IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ プライムプラネットエナジー&ソリューションズ株式会社の特許一覧

特許7510399正極およびこれを用いた非水電解質二次電池
<>
  • 特許-正極およびこれを用いた非水電解質二次電池 図1
  • 特許-正極およびこれを用いた非水電解質二次電池 図2
  • 特許-正極およびこれを用いた非水電解質二次電池 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-25
(45)【発行日】2024-07-03
(54)【発明の名称】正極およびこれを用いた非水電解質二次電池
(51)【国際特許分類】
   H01M 4/131 20100101AFI20240626BHJP
   H01M 4/525 20100101ALI20240626BHJP
   H01M 4/505 20100101ALI20240626BHJP
【FI】
H01M4/131
H01M4/525
H01M4/505
【請求項の数】 4
(21)【出願番号】P 2021141043
(22)【出願日】2021-08-31
(65)【公開番号】P2023034699
(43)【公開日】2023-03-13
【審査請求日】2022-09-08
(73)【特許権者】
【識別番号】520184767
【氏名又は名称】プライムプラネットエナジー&ソリューションズ株式会社
(74)【代理人】
【識別番号】100117606
【弁理士】
【氏名又は名称】安部 誠
(74)【代理人】
【識別番号】100136423
【弁理士】
【氏名又は名称】大井 道子
(74)【代理人】
【識別番号】100121186
【弁理士】
【氏名又は名称】山根 広昭
(74)【代理人】
【識別番号】100130605
【弁理士】
【氏名又は名称】天野 浩治
(72)【発明者】
【氏名】平塚 秀和
(72)【発明者】
【氏名】上原 幸俊
(72)【発明者】
【氏名】寺内 真澄
【審査官】井原 純
(56)【参考文献】
【文献】特開2014-086384(JP,A)
【文献】国際公開第2006/129756(WO,A1)
【文献】特開2012-109166(JP,A)
【文献】特開2012-209161(JP,A)
【文献】国際公開第2017/122759(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00-4/62
(57)【特許請求の範囲】
【請求項1】
正極集電体と、
前記正極集電体に支持された正極活物質層と、
を備える正極であって、
前記正極活物質層は、正極活物質として、層状構造を有するリチウム複合酸化物の粒子を含有し、
前記正極活物質層の空隙率が、17%~20%であり、
水銀圧入法により測定される前記正極活物質層の細孔分布におけるピーク細孔径が、0.400μm~0.550μmであり、
前記リチウム複合酸化物が、リチウムニッケルコバルトマンガン系複合酸化物であり、
前記リチウムニッケルコバルトマンガン系複合酸化物におけるリチウム以外の金属元素の合計に対するニッケルの含有量が、55モル%以上であり、
前記層状構造を有するリチウム複合酸化物の粒子は、層状構造を有し、平均粒子径(D50)が3.0μm~6.0μmであり、DBP吸油量が15mL/100g~27mL/100gである、第1リチウム複合酸化物粒子と、層状構造を有し、平均粒子径(D50)が10.0μm~22.0μmであり、DBP吸油量が14mL/100g~22mL/100gである第2リチウム複合酸化物粒子とを含む、
正極。
【請求項2】
前記正極活物質層の空隙率が、17%~19%である、請求項1に記載の正極。
【請求項3】
前記ピーク細孔径が、0.500μm~0.530μmである、請求項1または2に記載の正極。
【請求項4】
請求項1~3のいずれか1項に記載の正極と、
負極と、
非水電解質と、
を備える非水電解質二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、正極に関する。本発明はまた、当該正極を用いた非水電解質二次電池に関する。
【背景技術】
【0002】
近年、リチウムイオン二次電池等の非水電解質二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。
【0003】
非水電解質二次電池の正極は、一般的に、粒子状のリチウム複合酸化物が正極活物質を含有する正極活物質層を備える(例えば、特許文献1および2参照)。非水電解質二次電池はその普及に伴い、さらなる性能の向上が求められている。正極活物質層を圧縮して空隙率を低下させることにより、すなわち、正極活物質層を高密度化することにより、非水電解質二次電池の容量が高くなることが知られている(例えば、特許文献3参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2010-86693号公報
【文献】特許第6859888号
【文献】国際公開第2014/118834号
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、高容量化のために正極活物質層の空隙率を小さくした場合には、正極活物質層において、非水電解液と正極活物質との接触面積が小さくなり、抵抗が上昇するという背反がある。そのため、非水電解液二次電池において、高容量化と高出力化を同時に達成することは困難である。
【0006】
そこで本発明は、非水電解質二次電池の高容量化および高出力化が可能な正極を提供することを目的とする。
【課題を解決するための手段】
【0007】
