(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-27
(45)【発行日】2024-07-05
(54)【発明の名称】情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置
(51)【国際特許分類】
G01S 13/86 20060101AFI20240628BHJP
G08G 1/16 20060101ALI20240628BHJP
【FI】
G01S13/86
G08G1/16 C
(21)【出願番号】P 2020528851
(86)(22)【出願日】2019-07-01
(86)【国際出願番号】 JP2019026097
(87)【国際公開番号】W WO2020009060
(87)【国際公開日】2020-01-09
【審査請求日】2022-05-13
(31)【優先権主張番号】P 2018126397
(32)【優先日】2018-07-02
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】100101801
【氏名又は名称】山田 英治
(74)【代理人】
【識別番号】100093241
【氏名又は名称】宮田 正昭
(74)【代理人】
【識別番号】100095496
【氏名又は名称】佐々木 榮二
(74)【代理人】
【識別番号】100086531
【氏名又は名称】澤田 俊夫
(74)【代理人】
【識別番号】110000763
【氏名又は名称】弁理士法人大同特許事務所
(72)【発明者】
【氏名】五十嵐 信之
【審査官】山下 雅人
(56)【参考文献】
【文献】米国特許出願公開第2017/0242117(US,A1)
【文献】特開2007-255977(JP,A)
【文献】特表2021-501344(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00-17/95
G08G 1/16
(57)【特許請求の範囲】
【請求項1】
ミリ波レーダーの検出信号に基づいて物体を認識処理する第1の認識部と、
カメラの検出信号に基づいて物体を認識処理する第2の認識部と、
前記第1の認識部及び前記第2の認識部の処理内容をフュージョン処理する処理部と、
を具備し、
前記処理部は、前記第2の認識部による物体の認識率が所定の閾値以上の場合には、前記第1の認識部による認識結果と前記第2の認識部による認識結果を利用してLateフュージョン処理を行うが、前記第2の認識部による物体の認識率が所定の閾値未満の場合には、前記第1の認識部による認識処理を実行する前のデータである前記ミリ波レーダーのRAWデータを利用してEarlyフュージョン処理又はハイブリッドフュージョン処理を行う、
情報処理装置。
【請求項2】
前記第1の認識部は、認識前に前記ミリ波レーダーの検出信号に基づいて捕捉した物体の距離検出、速度検出、角度検出、前記物体の追跡の各処理を実施し、
前記ミリ波レーダーのRAWデータは、前記検出信号、前記物体の距離検出結果、速度検出結果、角度検出結果、前記物体の追跡結果のうち少なくとも1つを含む、
請求項1に記載の情報処理装置。
【請求項3】
前記処理部は、前記第2の認識部による認識処理を実行する前のデータである前記カメラのRAWデータと前記ミリ波レーダーのRAWデータとのEarlyフュージョン処理、前記第2の認識部による認識後の第2の認識データと前記ミリ波レーダーのRAWデータとのハイブリッドフュージョン処理、前記ミリ波レーダーのRAWデータと前記第1の認識部による認識後の第1の認識データとのハイブリッドフュージョン処理、又は、前記第2の認識データと前記第1の認識データとのLateフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
請求項1に記載の情報処理装置。
【請求項4】
前記処理部は、前記第1の認識部の認識結果及び前記第2の認識部の認識結果に基づいて、前記Earlyフュージョン処理又は前記ハイブリッドフュージョン処理における前記ミリ波レーダーのRAWデータの利用方法を決定する、
請求項1に記載の情報処理装置。
【請求項5】
ミリ波レーダーの検出信号に基づいて物体を認識処理する第1の認識ステップと、
カメラの検出信号に基づいて物体を認識処理する第2の認識ステップと、
前記第1の認識ステップ及び前記第2の認識ステップの処理内容をフュージョン処理する処理ステップと、
を有し、
前記処理ステップでは、前記第2の認識
ステップによる物体の認識率が所定の閾値以上の場合には、前記第1の認識
ステップによる認識結果と前記第2の認識
ステップによる認識結果を利用してLateフュージョン処理を行うが、前記第2の認識
ステップによる物体の認識率が所定の閾値未満の場合には、前記第1の認識
ステップによる認識処理を実行する前のデータである前記ミリ波レーダーのRAWデータを利用してEarlyフュージョン処理又はハイブリッドフュージョン処理を行う、
情報処理方法。
【請求項6】
前記処理ステップでは、前記第2の認識
ステップによる認識処理を実行する前のデータである前記カメラのRAWデータと前記ミリ波レーダーのRAWデータとのEarlyフュージョン処理、前記第2の認識
ステップによる認識後の第2の認識データと前記ミリ波レーダーのRAWデータとのハイブリッドフュージョン処理、前記ミリ波レーダーのRAWデータと前記第1の認識
ステップによる認識後の第1の認識データとのハイブリッドフュージョン処理、又は、前記第2の認識データと前記第1の認識データとのLateフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
請求項5に記載の情報処理方法。
【請求項7】
ミリ波レーダーの検出信号に基づいて物体を認識処理する第1の認識部、
カメラの検出信号に基づいて物体を認識処理する第2の認識部、
前記第1の認識部及び前記第2の認識部の処理内容をフュージョン処理する処理部、
としてコンピュータを機能させ、
前記処理部は、前記第2の認識部による物体の認識率が所定の閾値以上の場合には、前記第1の認識部による認識結果と前記第2の認識部による認識結果を利用してLateフュージョン処理を行うが、前記第2の認識部による物体の認識率が所定の閾値未満の場合には、前記第1の認識部による認識処理を実行する前のデータである前記ミリ波レーダーのRAWデータを利用してEarlyフュージョン処理又はハイブリッドフュージョン処理を行う、
コンピュータ可読形式で記述されたコンピュータプログラム。
【請求項8】
前記処理部は、前記第2の認識部による認識処理を実行する前のデータである前記カメラのRAWデータと前記ミリ波レーダーのRAWデータとのEarlyフュージョン処理、前記第2の認識部による認識後の第2の認識データと前記ミリ波レーダーのRAWデータとのハイブリッドフュージョン処理、前記ミリ波レーダーのRAWデータと前記第1の認識部による認識後の第1の認識データとのハイブリッドフュージョン処理、又は、前記第2の認識データと前記第1の認識データとのLateフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
請求項7に記載のコンピュータプログラム。
【請求項9】
移動手段と、
ミリ波レーダーと、
カメラと、
前記ミリ波レーダーの検出信号に基づいて物体を認識処理する第1の認識部と、
前記カメラの検出信号に基づいて物体を認識処理する第2の認識部と、
前記第1の認識部及び前記第2の認識部の処理内容をフュージョン処理する処理部と、
前記処理部による処理結果に基づいて前記移動手段を制御する制御部と、
を具備し、
前記処理部は、前記第2の認識部による物体の認識率が所定の閾値以上の場合には、前記第1の認識部による認識結果と前記第2の認識部による認識結果を利用してLateフュージョン処理を行うが、前記第2の認識部による物体の認識率が所定の閾値未満の場合には、前記第1の認識部による認識処理を実行する前のデータである前記ミリ波レーダーのRAWデータを利用してEarlyフュージョン処理又はハイブリッドフュージョン処理を行う、
移動体装置。
【請求項10】
前記処理部は、前記第2の認識部による認識処理を実行する前のデータである前記カメラのRAWデータと前記ミリ波レーダーのRAWデータとのEarlyフュージョン処理、前記第2の認識部による認識後の第2の認識データと前記ミリ波レーダーのRAWデータとのハイブリッドフュージョン処理、前記ミリ波レーダーのRAWデータと前記第1の認識部による認識後の第1の認識データとのハイブリッドフュージョン処理、又は、前記第2の認識データと前記第1の認識データとのLateフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
請求項9に記載の移動体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書で開示する技術は、主に外界を認識するための複数のセンサの検出情報を処理する情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置に関する。
【背景技術】
【0002】
