IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ TDK株式会社の特許一覧

<>
  • 特許-光変調器 図1
  • 特許-光変調器 図2
  • 特許-光変調器 図3
  • 特許-光変調器 図4
  • 特許-光変調器 図5
  • 特許-光変調器 図6
  • 特許-光変調器 図7
  • 特許-光変調器 図8
  • 特許-光変調器 図9
  • 特許-光変調器 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-26
(45)【発行日】2024-07-04
(54)【発明の名称】光変調器
(51)【国際特許分類】
   G02F 1/035 20060101AFI20240627BHJP
【FI】
G02F1/035
【請求項の数】 6
(21)【出願番号】P 2022558416
(86)(22)【出願日】2021-03-31
(65)【公表番号】
(43)【公表日】2023-05-29
(86)【国際出願番号】 JP2021013934
(87)【国際公開番号】W WO2021201133
(87)【国際公開日】2021-10-07
【審査請求日】2022-09-27
(31)【優先権主張番号】202010243496.0
(32)【優先日】2020-03-31
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100108213
【弁理士】
【氏名又は名称】阿部 豊隆
(74)【代理人】
【識別番号】100127177
【弁理士】
【氏名又は名称】伊藤 貴子
(72)【発明者】
【氏名】田家 裕
(72)【発明者】
【氏名】長瀬 健司
(72)【発明者】
【氏名】ビナラオ アンソニー レイモンド メラド
(72)【発明者】
【氏名】ヘン,チェン ブー
【審査官】野口 晃一
(56)【参考文献】
【文献】米国特許出願公開第2018/0011348(US,A1)
【文献】米国特許第08582927(US,B1)
【文献】特開2006-317550(JP,A)
【文献】特開2007-199500(JP,A)
【文献】国際公開第2002/097521(WO,A1)
【文献】特開2006-201732(JP,A)
【文献】特開2007-328257(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
1/21-7/00
(57)【特許請求の範囲】
【請求項1】
基板と、前記基板上に形成される光導波路と、第1のバッファ層を介して前記光導波路上に形成され前記光導波路に変調信号を印加する信号電極と、第2のバッファ層を介して前記光導波路上に形成され前記光導波路にDCバイアス電圧を印加するバイアス電極とを有し、
前記第1のバッファ層と前記第2のバッファ層は、前記第1のバッファ層と前記第2のバッファ層の境界部において、前記第1のバッファ層と前記第2のバッファ層のうちのいずれかの一方のバッファ層が他方のバッファ層の端面を覆うように形成されており、
前記第1のバッファ層と前記第2のバッファ層は、前記境界部において、前記基板の厚さ方向からみて重なりがあるように形成されており、前記他方のバッファ層の端面は、前記基板に対して傾斜して形成されており、
前記他方のバッファ層の前記傾斜した端面を厚さ方向に投影したときの、最大傾斜方向における幅は、前記他方のバッファ層の厚さに対して2倍~100倍であることを特徴とする、光変調器。
【請求項2】
前記他方のバッファ層の端面は、曲面状に形成されていることを特徴とする、請求項1に記載の光変調器。
【請求項3】
前記境界部において、前記第1のバッファ層は前記第2のバッファ層上に形成されていること、又は前記第2のバッファ層は前記第1のバッファ層上に形成されていることを特徴とする、請求項1又は2に記載の光変調器。
【請求項4】
前記第1のバッファ層と前記第2のバッファ層は異なる組成で形成されていることを特徴とする、請求項1~のいずれか一項に記載の光変調器。
【請求項5】
前記第1のバッファ層は、M-Si-O系化合物であり、
Mは、Al、Zr、Hf、La、Ba、Bi、Ti、Ca、Mo、Inから選ばれる少なくともいずれか1種以上であることを特徴とする、請求項1~のいずれか一項に記載の光変調器。
【請求項6】
前記第2のバッファ層を構成する元素は、前記第1のバッファ層を構成する元素のうち少なくともいずれか1種以上を含むことを特徴とする、請求項1~のいずれか一項に記載の光変調器。
