IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 深▲セン▼華大智造科技股▲ふん▼有限公司の特許一覧

特許7511013光学結像系及びそれを適用した生化物質検出系
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-26
(45)【発行日】2024-07-04
(54)【発明の名称】光学結像系及びそれを適用した生化物質検出系
(51)【国際特許分類】
   G02B 21/00 20060101AFI20240627BHJP
   G02B 21/06 20060101ALI20240627BHJP
   G01N 21/64 20060101ALI20240627BHJP
【FI】
G02B21/00
G02B21/06
G01N21/64 E
【請求項の数】 15
(21)【出願番号】P 2022548814
(86)(22)【出願日】2020-02-12
(65)【公表番号】
(43)【公表日】2023-04-03
(86)【国際出願番号】 CN2020074795
(87)【国際公開番号】W WO2021159285
(87)【国際公開日】2021-08-19
【審査請求日】2022-08-22
(73)【特許権者】
【識別番号】516122667
【氏名又は名称】深▲セン▼華大智造科技股▲ふん▼有限公司
【氏名又は名称原語表記】MGI Tech Co.,LTD
【住所又は居所原語表記】Main Building and Second Floor of No.11 Building,Beishan Industrial Zone,Yantian District,Shenzhen,Guangdong 518083,China
(74)【代理人】
【識別番号】110002262
【氏名又は名称】TRY国際弁理士法人
(72)【発明者】
【氏名】姜 鶴鳴
(72)【発明者】
【氏名】黄 怡
(72)【発明者】
【氏名】▲どん▼ 茜
(72)【発明者】
【氏名】楊 斌
(72)【発明者】
【氏名】温 欣
(72)【発明者】
【氏名】曹 明友
(72)【発明者】
【氏名】ファン イェンチョウ
(72)【発明者】
【氏名】ウ ズイ
(72)【発明者】
【氏名】ウリチ クレイグ エドワード
(72)【発明者】
【氏名】ハウザー ブライアン キース
(72)【発明者】
【氏名】イェン チンタン
【審査官】堀井 康司
(56)【参考文献】
【文献】中国特許出願公開第104967759(CN,A)
【文献】中国特許出願公開第106645045(CN,A)
【文献】特表2007-502419(JP,A)
【文献】特表2009-537021(JP,A)
【文献】特開2014-142657(JP,A)
【文献】中国特許出願公開第105039147(CN,A)
【文献】特開昭63-311222(JP,A)
【文献】特開2003-075720(JP,A)
【文献】特開2005-202092(JP,A)
【文献】特開昭62-125313(JP,A)
【文献】特開2014-115448(JP,A)
【文献】特開2006-003542(JP,A)
【文献】特開平10-326587(JP,A)
【文献】特表2015-513111(JP,A)
【文献】特開2005-241290(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 19/00-21/00
G02B 21/06-21/36
G01N 21/64
(57)【特許請求の範囲】
【請求項1】
試料を撮像して結像する光学結像系であって、
前記試料を励起して、被励起光を発生させる励起光を出力する照明モジュールと、
前記被励起光を記録する時間差積分(time delay integration,TDI)カメラを備える結像モジュールと、
前記光学結像系が、前記励起光を出力し、レーザ光を収集する通路である対物レンズと、
前記対物レンズと前記TDIカメラとの間に設けられ、前記TDIカメラへの特定波長外の光の進入を阻止するフィルタシステムと、
前記フィルタシステムと前記TDIカメラとの間に設けられた、前記対物レンズとの組み合わせの歪み<1%である鏡筒レンズと、を備え、
前記照明モジュールは、前記励起光を出力する出力端面が矩形状である光源、および励起光整形手段を含み、
前記励起光整形手段は、前記励起光の光スポットの形状を前記TDIカメラの感光面の形状に合わせるように、前記励起光の光スポットを第1方向に拡大し、前記励起光の光スポットを前記第1方向と直交する第2方向に縮小し、
前記対物レンズは、開口数は0.7以上、有効作動距離>1.2mm、焦点距離=12.5mm、面湾曲<0.4um、物体側視野範囲>φ1.2mmである光学結像系。
【請求項2】
前記鏡筒レンズの焦点距離が150mm~250mmであり、及び/又は、
前記鏡筒レンズが4枚のレンズを備え、前記4枚のレンズが接合されて2枚接合レンズ群を形成することを特徴とする請求項1に記載の光学結像系。
【請求項3】
前記フィルタシステムは、
異なる前記TDIカメラによって記録されるように、前記被励起光を異なる結像チャンネルに導光する分光装置と、
前記TDIカメラ毎に特定波長外の光を入射するのを阻止するためのフィルタと、を備えることを特徴とする請求項1に記載の光学結像系。
【請求項4】
記励起光整形手段は、前記励起光のスポットを第1方向に拡大するための第1整形手段と、前記励起光のスポットを前記第1方向と直交する第2方向に縮小するための第2整形手段と、を含み、あるいは、
前記励起光整形手段は、2枚の円柱レンズを含み、
前記2枚の円柱レンズの一方は、前記励起光の光スポットを第1方向に拡大しながら、他方は、前記励起光の光スポットを前記第1方向に直交する第2方向に縮小することを特徴とする請求項に記載の光学結像系。