自動運転やADAS(Advanced Driver Assistance System)の実現のために、他の車両や人、レーンなど、さまざまな物体を検出する必要があり、また、晴天時の昼間に限らず、雨天ときや夜間などさまざまな環境で物体を検出する必要がある。このため、カメラ、ミリ波レーダー、レーザーレーダーなど、種類の異なる多くの外界認識センサが車両に搭載され始めている。
【0003】
各センサには得手不得手があり、認識対象物の種類や大きさ、対象物までの距離、あるいは、検出時の天候などに応じて、センサの認識性能が劣化することがある。例えば、車載用のレーダーは距離精度、相対速度精度は高いが、角度精度が低く、物体の種別を識別する識別機能は無いか、若しくは精度が低い。一方、カメラは距離精度、相対速度精度が比較的低いが、角度精度、識別精度はよい。
【0004】
そこで、個々のセンサを単独での使用に限らず、2以上のセンサを組み合わせて、各センサの特徴を生かすことによって、より高精度な外界認識に寄与している。2以上のセンサを組み合わせることを、以下では「センサフュージョン」又は「フュージョン」と呼ぶことにする。
【0005】
例えば、温度データ、雨量データ、視程データ、照度データなどの環境指標に基づいて、検出特性の異なる複数のセンサの組み合わせを切り替えて使用する道路交通監視システムについて提案がなされている(特許文献1を参照のこと)。
【0006】
また、外部環境に対応するフュージョンの仕様を複数準備しておき、選択されたフュージョンの仕様において、外部環境に起因して認識精度が低下するセンサの検出領域をドライバーに通知して注意を促す車両走行制御システムについて提案がなされている(特許文献2を参照のこと)。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2003-162795号公報
【文献】特開2017-132285号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本明細書で開示する技術の目的は、主に外界を認識するための複数のセンサをフュージョン処理する情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置を提供することにある。
【課題を解決するための手段】
【0009】
本明細書で開示する技術の第1の側面は、
センサの検出信号に基づいて物体を認識処理する認識部と、
前記認識部による認識前の第1のデータと他のデータをフュージョン処理する処理部と、
を具備する情報処理装置である。
【0010】
前記センサは、例えばミリ波レーダーである。そして、前記認識部は、認識前に前記センサの検出信号に基づいて物体の距離検出、速度検出、角度検出、前記物体の追跡の各処理を実施し、前記第1のデータは、前記検出信号、前記物体の距離検出結果、速度検出結果、角度検出結果、前記物体の追跡結果のうち少なくとも1つを含む。そして、前記処理部は、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施するようにしてもよい。
【0011】
また、第1の側面に係る情報処理装置は、カメラ又はLiDARのうち少なくとも1つを含む、第2のセンサの検出信号に基づいて物体を認識処理する第2の認識部をさらに備えている。そして、前記処理部は、前記第2の認識部による認識結果は良好であるが、前記認識部による認識結果が良好でない場合に、前記第1のデータのフュージョン処理を実施する。あるいは、前記処理部は、前記第2の認識部による認識結果が良好でない場合に、前記第1のデータのフュージョン処理を実施する。
【0012】
また、本明細書で開示する技術の第2の側面は、
センサの検出信号に基づいて物体を認識処理する認識ステップと、
前記認識ステップによる認識前の第1のデータと他のデータをフュージョン処理する処理ステップと、
を有する情報処理方法である。前記処理ステップでは、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施するようにしてもよい。
【0013】
また、本明細書で開示する技術の第3の側面は、
センサの検出信号に基づいて物体を認識処理する認識部、
前記認識部による認識前の第1のデータと他のデータをフュージョン処理する処理部、
としてコンピュータを機能させるようにコンピュータ可読形式で記述されたコンピュータプログラムである。前記処理部は、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施するようにしてもよい。
【0014】
第3の側面に係るコンピュータプログラムは、コンピュータ上で所定の処理を実現するようにコンピュータ可読形式で記述されたコンピュータプログラムを定義したものである。換言すれば、第3の側面に係るコンピュータプログラムをコンピュータにインストールすることによって、コンピュータ上では協働的作用が発揮され、第1の側面に係る情報処理装置と同様の作用効果を得ることができる。
【0015】
また、本明細書で開示する技術の第4の側面は、
移動手段と、
センサと、
前記センサの検出信号に基づいて物体を認識処理する認識部と、
前記認識部による認識前の第1のデータと他のデータをフュージョン処理する処理部と、
前記処理部による処理結果に基づいて前記移動手段を制御する制御部と、
を具備する移動体装置である。前記処理部は、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施するようにしてもよい。
【発明の効果】
【0016】
本明細書で開示する技術によれば、主に外界を認識するための複数のセンサをフュージョン処理する情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置を提供することができる。
【0017】
なお、本明細書に記載された効果は、あくまでも例示であり、本発明の効果はこれに限定されるものではない。また、本発明が、上記の効果以外に、さらに付加的な効果を奏する場合もある。
【0018】
本明細書で開示する技術のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。
【図面の簡単な説明】
【0019】
【
図1】
図1は、車両制御システム100の概略的な機能の構成例を示すブロック図である。
【
図2】
図2は、情報処理装置1000の機能的構成を示した図である。
【
図3】
図3は、カメラによる撮影画像を例示した図である。
【
図4】
図4は、ミリ波レーダーで検出するシーンを例示した図である。
【
図5】
図5は、
図4に示したシーンをミリ波レーダーで検出した結果を示した図である。
【
図6】
図6は、レーダー認識処理部1020の内部構成例を示した図である。
【
図7】
図7は、認識対象とするシーンの一例を示した図である。
【
図8】
図8は、
図7に示したシーンの認識処理前のデータを示した図である。
【
図9】
図9は、
図7に示したシーンの認識処理後のデータを示した図である。
【
図10】
図10は、認識対象とするシーンの他の例を示した図である。
【
図13】
図13は、情報処理装置1000によるフュージョン処理結果(LATEフュージョン処理のみ)の例を示した図である。
【
図14】
図14は、情報処理装置1000によるフュージョン処理結果(Earlyフュージョン処理を含む)の例を示した図である。
【
図15】
図15は、Lateフュージョン処理とEarlyフュージョン処理で結果が相違する例を示した図である。
【
図16】
図16は、Lateフュージョン処理とEarlyフュージョン処理で結果が相違する例を示した図である。
【
図17】
図17は、Earlyフュージョン処理を適応的に実行するように構成された情報処理装置1000の構成例を示した図である。
【
図18】
図18は、
図17に示した情報処理装置1000においてターゲット認識を行うための処理手順を示したフローチャートである。
【
図19】
図19は、Earlyフュージョン処理を適応的に実行するように構成された情報処理装置1000の他の構成例を示した図である。
【
図20】
図20は、
図19に示した情報処理装置1000においてターゲット認識を行うための処理手順を示したフローチャートである。
【
図21】
図21は、ミリ波レーダー1080のRAWデータに基づいて、認識器1023では認識できない物体を認識する処理を説明するための図である。
【
図22】
図22は、ミリ波レーダー1080のRAWデータに基づいて、認識器1023では認識できない物体を認識する処理を説明するための図である。
【
図23】
図23は、ミリ波レーダー1080のRAWデータに基づいて、認識器1023では認識できない物体を認識する処理を説明するための図である。
【発明を実施するための形態】
【0020】
以下、図面を参照しながら本明細書で開示する技術の実施形態について詳細に説明する。
【0021】
図1は、本技術が適用され得る移動体制御システムの一例である車両制御システム100の概略的な機能の構成例を示すブロック図である。
【0022】
なお、以下、車両制御システム100が設けられている車両を他の車両と区別する場合、自車又は自車両と称する。
【0023】
車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。