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 本発明は、光通信及び光計測分野で使用される光変調器に関する。
【背景技術】
【0002】
[0002] インターネット利用の普及に伴い、通信トラフィックは著しく増大しており、光ファイバ通信は極めて重要になりつつある。光ファイバ通信は、電気信号を光信号に変換し、光ファイバを通して光信号を伝送する技術であり、広い帯域幅、低い損失、及びノイズへの耐性を有する。
【0003】
[0003] 電気信号を光信号に変換するシステムとして、半導体レーザを使用する直接変調システム、及び光変調器を使用する外部変調システムが知られている。直接変調システムは光変調器を必要とせず、それゆえ、低コストであるが、高速変調の点で限界を有し、それゆえ、高速及び長距離の用途では外部変調システムが使用される。
【0004】
[0004] 光変調器として、ニオブ酸リチウム(LiNb3、以下「LN」と呼ぶ)によって形成される光導波路を使用する光変調器には、高速、低損失、及び光波形制御の歪みが低いという利点がある。しかしながら、半導体光デバイスと比較して、駆動電圧が大きく、且つサイズが大きいという欠点がある。
【0005】
[0005] 上記の欠点を解消するために、薄膜技術をサファイア基板に適用することによって形成されるLN膜を有する光導波路を使用することにより、著しく小型化され駆動電圧が低い光デバイスを実現することができることが分かっている(特許文献1及び特許文献2参照)。
【0006】
[0006] そのような光デバイスでは、光導波路に印加される電圧が、電圧が電極に印加された直後及び十分に長い時間期間後に変化し、それにより、光変調器から出力される光も変化する現象が観測され得る。光導波路に印加される電圧の変化は、DCドリフトと呼ばれる。光変調器におけるDCドリフトを可能な限り抑えることが望ましい。DCドリフトを低減し、長時間にわたって安定した制御が可能な構造を有する光変調器として、特許文献3の光変調器が提案されている。
【0007】
[0007] しかしながら、薄膜技術を使用した上記光デバイスには、製造プロセスが長く、プロセス中の熱処理によって温度変化が生じ、シンギュレーションのために水に曝される等の幾つかの問題がある。したがって、そのような光デバイスには、信頼性が低いという問題が存在する。例えば、既存の光変調器の全体構造を示す図1に示すように、基板1、導波路層2、及びバッファ層4を積層することによって形成される構造では、バッファ層4は、異なる材料の第1のバッファ層41及び第2のバッファ層42を含む。第1のバッファ層41及び第2のバッファ層42は、第1のバッファ層41の端面及び第2のバッファ層42の端面が互いに接触するように基板1の主面に平行に配置され、それにより、第1のバッファ層41と第2のバッファ層42との間の境界が、応力等に起因して剥離又はクラックを生じやすいという問題がある。
【0008】
[0008] したがって、特に薄膜技術を使用する上記光デバイスには、そのようなプロセス上の応力に耐えることができる、信頼性の高い光デバイスが必要とされる。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2006-195383A号
【文献】特開2014-6348A号
【文献】国際公開第2019/069815A号
【発明の概要】
【発明が解決しようとする課題】
【0010】
[0010] 本発明は上記課題に鑑みた研究の結果であり、高い信頼性を有する光変調器を提供することを目的とする。
【課題を解決するための手段】
【0011】
[0011] 上記目的を達成するために、本発明の一態様は、基板と、基板上に形成された光導波路と、第1のバッファ層を介して光導波路上に形成され変調信号を光導波路に印加する信号電極と、第2のバッファ層を介して光導波路上に形成されDCバイアス電圧を光導波路に印加するバイアス電極とを有し、第1のバッファ層と第2のバッファ層は、第1のバッファ層と第2のバッファ層の境界部において、第1のバッファ層と第2のバッファ層のうちのいずれかの一方が第1のバッファ層と第2のバッファ層の他方の端面を覆うように形成されている光変調器に関する。このように、第1のバッファ層と第2のバッファ層は、境界部において、いずれか一方が他方の端面を覆うように形成されており、それにより、剥離及びクラックが生じない信頼性の高い構造を形成し、製品の歩留まりが改善される。