ここに開示される正極は、正極集電体と、前記正極集電体に支持された正極活物質層と、を備える。前記正極活物質層は、正極活物質として、層状構造を有するリチウム複合酸化物の粒子を含有する。前記正極活物質層の空隙率は、17%~20%である。水銀圧入法により測定される前記正極活物質層の細孔分布におけるピーク細孔径は、0.400μm~0.550μmである。このような構成によれば、非水電解質二次電池の高容量化および高出力化が可能な正極を提供することができる。
【0008】
ここに開示される正極の好ましい一態様においては、前記正極活物質層の空隙率が、17%~19%である。このような構成によれば、非水電解質二次電池に特に高い容量を付与することができる。
【0009】
ここに開示される正極の好ましい一態様においては、前記ピーク細孔径が、0.500μm~0.530μmである。このような構成によれば、非水電解質二次電池に特に高い出力を付与することができる。
【0010】
ここに開示される正極の好ましい一態様においては、前記リチウム複合酸化物が、ニッケルコバルトマンガン系複合酸化物である。このような構成によれば、小さい初期抵抗等のより優れた電池特性を非水電解質二次電池に付与することができる。
【0011】
ここに開示される正極のより好ましい一態様においては、前記リチウムニッケルコバルトマンガン系複合酸化物におけるリチウム以外の金属元素の合計に対するニッケルの含有量が、55モル%以上である。このような構成によれば、非水電解質二次電池に特に高い容量を付与することができる。
【0012】
別の側面から、ここに開示される非水電解質二次電池は、上記の正極と、負極と、非水電解質と、を備える。このような構成によれば、高容量および高出力の非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【0013】
図1】本発明の一実施形態に係る正極を模式的に示す断面図である。
図2】本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。
図3】本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体の構成を示す模式分解図である。
【発明を実施するための形態】
【0014】
以下、図面を参照しながら本発明に係る実施の形態を説明する。なお、本明細書において言及していない事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。なお、本明細書において「A~B」として表現される数値範囲には、AおよびBが含まれる。
【0015】
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイスをいい、いわゆる蓄電池、および電気二重層キャパシタ等の蓄電素子を包含する用語である。また、本明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
【0016】
以下、リチウムイオン二次電池に用いられる正極を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。図1は、本実施形態に係る正極の、厚さ方向に垂直な模式断面図である。
【0017】
図示されるように、正極50は、正極集電体52と、正極集電体52に支持された正極活物質層54とを備える。正極活物質層54は、図示例では、正極集電体52の両面上に設けられている。しかしながら、正極活物質層54は、正極集電体52の片面上に設けられていてもよい。好ましくは、正極活物質層54は、正極集電体52の両面上に設けられている。
【0018】
正極集電体52としては、リチウムイオン二次電池に用いられる公知の正極集電体を用いてよく、その例としては、導電性の良好な金属(例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等)製のシートまたは箔が挙げられる。正極集電体52としては、アルミニウム箔が好ましい。
【0019】
正極集電体52の寸法は特に限定されず、電池設計に応じて適宜決定すればよい。正極集電体52としてアルミニウム箔を用いる場合には、その厚みは、特に限定されないが、例えば5μm以上35μm以下であり、好ましくは7μm以上20μm以下である。
【0020】
本実施形態においては、正極活物質層54の空隙率が、17%~20%である。加えて、本実施形態においては、水銀圧入法により測定される正極活物質層54の細孔分布におけるピーク細孔径が、0.400μm~0.550μmである。
【0021】
正極活物質層54は、正極活物質として、層状構造を有するリチウム複合酸化物の粒子を含有する。そのため、その粒子間に空隙が生じる。この空隙には、非水電解液が浸入し得る。
【0022】
一般に、正極活物質層における正極活物質の充填率を高めると、非水電解質二次電池を高容量化することができる。しかしながら、正極活物質層における正極活物質の充填率を高めると、正極活物質層の空隙率が小さくなり、非水電解液が浸入可能な空隙が減少する。そのため、正極活物質層において、非水電解液と正極活物質との接触面積が小さくなり、抵抗が上昇するという背反がある。そのため、非水電解液二次電池において、高容量化と高出力化を同時に達成することは困難である。
【0023】
これに対し、本発明者らは、粒子特性の異なるリチウム複合酸化物の粒子を併用することによって、正極活物質層の空隙率および空孔径についての制御を行い、非水電解質二次電池の容量および出力について鋭意検討した。その結果、一般的な正極活物質層に比べて、比較的低い空隙率と比較的大きいピーク細孔径とを同時に達成した、新規な正極活物質層を得た。そして、この新規な正極活物質層を備える正極によって、非水電解質二次電池の高容量化と高出力化を同時に達成した。
【0024】
すなわち、正極活物質層54の空隙率およびピーク細孔径が適切に制御された本実施形態に係る正極50によれば、非水電解質二次電池の容量を高めることができると共に、非水電解質二次電池の出力を高めることができる。