【0024】
なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。
【0025】
入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。
【0026】
データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。
【0027】
例えば、データ取得部102は、自車の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。
【0028】
また、例えば、データ取得部102は、自車の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、自車の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、ミリ波レーダー、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
【0029】
さらに、例えば、データ取得部102は、自車の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
【0030】
また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。
【0031】
通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である
【0032】
例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。
【0033】
さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、自車と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。
【0034】
車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、自車に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
【0035】
出力制御部105は、自車の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
【0036】
出力部106は、自車の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。
【0037】
駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
【0038】
駆動系システム108は、自車の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
【0039】
ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。
【0040】
ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。
【0041】
記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、自車の周囲の情報を含むローカルマップ等の地図データを記憶する。
【0042】
自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、自車の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、自車の衝突警告、又は、自車のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
【0043】
検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143を備える。
【0044】
車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の外部の情報の検出処理を行う。例えば、車外情報検出部141は、自車の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、自車の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。
【0045】
車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
【0046】
車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の状態の検出処理を行う。検出対象となる自車の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
【0047】
自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。
【0048】
状況分析部133は、自車及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。
【0049】
マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
【0050】
交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、自車の周囲の信号の位置及び状態、自車の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。
【0051】
状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の認識処理を行う。例えば、状況認識部153は、自車の状況、自車の周囲の状況、及び、自車の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、自車の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。
【0052】
認識対象となる自車の状況には、例えば、自車の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる自車の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
【0053】
状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。
【0054】
状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の予測処理を行う。例えば、状況予測部154は、自車の状況、自車の周囲の状況、及び、運転者の状況等の予測処理を行う。
【0055】
予測対象となる自車の状況には、例えば、自車の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる自車の周囲の状況には、例えば、自車の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
【0056】
状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
【0057】
ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
【0058】
行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための自車の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した自車の行動を示すデータを動作計画部163等に供給する
【0059】
動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための自車の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した自車の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。
【0060】
動作制御部135は、自車の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。
【0061】
緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための自車の動作を計画する。緊急事態回避部171は、計画した自車の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。
【0062】
加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
【0063】
方向制御部173は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
【0064】