【0012】
[0012] さらに、本発明の上記態様による光変調器では、第1のバッファ層及び第2のバッファ層が、基板の厚さ方向から見て境界部において重なりがあるように形成されていることが好ましい。
【0013】
[0013] さらに、本発明の上記態様による光変調器では、他方のバッファ層の端面が基板に対して傾斜して形成されていることが好ましい。
【0014】
[0014] さらに、本発明の上記態様による光変調器では、他方のバッファ層の端面が曲面状に形成されていることが好ましい。
【0015】
[0015] さらに、本発明の上記態様による光変調器では、境界部において、第1のバッファ層が第2のバッファ層上に形成されていること、又は第2のバッファ層が第1のバッファ層上に形成されていることが好ましい。
【0016】
[0016] さらに、本発明の上記態様による光変調器では、他方のバッファ層の端面の、基板の厚さ方向に沿って基板に投影する長さが、他方のバッファ層の厚さに対して2倍~100倍であることが好ましい。
【0017】
[0017] さらに、本発明の上記態様による光変調器では、第1のバッファ層と第2のバッファ層が異なる組成で形成されていることが好ましい。
【0018】
[0018] さらに、本発明の上記態様による光変調器では、第1のバッファ層がM-Si-O系化合物であり、Mが、Al、Zr、Hf、La、Ba、Bi、Ti、Ca、Mo、及びInから選ばれる少なくともいずれか1種以上であることが好ましい。
【0019】
[0019] さらに、本発明の上記態様による光変調器では、第2のバッファ層を構成する元素が、第1のバッファ層を構成する元素のうち少なくともいずれか1種以上を含むことが好ましい。
【0020】
[0020] 本発明の一態様によれば、信頼性の高い光変調器が提供される。
【図面の簡単な説明】
【0021】
図1】[0021]従来技術による光変調器の断面図である。
図2】[0021]本発明の第1の実施形態による光変調器100の平面図である。
図3】[0021]進行波電極を含む光変調器100の全体の平面図である。
図4】[0021]図2のA-A’線に沿った光変調器の断面図である。
図5】[0021]図2のB-B’線に沿った光変調器の断面図である。
図6】[0021]図2のC-C’線に沿った光変調器の断面図である。
図7】[0021]本発明の第1の実施形態の一変形による光変調器の断面図である。
図8】[0021]本発明の第1の実施形態の別の変形による光変調器の断面図である。
図9】[0021]本発明の第2の実施形態による光変調器200の平面図である。
図10】[0021]本発明の第3の実施形態による光変調器の断面図である。
【発明を実施するための形態】
【0022】
[0022] 本発明の好ましい実施形態について添付図面を参照して詳細に説明する。ここで、図面の説明では、同じ又は同様の要素は同じ参照符号で示され、説明の繰り返しが省かれる。
【0023】
第1の実施形態
[0023] 図2は、本発明の第1の実施形態による光変調器100の平面図である。図3は、進行波電極を含む光変調器100の全体の平面図である。図4は、図2のA-A’線に沿った光変調器の断面図である。図5は、図2のB-B’線に沿った光変調器の断面図である。図6は、図2のC-C’線に沿った光変調器の断面図である。
【0024】
[0024] 図2及び図3に示すように、光変調器100は、基板1上に形成され、互いに平行して提供される第1及び第2の光導波路10a及び10bを有するマッハ-ツェンダー光導波路10と、第1の光導波路10aと重なって設けられる第1の信号電極7aと、第2の光変調器10bと重なって設けられる第2の信号電極7bと、間に第1及び第2の信号電極7a及び7bを挟んで設けられる第1及び第2の接地電極8a及び8bと、第1の光導波路10aと重なって設けられる第1のバイアス電極9aと、第2の光導波路10bと重なって設けられる第2のバイアス電極9bと、第1のバイアス電極9aに隣接して設けられる第3のバイアス電極9cと、第2のバイアス電極9bに隣接して設けられる第4のバイアス電極9dとを含む。
【0025】
