好ましく、80℃以上120℃以下が特に好ましい。理由を以下に説明する。
【0023】
ホウ酸の融点は169℃である。ホウ酸を80℃以上168℃以下の範囲内で加熱することにより、ホウ酸を溶融させずに、表面積の大きい粉末状態に保ったまま、昇華を促進することができる。ホウ酸を80℃以上120℃以下の範囲内で加熱することにより、ホウ酸の脱水による変性を防ぐことができ、原料を長期間安定して利用することができる。ホウ酸は、融点(169℃)付近の温度で加熱されると、一部が昇華してホウ酸蒸気となり、一部が溶融して蒸発しホウ酸蒸気となり、一部が分解し脱水して酸化ホウ素となる。酸化ホウ素の生成量が増加すると、ホウ酸蒸気の生成に寄与するホウ酸が減少する。ホウ酸の加熱温度が高すぎると、ホウ酸の昇華・蒸発よりも脱水が優先的に生じ、酸化ホウ素の生成が促進され、ホウ酸蒸気の生成量が低下する。ホウ酸を80℃以上250℃以下の範囲内で加熱することにより、酸化ホウ素の生成を抑制し、かつ、ホウ酸の昇華・蒸発を促進することができる。ホウ酸を250℃以上500℃以下の範囲内で加熱することにより、酸化ホウ素の生成を伴うが、ホウ酸の蒸発速度を高めることができる。酸化ホウ素の生成を抑制するためにホウ酸の加熱温度を低くしすぎると、ホウ酸が昇華・蒸発し難くなり、ホウ酸蒸気の生成量が低下する。
【0024】
ホウ酸は、アンモニアを含有しない雰囲気中で加熱することが好ましい。アンモニアを含有する雰囲気中(例えばアンモニアガスの気流中)でホウ酸を加熱した場合は、ホウ酸とアンモニアとが反応し、ホウ酸アンモニウム(BH12N3O3)が生成される。ホウ酸粉末の表面がホウ酸アンモニウムでコーティングされると、ホウ酸粉末の内部に残存するホウ酸の昇華・蒸発が抑制され、ホウ酸蒸気の生成量が低下する。アンモニアを含有しない雰囲気中でホウ酸を加熱することにより、ホウ酸アンモニウムの生成を防止することができる。ホウ酸は、不活性ガス中で加熱することが好ましい。
【0025】
触媒を加熱する温度は、1400℃以下であることが好ましい。触媒の加熱温度が低いほど、触媒を収容する反応器の材料や触媒粒子を担持させる基板の材料の選択の自由度を拡げることができる。また、高温加熱を可能とする加熱装置等を必要としないので、製造コストを低減できる。触媒の温度は、1200℃以下がより好ましく、1000℃以下が特に好ましい。また、触媒を加熱する温度が低すぎると触媒の失活等によりBNNTの合成及び成長が阻害されるので、触媒の温度は600℃以上であることが好ましい。
【0026】
触媒に対し、アンモニアガスとホウ酸蒸気との少なくともいずれかをノズルから供給することが好ましい。これにより、アンモニアガスとホウ酸蒸気とを触媒付近で合流させることができる。
【0027】
以上のように、BNNTの製造方法は、反応器に収容されている触媒に対しアンモニアガスとホウ酸蒸気とを供給し、BNNTを合成する工程(供給工程)を有する。触媒、アンモニアガス及びホウ酸蒸気は、それぞれ個別に反応器へ供給される。触媒の粒径、アンモニアガスの供給量、ホウ酸蒸気の供給量等を個別に調整することができるので、BNNTの直径や層数等の構造を容易に制御できる。窒素原料とホウ素原料とが気体の状態で触媒に供給されることにより、ホウ素の粒子や窒化ホウ素の粒子等の不純物を含まない高純度のBNNTが得られる。窒素原料としてのアンモニアガス及びホウ素原料としてのホウ酸蒸気は安価で安全な材料であるので、製造コストを低減でき、BNNTを安全かつ安価に大量に合成できる。
【0028】
BNNTの製造方法は、ホウ酸を80℃以上500℃以下の温度で加熱し、ホウ酸からホウ酸蒸気を生成する工程(ホウ酸蒸気生成工程)を更に有する。ホウ酸蒸気生成工程で生成されたホウ酸蒸気が供給工程に供される。これにより、触媒に供給するホウ酸蒸気の供給量を確保できる。特に、ホウ酸を80℃以上250℃以下の範囲内で加熱することにより、酸化ホウ素の生成を抑制し、かつ、ホウ酸の昇華・蒸発を促進することができる。
【0029】
ホウ酸蒸気生成工程では、ホウ酸を不活性ガス中で加熱することにより、ホウ酸アンモニウムの生成が防止され、ホウ酸蒸気の生成量の低下を防止できる。これにより、触媒に供給するホウ酸蒸気の供給量を確実に確保できる。
【0030】
供給工程では、触媒を加熱する温度を600℃以上1400℃以下とすることにより、反応器の材料や触媒粒子を担持させる基板の材料の選択の自由度を拡げることができる。例えば、より安価な材料を用いることができる。また、高温加熱を可能とする加熱装置等を必要としない。したがって、製造コストを低減することができるので、BNNTの量産化が容易となる。