自動運転やADASの実現に向けて、より高精度な外界認識を行うために、種類の異なる多くの外界認識センサが車両に搭載され始めている。ところが、各センサには得手不得手がある。例えば、可視光を撮影するカメラは暗所を苦手とし、電波の反射を検出するレーダーは人や動物などの電波を反射し難い物体を苦手とする。
【0065】
各センサの得手不得手は、各々の検出原理にも依拠する。レーダー(ミリ波レーダー)、カメラ、及びレーザーレーダー(LiDAR)の得手不得手を以下の表1にまとめておく。同表中で、◎は大得意(高い精度を持つ)、○は得意(良好な精度を持つ)、△は苦手(精度が十分でない)を意味する。但し、レーダーは電波を反射させて対象物の距離などを測定し、カメラは被写体からの可視光の反射光を捕捉し、LiDARは光を反射させて対象物の距離などを測定することを、各々の検出原理とする。
【0066】
【0067】
これまでのセンサフュージョン技術の多くは、外部環境の変化などに起因して認識精度が低下したセンサを他のセンサで補う、若しくは使用するセンサの組み合わせを切り替えて、外部環境の変化により認識精度が劣化したセンサによる検出データを全く使用しないものである。
【0068】
しかしながら、認識精度が低いセンサであっても、その検出データから全く何も認識できないというものでもない。例えば、カメラは暗所を苦手とするが、近場や、街灯若しくは街の明かりが照らされている場所にある物であれば、カメラで撮影した画像からある程度は認識することが可能である。
【0069】
そこで、本明細書では、レーダーやカメラ、LiDARといった車両に搭載された複数のセンサのうち、認識精度が低いセンサからの検出信号も有効に活用して、さらに認識精度を向上させる技術について、以下で提案する。
【0070】
図2には、本明細書で開示する技術を適用した情報処理装置1000の機能的構成を模式的に示している。
【0071】
図示の情報処理装置1000は、カメラ1070の検出信号を処理するカメラ認識処理部1010と、ミリ波レーダー1080の検出信号を処理するレーダー認識処理部1020と、LiDAR1090の検出信号を処理するLiDAR認識処理部1030と、上記の各認識処理部1010~1030による処理結果をフュージョン処理するフュージョン処理部1040を備えている。
【0072】
カメラ1070、ミリ波レーダー1080、及びLiDAR1090といった外界認識用のセンサは、検出範囲がほぼ同じとなるように各々の設置位置のキャリブレーションが施された上で、同一の車両に搭載されているものとする。また、同じ車両に上記のセンサ1070~1090以外の外界認識用のセンサがさらに搭載されていることも想定される。また、カメラ1070は、複数台のカメラで構成され、そのうち少なくとも一部はミリ波レーダー1080及びLiDAR1090とは検出範囲が異なるように設置されることも想定される。複数台のカメラの出力をフュージョン処理部1040でフュージョン処理するようにしてもよい。
【0073】
カメラ認識処理部1010は、カメラ1070から入力されたRAWデータを処理するRAWデータ処理部1011と、そのRAWデータを信号処理する信号処理部1012と、信号処理後のカメラ画像から物体を認識する認識器1013を備えている。ここで言うRAWデータは、イメージセンサが捕捉した光の情報をそのまま記録したデータである。RAWデータ処理部1011はRAWデータに対するフロントエンド処理(増幅、ノイズ除去、AD変換など)を実施し、信号処理部1012はバックエンド処理を実施する。認識器1013は、所定の画像認識アルゴリズムを実装したハードウェア、又は認識アルゴリズムを実施するソフトウェアのうちいずれの形態であってもよい。認識器1013からは、認識できた物体(ターゲット)の形状の分類の情報(ターゲットのリスト)が出力される。認識器1013が認識する物体形状の分類として、人、クルマ、標識、空、建物、道路、歩道などが挙げられる。認識器1013は、所定の画像認識アルゴリズムを実装したハードウェア、又は認識アルゴリズムを実施するソフトウェアのうちいずれの形態であってもよい。
【0074】
カメラ認識処理部1010から後段のフュージョン処理部1040へ、認識器1013による認識結果として物体形状の分類(人、クルマ、標識、空、建物、道路、歩道など)が後段のフュージョン処理部1040に出力される。但し、認識器1013は、尤度の低い認識結果を出力しない。このため、悪天候時や夜間など認識器1013の認識性能が低下する状況下では、認識器1013から出力される情報量が少なくなることもある。また、本実施形態では、認識器1013による最終的な認識結果を得る前の早期データもフュージョン処理部1040に出力される。ここで言う早期データは、カメラ1070から入力される撮影画像(RAWデータ)、信号処理部1012から出力データ並びに信号処理途中のデータ、及び認識器1013による認識途中のデータなどであり、これら早期データの全部又は一部がフュージョン処理部1040に出力される。認識器1013による認識途中のデータには、認識の尤度が低いために認識器1013からは最終的に出力されない物体に関する情報(例えば、車体や塀などの物体の陰に隠れて、部分的又は断片的にのみ認識できた歩行者の情報など)が含まれることが想定される。以下では、認識器1013による認識処理以前の早期データを、便宜上、カメラ1070の「RAWデータ」と総称することにする。
【0075】
また、レーダー認識処理部1020は、ミリ波レーダー1080から入力されたRAWデータを処理するRAWデータ処理部1021と、そのRAWデータを信号処理する信号処理部1022と、信号処理後のレーダー検出結果から物体を認識する認識器1023を備えている。認識器1023は、所定の認識アルゴリズムを実装したハードウェア、又は認識アルゴリズムを実施するソフトウェアのうちいずれの形態であってもよい。認識器1023は、認識できたターゲット(人、クルマ、標識、建物など)をトラッキングして、各ターゲットの距離、仰角、方位角、速度、反射強度などの認識結果を出力する。
【0076】
レーダー認識処理部1020から後段のフュージョン処理部1040へ、認識器1023による最終的な認識結果が出力される。但し、認識器1013は、尤度の低い認識結果を出力しない。このため、非金属などレーダーの反射強度の弱い物体に関しては、認識器1023から出力される情報が少なくなることが想定される。また、本実施形態では、認識器1023による最終的な認識結果を得る前の早期データもフュージョン処理部1040に出力される。ここで言う早期データは、ミリ波レーダー1080から入力される撮影画像(RAWデータ)、信号処理部1022から出力データ並びに信号処理途中のデータ、及び認識器1023による認識途中のデータなどであり、これら早期データの全部又は一部がフュージョン処理部1040に出力される。認識器1023による認識途中のデータには、認識の尤度が低いために認識器1023からは最終的に出力されない情報(例えば、塀や看板など近くの物体からの反射電波の影響により、反射強度が弱められたバイクなど)が含まれることが想定される。以下では、認識器1023による認識処理以前の早期データを、便宜上、ミリ波レーダー1080の「RAWデータ」と総称することにする。
【0077】
また、LiDAR認識処理部1030は、LiDAR1090から入力されたRAWデータを処理するRAWデータ処理部1031と、そのRAWデータを信号処理する信号処理部1032と、信号処理後のLiDAR検出結果から物体を認識する認識器1033を備えている。認識器1033は、所定の認識アルゴリズムを実装したハードウェア、又は認識アルゴリズムを実施するソフトウェアのうちいずれの形態であってもよい。認識器1033は、認識できたターゲット(人、クルマ、標識、建物など)をトラッキングして、各ターゲットの距離、仰角、方位角、高さ、反射率などの認識結果を出力する。
【0078】
LiDAR認識処理部1030から後段のフュージョン処理部1040へ、認識器1033による最終的な認識結果が出力される。但し、認識器1013は、尤度の低い認識結果を出力しない。また、本実施形態では、認識器1033による最終的な認識結果を得る前の早期データもフュージョン処理部1040に出力される。ここで言う早期データは、LiDAR1090から入力される撮影画像(RAWデータ)、信号処理部1032から出力データ並びに信号処理途中のデータ、及び認識器1033による認識途中のデータなどであり、これら早期データの全部又は一部がフュージョン処理部1040に出力される。認識器1033による認識途中のデータには、認識の尤度が低いために認識器1033からは最終的に出力されない情報(部分的又は断片的にのみ認識できた歩行者の情報)などが含まれることが想定される。以下では、認識器1033による認識処理以前の早期データを、便宜上、LiDAR1090の「RAWデータ」と総称することにする。
【0079】
図2では、便宜上、各認識処理部1010~1030の構成を模式的に描いたが、センサの種別やセンサの機種・設計仕様などに依存して、内部の詳細な構成が定まるという点を理解されたい。例えば、カメラ認識処理部1010の一部又は全部のコンポーネントがカメラ1070のユニット内に搭載される、レーダー認識処理部1020の一部又は全部のコンポーネントがミリ波レーダー1080のユニット内に搭載される、あるいはLiDAR認識処理部1030の一部又は全部のコンポーネントがLiDAR1090のユニット内に搭載されるという構成も想定される。