[0025] マッハ-ツェンダー光導波路10は、マッハ-ツェンダー干渉計構造を有する光導波路である。マッハ-ツェンダー光導波路10は、分波部10cにおいて単一の入力光導波路10iから分波する第1及び第2の光導波路10a及び10bを有し、第1及び第2の光導波路10a及び10bは、合波部10dにおいて単一の出力光導波路10oに合波される。入力光Siは分波部10cにおいて分波され、それぞれ第1及び第2の光導波路10a及び10bを通って進行し、その後、合波部10dにおいて合波される。合波された光は、出力光導波路10oから変調光Soとして出力される。
【0026】
[0026] 第1及び第2の信号電極7a及び7bは、平面図において第1の接地電極8aと第2の接地電極8bとの間に位置決めされる。第1及び第2の信号電極7a及び7bの一端部7a1及び7b1は各々、信号入力端子として機能し、第1及び第2の信号電極7a及び7bの他端部7a2及び7b2は、終端抵抗器12を通して互いに接続される。代替的には、第1の信号電極7aの他端部7a2は、第1の終端抵抗器を通して第1の接地電極8aに接続し得、第2の信号電極7bの他端部7b2は、第2の終端抵抗器を通して第2の接地電極8bに接続し得る。その結果として、第1及び第2の信号電極7a及び7bは第1及び第2の接地電極8a及び8bと共に、差動の同一平面進行波電極として機能する。
【0027】
[0027] 第1及び第2のバイアス電極9a及び9bはそれぞれ、第1及び第2の信号電極7a及び7bから独立して設けられて、直流バイアス電圧(DCバイアス電圧)を第1及び第2の光導波路10a及び10bに印加する。第1及び第2のバイアス電極9a及び9bの一端部9a1及び9b1は各々、DCバイアス電圧の入力端子である。本実施形態では、第1及び第2のバイアス電極9a及び9bは、第1及び第2の信号電極7a及び7bの形成エリアよりもマッハ-ツェンダー光導波路10の出力端子側の近くに位置決めされるが、入力端子側の近くに位置決めされてもよい。さらに、第1及び第2のバイアス電極9a及び9bは省いてもよく、その代わり、重畳DCバイアス電圧を含む変調信号を第1及び第2の信号電極7a及び7bに入力してもよい。
【0028】
[0028] AC信号(変調信号)は、第1の信号電極7aの一端部7a1及び第2の信号電極7bの一端部7b1に入力される。第1及び第2の光導波路10a及び10bは、電気光学効果を有するニオブ酸リチウムなどの材料で作製されており、これにより、第1及び第2の光導波路10a及び10bの屈折率は、第1及び第2の光導波路10a及び10bに印加される電界によって+Δn及び-Δnのように変化させられ、その結果、光導波路の対の間の位相差が変化する。位相差の変化によって変調された信号光は出力光導波路10oから出力される。
【0029】
[0029] 図4図6に示すように、本実施形態による光変調器100は、基板1と、導波路層2と、保護層3と、バッファ層4Aと、電極層5とを、この順序で積層されて含む多層構造を有する。基板1は例えばサファイア基板であり、ニオブ酸リチウム膜等の電気光学材料で形成された導波路層2は、基板1の表面上に形成される。導波路層2は、各々リッジ部2rによって形成される第1及び第2の光導波路10a及び10bを有する。
【0030】
[0030] バッファ層4Aは、第1及び第2の光導波路10a及び10bを伝播する光が第1及び第2の信号電極7a及び7bによって吸収されるのを妨げるために、導波路層2のリッジ部2rの上面上に形成される。バッファ層4Aは好ましくは、導波路層2よりも低い屈折率及び高い透明性を有する材料で形成され、その厚さは約0.2μm~1.2μmであり得る。本実施形態では、バッファ層4Aは第1及び第2の光導波路10a及び10bのそれぞれの上面のみならず、保護層3の上面を含む下の層全体も覆うが、第1及び第2の光導波路10a及び10bの上面の近傍のみを選択的に覆うようにパターニングされてもよい。さらに、バッファ層4Aは、保護層3を省いて導波路層2の上面上に直接形成されてもよい。
【0031】
[0031] バッファ層4Aの膜厚は、好ましくは電極の光吸収を低減するために可能な限り厚く、好ましくは第1及び第2の光導波路10a及び10bに高電界を印加するために可能な限り薄い。電極の光吸収及び印加電圧はトレードオフの関係を有し、したがって、目的に従って適切な膜厚を設定する必要がある。バッファ層4Aの誘電率が高いほど、VπL(電界効率を表す指標)が低減されるため、好ましい。さらに、バッファ層4Aの屈折率が低いほど、バッファ層4Aを薄くすることができるため、好ましい。一般に、高誘電率を有する材料は高い屈折率を有し、したがって、誘電率と屈折率との間のバランスを考慮して、高誘電率及び比較的低い屈折率を有する材料を選ぶことが重要である。例えば、Al23は約9の比誘電率及び約1.6の屈折率を有し、それゆえ、好ましい。LaAlO3は約13の比誘電率及び約1.7の屈折率を有し、LaYO3は約17の比誘電率及び約1.7の屈折率を有し、それゆえ、特に好ましい。