【0031】
供給工程では、触媒に対し、アンモニアガスとホウ酸蒸気との少なくともいずれかをノズルから供給することにより、アンモニアガスとホウ酸蒸気とが触媒付近で合流するので、BNNTの合成に適した雰囲気を容易に作り出せる。
【0032】
以下、本発明の実施例について図面を参照して説明する。実施例は、本発明の実施形態を例示するものであり、本発明の範囲を限定するものではない。
【0033】
[実施例1]
図1は、実施例1のBNNTの製造方法に使用するBNNT製造装置10の概略図である。BNNT製造装置10は、反応器11と、ヒータ12と、アンモニア供給部13と、ホウ酸供給部14とを備える。
【0034】
反応器11は、石英ガラスで構成された円筒形のチャンバであり、その内部に触媒15を収容する。
【0035】
触媒15は、Feで構成される金属粒子である。触媒15は、基板16の上に設けられている。基板16はグラファイトで構成されている。
【0036】
ヒータ12は、反応器11の内部を加熱する電気炉であり、反応器11の外周を覆うように配置されている。ヒータ12に対応する位置に触媒15が配されており、ヒータ12により触媒15が加熱される。ヒータ12は、触媒15を加熱する温度を600℃以上1400℃以下とする。ヒータ12の熱は、反応器11を介して、後述するチャンバ部18の内部に伝わる。
【0037】
アンモニア供給部13は、反応器11の内部と接続し、反応器11にアンモニアガスを供給する。アンモニア供給部13では、アンモニアガスを反応器11に供給するためのキャリアガスとしてアルゴンガスが用いられている。
【0038】
アンモニア供給部13は、アンモニアガスとアルゴンガスと水素ガスのガス源13aと、ガス源13aと反応器11とを接続するガス供給路13bとを有する。ガス源13aは、バルブ等を用いてアンモニアガスの流量とアルゴンガスの流量と水素ガスの流量とが個別に制御可能に構成されている。ガス供給路13bには熱電対等の温度計(図示省略)が設けられている。
【0039】
ガス供給路13bはノズル17と接続している。
図1では、点線の位置にガス供給路13bとノズル17との接続部分がある。アンモニアガスとアルゴンガスと水素ガスは、ガス供給路13bを流通してノズル17に案内される。ノズル17は、アンモニアガスを触媒15へ向けて供給するように、出口の向きが調整されている。
【0040】
ホウ酸供給部14は、反応器11の内部と接続し、反応器11にホウ酸蒸気を供給する。ホウ酸供給部14では、反応器11にホウ酸蒸気を供給するためのキャリアガスとしてアルゴンガスが用いられている。
【0041】
ホウ酸供給部14は、アルゴンガスのガス源14aと、ガス源14aと反応器11とを接続するガス供給路14bと、ガス供給路14bに設けられ、ホウ酸蒸気を生成するホウ酸蒸気生成部14cとを有する。ガス源14aは、バルブ等を用いてアルゴンガスの流量が制御可能に構成されている。
【0042】
ガス供給路14bは、反応器11と接続する中空のチャンバ部18を有する。
図1では、反応器11とチャンバ部18との接続部分を点線で示している。チャンバ部18は、ガス供給路14bの配管部分を介してガス源14aと接続している。チャンバ部18には、ガス源14aからアルゴンガスが供給される。これにより、チャンバ部18の内部はアルゴンガス雰囲気となる。チャンバ部18の内部にはホウ酸蒸気生成部14cが設けられている。
【0043】
ホウ酸蒸気生成部14cは、例えば石英ガラス管から構成されており、その内部にホウ酸19を有している。ホウ酸蒸気生成部14cは、ホウ酸19の位置に熱電対等の温度計を有してもよい。ホウ酸19は、石英ガラス管内に粉末の形態で配されている。ホウ酸19は、反応器11の端部(チャンバ部18と反応器11との接続部)から所定の距離に配されており、ヒータ12により加熱される。ホウ酸19と反応器11との距離を調整することにより、ホウ酸19を加熱する温度を80℃以上500℃以下の範囲内とすることができる。ホウ酸19が加熱されることによりホウ酸蒸気が生成される。すなわち、ホウ酸蒸気生成部14cは、ホウ酸19を80℃以上500℃以下の温度に加熱し、ホウ酸19からホウ酸蒸気を生成する。ホウ酸蒸気生成部14cで生成されたホウ酸蒸気は、チャンバ部18を流通するアルゴンガスとともに反応器11の内部に供給される。なお、ホウ酸19は、チャンバ部18の内部に配される場合に限られず、反応器11の内部とチャンバ部18の内部との間を移動可能に配されることとしてもよい。