【請求項5】
前記励起光の光スポットは、前記励起光整形手段によって整形された後の縦横比が20以上であることを特徴とする請求項に記載の光学結像系。
【請求項6】
前記試料を搭載する試料キャリアと前記対物レンズとの位置関係を検出し、検出した前記位置関係に応じて、前記試料キャリアが対物レンズの焦点面上に位置するように前記試料キャリアと前記対物レンズとの相対位置を調整する、合焦モジュールを備えることを特徴とする請求項1に記載の光学結像系。
【請求項7】
前記合焦モジュールは、検出光を前記試料キャリアに照射する光源と、前記試料キャリアから反射された検出光を検知するセンサユニットと、を備え、
前記センサユニットは、反射された前記検出光に基づいて前記試料キャリアと前記対物レンズとの位置関係を反映する電気信号を出力することを特徴とする請求項に記載の光学結像系。
【請求項8】
前記合焦モジュールは、制御ユニットをさらに備え、
前記制御ユニットは、前記電気信号に基づいて、前記試料キャリアが対物レンズの焦点面からずれるデフォーカス方向とデフォーカス量とを決定し、前記対物レンズが前記試料キャリアに接近または離間する距離を制御することで、前記試料キャリアを再び前記対物レンズの合焦面に位置することを特徴とする請求項に記載の光学結像系。
【請求項9】
前記センサユニットは、それぞれ受光した検出光を電気信号に変換する2つのセンシング領域を設けた光電センサを含み、
前記制御ユニットは、前記2つのセンシング領域が出力する前記電気信号の差を、前記2つのセンシング領域が出力する前記電気信号の和で除算することにより、前記対物レンズの焦点面からずれた前記試料キャリアのデフォーカス方向とデフォーカス量とを決定する、ことを特徴とする請求項に記載の光学結像系。
【請求項10】
前記制御ユニットは、算式DIV=α(DIFF/SUM +β)に従って、前記対物レンズの移動を制御するための制御信号を算出し、
そのうち、前記制御信号をDIV、信号増幅率をα、前記2つのセンシング領域が出力する電気信号の差信号をDIFF、前記2つのセンシング領域が出力する電気信号の和信号をSUM、予め設定された電圧オフセット量をβ、とすることを特徴とする請求項に記載の光学結像系。
【請求項11】
前記試料の移動速度と前記TDIカメラの周波数とをマッチングして同期させるように制御するとともに、前記光源の点灯と前記TDIカメラの撮影との同期を保つように制御する制御装置をさらに備える、請求項に記載の光学結像系。
【請求項12】
請求項1~10の何れか1項に記載の光学結像系を備える生化物質検出系。
【請求項13】
前記試料を搭載するための検出プラットフォームをさらに備える請求項12に記載の生化物質検出系。
【請求項14】
前記光学結像系は、前記検出プラットフォームと通信して光学イメージングシステムと検出ステージとの同期を制御する制御装置をさらに含むことを特徴とする請求項13に記載の生化物質検出系。
【請求項15】
前記制御装置は、前記検出ステージの移動速度を前記TDIカメラの周波数に合わせて同期させるように制御すると共に、前記照明モジュールの点灯を前記TDIカメラの撮影に同期するように制御することを特徴とする請求項14に記載の生化物質検出系。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検出分野に関し、特に、光学結像系及びそれを適用した生化物質検出系に関する。
【背景技術】
【0002】
生化物質分析分野で用いられる結像分析機器は、例えば遺伝子シーケンサ、その光学結像系の大部分は高感度の科学用エリアカメラ-に基づいて設計されており、シーケンサチップの被測定領域の面積は、通常、結像系の対物レンズの一回の可視領域よりはるかに大きいため、シーケンサチップ全体の被測定領域の結像を完了するには、行列逐次走査で済ませる必要がある。データ解析段階で更にスティッチングする。
【0003】
従来の科学用エリアカメラ-は、行列逐次走査を行う際に、通常、プラットフォームに基づきステッピングの設計案が利用されている。つまり、プラットフォームでシーケンシングチップを搭載して移動させることにより、異なる撮影位置のニーズに対応できる。ある撮影位置にプラットフォームが移動すると、プラットフォームが先に減速して静止してから撮影を行う必要があり、そうでなければ写真にスミアが発生してしまう。このように、プラットフォームは、高速で移動した後に速く静止し、撮影終了後には静止から高速の移動に戻す加減速能力を有していなければならない。これに対し、従来技術では、プラットフォームの加速も減速もかなりの時間を要しており、これがハイスループット光学シークエンスのボトルネックの1つとなっている。
【0004】
また、光学結像系の要部とした顕微鏡の対物レンズは、従来の対物レンズでは一般に大視野と大開口数を両立できず、ハイスループットな光学結像系には適していない。
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来技術の上記一部又は全部の問題、及びその他の潜在的な問題を解決するためには、光学結像系及びそれを適用した生化物質検出系を提出する必要がある。
【課題を解決するための手段】
【0006】
第1の態様では、試料を撮像して結像する光学結像系であって、前記試料を励起して、被励起光を発生させる励起光を出力する照明モジュールと、前記被励起光を記録する時間差積分ラインカメラを備える結像モジュールと、を備える光学結像系が提供される。
【0007】
第2の態様では、前記光学結像系を備える生化物質検出系が提供される。
【発明の効果】
【0008】