【0025】
具体的には、正極活物質層54の空隙率が17%以上であると共にピーク細孔径が0.400μm以上であることによって、非水電解質二次電池の出力を高めることができる。一方で、正極活物質層54の空隙率が20%以下であると共にピーク細孔径が0.550μm以下であることによって、非水電解質二次電池の容量を高めることができる。
【0026】
また、非水電解質二次電池においては、充放電を繰り返した際に、正極活物質と非水電解質とが副反応を起こして、非水電解質が分解してガスが発生し得る。このガスが電極体の内部に留まると、電池特性の劣化(特に、容量劣化)を引き起こし得る。しかしながら、本実施形態に係る正極50は、空隙率およびピーク細孔径が、上記の範囲内であることによって、正極活物質と非水電解質との副反応が起こり難くなっている。このため、本実施形態に係る正極50によれば、非水電解質二次電池に充放電を繰り返した際の電池特性の劣化(特に容量劣化)も抑制することができる。
【0027】
正極活物質層54の空隙率は、17%~19%であることが好ましい。正極活物質層54の上記ピーク細孔径は、好ましくは0.450μm以上であり、より好ましくは0.480μm以上であり、さらに好ましくは0.500μm以上である。正極活物質層54の上記ピーク細孔径は、好ましくは0.530μm以下である。
【0028】
なお、正極活物質層54の空隙率は、水銀圧入法により求めることができる。具体的には、水銀圧入式ポロシメーターを用いて、公知方法に従って求めることができる。よって、水銀圧入式ポロシメーターを用いて、公知方法に従って測定することにより、正極活物質層54の空隙率と、細孔分布におけるピーク細孔径とを求めることができる。具体的に例えば、4psi~60000psiの圧力範囲で正極活物質の細孔分布を測定し、細孔径0.01μm~10μmの範囲の細孔分布曲線を用いて、ピーク細孔径および空隙率を求めることができる。
【0029】
層状構造を有するリチウム複合酸化物の例としては、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物、リチウムニッケルコバルトアルミニウム系複合酸化物、リチウム鉄ニッケルマンガン系複合酸化物等が挙げられる。リチウム複合酸化物粒子が層状構造(すなわち、層状の結晶構造)を有することは、公知方法(例、X線回折法など)により確認することができる。
【0030】
なお、本明細書において「リチウムニッケルコバルトマンガン系複合酸化物」とは、Li、Ni、Co、Mn、Oを構成元素とする酸化物の他に、それら以外の1種または2種以上の添加的な元素を含んだ酸化物をも包含する用語である。かかる添加的な元素の例としては、Mg、Ca、Al、Ti、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、W、Na、Fe、Zn、Sn等の遷移金属元素や典型金属元素等が挙げられる。また、添加的な元素は、B、C、Si、P等の半金属元素や、S、F、Cl、Br、I等の非金属元素であってもよい。このことは、上記したリチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトアルミニウム系複合酸化物、リチウム鉄ニッケルマンガン系複合酸化物等についても同様である。
【0031】
初期抵抗が小さい等、諸特性に優れることから、層状構造を有するリチウム複合酸化物としては、リチウムニッケルコバルトマンガン系複合酸化物が好ましい。非水電解質二次電池のさらなる高容量化の観点から、リチウムニッケルコバルトマンガン系複合酸化物におけるリチウム以外の金属元素の合計に対するニッケルの含有量は、好ましくは50モル%超であり、より好ましくは55モル%以上である。
【0032】
リチウムニッケルコバルトマンガン系複合酸化物としては、具体的には、下式(I)で表される組成を有するものが好ましい。
Li1+xNiCoMn(1-y-z)α2-ββ (I)
【0033】
式(I)中、x、y、z、α、およびβはそれぞれ、-0.3≦x≦0.3、0.1<y<0.9、0.1<z<0.5、0≦α≦0.1、0≦β≦0.5を満たす。Mは、Zr、Mo、W、Mg、Ca、Na、Fe、Cr、Zn、Sn、およびAlからなる群より選ばれる少なくとも1種の元素である。Qは、F、ClおよびBrからなる群より選ばれる少なくとも1種の元素である。
【0034】
式(I)中、x、y、z、α、およびβはそれぞれ、-0.3≦x≦0.3、0.1<y<0.9、0<z<0.5、0≦α≦0.1、0≦β≦0.5を満たす。Mは、Zr、Mo、W、Mg、Ca、Na、Fe、Cr、Zn、Sn、BおよびAlからなる群より選ばれる少なくとも1種の元素である。Qは、F、ClおよびBrからなる群より選ばれる少なくとも1種の元素である。
【0035】
非水電解質二次電池のさらなる高容量化の観点から、yおよびzはそれぞれ、0.50<y≦0.95、0.02≦z<0.48を満たすことが好ましく、0.55≦y≦0.95、0.02≦z≦0.43を満たすことがより好ましく、0.60≦y≦0.95、0.02≦z≦0.38を満たすことがさらに好ましい。
【0036】
正極活物質層54は、正極活物質以外の成分、例えば、リン酸三リチウム、導電材、バインダ等を含んでいてもよい。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイトなど)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
【0037】