【0044】
チャンバ部18にはアンモニア供給部13のガス供給路13bが配されている。チャンバ部18の内部とガス供給路13bの内部とは非接続であり、チャンバ部18の内部にアンモニアガスが入らないように構成されている。このため、ホウ酸19は、不活性ガスとしてのアルゴンガス中で加熱される。すなわち、ホウ酸蒸気生成部14cは、ホウ酸19を不活性ガス中で加熱する。
【0045】
以上の構成を有するBNNT製造装置10を用いてBNNTを製造する実験を行った。実験では、スパッタ法を用いて、基板16の上に厚みが連続的に変化するようにFe膜を形成した。これにより、Fe膜の厚みに応じた粒径を有する触媒粒子(触媒15)が基板16に担持される。この基板16を反応器11の内部に設置した。触媒15を加熱する温度が950℃のときに、ホウ酸19を加熱する温度が120℃となるように、ホウ酸19と反応器11との距離を調整した。本実験では、反応器11の端部から10cm離れた位置にホウ酸19を1g設置した。ヒータ12の昇温を開始し、アンモニア供給部13のガス源13aからアルゴンガスと水素ガスとを流し、ホウ酸供給部14のガス源14aからアルゴンガスを流した。触媒15を加熱する温度を950℃に保持し、ホウ酸19を加熱する温度を120℃に保持した状態で、3分間の熱処理を行った。熱処理後、アンモニア供給部13のガス源13aを制御し、アルゴンガスを停止し、アルゴンガスの代わりにアンモニアガスを流した。これにより、反応器11に収容されている触媒15に対しアンモニアガスとホウ酸蒸気とを供給し、30分間のBNNT合成を行った。Fe膜の平均厚みが、5.9nm、3.0nm、1.5nm、0.79nmとなる部分を、SEM(Scanning Electron Microscope)により観察した。実験の結果を
図2に示す。
図2は、製造したBNNTを示すSEM像である。
図2より、BNNT製造装置10を用いてBNNTを製造できることが確認できた。Fe膜が厚いほど、BNNTの合成量が多くなることが確認できた。
【0046】
[実施例2]
図3は、実施例2のBNNTの製造方法に使用するBNNT製造装置20の概略図である。実施例1のBNNT製造装置10と同じ構成には同じ符号を付して説明を省略する。
【0047】
BNNT製造装置20は、反応器11と、ヒータ12(第1のヒータ)と、アンモニア供給部13と、ホウ酸供給部24とを備える。
【0048】
ホウ酸供給部24は、反応器11の内部と接続し、反応器11にホウ酸蒸気を供給する。ホウ酸供給部24は、アルゴンガスのガス源24aと、ガス源24aと反応器11とを接続するガス供給路24bと、ガス供給路24bに設けられ、ホウ酸蒸気を生成するホウ酸蒸気生成部24cとを有する。
【0049】
ホウ酸蒸気生成部24cは、ガス供給路24bに設けられた中空の保持管25と、保持管25の内部に配されたホウ酸19と、保持管25の両端を塞ぎ、保持管25の内部にホウ酸19を保持する保持材26とを有する。保持管25はステンレス管で構成される。保持管25には、粉末の形態のホウ酸19が充填され、ガス源24aからガス供給路24bを介して、アルゴンガスが供給される。これにより、保持管25の内部はアルゴンガス雰囲気となる。保持材26は石英ガラスの繊維で構成される。
【0050】
ホウ酸蒸気生成部24cは、ホウ酸19を加熱するヒータ27(第2のヒータ)を更に有する。ヒータ27は、保持材26を覆うように設けられている。保持管25の内部には熱電対等の温度計(図示省略)が設けられている。ヒータ27の温度を制御することにより、ホウ酸19を加熱する温度を80℃以上168℃以下の範囲内とすることができる。ホウ酸19が加熱されることによりホウ酸蒸気が生成される。すなわち、ホウ酸蒸気生成部24cは、ホウ酸19を80℃以上168℃以下の温度で加熱し、ホウ酸19からホウ酸蒸気を生成する。また、ホウ酸蒸気生成部24cは、ホウ酸19を不活性ガスとしてのアルゴンガス中で加熱する。ホウ酸蒸気生成部24cで生成されたホウ酸蒸気は、ガス供給路24bを流通するアルゴンガスとともに反応器11の内部に供給される。なお、ガス供給路24bには図示しないリボンヒータ等の加熱手段が配されており、この加熱手段によりガス源24aから反応器11の入口までの温度がヒータ27と同じ温度以上となるように構成されている。
【0051】