【0080】
また、同じ車両にカメラ1070、ミリ波レーダー1080、及びLiDAR1090以外の外界認識用のセンサ(図示しない)が搭載されている場合には、情報処理装置1000は、そのセンサの検出信号に基づく認識処理用に、RAWデータ処理部、信号処理部及び認識器を含んだ認識処理部をさらに備えていてもよい。これらの場合も、各認識処理部から後段のフュージョン処理部1040へ、最終的な認識結果が出力されるとともに、センサのRAWデータが出力される。
【0081】
また、自動運転やADASの実現に向けて複数の外界認識センサが車両に搭載される傾向にあるが(前述)、もちろん、1台の車両にカメラ1070、ミリ波レーダー1080、及びLiDAR1090のうちいずれか1つの外界認識用のセンサしか搭載されないことも想定される。例えば、LiDAR1090のみで十分な外界認識性能が得られる場合にはミリ波レーダー1080は使用されないケースや、カメラ1070の撮影映像はビューイングにのみ使用され外界認識には使用されないといったケースも想定される。このような場合、情報処理装置1000は、上記の認識処理部1010~1030のうち、使用するセンサに対応する機能モジュールしか装備しない、あるいは各センサに対応するすべての機能モジュールを装備するが該当する(若しくは、センサから入力信号がある)機能モジュールのみが動作し、後段のフュージョン処理部1040へ出力するものと理解されたい。
【0082】
フュージョン処理部1040は、同一の車両に搭載されたカメラ1070、ミリ波レーダー1080、及びLiDAR1090の各センサに基づく認識結果をフュージョン処理して、外界認識する。同じ車両がさらに他の外界認識用のセンサ(図示しない)を搭載している場合には、フュージョン処理部1040はそのセンサによる検出信号もさらにフュージョン処理する。本実施形態では、フュージョン処理部1040は、各センサの認識結果だけでなく、認識前のRAWデータもフュージョン処理して、外界認識を実施する。そして、フュージョン処理部1040は、フュージョン処理して得られた外界認識結果を、車両制御システムに出力する。
【0083】
図2に示す例では、車両制御システムは、ECU(Electronic Control Unit)1050と、車両を動かすアクチュエータ(以下、「ACT」とする)1060を含んでいる。ECU1050は、フュージョン処理部1040における外界認識結果に基づいて、例えば自動車間制御(ACC)、車線逸脱警報(LDW)、レーンキープアシスト(LKA)、自動緊急ブレーキ(AEB)、死角検知(BSD)といった、自動運転又は運転支援のための判断を実施する。そして、ACT1060は、ECU1050からの指示に従って、アクティブコーナリングライト(ACL)、ブレーキアクチュエータ(BRK)、操舵装置(STR)など各駆動部の駆動制御すなわち車両の操作を実施する。例えば、フュージョン処理部1040によって道路のレーンが認識された場合には、車両制御システムは、当該車両がレーンを逸脱しないように当該車両の走行を制御する。また、フュージョン処理部1040によって周辺車両や歩行者、道路脇の塀や看板といった障害物が認識された場合には、車両制御システムは、当該車両が障害物との衝突を回避するように当該車両の走行を制御する。自動運転は一般に「認知→判断→操作」の3ステップからなり、認知ステップでは何らかの物体があることを認知し、判断ステップでは認知されたものを判断して車の経路計画を判断する。
図2に示すような構成例では、情報処理装置1000内では主に認知ステップの処理が実施され、車両制御システム内のECU1050では主に判断ステップの処理が実施され、ACT1060では主に操作ステップの処理が実施される。但し、認知ステップと判断ステップの区分けは厳格ではなく、本実施例で記載の認知ステップの一部が判断ステップに位置付けられることもある。また、将来的には認知ステップを処理する機能の一部又は全部が、カメラ1070、ミリ波レーダー1080、LiDAR1090などの各センサーユニット内に搭載される設計も見込まれる。
【0084】
本実施形態では、フュージョン処理部1040は、Lateフュージョン処理部1041とEarlyフュージョン処理部1042とハイブリッドフュージョン処理部1043を備えている。Lateフュージョン処理部1041は、各認識処理部1010~1030による最終出力(Lateデータ)、すなわち各認識器1013、1023、1033による認識結果をフュージョン処理して外界認識を実施する。また、Earlyフュージョン処理部1042は、各認識処理部1010~1030による認識距離以前の早期(Early)のデータ、すなわち、カメラ1070、ミリ波レーダー1080、並びにLiDAR1090の各センサのRAWデータ(前述)をフュージョン処理して外界認識を実施する。また、ハイブリッドフュージョン処理部1043は、各認識処理部1010~1030による最終出力(Lateデータ)のうちいずれか1つ又は2以上と、各認識処理部1010~1030のうちいずれか1つ又は2以上のRAWデータとをフュージョン処理して外界認識を実施する。ハイブリッドフュージョン処理部1043によれば、あるセンサの認識器による最終的な認識結果の尤度が低くても、他のセンサ又は同じセンサのRAWデータとのフュージョン処理によって認識性能を高める効果がある。そして、フュージョン処理部1040は、Lateフュージョン処理部1041とEarlyフュージョン処理部1042とハイブリッドフュージョン処理部1043の認識結果をさらにフュージョン処理し、又はこれらフュージョン処理部1041~1043の認識結果を択一的に選択して、その処理結果を後段のECU1050に出力する。
【0085】
Lateフュージョン処理部1041は、各認識処理部1010~1030から認識器1013、1023、1033による最終的な認識結果を得るので、認識結果の信頼度が高い情報を処理する。しかしながら、認識器1013、1023、1033からは尤度の高い認識結果のみが出力され、信頼度の高い情報しか得られないので、使用できる情報量が少ないという問題がある。
【0086】
一方、Earlyフュージョン処理部1042は、各認識処理部1010~1030から認識器1013、1023、1033を通す前の、RAWデータを得るので、入力される情報量が非常に多い。しかしながら、RAWデータ若しくはRAWデータに近いデータはノイズを含む。例えば、カメラ1070が夜間の暗い場所を撮影したときには、物体以外のさまざまな情報が含まれてしまうため、誤検出の可能性が高まり、情報の信頼度が低い。また、情報量が多いことから、処理量も多くなってしまう。
【0087】
例えば、カメラ1070が夜間の暗い場所を撮影したときに、その撮影画像(すなわち、RAWデータ)には、
図3に示すように複数人の像が含まれていたとする。街灯などに照らされて明るく写った歩行者301は高い認識率で認識できるので、認識器1013はその歩行者301をターゲットとして認識した結果を出力するが、街灯などが当たらず暗く写された歩行者302、302は認識率が低く、認識器1013はこのような歩行者302、302をターゲットとして認識しない結果を出力してしまう。すなわち、元のカメラ画像(すなわち、RAWデータ)には複数の歩行者301~303が写っているが、認識器1013を通すことによって信頼度の高い情報のみが出力されることになり、情報量が絞られてしまう。したがって、Lateフュージョン処理部1041には、信頼性の高い歩行者301の情報のみが入力され、ノイズなど不要な情報は切り捨てられるが、信頼性の低い歩行者302、303の情報も切り捨てられてしまう。一方、Earlyフュージョン処理部1042には、すべての歩行者301~303の情報が入力されるが、ノイズなどさまざまな情報も併せて入力される。
【0088】
また、ミリ波レーダー1080の検出結果のRAWデータは、反射電波の受信部の前方の所定の検出範囲における、各反射物が存在する位置(方向及び距離)における反射電波の強度分布からなる。RAWデータは、さまざまな物体からの反射電波の強度データを含む。ところが、認識器1033を通すと、電波の反射強度が低い強度データは切り捨てられ、認識できたターゲットの方向、距離(奥行と幅を含む)、速度などの数値情報のみが抽出され、情報量が絞られてしまう。
【0089】
例えば、
図4に示すように、2台の車両401及び402の間に歩行者403が歩いているというシーンでは、車両401及び402とともに歩行者403も検出できることが望ましい。ところが、ミリ波レーダー1080を用いた場合、強い反射物の間に挟まれた物体の反射強度が弱まる傾向にある。したがって、
図4に示すようなシーンをミリ波レーダー1080で計測すると、