正極活物質層54中の正極活物質の含有量(すなわち、正極活物質層54の全質量に対する正極活物質の含有量)は、特に限定されないが、70質量%以上が好ましく、より好ましくは80質量%以上97質量%以下であり、さらに好ましくは85質量%以上96質量%以下である。正極活物質層54中のリン酸三リチウムの含有量は、特に制限はないが、1質量%以上15質量%以下が好ましく、2質量%以上12質量%以下がより好ましい。正極活物質層54中の導電材の含有量は、特に制限はないが、1質量%以上15質量%以下が好ましく、3質量%以上13質量%以下がより好ましい。正極活物質層54中のバインダの含有量は、特に制限はないが、1質量%以上15質量%以下が好ましく、1.5質量%以上10質量%以下がより好ましい。
【0038】
正極活物質層54の厚みは、特に限定されないが、例えば、10μm以上300μm以下であり、好ましくは20μm以上200μm以下である。
【0039】
正極シート50の正極活物質層非形成部分52aにおいて、正極活物質層54に隣接する位置に絶縁粒子を含む絶縁性の保護層(図示せず)を設けてもよい。この保護層により、正極活物質層非形成部分52aと負極活物質層64との間の短絡を防止することができる。
【0040】
上記範囲内の空隙率および上記範囲内のピーク細孔径を有する正極活物質層54を得るための方法は、特に限定されない。好適な方法として、以下の、粒子性状の異なる2種類の正極活物質粒子を併用する方法が挙げられる。
(1)層状構造を有し、平均粒子径が3.0μm~6.0μmであり、DBP吸油量が15mL/100g~27mL/100gである、第1リチウム複合酸化物粒子;
(2)層状構造を有し、平均粒子径が10.0μm~22.0μmであり、DBP吸油量が14mL/100g~22mL/100gである第2リチウム複合酸化物粒子
【0041】
以下、第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子について詳細に説明する。第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子は、共に層状構造を有するリチウム複合酸化物粒子であるが、その組成は同じであっても、異なっていてもよい。第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子は、リチウムニッケルコバルトマンガン系複合酸化物の粒子であることが好ましい。
【0042】
高容量化の観点から、第1リチウム複合酸化物粒子に関し、リチウムニッケルコバルトマンガン系複合酸化物におけるリチウム以外の金属元素の合計に対するニッケルの含有量は、好ましくは55モル%以上であり、より好ましくは60モル%以上である。また、高容量化の観点から、第2リチウム複合酸化物粒子に関し、リチウムニッケルコバルトマンガン系複合酸化物におけるリチウム以外の金属元素の合計に対するニッケルの含有量は、好ましくは50モル%超であり、より好ましくは55モル%以上である。
【0043】
エネルギー密度の観点から、第1リチウム複合酸化物粒子に関し、上記式(I)において、yおよびzはそれぞれ、0.55≦y≦0.95、0.02≦z≦0.43を満たすことが好ましく、0.60≦y≦0.95、0.02≦z≦0.38を満たすことがより好ましい。エネルギー密度の観点から、上記式(I)において、第2リチウム複合酸化物粒子に関し、yおよびzはそれぞれ、0.50<y≦0.95、0.02≦z<0.48を満たすことが好ましく、0.55≦y≦0.95、0.02≦z≦0.43を満たすことがより好ましい。
【0044】
なお、本明細書において、リチウム複合酸化物粒子の平均粒子径(D50)とは、メジアン径(D50)を指し、レーザ回折・散乱法に基づく体積基準の粒度分布において、粒径が小さい微粒子側からの累積頻度50体積%に相当する粒径を意味する。よって、平均粒子径(D50)は、レーザ回折・散乱式の粒度分布測定装置等を用いて、求めることができる。
【0045】
第1および第2リチウム複合酸化物粒子の平均粒子径は、公知方法(例、粉砕、分級等)に従い、調整することができる。
【0046】
第1および第2リチウム複合酸化物粒子のDBP吸油量は、例えば、リチウム複合酸化物粒子として、一次粒子が凝集した二次粒子を用い、一次粒子径を変化させることにより、調整することができる。あるいは、第1および第2リチウム複合酸化物粒子のDBP吸油量は、リチウム複合酸化物粒子の内部空隙量を変化させることによって、調整することができる。
【0047】
例えば、第1リチウム複合酸化物粒子として、一次粒子が凝集した二次粒子を用い、平均一次粒子径を1.4μm~2.5μm程度とすると、そのDBP吸油量を、15mL/100g~27mL/100gの範囲に調整し易い。特に、単粒子は、数個の粒子が凝集した二次粒子を形成し得る。したがって、第1リチウム複合酸化物粒子として、単粒子、特に平均一次粒子径が1.4μm~2.5μm程度の単粒子を用いることが好ましい。ここで「単粒子」は、単一の結晶核の成長によって生成した粒子であり、よって結晶粒界を含まない単結晶体の粒子である。粒子が単結晶体であることは、例えば、透過型電子顕微鏡(TEM)による電子線回折像の解析によって確認することができる。
【0048】
例えば、第2リチウム複合酸化物粒子として、一次粒子が凝集した二次粒子径を用い、平均一次粒子径を、0.1μm~0.3μm程度とすると、そのDBP吸油量を、14mL/100g~22mL/100gの範囲に調整し易い。
【0049】
本実施形態に係る正極活物質の好適な一態様では、第1リチウム複合酸化物粒子は、平均一次粒子径が1.4μm~2.5μmの単粒子およびその凝集粒子であり、第2リチウム複合酸化物粒子は、平均一次粒子径が0.1~0.3μmの一次粒子が凝集した二次粒子である。
【0050】