本発明の実施態様により提供された光学結像系および生化物質検出系は、1.工業用あるいは科学用のTDIカメラを用いて被励起光を撮像することにより、1試料当たりの撮像時間を削減し、検出スループットを向上させることができ、2.分光装置及びフィルタ装置によりフィルタシステムを構成し、被励起光を複数の通路に分けて結像する一方、励起光およびその他の光、例えば検出光が被励起光の結像への干渉を防ぎ、結像品質を向上させており、3.光源の出力端面が矩形、あるいはさらに細長い矩形であるとともに、光源から出力される励起光が励起光整形手段によってTDIカメラの受光面に合わせた照明光スポットに整形され、光源のエネルギーを最大限に利用するとともに、照明光スポットの均一性も向上しており、4.特殊な構造の対物レンズによって、大視野と大開口数の要求を同時に満足するとともに、歪曲とプランアクロマートを低減させており、5.対物レンズと試料キャリアとの間の距離をリアルタイムで調整して、試料キャリアを対物レンズの合焦平面上に保持させ、環境温度の変化、機械的振動、試料の湾曲、またはその他の要因による試料キャリアと対物レンズとの間の距離の変化を補正し、結像の品質を確保する合焦システムを採用しており、6.合焦システムが試料キャリアと対物レンズとの間の距離を特定の方法で算出し、信号ノイズ及び検出光源の輝度変化による検出結果への影響を有効に消した。
【図面の簡単な説明】
【0009】
本発明の実施例に係る発明をより明確に説明するために、以下に、本発明の実施例において必要な図面を簡単に紹介するうえで、以下の説明における図面は一つの実施例に過ぎず、当業者にとって、創造的な労働を伴わずに、これらの図面からも他の図面が得られることは明らかである。
【0010】
図1】本発明の一実施形態における光学結像系の構成を示す図である。
図2】TDIカメラの結像と従来のエリアカメラの結像との各ラインの撮影時間の比較図である。
図3】本発明の一実施形態における対物レンズの光学構造の模式図である。
図4図3に示した対物レンズの全視野、全帯域のMTFのグラフである。
図5図3に示す対物レンズの歪曲線図である。
図6図3に示す対物レンズのエネルギー包絡図である。
図7】本発明の一実施形態に係る鏡筒レンズと図3に示す対物レンズとの組み合わせの光学構造を示す図である。
図8A-8D】図7に示した対物レンズと鏡筒レンズとの組み合わせの、結像通路1~4における波面収差図である。
図9図7に示す対物レンズと鏡筒レンズとの組み合わせの歪曲線図である。
図10】本発明の一実施形態における光源の出力端面の模式図である。
図11】本発明の一実施形態における励起光整形手段と図3に示す対物レンズとの組み合わせの光学構造を示す図である。
図12】本発明の他の実施形態における励起光整形手段と図3に示す対物レンズとの組み合わせの光学構造を示す図である。
図13】本発明の一実施形態におけるTDIカメラの感光面の模式図である。
図14】シミュレーションで得られた像面の照度図である。
図15図1に示す光学結像系の制御原理図である。
図16図1に示す光学結像系の合焦モジュールによる合焦の原理図である。
図17図1に示した光学結像系の合焦モジュールによる合焦の光路原理図である。
図18A-18C】図17に示す合焦モジュールのセンサが反射した検出光のスポットを示す模式図である。
図19図1に示した光学結像系の合焦時の測定により得られた各信号パターンである。
図20】本発明の一実施形態における生化物質検出系の構成を示す図である。
図21】本発明の他の実施形態における生化物質検出系の構成を示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しつつ本発明の実施形態をさらに説明する。
【0012】
本発明の実施例における技術的解決手段は、本発明の実施形態における図面を参照して以下に明確かつ完全に説明される。なお、記載された各実施形態は、本発明の実施形態の一部に過ぎず、すべての実施形態ではないことは明らかである。創造的な努力なしに本発明の実施形態に基づいて当業者によって得られる他のすべての実施形態は、本発明の範囲内である。
【0013】
なお、ある要素がもう1つの要素に「固定された」、「取り付された」と称される場合、それは直接に前記もう1つの要素に存在してもよいし、他の要素を介して前記もう1つの要素に固定されてもよい。ある要素がもう1つの要素に「設けられる」と考えられる場合、それは前記もう1つの要素に直接に設けられてもよいし、他の要素を介して前記もう1つの要素に設けられてもよい。本明細書で使用される用語「及び/又は」は、1つ又は複数の関連する項目すべての及び任意の組み合わせを含む。
【0014】
本発明の一実施形態に係る光学結像系の構成を示す概略図である図1を参照する。光学結像系1は、照明モジュール11と、合焦モジュール13と、結像モジュール15とを備える。そこで、結像モジュール15は、工業用または科学用のTDIカメラであるTDI(time delay integration、時間差積分)ラインカメラ(以下、単にTDIカメラという)を用いて結像を行う。照明モジュール11、合焦モジュール13及び結像モジュール15は、いくつかの光路誘導部品及び対物レンズ16を共用している。照明モジュール11は、光源111と、励起光整形手段113とを備え、光源111から発光した励起光が励起光整形手段113によってTDIカメラの受光面に合わせた線状の照明スポットに整形され、この線状の照明スポットが光路案内部材により対物レンズ16に導光され、対物レンズ16を介して試料キャリア2に搭載された試料上に出射され、試料は励起光により励起されて被励起光を発生し、被励起光は対物レンズを介して結像モジュール15に入射し、結像モジュール15内のTDIカメラにより記録される。前記合焦モジュール13は、検出光を出射し、検出光は、光路案内部材により対物レンズ16に導光されて対物レンズ16に入射し、対物レンズ16を介して試料キャリア2上に出射された検出光を発し、前記検出光は、試料を励起して被励起光を発生させることなく、試料キャリア2でのみ反射されて対物レンズ16に戻され、対物レンズ16および光路案内部材を介して合焦モジュール13に入射され、合焦モジュール13により試料キャリア2と対物レンズ16との位置関係が解析されて決定され、決定された試料キャリア2と対物レンズ16との位置関係に基づいて、試料キャリア2が対物レンズ16の焦点面上に常に位置するように、試料キャリア2に対する対物レンズ16の位置が調整される。