図5に示すように、RAWデータ500中には、車両401及び402の各々からの強い反射波501及び502と、歩行者403からの弱い反射波503が含まれている。このようなミリ波レーダー1080の検出結果を認識器1033に通すと、情報として信頼性の低い反射波503は切り捨てられ、信頼性の高い反射波501及び502のみをターゲットとして認識するので、情報量が絞られてしまう。したがって、Lateフュージョン処理部1041には、信頼性の高い車両401及び402の情報のみが入力され、ノイズなど不要な情報は切り捨てられるが、信頼性の低い歩行者403の情報も切り捨てられてしまう。一方、Earlyフュージョン処理部1042には、車両401及び402とともに、歩行者403の情報が出力されるが、ノイズなどさまざまな情報も併せて入力される。
【0090】
要するに、Lateフュージョン処理部1041により各認識器1013、1023、1033の認識結果をフュージョン処理した結果は、信頼性の高い情報に絞られるため、信頼性は低いが重要性が高い情報が切り捨てられてしまうおそれがある。他方、Earlyフュージョン処理部1042により各認識処理部1010~1030のRAWデータをフュージョン処理した結果は、情報量は多いが、ノイズなど信頼性が低い情報を取り込んでしまうおそれがある。
【0091】
そこで、本実施形態に係る情報処理装置1000は、信頼性が高いが情報量が絞られてしまうLateフュージョン処理部1041の処理結果を、情報量が多いがノイズも含むEarlyフュージョン処理部1042の処理結果で補うことによって、十分な情報量で且つ信頼性の高い外界認識結果が得られるように構成されている。また、ハイブリッドフュージョン処理部1043は、各認識処理部1010~1030による最終出力(Lateデータ)のうちいずれか1つ又は2以上と、各認識処理部1010~1030のうちいずれか1つ又は2以上のRAWデータとをフュージョン処理して、あるセンサの認識器による最終的な認識結果の尤度が低くても、他のセンサ又は同じセンサのRAWデータとのフュージョン処理によって認識性能を高めることができる。すなわち、情報処理装置1000は、カメラ1070、ミリ波レーダー1080、LiDAR1090などの外界認識用の各センサのRAWデータをEarlyフュージョン処理部1042によりフュージョン処理した結果に基づいて、認識器1013、1023、1033では切り捨てられてしまうような重要な情報を復元できるように構成されている。
【0092】
なお、本出願時の技術水準では、LiDAR1090による外界認識の精度は、カメラやミリ波レーダーと比較して著しく高いが、LiDAR認識処理部1030による認識結果を他の認識処理部1010又は1020の認識結果とともにLateフュージョン処理部1041でフュージョン処理してもよいし、LiDAR認識処理部1030による認識結果をEarlyフュージョン処理部1042によるRAWデータの処理結果で補うようにしてもよい。また、LiDAR認識処理部1030を他の認識処理部1010又は1020の認識結果とともにハイブリッドフュージョン処理部1043でフュージョン処理してもよい。付言すれば、LiDAR認識処理部1030の認識器1033による認識結果のみでも十分である場合には、Lateフュージョン処理部1041において、カメラ認識処理部1010及びレーダー認識処理部1020の各認識器1013及び1023の認識結果又はRAWデータとフュージョン処理しなくてもよい。
【0093】
他方、本出願時の技術水準では、LiDAR1090は、カメラ1070やミリ波レーダー1080など他の外界認識用センサと比較して、極めて高価である。このため、LiDAR1090は使用せず(言い換えれば、LiDAR1090を車両には搭載せず)、情報処理装置1000は、カメラ認識処理部1010及びレーダー認識処理部1020の各認識器1013及び1023による認識結果をLateフュージョン処理部1040でフュージョン処理した結果を、カメラ1070及びミリ波レーダー1080の各RAWデータをEarlyフュージョン処理部1042でフュージョン処理した結果により補うように構成されていてもよい。
【0094】
また、LiDAR1090は、光の反射波を利用するという性質上、降雨や降雪、霧など光を遮る天候や、夜間、トンネル内などの暗所では信頼性が劣化してしまうことが懸念される。また、カメラ1070にも同様のことが当てはまる。一方、ミリ波レーダー1080の信頼性は天候にあまり依存せず、比較的安定している。そこで、情報処理装置1000は、天候などの環境情報やその他の外部情報に基づいて、フュージョン処理部1040において、各センサ1070~1090からの情報をフュージョンする際の比重を調整するようにしてもよい。例えば、晴天時であれば、フュージョン処理部1040内のLateフュージョン処理部1041及びEarlyフュージョン処理部1042は、LiDAR認識処理部1030の認識器1033による認識結果やLiDAR1090のRAWデータを高い比重でそれぞれ使用するが、降雨や降雪、霧のとき、あるいは夜間やトンネル内などの暗所の場合には、LiDAR認識処理部1030の認識器1033による認識結果やLiDAR1090のRAWデータを低い比重とし又は使用せずにフュージョン処理する。
【0095】
図6には、レーダー認識処理部1020の内部構成例を示している。レーダー認識処理部1020は、RAWデータ処理部1021と、信号処理部1022と、認識器1023を備えている。
【0096】
RAWデータ処理部1021は、ミリ波レーダー1080のRAWデータを入力して、増幅、ノイズ除去、AD変換といった処理を実行する。RAWデータ処理部1021からEarlyフュージョン処理部1042へ、RAWデータ、若しくは増幅、ノイズ除去、AD変換のうちいずれから処理後のデータが出力される。
【0097】
信号処理部1022は、
図6に示す例では、レーダーにより捕捉された各ターゲットまでの距離を検出する距離検出部601と、各ターゲットが移動する速度を検出する速度検出部602と、各ターゲットの方位を検出する角度検出部603と、ターゲットを追跡する追跡部604と、これら以外の処理を実行するMISC処理部605を備えている。ミリ波レーダー1080のRAWデータからターゲットの距離、方位、大きさ、速度を検出するアルゴリズムは特に限定されない。例えば、ミリ波レーダー1080の製造元などが開発したアルゴリズムをそのまま適用してもよい。
【0098】
信号処理部1022内で各部601~605の処理がすべて終了すると、レーダーにより距離、方位、大きさ、速度などが検出されたターゲットの情報が、後段の認識器1023に出力される。また、距離、方位、大きさ、速度を正確に検出できなかったターゲットの情報は、認識不能として認識器1023には出力されず、切り捨てられる。また、各部601~605のうち少なくとも1つの機能モジュールにおける処理後の信号が、Earlyフュージョン処理部1042にも出力される。
【0099】
なお、RAWデータ処理部1021からの入力データに対し、各部601~605が処理を実行する順序は必ずしも固定されたものではなく、製品の設計仕様などに応じて適宜順序が入れ替わることが想定される。また、上述した機能モジュール601~605のすべてがミリ波レーダー1080の検出信号に対して必須という訳ではなく、製品の設計仕様などに応じて取捨選択され、あるいは図示した以外の機能モジュールが信号処理部1022に装備されることも想定される。
【0100】
認識器1023は、所定の認識アルゴリズムに従って、信号処理部1022による処理後の信号に基づいて、外界認識処理を行う。
【0101】
例えば、車載のカメラ1070で撮影した画像が
図7に示す通りとなるシーンにおいて、レーダー認識処理部1020の認識器1023による処理前のデータを
図8に示し、認識器1023による認識処理後のデータを
図9に示す。但し、
図8は、ミリ波レーダー1080のRAWデータ、又は信号処理部1022の処理途中のデータをイメージしている。また、
図9では、レーダー認識処理部1020の認識器1023による認識結果を黒いブロックで示している。
図9では、比較のため、LiDAR認識処理部1030の認識器1033による認識結果をグレーのブロックで表示して、併せて示している。
【0102】
図7に示すシーンは、車両の前方の道路を走行しているバイク701を障害物として認識できることが望ましい。但し、道路(若しくは、バイク701)の両側には家屋や塀702、703が並んでいる。
図8に示すように、認識器1023による処理前の、ミリ波レーダー1080のRAWデータは、さまざまな情報を含んでいる。ミリ波レーダー1080のRAWデータは、サイドローブはあるものの、バイク701からの強い反射801を確認することができる。なお、左右の塀などからの比較的弱い反射802、803も確認することができる。ミリ波レーダー1080は、金属の感度が高い一方で、コンクリートなどの非金属の感度は低い。これら反射強度が弱い物体は、認識器1023を通すと認識できないが、RAWデータからは存在を確認することができる。また、
図9に示したレーダー認識処理部1020の認識器1023による認識結果を参照すると、前方20メートル付近にバイク701に対応すると思われる物体901とともに、道路(若しくは、バイク701)の両側には家屋や塀702、703に対応すると思われる物体902、903も認識されている。特に、RAWデータにおいて、認識物体901と認識物体902は重なり合っているが、認識処理を経ていないため仮に弱い反射強度であっても認識物体901と認識物体902をそれぞれ認識しているデータとなっている。そのため、RAWデータを認識器1023の認識結果とフュージョンすれば、認識物体901と認識物体902とを別の物体として認識することが可能である。もちろん、ミリ波レーダー1080の認識器1023のみによってバイクを認識できるシーンも多い。しかしながら、バイクの反射強度は車両に比べると弱く、