なお、平均一次粒子径とは、リチウム複合酸化物粒子の電子顕微鏡画像から把握され、任意に選ばれる50個以上の一次粒子の長径の平均値を指す。したがって、平均一次粒子径は、例えば走査型電子顕微鏡(SEM)を用いてリチウム複合酸化物粒子のSEM画像を取得し、画像解析式粒度分布測定ソフトウェア(例、「Mac-View」等)を用いて、任意に選択した50個以上の一次粒子の長径をそれぞれ求め、その平均値を算出することにより求めることができる。
【0051】
非水電解質二次電池に優れた出力特性を付与できることから、第1リチウム複合酸化物粒子のジブチルフタレート吸油量は、18mL/100g~27mL/100gが好ましく、18mL/100g~25mL/100gがより好ましい。非水電解質二次電池に優れた出力特性を付与できることから、第2リチウム複合酸化物粒子のジブチルフタレート吸油量は、16mL/100g~22mL/100gが好ましく、16.5mL/100g~21.5mL/100gがより好ましい。
【0052】
第1リチウム複合酸化物粒子の平均粒子径(D50)は、3.0μm~5.5μmが好ましく、3.0μm~5.0μmがより好ましい。第2リチウム複合酸化物粒子の平均粒子径(D50)は、10.0μm~21.0μmが好ましく、10.0μm~20.0μmがより好ましい。
【0053】
非水電解質二次電池に優れた出力特性を付与できることから、第1リチウム複合酸化物粒子のBET比表面積は、0.54m/g以上が好ましく、0.54m/g~0.69m/gがより好ましい。非水電解質二次電池に優れた出力特性を付与できることから、第2リチウム複合酸化物粒子のBET比表面積は、0.18m/g以上が好ましく、0.18m/g~0.36m/gがより好ましい。
【0054】
なお、第1および第2リチウム複合酸化物粒子のBET比表面積は、市販の比表面積測定装置(例、「Macsorb Model-1208」(マウンテック社製)等)を用い、窒素吸着法によって測定することができる。
【0055】
非水電解質二次電池の容量を特に高くできることから、第1リチウム複合酸化物粒子のタップ密度は、2.0g/cm以上が好ましく、2.0g/cm~2.2g/cmがより好ましい。非水電解質二次電池の容量を特に高くできることから、第2リチウム複合酸化物粒子のタップ密度は、2.4g/cm以上が好ましく、2.4g/cm~2.5g/cmがより好ましい。
【0056】
なお、第1および第2リチウム複合酸化物粒子のタップ密度は、市販のタッピングマシン(例、「KRS-409型」(蔵持科学機器製作所製)等)を用いて、振幅8mmで2000回タッピング後の粉体充填密度を測定し、粉体充填密度の2回の測定結果の平均値を算出することにより求めることができる。
【0057】
第1リチウム複合酸化物粒子と第2リチウム複合酸化物粒子の含有割合は、特に限定されない。これらの質量比(第1リチウム複合酸化物粒子:第2リチウム複合酸化物粒子)は、例えば、10:90~90:10であり、好ましくは20:80~80:20であり、より好ましくは30:70~70:30であり、さらに好ましくは30:70~60:40である。
【0058】
正極活物質は、第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子のみからなっていてよい。正極活物質は、第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子に加えて、これらの粒子以外の、正極活物質として機能する粒子をさらに含有していてもよい。
【0059】
正極活物質全体のタップ密度は、特に限定されない。非水電解質二次電池の容量および出力を特に高くできることから、正極活物質全体のタップ密度は、好ましくは2.7g/cm~3.0g/cmであり、より好ましくは2.8g/cm~3.0g/cmであり、さらに好ましくは2.9g/cm~3.0g/cmである。
【0060】
正極活物質全体のタップ密度は、市販のタッピングマシン(例、「KRS-409型」(蔵持科学機器製作所製)等)を用いて、振幅8mmで2000回タッピング後の粉体充填密度を測定し、粉体充填密度の2回の測定結果の平均値を算出することで求めることができる。
【0061】
正極活物質全体のDBP吸油量は、特に限定されない。非水電解質二次電池の容量および出力を特に高くできることから、正極活物質全体のジブチルフタレート吸油量は、好ましくは14.5mL/100g~18.5mL/100gであり、より好ましくは、16.2mL/100g~18.2mL/100gであり、さらに好ましくは、17.0mL/100g~18.0mL/100gである。
【0062】
正極活物質全体のDBP吸収量は、試薬液体としてジブチルフタレート(DBP)を使用し、JIS K6217-4:2008に記載の方法に準拠して測定することができ、3回の測定結果の平均値として求めることができる。
【0063】
本実施形態に係る正極50は、第1リチウム複合酸化物粒子、第2リチウム複合酸化物粒子、溶媒(分散媒)、必要に応じ、バインダ、導電材等を含有する正極活物質層形成用ペーストを作製し、当該ペーストを、正極集電体52上に塗布し、乾燥し、必要に応じプレス処理することによって作製することができる。
【0064】
本実施形態に係る正極によれば、非水電解質二次電池の容量を高めることができ、また、非水電解質二次電池の出力を高めることができる。また、本実施形態に係る正極によれば、充放電を繰り返した際の優れた容量劣化耐性を非水電解質二次電池に付与することができる。本実施形態に係る正極は、典型的には、非水電解質二次電池用の正極活物質であり、好ましくは、非水系のリチウムイオン二次電池用の正極である。本実施形態に係る正極は、全固体二次電池の正極として用いることもできる。
【0065】
そこで、別の側面から、本実施形態に係る非水電解質二次電池は、正極と、負極と、非水電解質と、を備え、当該正極が、上記の本実施形態に係る正極である。
【0066】