【0015】
本実施形態において、前記光源111はレーザー光源であり、前記励起光はレーザー光である。光学結像系1は、DNAの試料を撮像してDNAの試料の塩基配列を解析するシーケンシャル撮影システムである。前記DNAサンプルは試料キャリア2に搭載されており、DNA試料のA、T、G、Cの4塩基はそれぞれ異なる蛍光色素により標識されており、対物レンズ16から出射されるレーザ光によりDNAサンプルが励起されて異なる波長の4種の蛍光を発光する。結像モジュール15は、光学結像系1に4つの結像通路を形成するように配置された4つのTDIカメラ151を備え、各TDIカメラ151の前には、鏡筒レンズ152およびカットフィルタ153が設けられ、各カットフィルタ153は、対応するTDIカメラ151に1つの波長域の蛍光のみを入射させることで、対応するTDIカメラ151には、A、T、G、Cのいずれかの塩基から発せられた蛍光信号のみが記録される。結像モジュール15は、1つの波長域の光を反射し、他の波長域の光を透過することで異なる結像通路に導光することで、異なるTDIカメラ151に記録する複数の分光装置154をさらに備える。本実施形態では、分光装置154はダイクロスコープであり、結像モジュール15はダイクロスコープA、B、C、Dを備える。そこで、ダイクロスコープAは、対物レンズ16に対応して設けられ、対物レンズ16の光軸と45°をなし、被励起光を透過しながら励起光と検出光とを反射するものである。ダイクロスコープBは、ダイクロスコープAの後側に設けられ、ダイクロスコープAと平行に配置され、異なる波長の被励起光を透過.反射することにより、ダイクロスコープCとDのそれぞれに導くものである。ダイクロスコープCとDは、さらに透過と反射により、異なる波長の被励起光をそれぞれ異なるカットフィルタ153に導光し、鏡筒レンズ152を介して、対応するTDIカメラ151に入射させる。
【0016】
本実施形態では、照明モジュール11と合焦モジュール13とは、結像モジュール15のダイクロスコープAを共有する。他の照明モジュール11と合焦モジュール13とは、ダイクロスコープEも共用し、ダイクロスコープEは、異なる角度から入射する励起光と検出光とを共にダイクロスコープAに導光し、さらにダイクロスコープAに導かれて対物レンズ16に入る。照明モジュール11は、励起光整形手段113が整形した励起光をダイクロスコープEに反射する平面ミラー115を備える。
【0017】
本実施例は、TDIカメラ151を用いており、TDIカメラ151の感光チップの複数ラインの画素は、ラインごとの電荷転送を行って、同一ターゲットに対して複数回の露光結像を行って、TDIカメラ151と試料キャリア2とを同期させることで、試料ごとの撮影時間を著しく低減し、検出スループットを向上させることができる。図2に示すように、TDIカメラ151と、従来のエリアカメラとの撮影時の1ライン当たりの撮影時間の比較である。図2において、t1は、TDIカメラ151の各ラインの撮影時間を示し、t2は、従来のエリアカメラの各ラインの撮影時間を示す。試料の各行を走査する際に、試料キャリア2を搭載する検出プラットフォームの等速移動を制御して、TDIカメラ151が試料の同一行を連続走査して当該行の画像情報を採取することができる。このように、従来のシークエンスでは、エリアカメラによるラインごとの各視野を走査するために、検出プラットフォームの加減速が必要であり、これに比べて、TDIカメラ151を用いた場合、改行に1回だけ検出プラットフォームを駆動して加減速を行うことにより、光学結像系1の時間利用率が向上され、光学結像系1が適用される生化物質検出装置の検出スループットも向上し、検出プラットフォームの頻繁な加減速によるリスクも同時に回避できる。
【0018】
本実施例では、対物レンズ16は、照明モジュール11の矩形スポットを均一化して試料キャリア2上に照射するとともに、合焦モジュール13の検出光も試料キャリア2上に導光する一方、対物レンズ16は受光した被励起光を収集し、収集された被励起光は、鏡筒レンズ152を介して各TDIカメラ151上で各通路のDNA蛍光画像を得る。
【0019】
試料キャリア2上の試料点の間のピッチは百ナノメートルオーダーであるため、レイリー判定(Rayleigh Criterion)に応じて、対物レンズ16の開口数NA>0.8が要求される。また、ハイスループットの結像系に対して、結像の有効視野は、縦横比が大きい細長い矩形領域となるため、TDIカメラ151は撮像に大きな線形視野を必要とする。例えば、6T/日であるシークエンスのスループット要求に対しては、対物レンズ16の物体側径視野は1.5mm以上であることが要求される。なお、超高スループットを実現するためには、対物レンズ16は大きな開口数と大きな視野をともに有することが必要であるが、現在の商用顕微鏡では、一般的に低倍率の対物レンズは視野が大きいが、開口数が小さく、高倍率の対物レンズは開口数が大きいが、視野が小さく、通常両者の積は0.8未満であり、超高スループットを実現することは困難である。
【0020】