図7に示すようにバイクの近くに他の反射物が存在するとミリ波レーダー1080のみでは捕捉し難くなり、ある反射強度以上
のみを認識する認識処理後のデータでは、認識物体901と認識物体902を一塊のデータとして出力することになる。
図21には、ミリ波レーダー1080の検出範囲内2100で、壁2101にバイク2102が接近している様子を模式的に示している。
図22には、この検出範囲内2100から得られたミリ波レーダー1080の反射波を認識器1023で認識した結果を模式的に示している。認識器1023では、所定値未満の反射強度は切り捨てられ、所定値以上の反射強度を物体として認識する。このため、
図22に示す例では、壁2101とバイク2102が一体となった1つのかたまり2201を物体として認識することになる。これに対し、ミリ波レーダー1080のRAWデータからは、認識器1023では切り捨てられるような弱い反射強度でも認識可能である。したがって、
図23に示すように、壁2101からの反射とバイク2102からの反射を別の物体2301及び2302として認識することが可能である。
【0103】
また、車載のカメラ1070で撮影した画像が
図10に示す通りとなるシーンにおいて、レーダー認識処理部1020の認識器1023による処理前のデータを
図11に示し、認識器1023による認識処理後のデータを
図12に示す。但し、
図11は、ミリ波レーダー1080のRAWデータ、又は信号処理部1022の処理途中のデータをイメージしている。また、
図12では、レーダー認識処理部1020の認識器1023による認識結果を黒いブロックで示している。
図12では、比較のため、LiDAR認識処理部1030の認識器1033による認識結果をグレーのブロックで表示して、併せて示している。
【0104】
図10は、両側を塀1001及び1002で挟まれた狭い路地を走行しているシーンであり、両側の塀1001及び1002を障害物として認識できることが好ましい。
図11に示すように、認識器1023による処理前の、ミリ波レーダー1080のRAWデータは、さまざまな情報を含んでいる。塀1001及び1002自体は金属ではなく、ミリ波レーダー1080では捕捉し難いが、塀1001及び1002の亀裂や段差からのものと思われる反射1101、1102を確認することができる。また、
図12に示したレーダー認識処理部1020の認識器1023による認識結果を参照すると、認識器1023は、各塀1001及び1002に散在する亀裂や段差からの反射があったいくつかの部分1201~1204のみを離散的に認識することができるが、塀1001及び1002を全体として認識することは難しく、LiDAR1090の認識器1033の認識結果を利用(すなわち、フュージョン処理)しなければ塀1001及び1002を全体として認識することは難しい。一方で、
図11に示すRAWデータからであれば、弱い反射波であっても、壁の存在を示す反射情報1101及び1102を取得することができる。
【0105】
図13には、情報処理装置1000において、カメラ認識処理部1010及びレーダー認識処理部1020の認識結果をLateフュージョン処理部1041でフュージョン処理した際のターゲット認識結果の例を示している。但し、ターゲットを認識したという認識結果に「○」を、ターゲットを認識できなかったという認識結果に「×」を、それぞれ記入している。同じターゲットをカメラ認識処理部1010及びレーダー認識処理部1020でそれぞれ認識処理した場合、両方でターゲットを認識できる場合(パターン1)、いずれか一方でのみターゲットを認識できる場合(パターン2及び3)、いずれでもターゲットを認識できない場合(パターン4)、の4つのパターンが想定される。Lateフュージョン処理部1041は、カメラ認識処理部1010及びレーダー認識処理部1020の両方で認識できたターゲットは、ターゲットを認識できたとして出力する(
図13中では、「○」が記入される)。他方、カメラ認識処理部1010及びレーダー認識処理部1020のうち一方でしか認識できなかったターゲット、並びに両方で認識できなかったターゲットについては、認識できなかったとして出力する(
図13中では、「×」が記入される)。
【0106】
一方、
図14には、情報処理装置1000において、カメラ1070及びミリ波レーダー1080のRAWデータをEarlyフュージョン処理部1042でフュージョン処理した際のターゲット認識結果の例を示している。但し、
図14中の各パターン1~4は
図13の対応するパターンと同じターゲットの認識を試みたものである。また、ターゲットを認識したという認識結果に「○」を、ターゲットを認識できなかったという認識結果に「×」を、それぞれ記入している。Lateフュージョン処理では、認識器113又は123の判定閾値で切り捨てられてしまうが、判定閾値で切り捨てられる前のRAWデータを用いたEarlyフュージョン処理では認識可能な物体もある。但し、Lateフュージョン処理とEarlyフュージョン処理で認識結果が異なる物体は、実際に物体である尤度が低い点にも十分留意すべきである。
【0107】
カメラ認識処理部1010の認識器1013及びレーダー認識処理部1020の認識器1023でともにターゲットを認識できたパターン1においては、カメラ1070のRAWデータ及びミリ波レーダー1080のRAWデータでも同様に認識することができるので、Earlyフュージョン処理部1042は、ターゲットを認識できたとして出力する(
図14中では、「○」が記入される)。すなわち、認識器1013及び1023による認識結果と、RAWデータによる認識結果に相違がない場合には、Earlyフュージョン処理部1042は、Lateフュージョン処理部1041と同様の認識結果を出力する。
【0108】
また、カメラ認識処理部1010の認識器1013は認識できたがレーダー認識処理部1020の認識器1023は認識できなかったパターン2において、ミリ波レーダー1080のRAWデータに基づいてターゲットを認識することができた場合には、Earlyフュージョン処理部1042は、ターゲットを認識できたとして出力する。例えば、反射強度が弱く、認識器1023では切り捨てられてしまったターゲットを、RAWデータに基づいて認識できた場合などである。したがって、Lateフュージョン処理部1041が認識できないターゲットであっても、Earlyフュージョン処理部1042を用いることによって認識できることになり(
図15を参照のこと)、情報量の豊富なRAWデータを用いたEarlyフュージョン処理によってターゲットの認識率が向上するということができる。
【0109】
また、カメラ認識処理部1010の認識器1013は認識できなかったがレーダー認識処理部1020の認識器1023は認識できたパターン3において、カメラ1070のRAWデータからも依然としてターゲットを認識することができない場合には、Earlyフュージョン処理部1042は、ターゲットを認識できないとして出力する。すなわち、パターン3では、Earlyフュージョン処理部1042は、Lateフュージョン処理部1041と同様の認識結果を出力する。
【0110】
また、カメラ認識処理部1010及びレーダー認識処理部1020の両方の認識器1013、1023で認識できなかったパターン4において、カメラ1070のRAWデータからは依然としてターゲットを認識することができないが、ミリ波レーダー1080のRAWデータに基づいてターゲットを認識することができた場合には、Earlyフュージョン処理部1042は、ターゲットが存在する可能性があるという結果を出力する。例えば、反射強度が弱く、認識器1023では切り捨てられてしまったターゲットを、RAWデータに基づいて認識できた場合などである。したがって、Lateフュージョン処理部1041が認識できないターゲットであっても、Earlyフュージョン処理部1042を用いることによって認識できることになり(
図16を参照のこと)、情報量の豊富なRAWデータを用いたEarlyフュージョン処理によってターゲットの認識率が向上するということができる。但し、Earlyフュージョン処理でも認識率は十分高くないので、「○」ではなく「△」とする。
【0111】
したがって、
図14に示す例では、パターン2及びパターン4の各々において、信頼性が高いが情報量が絞られてしまう最終の認識結果を用いたLateフュージョン処理部1041の処理結果を、情報量が多いがノイズも含むRAWデータを用いたEarlyフュージョン処理部1042で処理した結果に基づいて補うことによって、ターゲットの認識率が向上するということができる。
【0112】
但し、
図14中のパターン1やパターン3の場合のように、Earlyフュージョン処理部1042を用いてもLateフュージョン処理部1041による認識結果が変わらないような場合もあり、常にEarlyフュージョン処理部1042を動作させていると、処理負荷が多くなることや、情報処理装置1000の消費電力が増大することなどの弊害が懸念される。そこで、必要な場合にのみEarlyフュージョン処理部1042の認識処理を起動するようにしてもよい。