BNNT製造装置20は、ホウ酸19を保持管25の内部に充填し、第2のヒータ27を用いて加熱することにより、ホウ酸蒸気の蒸気圧を飽和させることができ、触媒15に対し安定してホウ酸蒸気を供給することができる。また、BNNT製造装置20は、反応器11を加熱する第1のヒータ12とは異なる第2のヒータ27を用いてホウ酸19を加熱するように構成したので、反応器11の内部を加熱する温度とホウ酸19を加熱する温度とを独立して制御することができる。
【0052】
以上の構成を有するBNNT製造装置20を用いてBNNTを製造する実験を行った。実験では、実施例1と同様の方法を用いて、基板16の上に厚みが連続的に変化するようにFe膜を形成し、Fe膜の厚みに応じた粒径を有する触媒粒子(触媒15)を基板16に担持させた。第1のヒータ12の昇温を開始し、アンモニア供給部13のガス源13aからアルゴンガスを流した。第1のヒータ12の昇温を開始してから所定時間経過後に、第2のヒータ27の昇温を開始し、ホウ酸供給部24のガス源24aからアルゴンガスを流した。触媒15を加熱する温度を1000℃に保持し、ホウ酸19を加熱する温度を110℃に保持した状態で、アンモニア供給部13のガス源13aを制御し、アルゴンガスに加えてアンモニアガスを更に流した。これにより、反応器11に収容されている触媒15に対しアンモニアガスとホウ酸蒸気とを供給し、30分間のBNNT合成を行った。Fe膜の平均厚みが、3.9nm、2.4nm、1.4nm、0.80nmとなる部分を、SEMにより観察した。実験の結果を
図4に示す。
図4は、製造したBNNTを示すSEM像である。
図4より、BNNT製造装置20を用いてBNNTを製造できることが確認できた。Fe膜が厚いほど、BNNTの合成量が多くなることが確認できた。
図2及び
図4を参照して実施例1と実施例2とを比較すると、触媒15を加熱する温度が950℃と1000℃、ホウ酸19を加熱する温度が120℃と110℃であり、実施例1と実施例2とでは近い条件でBNNTの合成を行ったため、BNNTが略同様に成長したことが確認できた。
図2及び
図4を参照すると、実施例1よりも実施例2の方がBNNTの生成量がやや多いことが確認できた。実施例2では、ホウ酸19を保持管25内に充填したことによって、キャリアガスとホウ酸19との接触が良好となり、ホウ酸蒸気の濃度が高められたと考えられる。
【0053】
BNNT製造装置20を用いて、触媒15を加熱する温度とFe膜の厚みとを変更してBNNTを製造する実験を行った。触媒15を加熱する温度は、900℃、950℃、1000℃とした。ホウ酸19は110℃に加熱した。Fe膜の平均厚みが、3.9nm、2.4nm、1.4nm、0.80nmとなる部分を、SEMにより観察した。実験の結果を
図5~7に示す。
図5は、触媒を加熱する温度を900℃として製造したBNNTを示すSEM像である。
図6は、触媒を加熱する温度を950℃として製造したBNNTを示すSEM像である。
図7は、触媒を加熱する温度を1000℃として製造したBNNTを示すSEM像である。
図5~7より、触媒15の温度が950~1000℃で、BNNTの合成量が多くなることが確認できた。また、Fe膜を変えることで、BNNTが異なる密度、太さ、長さで合成されることが確認できた。
【0054】
[実施例3]
図8は、実施例3のBNNTの製造方法に使用するBNNT製造装置30の概略図である。実施例1のBNNT製造装置10と同じ構成には同じ符号を付して説明を省略する。
【0055】
BNNT製造装置30は、反応器11と、ヒータ12と、アンモニア供給部33と、ホウ酸供給部34とを備える。
【0056】
アンモニア供給部33は、反応器11の内部と接続し、反応器11にアンモニアガスを供給する。アンモニア供給部33は、アンモニアガスとアルゴンガスのガス源33aと、ガス源33aと反応器11とを接続するガス供給路33bとを有する。ガス源33aは、バルブ等を用いてアンモニアガスの流量とアルゴンガスの流量とが個別に制御可能に構成されている。
【0057】
ガス供給路33bは、反応器11と接続する中空のチャンバ部35を有する。
図8では、反応器11とチャンバ部35との接続部分を点線で示している。チャンバ部35は、ガス供給路33bの配管部分を介してガス源33aと接続している。ガス源33aからチャンバ部35へアルゴンガスのみを供給することにより、チャンバ部35の内部をアルゴンガス雰囲気とすることができる。
【0058】
ホウ酸供給部34は、反応器11の内部と接続し、反応器11にホウ酸蒸気を供給する。ホウ酸供給部34は、反応器11とチャンバ部35との接続部分を含む所定の領域に設けられている。ホウ酸供給部34では、反応器11にホウ酸蒸気を供給するためのキャリアガスとして、アンモニア供給部33のガス源33aから流れるアルゴンガスが用いられる。ホウ酸供給部34は、ホウ酸蒸気を生成するホウ酸蒸気生成部34cから構成されている。