したがって、本実施例で提供される対物レンズ16は、大体、
開口数NA≧0.7、
有効作動距離>1.2mm、
焦点距離=12.5mm、
500nm~800nmの波長の光波に対するアポクロマート<0.4μm、
像面湾曲<0.4um、
物体側視野範囲>φ1.2mm、
鏡筒レンズとの組み合わせのディストーション<1%などの仕様を満たしている。
【0021】
この実施例による対物レンズ16は、概して、大視野、大開口数、小歪みのプランアクロマート対物レンズであり、0.25mmカバーガラスおよび0.05mm水層に適している。
【0022】
本実施形態による対物レンズ16の具体的な光学構造を示す図である図3を参照する。
【0023】
対物レンズ16は、物体側から像側へと順番に配置された7群のレンズ161~167を有し、前3群のレンズ161-163が負の屈折力を担い、後4群のレンズ164-167が正の屈折力を担っている。第1群レンズ161は、アプラナートレンズを形成し、正の像面湾曲を発生する正の屈折力を有する厚肉メニスカスレンズである第1レンズL1を備える。第2群レンズ162は、第1レンズL1と正の偏角を担い、正の屈折力を有するメニスカスレンズである第2レンズL2を備える。第3群レンズ163は、第3レンズL3、第4レンズL4及び第5レンズL5を備え、第3レンズL3、第4レンズL4及び第5レンズL5がこの順に接合され、主としてコマ収差及び色収差の補正に用いられる正の屈折力を有し3枚接合レンズ群となる。第4群レンズ164は、正の屈折力を有する薄肉メニスカスレンズである第6レンズL6を備える。第5群レンズ165は、正の屈折力を有する2枚接合レンズ群を接合して構成する第7レンズL7と第8レンズL8とを備える。第6群レンズ166は、負の屈折力を有する2枚接合レンズ群を接合して構成する第9レンズL9と第10レンズL10とを備える。第7群レンズ167は、第11レンズL11と第12レンズL12とを含み、これら第11レンズL11と第12レンズL12とが接着されて、2枚接合のメニスカス形状の負レンズ群をなし、負の屈折力を有している。このうち、第6群レンズ166及び第7群レンズ167は、像面湾曲及び歪曲の制御のために用いられる。ここで、本実施例でいう厚肉メニスカスレンズ、メニスカスレンズ、薄肉メニスカスレンズの3つのレンズの光軸方向上の厚さは、この順に低くなつており、すなわち、厚肉メニスカスレンズの光軸方向上の厚さは、メニスカスレンズよりも光軸方向上の厚さが大きく、メニスカスレンズの光軸方向上の厚さは、薄肉メニスカスレンズよりも光軸方向上の厚さが大きくなつており、本実施の形態で用いる「厚肉」、「薄肉」は、物体の厚さを説明する上での相対的な概念に過ぎない。
【0024】
第1群レンズ161は、9.2<f1/fobj<9.7を満たし、
第2群レンズ162は、4.7<f2/fobj<5.5を満たし、
第3群レンズ163は、4.6<f3/fobj<5.6を満たし、
第4群レンズ164は、3.25<f4/fobj<3.88を満たし、
第5群レンズ165は、5.71<f5/fobj<6.11を満たし、
第6群レンズ166は、-4.76<f6/fobj<-3を満たし、
第7群レンズ167は、-23.9<f7/fobj<-19.5を満たす。
そのうち、f1は第1群レンズ161の焦点距離、f2は第2群レンズ162の焦点距離、f3は第3群レンズ163の焦点距離、f4は第4群レンズ164の焦点距離、f5は第5群レンズ165の焦点距離、f6は第6群レンズ166の焦点距離、f7は第7群レンズ167の焦点距離、fobjは対物レンズ16の焦点距離である。
【0025】
図4図6を参照して、図4は、シミュレーションにより得られた対物レンズ16の全視野、全帯域のMTF(Modulation Transfer Function、変調伝達関数)曲線であり、図5は、シミュレーションにより得られた対物レンズ16のディストーション曲線であり、図6は、シミュレーションにより得られた対物レンズ16のエネルギー包絡図である。上記シミュレーション結果図から分かるように、対物レンズ16は、結像の結果において回折限界に近く、その正規化視野の歪みは1%未満で解析度が高い。
【0026】
本実施形態による対物レンズ16と鏡筒レンズ152との組み合わせの光学構造を示す図である図7を参照する。本実施の形態では、鏡筒レンズ152は、4枚のレンズが接合されて2枚の2枚接合レンズとされ、以下、第13レンズL13と第14レンズL14と称する。鏡筒レンズ152の焦点距離は150mm~250mmであり、具体的に適用時においては、鏡筒レンズ152の具体的な焦点距離の値は、対物レンズ16の焦点距離、TDIカメラ151の画素サイズおよび数、光学結像系1に要求される倍率および解像度に応じて設定される。鏡筒レンズ152と対物レンズ16の組み合わせは、ディストーション、像面湾曲等の結像の制限要求を満たす必要があり、鏡筒レンズ152は、対物レンズ16の残収差を補償する。
【0027】
図8A図8Dおよび図9を参照して、図8A図8Dは、それぞれ、シミュレーションにより得られた対物レンズ16と鏡筒レンズ152との組み合わせの結像通路1~4における波面収差曲線図であり、図9は、シミュレーションにより得られた対物レンズ16と鏡筒レンズ152との組み合わせの歪曲曲線である。ここで、図8A図8Dの横線Hは回折限界を示しており、対物レンズ16と鏡筒レンズ152との組合せによる結像通路1~4の波面収差は横線Hよりも低くなつており、対物レンズ16と鏡筒レンズ152との組合せによる設計が解像に係る要求の限界に達していることが分かる。図9からわかるように、対物レンズ16と鏡筒レンズ152との組み合わせによる正規化視野の歪みは1%未満である。
【0028】