以下、本実施形態に係る非水電解質二次電池について、扁平形状の捲回電極体と扁平形状の電池ケースとを有する扁平角型のリチウムイオン二次電池を例にして、詳細に説明する。しかしながら、本実施形態に係る非水電解質二次電池は、以下説明する例に限定されない。
【0067】
図2に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解質(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には、外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36とが設けられている。正負極端子42,44はそれぞれ正負極集電板42a,44aと電気的に接続されている。電池ケース30の材質には、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。なお、正極端子42と正極集電板42aとの間または負極端子44と負極集電板44aとの間に、電流遮断機構(CID)を設置してもよい。
【0068】
捲回電極体20は、図2および図3に示すように、正極シート50と、負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。正極シート50は、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された構成を有する。負極シート60は、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成されている構成を有する。
【0069】
正極活物質層非形成部分52a(すなわち、正極活物質層54が形成されずに正極集電体52が露出した部分)および負極活物質層非形成部分62a(すなわち、負極活物質層64が形成されずに負極集電体62が露出した部分)は、捲回電極体20の捲回軸方向(すなわち、上記長手方向に直交するシート幅方向)の両端から外方にはみ出すように形成されている。正極活物質層非形成部分52aおよび負極活物質層非形成部分62aはそれぞれ、集電部として機能する。正極活物質層非形成部分52aおよび負極活物質層非形成部分62aには、それぞれ正極集電板42aおよび負極集電板44aが接合されている。なお、正極活物質層非形成部分52aおよび負極活物質層非形成部分62aの形状は、図示例のものに限られない。正極活物質層非形成部分52aおよび負極活物質層非形成部分62aは、所定の形状に加工された集電タブとして形成されていてもよい。
【0070】
正極シート50としては、上述した本実施形態に係る正極50が用いられる。なお、本構成例においては、正極シート50は、正極集電体52の両面に正極活物質層54が形成されている。
【0071】
負極シート60を構成する負極集電体62としては、リチウムイオン二次電池に用いられる公知の負極集電体を用いてよく、その例としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)製のシートまたは箔が挙げられる。負極集電体52としては、銅箔が好ましい。
【0072】
負極集電体62の寸法は特に限定されず、電池設計に応じて適宜決定すればよい。負極集電体62として銅箔を用いる場合には、その厚みは、特に限定されないが、例えば5μm以上35μm以下であり、好ましくは7μm以上20μm以下である。
【0073】
負極活物質層64は負極活物質を含有する。当該負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。黒鉛は、天然黒鉛であっても人造黒鉛であってもよく、黒鉛が非晶質な炭素材料で被覆された形態の非晶質炭素被覆黒鉛であってもよい。
【0074】
負極活物質の平均粒子径(メジアン径:D50)は、特に限定されないが、例えば、0.1μm以上50μm以下であり、好ましくは1μm以上25μm以下であり、より好ましくは5μm以上20μm以下である。なお、負極活物質の平均粒子径(D50)は、例えば、レーザ回折散乱法により求めることができる。
【0075】
負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
【0076】
負極活物質層中の負極活物質の含有量は、90質量%以上が好ましく、95質量%以上99質量%以下がより好ましい。負極活物質層中のバインダの含有量は、0.1質量%以上8質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましい。負極活物質層中の増粘剤の含有量は、0.3質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。
【0077】
負極活物質層64の厚みは、特に限定されないが、例えば、10μm以上300μm以下であり、好ましくは20μm以上200μm以下である。
【0078】
セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。
【0079】
非水電解質80は、典型的には、非水溶媒と支持塩(電解質塩)とを含有する。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
【0080】
支持塩としては、例えば、LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
【0081】
なお、上記非水電解質80は、本発明の効果を著しく損なわない限りにおいて、上述した成分以外の成分、例えば、オキサラト錯体等の被膜形成剤;ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;増粘剤;等の各種添加剤を含んでいてもよい。
【0082】