【0059】
ホウ酸蒸気生成部34cは、例えば石英ガラス管から構成されており、その内部にホウ酸19と、ホウ酸19の位置に熱電対等の温度計(図示省略)とを有している。ホウ酸蒸気生成部34cは、スライド部材36によって、チャンバ部35の内部と反応器11の内部との間をスライドするように構成されている。ホウ酸蒸気生成部34cは、ヒータ12の昇温開始時にチャンバ部35の内部に配されている。ヒータ12が所定の温度に達した後に、ホウ酸蒸気生成部34cをチャンバ部35の内部から反応器11の内部へスライドし、ホウ酸19をヒータ12に近づけることで、当該ホウ酸19を80℃以上500℃以下の温度に加熱し、ホウ酸19からホウ酸蒸気を生成する。ホウ酸蒸気生成部34cで生成されたホウ酸蒸気は、チャンバ部35を流通するアルゴンガス及びアンモニアガスとともに反応器11の内部に供給される。
【0060】
以上の構成を有するBNNT製造装置30を用いてBNNTを製造する実験を行った。実験では、ホウ酸19を加熱する温度を、500℃、430℃、260℃とした。また、実施例1と同様の方法を用いて、基板16の上に厚みが連続的に変化するようにFe膜を形成し、Fe膜の厚みに応じた粒径を有する触媒粒子(触媒15)を基板16に担持させた。この基板16は、反応器11の内部に設置した。ガス源33aからアルゴンガスを流した状態でヒータ12の昇温を開始し、反応器11を950℃まで加熱した。次に、ホウ酸19を入れた石英ガラス管をヒータ12に近づけるように反応器11の内部へ移動させて、ホウ酸19を加熱して蒸発させた。ガス源33aを制御し、アルゴンガスに加えてアンモニアガスを更に流した。これにより、反応器11に収容されている触媒15に対しアンモニアガスとホウ酸蒸気とを供給し、30分間のBNNT合成を行った。ホウ酸19を加熱する温度を500℃とした実験では、Fe膜の平均厚みが、9.3nm、5.9nm、3.3nm、1.5nmとなる部分を、SEMにより観察した。ホウ酸19を加熱する温度を430℃とした実験では、Fe膜の平均厚みが、5.9nm、3.0nm、1.5nm、0.79nmとなる部分を、SEMにより観察した。ホウ酸19を加熱する温度を260℃とした実験では、Fe膜の平均厚みが、9.3nm、5.9nm、3.3nm、1.5nmとなる部分を、SEMにより観察した。実験の結果を
図9~11に示す。
図9は、ホウ酸19を加熱する温度を500℃として製造したBNNTを示すSEM像である。
図10は、ホウ酸19を加熱する温度を430℃として製造したBNNTを示すSEM像である。
図11は、ホウ酸19を加熱する温度を260℃として製造したBNNTを示すSEM像である。
図9~11より、Fe膜の平均厚みが、9.3nm~0.79nmの広い範囲でBNNTが合成されることが確認できた。ホウ酸19の蒸発によるホウ酸蒸気の生成と、ホウ酸19の脱水反応による酸化ホウ素の生成とが同時に進行し、ホウ酸蒸気とアンモニアガスとからBNNTが合成されたと考えられる。ホウ素原料が短時間に分解する課題はあるが、高濃度のホウ素原料を供給するためには、ホウ酸19を加熱する温度を250℃以上500℃以下の範囲内とすると好適である。
【0061】
[実施例4]
上記実施例1~3では、粉末の形態のホウ酸を加熱することによりホウ酸蒸気を生成したが、実施例4では、ホウ酸を含む溶液のミストを反応器に供給して、反応器内でホウ酸蒸気を生成する。
【0062】
図12は、実施例4のBNNTの製造方法に使用するBNNT製造装置40の概略図である。BNNT製造装置40は、反応器11と、ヒータ12と、アンモニア供給部13と、ホウ酸供給部44と、図示しない触媒供給機構とを備える。反応器11は、ヒータ12により、600℃以上1400℃以下に加熱可能である。アンモニア供給部13は、反応器11にアンモニアガスを供給するためのものである。触媒供給機構は、反応器11に触媒15を供給するためのものである。触媒供給機構は、例えば、ベルトコンベア等の搬送手段によって、触媒粒子(触媒15)を担持した基板16を反応器11に供するように構成することができる。基板16を用いない場合は、触媒供給機構は、キャリアガスによって、触媒粒子を反応器に供するように構成しても良い。上記各実施例と同じ構成には同じ符号を付して詳細な説明を省略する。
【0063】