【0032】
[0032] バッファ層4Aは、保護層3及び導波路層2(特に導波路層2のリッジ2r)上に第1のバッファ層41Aと、保護層3及び導波路層2(特に導波路層2のリッジ2r)上の第2のバッファ層42Aとを含む。第1のバッファ層41A及び第2のバッファ層42Aは、第1のバッファ層41Aと第2のバッファ層42Aの境界部Dにおいて、第1のバッファ層41Aが第2のバッファ層42Aの端面42ASを直接覆うように形成される。このようにして、第1のバッファ層と第2のバッファ層の境界部において、第1のバッファ層が第2のバッファ層の端面を直接覆うように第1のバッファ層及び第2のバッファ層を形成することにより、剥離及びクラックのない、信頼性の高い構造が達成され、製品の歩留まりが改善する。
【0033】
[0033] さらに、この実施形態では、第1のバッファ層41Aは、第2のバッファ層42aの端面42ASのみならず、第2のバッファ層42Aの上面全体も覆う。しかしながら、これに限定されず、第1のバッファ層41Aは、第2のバッファ層42Aの上面の一部分のみを覆ってもよい。
【0034】
[0034] 特に、本実施形態では、第1のバッファ層41A及び第2のバッファ層42Aは、境界部Dにおいて、基板1の厚さ方向Zから見て重なりがあるように形成される。すなわち、境界部Dにおいて、第1のバッファ層41Aは第2のバッファ層42A上に形成される。
【0035】
[0035] しかしながら、上記構造に限定されず、以下のようであることもできる。即ち、図7に示すように、バッファ層4Bは、第1のバッファ層41B及び第2のバッファ層42Bを含む。第1のバッファ層41B及び第2のバッファ層42Bは、境界部D1において、基板1の厚さ方向Zから見たとき重なりがないように形成される。
【0036】
[0036] 例えば図6に示すように、特定の例として、第1のバッファ層41A及び第2のバッファ層42Aが、基板1の厚さ方向Zから見て境界部Dに重なりがあるように形成される場合、第2のバッファ層42Aの端面42ASは基板に対して傾斜して形成される。しかしながら、これに限定されない。図8に示すように、バッファ層4Cは、第1のバッファ層41C及び第2のバッファ層42Cを含み、第2のバッファ層42Cの端面42CSは、曲面状に形成されている。
【0037】
[0037] 加えて、基板1の厚さ方向Zに沿って基板1に投影される第2のバッファ層42Aの端面42ASの長さLは、好ましくは、第2のバッファ層42Aの厚さの2倍~100倍である。
【0038】
[0038] 本実施形態では、第1のバッファ層41A及び第2のバッファ層42Aは、異なる組成又は同じ組成で形成し得る。例えば、第1のバッファ層41AはM-Si-O系化合物であり、Mは、Al、Zr、Hf、La、Ba、Bi、Ti、Ca、Mo、及びInから選ばれる少なくともいずれか1種以上である。加えて、第2のバッファ層42Aを構成する元素は、第1のバッファ層41Aを構成する元素のうち少なくともいずれか1種以上を含み得る。
【0039】
[0039] 電極層5には、第1の信号電極7a、第2の信号電極7b、第1の接地電極8a、及び第2の接地電極8bが設けられる。第1の信号電極7aは、第1の光導波路10a内部を進行する光を変調するために、第1の光導波路10aに対応するリッジ部2rと重なって設けられ、第1のバッファ層41Aを通して第1の光導波路10aに対向する。第2の信号電極7bは、第2の光導波路10b内部を進行する光を変調するために、第2の光導波路10bに対応するリッジ部2rと重なって設けられ、第1のバッファ層41Aを通して第2の光導波路10bと対向する。第1の接地電極8aは、第1の信号電極7aに関して第2の信号電極7bの逆側に設けられ、第2の接地電極8bは、第2の信号電極7bに関して第1の信号電極7aの逆側に設けられる。
【0040】