以上のようにして構成されるリチウムイオン二次電池100は、容量が高く、充放電を繰り返した際の容量劣化耐性に優れる。リチウムイオン二次電池100は、各種用途に利用可能である。具体的な用途としては、パソコン、携帯電子機器、携帯端末等のポータブル電源;電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源;小型電力貯蔵装置等の蓄電池などが挙げられ、なかでも、車両駆動用電源が好ましい。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。
【0083】
なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、ここに開示される非水電解質二次電池は、積層型電極体(すなわち、複数の正極と、複数の負極とが交互に積層された電極体)を備えるリチウムイオン二次電池として構成することもできる。積層型電極体は、正極と負極の間のそれぞれに1枚のセパレータが介在するように、複数のセパレータを含むものであってもよく、1枚のセパレータが折り返されながら、正極と負極とが交互に積層されたものであってよい。
【0084】
また、ここに開示される非水電解質二次電池は、コイン型リチウムイオン二次電池、ボタン型リチウムイオン二次電池、円筒形リチウムイオン二次電池、ラミネートケース型リチウムイオン二次電池として構成することもできる。また、ここに開示される非水電解質二次電池は、公知方法に従い、リチウムイオン二次電池以外の非水電解質二次電池として構成することもできる。
【0085】
他方で、本実施形態に係る正極活物質を用いて、公知方法に従い、非水電解質80に代えて固体電解質を用いて全固体二次電池(特に全固体リチウムイオン二次電池)を構築することもできる。
【0086】
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
【0087】
<実施例1~4および比較例1~8>
正極活物質として、第1リチウム複合酸化物粒子としてのLiNi0.6Co0.2Mn0.2と、第2リチウム複合酸化物粒子としてのLiNi0.55Co0.2Mn0.25とを、表1に示す質量比で用意した。第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子としては、表1に示す粒子特性を有するものを使用した。ただし、比較例3,4では、第1リチウム複合酸化物粒子としてのLiNi0.6Co0.2Mn0.2を正極活物質として単独で用い、比較例5,6では、第2リチウム複合酸化物粒子としてのLiNi0.55Co0.2Mn0.25を正極活物質として単独で用いた。この正極活物質と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、正極活物質:AB:PVDF=97.5:1.5:1.0の質量比で混合し、得られた混合物にN-メチル-2-ピロリドン(NMP)を適量加えて、正極活物質層形成用スラリーを調製した。
【0088】
厚み15μmのアルミニウム箔製の正極集電体の両面に、正極活物質層形成用スラリーを塗布し、乾燥した。その後、圧延ローラーにより塗膜をロールプレスして正極シートを作製した。
【0089】
また、負極活物質としての黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比で、イオン交換水中で混合し、負極活物質層形成用スラリーを調製した。この負極活物質層形成用スラリーを、厚み8μmの銅箔上に塗布した。その後、乾燥を行い、所定の厚みにロールプレスして負極シートを作製した。
【0090】
セパレータとして、PP/PE/PEの三層構造を有する厚み24μmの多孔性ポリオレフィンシートを用意した。正極シートと、負極シートとをセパレータが介在するようにしつつ重ね合わせ、積層体を得た。次いで、積層体を捲回して捲回体を得、これを扁平形状になるようにプレス処理して扁平形状の捲回電極体を得た。
【0091】
電極体に電極端子を取り付け、これを電池ケースに挿入し、溶着した後、非水電解質を注液した。なお、非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=30:30:40の体積比で含む混合溶媒に、支持塩としてのLiPFを1.2mol/Lの濃度で溶解させたものを用いた。その後、電池ケースを封止することによって、実施例1~4および比較例1~8の評価用リチウムイオン二次電池を得た。
【0092】
<実施例5,6および比較例9,10>
正極活物質として、第1リチウム複合酸化物粒子としてのLiNi0.35Co0.30Mn0.35と、第2リチウム複合酸化物粒子としてのLiNi0.55Co0.2Mn0.25とを、表2に示す質量比で用意した。第1リチウム複合酸化物粒子および第2リチウム複合酸化物粒子としては、表2に示す粒子特性を有するものを使用した。この正極活物質と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、正極活物質:AB:PVDF=97.5:1.5:1.0の質量比で混合し、得られた混合物にN-メチル-2-ピロリドン(NMP)を適量加えて、正極活物質層形成用スラリーを調製した。
【0093】
アルミナ粉末と、導電材としての炭素材料と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、アルミナ粉末:炭素材料:PVDF=83:3:14の質量比で混合し、得られた混合物にN-メチル-2-ピロリドン(NMP)を適量加えて、保護層形成用スラリーを調製した。
【0094】
厚み15μmのアルミニウム箔製の正極集電体の両面に、正極活物質層形成用スラリーおよび保護層形成用スラリーを塗布し、乾燥した。正極活物質層形成用スラリーは、正極集電体の一端部に沿って幅広に塗布し、保護層形成用スラリーは、正極活物質層形成用スラリーに隣接させつつ、幅狭に塗布した。その後、圧延ローラーにより塗膜をロールプレスして正極シートの原板を作製した。この原板を所定の寸法に裁断して、複数の正極シートを得た。