ホウ酸供給部44は、反応器11の内部と接続し、反応器11にホウ酸蒸気を供給する。ホウ酸供給部44は、ホウ酸を含む溶液54を霧化(ミスト化)し、ホウ酸を含む溶液54のミスト56を反応器11に導入し、反応器11内でミスト56に含まれるホウ酸を蒸発させてホウ酸蒸気を生成することで、反応器11にホウ酸蒸気を供給する。すなわち、ホウ酸供給部44は、ホウ酸を含む溶液54の霧化供給機構である。
【0064】
ホウ酸供給部44は、キャリアガスとしてのアルゴンガスのガス源44aと、ガス源44aと反応器11とを接続するガス供給路44bと、ガス供給路44bに設けられ、ホウ酸を含む溶液54のミスト56を生成するミスト生成部44cとを有する。キャリアガスには、実施例4のようにアルゴンガスを用いる場合に限られず、例えば、窒素や水素などの不活性ないし還元性のガスを用いてもよい。ガス供給路44bとミスト生成部44cの接続箇所は、ホウ酸を含む溶液54の水面より上方に位置していればよく、例えばミスト生成部44cを構成する容器47の蓋部51に位置してもよい。
【0065】
ガス源44aは、バルブ等を用いてアルゴンガスの流量が制御可能に構成されている。ガス源44aのアルゴンガスは、ミスト生成部44cで生成されたミスト56を反応器11に運ぶためのキャリアガスである。
【0066】
ガス供給路44bは、ガス源44aとミスト生成部44cとを接続する第1管45と、ミスト生成部44cと反応器11とを接続する第2管46とで構成されている。ガス源44aのアルゴンガスは、第1管45、ミスト生成部44c、第2管46を順に介して、反応器11に導入される。ミスト生成部44cで生成されたミスト56は、ミスト生成部44cに導入されたアルゴンガスとともに、第2管46を介して反応器11に導入される。
【0067】
ミスト生成部44cは、ホウ酸を含む溶液54を収容した容器47と、容器47の下部に設けられ、ホウ酸を含む溶液54に超音波を照射する超音波発生装置48と、容器47の上部に設けられ、ホウ酸を含む溶液54の液面に向かって延びたノズル49とを有する。
【0068】
容器47は、有底筒状の本体部50と、本体部50の上端部に設けられた蓋部51とで構成されている。本体部50にはホウ酸を含む溶液54が収容される。本体部50の側部には第1管45が接続している。蓋部51には第2管46が接続している。
【0069】
ホウ酸を含む溶液54は、粉末のホウ酸を溶媒としての水に溶解することにより作製したホウ酸飽和水溶液である。ここで、水(20℃)に対するホウ酸の飽和溶解度は4.8g/100gである。この場合の水(20℃)に対するホウ酸を含む溶液54のホウ素濃度は0.078mol/100gである。ホウ酸を含む溶液54には、触媒用の金属の塩(例えば、酢酸鉄、酢酸コバルト、酢酸ニッケル、硝酸鉄、硝酸コバルト、硝酸ニッケル)、及び、助触媒ないし触媒担体として作用する酸化物の原料となる塩(例えば、硝酸マグネシウム、硝酸アルミニウム)のうちの一つ以上が含まれていても良い。溶媒には、実施例4のように水を用いる場合に限られず、例えば、メタノール、エタノールなどのアルコール類を用いても良い。溶媒として有機溶媒を用いても良いが、この場合は、触媒上に、BNNTに加えCNTも合成されるので、CNTを燃やすことでBNNTのみを得ることができる。
【0070】
超音波発生装置48は、容器47の本体部50の底部に設けられている。超音波発生装置48は、電源52と接続しており、電源52から電力が供給されることにより超音波を発生する。超音波発生装置48には、エコーテック社製、超音波霧化ユニットHM-2412を用いた。容器47に収容されたホウ酸を含む溶液54に超音波が照射されることにより、ホウ酸を含む溶液54が霧化され、液面の上方にホウ酸を含む溶液54のミスト56が生成される。ここで、ホウ酸を加熱した場合は、ホウ酸の脱水反応による酸化ホウ素の生成が進行し、触媒へのホウ酸蒸気の供給量が低下することがある。これに対し、実施例4では、ホウ酸を加熱しないので、ホウ酸の脱水反応が起きず、触媒に対するホウ酸蒸気の供給が安定している。
【0071】
ノズル49は、蓋部51に設けられている。ノズル49の基端は、第2管46と接続している。ノズル49の先端は、ホウ酸を含む溶液54の液面から所定の高さに配されている。ホウ酸を含む溶液54の液面の上方に生成されたミスト56は、アルゴンガスに運ばれ、ノズル49の先端から当該ノズル49に入る。実施例4では、ミスト生成部44cがノズル49を有することにより、ホウ酸を含む溶液54の液面の上方に生成されたミスト56が効率的に反応器11に導入されるので、触媒へのホウ酸蒸気の供給量が高められている。
【0072】