[0040] さらに、電極層5には第1のバイアス電極9a、第2のバイアス電極9b、第3のバイアス電極9c、及び第4のバイアス電極9dが設けられる。第1のバイアス電極9aは、直流バイアス電圧(DCバイアス)を第1の光導波路10aに印加するために、第1の光導波路10aに対応するリッジ部2rに重なって設けられ、第2のバッファ層42Aを通して第1の光導波路10aと対向する。第2のバイアス電極9bは、直流バイアス電圧(DCバイアス)を第2の光導波路10bに印加するために、第2の光導波路10bに対応するリッジ部2rに重なって設けられ、第2のバッファ層42Aを通して第2の光導波路10bと対向する。
【0041】
[0041] 導波路層2は、電気光学材料で形成される限り、特に限定されないが、好ましくはニオブ酸リチウム(LiNbO3)で形成される。これは、ニオブ酸リチウムが大きな電気光学定数を有し、それゆえ、光変調器等の光デバイスの構成材料として適するためである。以下、導波路層2がニオブ酸リチウム膜を使用して形成される場合の本実施形態の構成について詳細に説明する。
【0042】
[0042] 基板1は、ニオブ酸リチウム膜よりも低い屈折率を有する限り、特に限定されないが、好ましくはニオブ酸リチウム膜をエピタキシャル膜として上に形成することができる基板である。特に、基板1は好ましくはサファイア単結晶基板又はシリコン単結晶基板である。単結晶基板の結晶配向は特に限定されない。ニオブ酸リチウム膜は、異なる結晶配向を有する単結晶基板上に、c軸配向エピタキシャル膜として容易に形成することができる。c軸配向ニオブ酸リチウム膜は3回対称であるため、下の単結晶基板は好ましくは同じ対称性を有する。それゆえ、単結晶サファイア基板は好ましくはc面を有し、単結晶シリコン基板は好ましくは(111)面を有する。
【0043】
[0043] 「エピタキシャル膜」は、下の基板又は膜の結晶配向と同じ配向を有する膜を指す。膜面がX-Y面に延在し、膜厚方向(即ち基板1の厚さ方向)がZ軸方向であると仮定すると、エピタキシャル膜の結晶はX軸、Y軸、及びZ軸に沿って配向される。
【0044】
[0044] ニオブ酸リチウム膜はLixNbAyzの組成を有する。AはLi、Nb、及びO以外の元素を示し、xは0.5~1.2の範囲であり、好ましくは0.9~1.05の範囲であり、yは0~0.5の範囲であり、zは1.5~4の範囲であり、好ましくは2.5~3.5の範囲である。元素Aの例には、単独で又は以下の2つ以上の組合せでK、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、及びCeがある。
【0045】
[0045] ニオブ酸リチウム膜は好ましくは、2μm以下の膜厚を有する。これは、厚さが2μmよりも厚い高品質のニオブ酸リチウム膜の形成が難しいためである。過度に薄いニオブ酸リチウム膜は、光を内部に完全に閉じ込めることができず、光が基板1及び/又はバッファ層4に漏れる。したがって、電界をニオブ酸リチウム膜に印加しても、光導波路(10a及び10b)の有効屈折率の変化が小さくなる恐れがある。それゆえ、ニオブ酸リチウム膜は好ましくは、使用される光の波長の少なくとも概ね1/10である膜厚を有する。
【0046】
[0046] ニオブ酸リチウム膜は好ましくは、スパッタリング、CVD、又はゾルゲル法等の膜形成方法を使用して形成される。基板1の主面に直交して配向されるニオブ酸リチウムのc軸に平行に電界を印加することで、電界に比例して光屈折率を変えることができる。サファイア製の単結晶基板の場合、ニオブ酸リチウム膜をサファイア単結晶基板上に直接、エピタキシャル成長させることができる。シリコン製の単結晶基板の場合、ニオブ酸リチウム膜をクラッド層(図示せず)上にエピタキシャル成長させることができる。クラッド層(図示せず)は、ニオブ酸リチウム膜よりも低い屈折率を有し、エピタキシャル成長に適する材料からなる。例えば、Y23製のクラッド層(図示せず)上には、高品質のニオブ酸リチウム膜を形成することができる。
【0047】
[0047] ニオブ酸リチウム膜の形成方法として、ニオブ酸リチウム単結晶基板を薄く研磨又はスライスする方法が既知である。この方法には、単結晶と同じ特性を得ることができるという利点があり、本発明に適用可能である。
【0048】
第2の実施形態
[0048] 図9は、本発明の第2の実施形態による光変調器200の平面図である。図9に示すように、本実施形態の光変調器200と第1の実施形態の光変調器100との間の違いは、マッハ-ツェンダー光導波路10が直線部と曲線部との組合せによって構築されていることである。本実施形態による光変調器200の他の構造は、第1の実施形態による光変調器100の構造と同じであるため、詳細な説明は省く。
【0049】