【0095】
また、負極活物質としての黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比で、イオン交換水中で混合し、負極活物質層形成用スラリーを調製した。この負極活物質層形成用スラリーを、厚み8μmの銅箔上に塗布した。その後、乾燥を行い、所定の厚みにロールプレスして負極シートの原板を作製した。この原板を所定の寸法に裁断して、複数の負極シートを得た。
【0096】
上記作製した正極シートと、負極シートとを、セパレータとしてのPP/PE/PEの三層構造を有する厚み24μmの多孔性ポリオレフィンシートを介在させながら、交互に積層した。これにより積層型電極体を得た。
【0097】
電極体に電極端子を取り付け、これを電池ケースに挿入し、溶着した後、非水電解質を注液した。なお、非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=30:30:40の体積比で含む混合溶媒に、支持塩としてのLiPFを1.2mol/Lの濃度で溶解させたものを用いた。その後、電池ケースを封止することによって、実施例5,6および比較例9,10の評価用リチウムイオン二次電池を得た。
【0098】
<正極活物質層の空隙率およびピーク細孔径測定>
各実施例および各比較例で作製した正極の試験片を用意し、水銀ポロシメーター「オートポアIII9410」(島津製作所製)のセルにセットした。4psi~60000psiの圧力範囲で、正極活物質の細孔分布を測定した。細孔径0.01μm~10μmの範囲の細孔分布曲線を用いて、ピーク細孔径および空隙率を求めた。
【0099】
<リチウム複合酸化物粒子のDBP吸油量測定>
リチウム複合酸化物粒子のDBP吸油量測定は、JIS K6217-4:2008に記載の方法に準拠して行った。具体的には、試料としてリチウム複合酸化物粒子60gを測り取り、吸油量測定装置「S-500」(あさひ総研社製)にセットした。試料を撹拌翼でかき混ぜつつ、DBPを滴下し、このときのトルク曲線を記録した。最大トルクの70%でのDBP滴下量を読み取り、これに基づき、DBP吸油量(mL/100g)を算出した。この測定を3回行い、得られたDBP吸油量の平均値を、試料に用いたリチウム複合酸化物粒子のDBP吸油量として求めた。結果を表1および2に示す。
【0100】
<リチウム複合酸化物粒子の平均粒子径測定>
市販のレーザ回折・散乱式粒度分布測定装置を用いて、リチウム複合酸化物粒子の体積基準の粒度分布を測定し、粒径が小さい微粒子側からの累積頻度50体積%に相当する粒径を、リチウム複合酸化物粒子の平均粒子径(D50)として求めた。結果を表1および2に示す。
【0101】
<リチウム複合酸化物粒子の平均一次粒子径測定>
走査型電子顕微鏡を用いてリチウム複合酸化物粒子の顕微鏡画像を取得した。画像解析式粒度分布測定ソフトウェア「Mac-View」を用いて、任意に選択した50個以上の一次粒子の長径をそれぞれ求めた。その平均値を算出して、これをリチウム複合酸化物粒子の平均一次粒子として採用した。結果を表1および2に示す。
【0102】
<初期容量およびサイクル特性評価>
各評価用リチウムイオン二次電池を室温下で、0.1Cの電流値で4.2Vまで定電流充電し、その後0.1Cの電流値で2.5Vまで定電流放電した。このときの放電容量を求め、これを初期容量とした。比較例1の初期容量を100とした場合の各実施例およびその他の比較例の初期容量の比を求めた。結果を表1および2に示す。
【0103】
各評価用リチウムイオン二次電池を25℃に置き、2Cで4.2Vまで定電流充電、10分間休止、2Cで3.0Vまで定電流放電、10分間休止を1サイクルとする充放電を、500サイクル繰り返した。500サイクル後の放電容量を、初期容量と同様の方法で求めた。(充放電500サイクル後の放電容量/初期容量)×100より、サイクル特性の指標として容量維持率(%)を求めた。結果を表1および2に示す。
【0104】
<出力特性>
出力特性の指標として、初期抵抗について評価した。上記作製した各評価リチウムイオン二次電池をSOC50%の状態に調整した後、25℃の環境下に置いた。種々の電流値で2秒間放電を行い、各電流値で放電した後の電池電圧を測定した。各電流値と各電池電圧とをプロットして放電時におけるI-V特性を求め、得られた直線の傾きから放電時におけるIV抵抗(Ω)を初期抵抗として求めた。
【0105】
【表1】
【0106】
【表2】
【0107】
表1および表2の結果が示すように、リチウム複合酸化物粒子の組成が同じである正極活物質を用いた電池間の比較において、正極活物質層が、正極活物質として層状構造を有するリチウム複合酸化物の粒子を含有し、正極活物質層の空隙率が、16.5%~20.5%であり、水銀圧入法により測定される正極活物質層の細孔分布におけるピーク細孔径が、0.400μm~0.550μmである場合に、初期容量が高く、かつ初期抵抗が小さい(すなわち、出力が高い)ことがわかる。また、この場合には、充放電サイクル後の容量維持率も高いことがわかる。よって、ここに開示される正極活物質によれば、非水電解質二次電池の容量および出力を高めることができることがわかる。また、ここに開示される正極活物質によれば、充放電を繰り返した際の優れた容量劣化耐性を非水電解質二次電池に付与することができることがわかる。
【0108】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【符号の説明】
【0109】
20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
80 非水電解質
100 リチウムイオン二次電池
図1
図2
図3