以上の構成を有するBNNT製造装置40を用いてBNNTを製造する実験を行った。実験では、実施例1と同様の方法を用いて、基板16の上に厚みが連続的に変化するようにFe膜を形成し、Fe膜の厚みに応じた粒径を有する触媒粒子(触媒15)を基板16に担持させた。ヒータ12の昇温を開始し、アンモニア供給部13のガス源13aからアルゴンガスを流した。超音波発生装置48を駆動してホウ酸を含む溶液54のミスト56を生成し、ホウ酸供給部44のガス源44aからアルゴンガスを流し、ホウ酸を含む溶液54のミスト56を反応器11に連続的に導入した。ミスト56に含まれるホウ酸が反応器11内で蒸発しホウ酸蒸気が生成される。触媒15を加熱する温度を950℃に保持し、アンモニア供給部13のガス源13aを制御し、アルゴンガスに加えてアンモニアガスを更に流した。これにより、反応器11に収容されている触媒15に対し、アンモニアガスと、ホウ酸蒸気とを供給し、10分間のBNNT合成を行った。Fe膜の平均厚みが、3.2nm、2.5nm、1.3nm、0.49nmとなる部分を、SEMにより観察した。実験の結果を
図13に示す。
図13は、製造したBNNTを示すSEM像である。
図13より、BNNT製造装置40を用いてBNNTを製造できることが確認できた。Fe膜が厚いほど、BNNTの合成量が多くなることが確認できた。
【0073】
[実施例5]
上記実施例4では、ホウ酸を含む溶液54のミスト56を反応器に供給したが、実施例5では、ホウ酸アンモニウム(五ホウ酸アンモニウム八水和物:Ammonium pentaborate octahydrate)を含む溶液のミストを反応器に供給する。
【0074】
図14は、実施例5のBNNTの製造方法に使用するBNNT製造装置60の概略図である。BNNT製造装置60は、反応器11と、ヒータ12、アンモニア供給部13と、ホウ酸供給部64と、図示しない触媒供給機構とを備える。反応器11は、ヒータ12により、600℃以上1400℃以下に加熱可能である。アンモニア供給部13は、反応器11にアンモニアガスを供給するためのものである。触媒供給機構は、実施例4と同様に構成できるので、説明を省略する。上記各実施例と同じ構成には同じ符号を付して説明を省略する。
【0075】
ホウ酸供給部64は、反応器11の内部と接続し、反応器11にホウ酸蒸気を供給する。ホウ酸供給部64は、ホウ酸アンモニウムを含む溶液74を霧化(ミスト化)し、ホウ酸アンモニウムを含む溶液74のミスト76を反応器11に導入し、反応器11内でミスト76に含まれるホウ酸アンモニウムを蒸発させてホウ酸蒸気を生成することで、反応器11にホウ酸蒸気を供給する。すなわち、ホウ酸供給部64は、ホウ酸アンモニウムを含む溶液74の霧化供給機構である。
【0076】
ホウ酸供給部64は、ガス源44aと、ガス供給路44bと、ガス供給路44bに設けられ、ホウ酸アンモニウムを含む溶液74のミスト76を生成するミスト生成部64cとを有する。ガス源44aとガス供給路44bの説明は省略する。
【0077】
ミスト生成部64cは、ホウ酸アンモニウムを含む溶液74を収容した容器67と、容器67の下部に設けられ、ホウ酸アンモニウムを含む溶液74に超音波を照射する超音波発生装置68とを有する。
【0078】
容器67は、有底筒状の本体部70と、本体部70の上端部に設けられた蓋部71とで構成されている。本体部70にはホウ酸アンモニウムを含む溶液74が収容される。本体部70の側部には第1管45が接続している。蓋部71には第2管46が接続している。
【0079】
ホウ酸アンモニウムを含む溶液74は、粉末のホウ酸アンモニウムを溶媒としての水に溶解することにより作製したホウ酸アンモニウム飽和水溶液である。ここで、水(20℃)に対するホウ酸アンモニウムの飽和溶解度は9.0g/100gである。この場合の水(20℃)に対するホウ酸アンモニウムを含む溶液74のホウ素濃度は0.17mol/100gである。このように、ホウ酸アンモニウムを含む溶液74は、上記実施例4のホウ酸を含む溶液54と比べてホウ素濃度が高い。ホウ酸アンモニウムを含む溶液74には、触媒用の金属の塩(例えば、酢酸鉄、酢酸コバルト、酢酸ニッケル、硝酸鉄、硝酸コバルト、硝酸ニッケル)、及び、助触媒ないし触媒担体として作用する酸化物の原料となる塩(例えば、硝酸マグネシウム、硝酸アルミニウム)のうちの一つ以上が含まれていても良い。溶媒は、実施例4と同様のものを用いることができる。
【0080】