[0049] 特に、マッハ-ツェンダー光導波路10は、互いに平行に配置された第1~第3の直線部10e1、10e2、及び10e3と、第1及び第2の直線部10e1及び10e2を結ぶ第1の曲線部10f1と、第2の及び第3の直線部10e2及び10e3を結ぶ第2の曲線部10f2とを有する。
【0050】
[0050] 本実施形態では、入力光Siは、第1の直線部10e1の一方の端部に入力され、第1の直線部10e1の一方の端部からその他方の端部に向けて進行し、第1の曲線部10f1においてUターンし、第1の直線部10e1内のものとは逆方向に、第2の直線部10e2の一方の端部からその他方の端部に向けて進行し、第2の曲線部10f2においてUターンし、第1の直線部10e1内のものと同じ方向に、第3の直線部10e3の一方の端部からその他方の端部に向けて進行する。
【0051】
[0051] 光変調器には、実用においてデバイスの長さが長いという問題がある。しかしながら、図示のように光導波路を折り畳むことにより、デバイスの長さを大幅に短くすることができ、顕著な効果が得られる。特に、ニオブ酸リチウム膜で形成された光導波路は、その曲率半径が約50μmまで低減される場合であっても損失が小さいという特徴を有し、それゆえ、本実施形態に適する。
【0052】
第3の実施形態
[0052] 図10は、本発明の第3の実施形態による光変調器の断面図を示す。本実施形態による光変調器と第1の実施形態による光変調器100との間の違いは、バッファ層4Dが第1のバッファ層41D及び第2のバッファ層42Dを含むことである。
【0053】
[0053] 第1のバッファ層41D及び第2のバッファ層42Dは、第1のバッファ層41Dと第2のバッファ層42Dの境界部D2において、第2のバッファ層42Dが直接、第1のバッファ層41Dの端面41DSを覆うように形成される。本実施形態による光変調器の他の構造は、第1の実施形態による光変調器100の構造と同じであるため、詳細な説明は省く。
【0054】
[0054] さらに、本実施形態では、第2のバッファ層42Dは、第1のバッファ層41Dの端面41DSのみならず、第1のバッファ層41Dの上面の一部分も覆う。しかしながら、これに限定されず、第2のバッファ層42Dは、第1のバッファ層41Dの上面の全体を覆ってもよい。
【0055】
[0055] 特に、本実施形態では、第1のバッファ層41D及び第2のバッファ層42Dは、基板1の厚さ方向Zから見て、境界部D2に重なりがあるように形成される。すなわち、境界部D2において、第2のバッファ層42Dは第1のバッファ層41D上に形成される。
【0056】
[0056] 本発明の好ましい実施形態を説明したが、本発明は上記実施形態に限定されず、種々の変更を本発明の範囲内で行うことが可能であり、そのような全ての変更は本発明に包含される。
【0057】
[0057] 例えば、上記実施形態では、光変調器は、基板1上にエピタキシャル成長したニオブ酸リチウム膜で各々形成された一対の光導波路10a及び10bを有するが、本発明はそのような構造に限定されず、光導波路は、チタン酸バリウム又はチタン酸ジルコン酸鉛等の電気光学材料で形成されてもよい。さらに、導波路層2として、電気光学効果を有する半導体材料、ポリマー材料等を使用してもよい。
【0058】
[0058] 加えて、本発明は、同じ層における2つのバッファ層(即ち第1のバッファ層及び第2のバッファ層)の境界面(端部間の境界面)上の関係の設計に関する。したがって、本発明のバッファ層の上層及び下層に特別な制限はなく、他の層が含まれてもよく、又は他の層が含まれなくてもよい。
【符号の説明】
【0059】

[0059] 1 基板
2 導波路層
3 保護層
4A バッファ層
4B バッファ層
4C バッファ層
4D バッファ層
41A 第1のバッファ層
42A 第2のバッファ層
41B 第1のバッファ層
42B 第2のバッファ層
41C 第1のバッファ層
42C 第2のバッファ層
41D 第1のバッファ層
42D 第2のバッファ層
41DS 端面
42AS 端面
42CS 端面
5 電極層
7a 第1の信号電極
7b 第2の信号電極
9a 第1のバイアス電極
9b 第2のバイアス電極
10 光導波路
10a 第1の光導波路
10b 第2の光導波路
100 光変調器
200 光変調器
D 境界部
D1 境界部
D2 境界部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10