本実施例では、対物レンズ16は無限補正対物レンズであり、対物レンズ16は試料から出射した被励起光を平行光又はこれに類する平行光にすることで、対物レンズ16と鏡筒レンズ152との間に必要に応じて分光装置154を入れるのが便利である。
【0029】
図10に示すように、本実施形態における光源111の出力端面を示す図である。本実施形態において、光源111は、赤緑の2色のレーザ光を発射するレーザ光源であり、光ファイバ結合器(図示せず)とマルチモード光ファイバ1111とを含む。この赤緑2色のレーザ光は、光源111の出力端面である出力端面1112を有するマルチモード光ファイバ1111に光ファイバ結合器を介して結合されることで出力され、本実施例では、前記出力端面1112はTDIカメラ151の短冊形受光面に合うように矩形となる。したがって、光源111の矩形出力端面は、従来技術で常用されている円形出力端面に比べて、TDIカメラ151を適用することができ、励起光の利用率を高めることができる。
【0030】
図11を参照して、一実施形態における励起光整形手段113と対物レンズ16との組み合わせの光学構造を示す図である。前記励起光整形手段113は、第1整形手段113aと第2整形手段113bとを有し、第1整形手段113aと第2整形手段113bとは像側から物体側に順に並べられている。第1整形手段113aは、光源111が発光する矩形状の光スポットを第1方向に整形し、第2整形手段113bは、光源111が発光する照明スポットを第2方向に整形し、そこで、第1方向と第2方向とが直交し、照明スポットは、第1整形手段113aと第2整形手段113bとで整形された後に、TDIカメラ151の結像走査に必要な縦横比で線状の光スポットを形成する。本実施例においては、前記第1整形手段113aと第2整形手段113bをそれぞれ円柱レンズC1、C2とし、円柱レンズC1は照明スポットを図1に示すX方向に拡大し、円柱レンズC2は照明スポットを図1に示すY方向に縮小し、最終的に照明スポットをTDIカメラ151の結像走査に必要な縦横比にする。円柱レンズC1、C2の焦点距離を適切に選択することで、照明モジュール11が出力する照明スポットの縦横比を調整することができ、本実施形態では、円柱レンズC1、C2が照明スポット10:1の縦横比での整形を実現する上で、光ファイバ1111の矩形出力端面1112に乗算するため、照明モジュール11が出力する照明スポットの縦横比は約20:1に達することができる。本実施例では、2枚の円柱レンズC1、C2によって照明スポットの整形を実現するが、一方で使用する整形素子が少ないため、励起光整形手段113は構造が簡単で、組立てや調整が容易であり、一方で素子自体や組立て公差による照明スポットのばらつきを低減できる。なお、本実施例では、臨界照明を採用し、照明の線均一性を厳密に制御し、光源111のエネルギーを最大限に利用しつつ、被励起光を励起させるために均一な照明を提供する。
【0031】
図12を参照して、他の実施例における励起光整形手段113と対物レンズ16との組み合わせの光学構造を示す図である。前の実施例と異なり、本実施例では、前記第1整形手段113a及び第2整形手段113bは、それぞれ円柱レンズC3、C4であり、円柱レンズC3は照明スポットを図1に示すY方向に縮小し、円柱レンズC4は照明スポットを図1に示すx方向に拡大することで、最終的に照明スポットをTDIカメラ151の結像走査に必要な縦横比にする。
【0032】
図13及び図14を参照すると、図13は、本実施例におけるTDIカメラ151の感光面1511が矩形面又は更に短冊形なTDIカメラ151の受光面を示す図である。図14は、シミュレーションで得られた像面の照度図である。具体的には、図14は、光学結像系1について、光源111の入力電力を1Wに正規化し、ダイクロA~Eを50/50に反射/投射するビームスプリッタに簡略化し、全レンズの透過率を100%と仮定したシミュレーションを、非シーケンスシミュレーションソフトで行った像面の照度図である。像面照度図から分かるように、像側照度均一性は85%より大きい。
【0033】
別の実施例では、前記第1整形手段113aと第2整形手段113bとは、それぞれ光学くさび、マイクロレンズ又は回折光学素子等でもよい。
【0034】
本実施形態の光学結像系1の制御原理図である図15を参照する。光学結像系1は、制御装置17をさらに備える。制御装置17は、検出プラットフォーム(本実施例では可動プラットフォーム18)の移動速度を、TDIカメラ151の周波数に合わせて同期を保つように制御するとともに、光源111の点灯を、TDIカメラ151の撮影と同期をとるように制御するためのものである。具体的には、本実施形態では、上記目的を達成するため、制御装置17は、試料キャリア2を載置する可動プラットフォーム18に通信接続されており、可動プラットフォーム18が指定位置に達したとき、光源111とTDIカメラ151を同時にトリガして、試料、光源111及びTDIカメラ151を同期させるとともに、生成された画像を変形させないように、TDIカメラ151の周波数を可動プラットフォーム18の移動速度に自動的に合わせる。可動プラットフォーム18は、図1に示すように、図示したX方向及びX方向に垂直なY方向への移動と、X方向とY方向とがなす平面内での回動とを制御可能になっており、可動プラットフォーム18を所定位置に移動又は位置決めできるようになっている。対物レンズ16は、X方向とY方向とを同時に垂直とする図示のZ方向に移動するように制御できる。
【0035】