超音波発生装置68は、容器67の本体部70の底部に設けられている。超音波発生装置68は、電源72と接続しており、電源72から電力が供給されることにより超音波を発生する。容器67に収容されたホウ酸アンモニウムを含む溶液74に超音波が照射されることにより、ホウ酸アンモニウムを含む溶液74が霧化され、液面の上方にホウ酸アンモニウムを含む溶液74のミスト76が生成される。実施例5では、ホウ酸アンモニウムを含む溶液74を霧化することにより、ホウ酸を含む溶液54を霧化した上記実施例4のミスト56よりも高いホウ素濃度のミスト76が生成され反応器11に導入されるので、触媒へのホウ酸蒸気の供給量が高められている。実施例5のミスト生成部64cは、実施例4のミスト生成部44cのようにノズルを使用していないので、実施例4よりも構造が簡略化されている。なお、実施例4のようにノズルを使用し、ホウ酸アンモニウムを含む溶液74の液面の上方に生成されたミスト76を効率的に反応器11に導入するように構成しても良い。
【0081】
以上の構成を有するBNNT製造装置60を用いてBNNTを製造する実験を行った。実験では、実施例1と同様の方法を用いて、基板16の上に厚みが連続的に変化するようにFe膜を形成し、Fe膜の厚みに応じた粒径を有する触媒粒子(触媒15)を基板16に担持させた。ヒータ12の昇温を開始し、アンモニア供給部13のガス源13aからアルゴンガスを流した。超音波発生装置68を駆動してホウ酸アンモニウムを含む溶液74のミスト76を生成し、ホウ酸供給部64のガス源44aからアルゴンガスを流し、ホウ酸アンモニウムを含む溶液74のミスト76を反応器11に連続的に導入した。ミスト76に含まれるホウ酸アンモニウムが反応器11内で蒸発しホウ酸蒸気が生成される。触媒15を加熱する温度を950℃に保持し、アンモニア供給部13のガス源13aを制御し、アルゴンガスに加えてアンモニアガスを更に流した。これにより、反応器11に収容されている触媒15に対し、アンモニアガスと、ホウ酸蒸気とを供給し、10分間のBNNT合成を行った。Fe膜の平均厚みが、2.7nm、1.9nm、1.2nm、0.61nmとなる部分を、SEMにより観察した。実験の結果を
図15に示す。
図15は、製造したBNNTを示すSEM像である。
図15より、BNNT製造装置60を用いてBNNTを製造できることが確認できた。Fe膜が厚いほど、BNNTの合成量が多くなることが確認できた。
図13及び
図15を参照すると、実施例4よりも実施例5の方がBNNTの生成量が多いことが確認できた。実施例5では、ホウ酸よりも溶解度が高いホウ酸アンモニウムを含む溶液74をミスト化し、ミスト76中のホウ素濃度が高められたことによって、実施例4のようにノズルを使用しなくても、高濃度のホウ素原料が触媒に供給されたと考えられる。
【0082】
上記実施例4,5では、ホウ酸又はホウ酸アンモニウムを含む溶液のミストを反応器に供給して、反応器内でホウ酸蒸気を生成したが、反応器内でホウ酸蒸気を生成する方法は、これに限られない。例えば、600℃以上1400℃以下に加熱可能な反応器と、反応器にアンモニアガスを供給するアンモニア供給部と、反応器にホウ酸蒸気を供給するホウ酸供給部と、反応器に触媒を供給する触媒供給機構とを備えるBNNT製造装置であって、ホウ酸供給部を、ホウ酸又はホウ酸アンモニウムを含む粉末の供給機構として構成する。以上の構成を有するBNNT製造装置によれば、反応器内で、ホウ酸又はホウ酸アンモニウムを含む粉末を加熱し、固体状態から昇華させることにより、または溶融状態から蒸発させることにより、ホウ酸蒸気を生成することができる。ホウ酸供給部は、例えば、スクリューフィーダを反応器の上部に配置し、ホウ酸又はホウ酸アンモニウムを含む粉末をスクリューフィーダで押し出して反応器に落下させるように構成しても良い。また、ホウ酸供給部は、アルゴンガス等のキャリアガスのガス供給部を反応器の下部に配置し、ホウ酸又はホウ酸アンモニウムを含む粉末をキャリアガスで噴き上げて反応器に導入するように構成しても良い。
【0083】
本発明は上記の各実施形態及び実施例に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
【符号の説明】
【0084】
10,20,30,40,60 BNNT製造装置
11 反応器
12 ヒータ(第1のヒータ)
13,33 アンモニア供給部
14,24,34,44,64 ホウ酸供給部
14c,24c,34c ホウ酸蒸気生成部
15 触媒
16 基板
17 ノズル
19 ホウ酸
27 ヒータ(第2のヒータ)
44c,64c ミスト生成部
54 ホウ酸を含む溶液
56 ミスト
74 ホウ酸アンモニウムを含む溶液
76 ミスト