本実施形態では、合焦モジュール13は、検出光を照射することにより試料キャリア2と対物レンズ16との位置関係を検出し、試料キャリア2に対する対物レンズ16の距離を調整するように、その検出結果に基づいて対物レンズ16のZ方向の移動を制御することにより、試料キャリア2が常に対物レンズ16の焦点面上に位置するようにしている。したがって、合焦モジュール13により、環境温度の変化、機械的振動、試料キャリア2の湾曲、試料キャリア2の表面のむら、試料キャリア2の厚さの変化による対物レンズ16と試料キャリア2との間の距離の変化を補正ことができる。
【0036】
図16を参照して、本実施例において、合焦モジュール13による合焦の原理図である。本実施例では、合焦モジュール13から発せられた検出光は、対物レンズ16を通して試料キャリア2に照射され、試料キャリア2で反射されて対物レンズ16に戻され、対物レンズ16を通して原光路に沿って合焦モジュール13に戻され、合焦モジュール13は、戻された検出光に基づいて試料キャリア2が対物レンズ16の焦点面上に位置しているか否かを判断する。試料キャリア2が対物レンズ16の焦点面上にない場合、合焦モジュール13は、対物レンズ16の移動を駆動する駆動部161に信号を送信し、駆動部161を制御して対物レンズ16を試料キャリア2に接近または離れて移動させ、試料キャリア2を再び対物レンズ16の焦点面上に位置させる。
【0037】
具体的には、本実施形態では、TDIカメラ151ごとの撮像データをコンピュータ装置19に転送し、コンピュータ装置19は、全てのTDIカメラ151の撮像品質を予め設定された規則に基づいて総合的に評価し、対物レンズ16の基準位置(すなわち、試料キャリア2が対物レンズ16の焦点面上に位置するとき、対物レンズ16がZ方向に位置する位置)、すなわち、対物レンズ16の基準位置を表す基準値を取得する。前記標準値は、合焦モジュール13に供給された。前記合焦モジュール13は、検出光路130と、センサユニット131と、制御ユニット132とを含む。センサユニット131は、戻した検出光をセンシングして電気信号を出力し、制御ユニット132は、センサユニット131から出力された電気信号に基づいて検出値を取得して、検出値と標準値とを比較して、駆動部161を制御する制御信号を取得することにより、駆動部161による対物レンズ16の試料キャリア2への接近や離間を制御する。
【0038】
図17及び図18A~Cを同時に参照して、図17は、本実施形態における合焦モジュール13による合焦の光路の原理図である。図18A図18Cは、本実施例における合焦モジュール13のセンサユニット131が試料キャリア2の対物レンズ16の焦点面にあるかどうかをセンシングする模式図である。前記検出光路は、光源1301と、鏡筒レンズ1303と、を含む。センサユニット131はセンサ1311を含み、光源1301から発せられた検出光は、鏡筒レンズ1303と対物レンズ16を透過し(本実施例ではミラー1305により反射されて鏡筒レンズ1303に入射する)、試料キャリア2に照射されて試料キャリア2で反射され、反射された検出光は、対物レンズ16と鏡筒レンズ1303を経てセンサ1311に照射される。本実施例では、センサ1311として光電センサ、具体的にはPD(Photodiode、フォトダイオード)センサ1312を用い、PDセンサ1312に2つのセンシング領域1312a、1312bを設け、センシング領域1312a、1312bに検出光が照射される位置を試料キャリア2と対物レンズ16の間の位置を特定できるようにしている。図18Aに示すように、検出光のスポットGがセンシング領域1312aに偏っているということは、試料キャリア2が対物レンズ16の焦点面以上にあることを意味する。図18Bに示すように、検出光のスポットGがセンシング領域1312aに当たる面積とセンシング領域1312bに当たる面積とが同等であるか、または、両者の差が予め定められた範囲内にあるとは、対物レンズ16の焦点面上に試料キャリア2があることを意味する。図18Cに示すように、検出光のスポットがセンシング領域1312bに偏っているということは、試料キャリア2が対物レンズ16の焦点面以下にあることを意味する。センシング領域1312aは受光した光信号を電気信号PD1に変換して出力し、センシング領域1312bは受光した光信号を電気信号PD2に変換して出力し、制御部132は、受信した2つの電気信号PD1、PD2に基づいて、試料キャリア2に対応するデフォーカス方向及びデフォーカス量を決定し、さらに、駆動部161を制御して、試料キャリア2に対して対物レンズ16を近接又は離間させて対応する距離だけ移動させる。
【0039】
本実施形態では、対応する制御駆動部161を制御する制御信号DIVを、電気信号PD1、PD2の差をその和で除算することで生成するので、信号ノイズを効果的にフィルタリングできるとともに、光源1301の輝度変動による合焦精度への影響も回避でき、制御信号DIVを生成する計算式は
DIV=α(DIFF/SUM +β) である。
【0040】
ここで、αは信号増幅率、差信号DIFF=PD1-PD2、和信号SUM=PD1+PD2であり、βは予設電圧オフセット量である。
【0041】
合焦に得られた各信号の変化を示す図である図19を参照する。ここで、横軸は対物レンズ16と試料キャリア2との間のZ軸上の相対距離を表し、その単位はmmであり、曲線Oは差信号DIFFを表し、曲線Qは和信号SUMを表し、曲線Pは制御信号DIVを表し、曲線Rは駆動部161のZ方向における試料キャリア2との間の相対座標位置を表す。ここで、図19における曲線Rと曲線Pとの交差点Sは、対物レンズ16の焦点面を表し、前記交差点Sにおける曲線Pの値(DIV値)は、対物レンズ16の基準位置を表す前記標準値である。
【0042】
図20に示されるように、本発明の一実施形態に係る生化物質検出システムの模式図である。生化物質検出系5は、光学結像系51を含み、光学結像系51は、上述した実施形態で説明した光学結像系1であってもよい。
【0043】
図21を参照すると、本発明の別の実施例に係る生化物質検出システムの概略図が示されている。前記生化物質検出系6は、結像光学系61と、検出プラットフォーム62とを備えている。光学結像系61は、上記実施形態で説明した光学結像系1であってよく、検出テーブル62は試料キャリアを搭載する。前記検出プラットフォーム62は一可動プラットフォームであり、前記光学結像系61の制御装置611は、光学結像系61と検出プラットフォーム62とを制御し調和させる。例えば、制御装置611は、検出プラットフォーム62の移動速度を、光学結像系61のTDIカメラ613の周波数に合わせて同期させるように制御するとともに、制御装置63は、結像光学系61の光源615のオンと、TDIカメラ613の撮影を同期させるように制御する。検出プラットフォーム62が指定位置に到達すると、制御装置611は、光源615とTDIカメラ613とを同時にトリガして、検出プラットフォーム62に搭載された試料(図示せず)と光源615とTDIカメラ613とを同期させつつ、TDIカメラ613の周波数を検出プラットフォーム62の移動速度に自動的に合わせ、生成された画像を変形させないようにする。
【0044】
以上説明したように、上記実施例により提供された光学結像系および生化物質検出系は、1.工業用あるいは科学用のTDIカメラを用いて被励起光を撮像することにより、1試料当たりの撮像時間を削減し、検出スループットを向上させることができ、2.分光装置及びフィルタ装置によりフィルタシステムを構成し、被励起光を複数の通路に分けて結像する一方、励起光およびその他の光、例えば検出光が被励起光の結像への干渉を防ぎ、結像品質を向上させており、3.光源の出力端面が矩形、あるいはさらに細長い矩形であるとともに、光源から出力される励起光が励起光整形手段によってTDIカメラの受光面に合わせた照明光スポットに整形され、光源のエネルギーを最大限に利用するとともに、照明光スポットの均一性も向上しており、4.特殊な構造の対物レンズによって、大視野と大開口数の要求を同時に満足するとともに、歪曲とプランアクロマートを低減させており、5.対物レンズと試料キャリアとの間の距離をリアルタイムで調整して、試料キャリアを対物レンズの合焦平面上に保持させ、環境温度の変化、機械的振動、試料の湾曲、またはその他の要因による試料キャリアと対物レンズとの間の距離の変化を補正し、結像の品質を確保する合焦システムを採用しており、6.合焦システムが試料キャリアと対物レンズとの間の距離を特定の方法で算出し、信号ノイズ及び検出光源の輝度変化による検出結果への影響を有効に消した。
【0045】
なお、以上の説明は、1つ又は2つの具体的な実施形態のみを説明してきたが、以上の具体的な実施形態からさらに多くの実施形態を誘導することができることは当業者には理解されるところであり、例えば、励起光整形手段の第一整形手段、第二整形手段を1枚のレンズに限らず、複数のレンズで構成することも可能である。第1、第2の整形手段を構成するレンズは、円柱レンズ、非球面レンズに限定されず、球面レンズ又はフレネルレンズであってもよい。また、TDIカメラ及び対応した結像通路の数は4に限らず、1つ或いは他の複数であってもよく、フィルタシステムの各バンドパス及びカットバンドは、具体的状況に応じて調整可能であり、鏡筒レンズの設計は、2枚の2枚接合レンズの構成に限定されず、焦点距離や結像要求に応じて、他の変形、例えば、より多数のレンズ又は1枚のレンズが採用されてもよい。
【0046】
本発明の実施形態による光学結像系は、生化物質検出系に適用される他、励起光による被励起光の励起や、被励起光の撮像を行うデバイスにも適用することができ、高速結像が可能であることが理解される。
【0047】
上記の各実施形態は、ただ本発明の技術的解決策を説明するためのものであり、限定することを意図するものではなく、好ましい実施形態を参照して、本発明について詳細に説明しているが、当業者は、本発明の精神および範囲から逸脱することなく、本発明の技術的解決策を修正または同等に置換できることを理解すべきである。
【符号の説明】
【0048】
1 結像光学系
11 照明モジュール
13 合焦モジュール
15 結像モジュール
16 対物レンズ
111、1301 光源
113 励起光整形手段
2 試料キャリア
151 TDIカメラ
152、1303 鏡筒レンズ
153、116 カットフィルタ
154 分光装置
A、B、C、D、E ダイクロスコープ
115 平面ミラー
t1、t2 撮影時間
161 第1群レンズ
162 第2群レンズ
163 第3群レンズ
164 第4群レンズ
165 第5群レンズ
166 第6群レンズ
167 第7群レンズ
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
L7 第7レンズ
L8 第8レンズ
L9 第9レンズ
L10 第10レンズ
L11 第11レンズ
L12 第12レンズ
L13 第13レンズ
L14 第14レンズ
1111 マルチモード光ファイバ
1112 出力端面
113a 第1整形手段
113b 第2整形手段
C1、C2、C3、C4 円柱レンズ
1511 感光面
17 制御装置
18 可動プラットフォーム
19 コンピュータ装置
130 検出光路
131 センサユニット
132 制御ユニット
1311 センサ
1305 ミラー
1312 PDセンサ
1312a、1312b センシング領域
O、P、Q、R 曲線
S 交差点
H 横線
図1
図2
図3
図4
図5
図6
図7
図8A
図8B
図8C
図8D
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18A
図18B
図18C
図19
図20
図21