【0113】
図17には、Earlyフュージョン処理を適応的に実行するように構成された情報処理装置1000の構成例を模式的に示している。但し、
図17中で、図
2に示した機能モジュールと同じものについては、同一の参照番号を付している。
【0114】
フュージョン処理部1042内の判定処理部1701は、ミリ波レーダー1080のRAWデータが必要かどうかを判定して、必要な場合には、レーダー認識処理部1020に対してミリ波レーダー1080のRAWデータの出力を依頼する。例えば、判定処理部1701は、カメラ認識処理部1010の認識器1013及びレーダー認識処理部1020の認識器1023の認識結果を比較して、
図13中のパターン2又はパターン4に相当する場合には、RAWデータも必要と判定して、レーダー認識処理部1020に対してミリ波レーダー1080のRAWデータの出力を依頼する。あるいは、判定処理部1701は、天候などの環境情報やその他の外部情報を入力して、降雨、降雪、霧、夜間あるいはトンネル内などの暗所といったカメラ認識処理部1010やLiDAR認識処理部1030の認識器1013及び1033の認識率が低下する(若しくは、認識の信頼性が劣化する)事象を検出したときに、レーダー認識処理部1020に対してミリ波レーダー1080のRAWデータの出力を依頼するようにしてもよい。
【0115】
レーダー認識処理部1020は、判定処理部1701からの依頼に応答して、ミリ波レーダー1080のRAWデータを出力する。そして、Earlyフュージョン処理部1042はそのRAWデータを用いてEarlyフュージョン処理を実行し、又はハイブリッドフュージョン処理部1043はそのRAWデータを用いてハイブリッドフュージョン処理を実行する。そして、フュージョン処理部1040は、Lateフュージョン処理部1041の認識結果に加えて、Earlyフュージョン処理部1042又はハイブリッドフュージョン処理部1043の認識結果も参照して、最終的な認識結果を出力する。
【0116】
図18には、
図17に示した情報処理装置1000においてターゲット認識を行うための処理手順をフローチャートの形式で示している。但し、ここでは説明の簡素化のため、情報処理装置1000は、カメラ1070及びミリ波レーダー1080の2つのセンサのフュージョン処理を行う場合に限定する。
【0117】
物体検出処理が開始されると、カメラ認識処理部1010において、カメラ1070のRAWデータ(撮影画像)に対して画像処理を実行して(ステップS1801)、認識器1013による認識結果を出力する(ステップS1802)。
【0118】
また、レーダー認識処理部1020は、ミリ波レーダー1080のRAWデータを信号処理する(ステップS1803)。そして、レーダー認識処理部1020は、RAWデータの出力依頼を受けているかどうかをチェックする(ステップS1804)。
【0119】
フュージョン処理部1042内の判定処理部1701は、カメラ認識処理部1010の認識器1013及びレーダー認識処理部1020の認識器1023の認識結果を比較して、ミリ波レーダー1080のRAWデータが必要かどうかを判定して、必要な場合には、レーダー認識処理部1020に対してミリ波レーダー1080のRAWデータの出力を依頼する(前述)。具体的には、
図13中のパターン2に相当する状況下では、判定処理部1701は、ミリ波レーダー1080のRAWデータが必要と判定する。
【0120】
ここで、RAWデータの出力依頼を受けていなければ(ステップS1804のNo)、レーダー認識処理部1020は、認識器1023によるに認識結果を出力する(ステップS1805)。また、レーダー認識処理部1020は、RAWデータの出力依頼を受けたときには(ステップS1804のYes)、ミリ波レーダー1080のRAWデータを出力するとともに(ステップS1806)、後段のフュージョン処理部1040に対して、ミリ波レーダー1080のRAWデータを用いたEarlyフュージョン処理又はハイブリッドフュージョン処理を依頼する(ステップS1807)。
【0121】
次いで、フュージョン処理部1040は、カメラ認識処理部1010及びレーダー認識処理部1020の処理内容をフュージョン処理する(ステップS1808)。フュージョン処理部1040は、Earlyフュージョン処理又はハイブリッドフュージョン処理の依頼を受けているときには(ステップS1809のYes)、Earlyフュージョン処理部1041によるEarlyフュージョン処理又はハイブリッドフュージョン処理部1043によるハイブリッドフュージョン処理を実施する(ステップS1810)。一方、Earlyフュージョン処理又はハイブリッドフュージョン処理の依頼を受けていないときには(ステップS1809のNo)、フュージョン処理部1040は、Lateフュージョン処理部1041によるLateフュージョン処理を実施する(ステップS1811)。
【0122】
図19には、Earlyフュージョン処理を適応的に実行するように構成された情報処理装置1000の他の構成例を模式的に示している。但し、
図19中で、図
2に示した機能モジュールと同じものについては、同一の参照番号を付している。
【0123】
カメラ認識処理部1010は、認識器1013がターゲットを認識できなかったとき、若しくは、ターゲットの認識率が十分でない場合に、ミリ波レーダー1080のRAWデータが必要であると判定して、レーダー認識処理部1020に対してミリ波レーダー1080のRAWデータの出力を依頼する。レーダー認識処理部1020は、カメラ認識処理部1010からの依頼に応答して、ミリ波レーダー1080のRAWデータを出力する。そして、Earlyフュージョン処理部1042はRAWデータを用いてEarlyフュージョン処理を実行し、又はハイブリッドフュージョン処理部1043はそのRAWデータを用いてハイブリッドフュージョン処理を実行する。そして、フュージョン処理部1040は、Lateフュージョン処理部1041の認識結果に加えて、Earlyフュージョン処理部1042又はハイブリッドフュージョン処理部1043の認識結果も参照して、最終的な認識結果を出力する。
【0124】
図20には、
図19に示した情報処理装置1000においてターゲット認識を行うための処理手順をフローチャートの形式で示している。但し、ここでは説明の簡素化のため、情報処理装置1000は、カメラ1070及びミリ波レーダー1080の2つのセンサのフュージョン処理を行う場合に限定する。
【0125】
物体検出処理が開始されると、カメラ認識処理部1010において、カメラ1070のRAWデータ(撮影画像)に対して画像処理を実行する(ステップS2001)。そして、カメラ認識処理部1010は、画像処理の結果が良好かどうかをチェックする(ステップS2002)。
【0126】
ここで、画像処理の結果が良好であれば(ステップS2002のYes)、カメラ認識処理部1010は、認識器1013による認識結果を出力する(ステップS2003)。また、画像処理の結果が良好でなければ(ステップS2002のNo)、カメラ認識処理部1010は、レーダー認識処理部1020に対してミリ波レーダー1080のRAWデータの出力を依頼する(ステップS2004)。具体的には、
図13中のパターン4に相当する状況下では、画像処理の結果が良好でない。
【0127】
また、レーダー認識処理部1020は、ミリ波レーダー1080のRAWデータを信号処理する(ステップS2005)。そして、レーダー認識処理部1020は、RAWデータの出力依頼を受けているかどうかをチェックする(ステップS2006)。
【0128】
ここで、RAWデータの出力依頼を受けていなければ(ステップS2006のNo)、レーダー認識処理部1020は、認識器1023によるに認識結果を出力する(ステップS2007)。また、レーダー認識処理部1020は、RAWデータの出力依頼を受けたときには(ステップS2006のYes)、ミリ波レーダー1080のRAWデータを出力するとともに(ステップS2008)、後段のフュージョン処理部1040に対して、ミリ波レーダー1080のRAWデータのEarlyフュージョン処理又はハイブリッドフュージョン処理を依頼する(ステップS2009)。
【0129】
次いで、フュージョン処理部1040は、カメラ認識処理部1010及びレーダー認識処理部1020の処理内容をフュージョン処理する(ステップS2010)。フュージョン処理部1040は、Earlyフュージョン処理又はハイブリッドフュージョン処理の依頼を受けているときには(ステップS2011のYes)、Earlyフュージョン処理部1041によるEarlyフュージョン処理又はハイブリッドフュージョン処理部1043によるハイブリッドフュージョン処理を実施する(ステップS2012)。一方、Earlyフュージョン処理の依頼又はハイブリッドフュージョン処理を受けていないときには(ステップS2011のNo)、フュージョン処理部1040は、Lateフュージョン処理部1041によるLateフュージョン処理を実施する(ステップS2013)。
【産業上の利用可能性】
【0130】
以上、特定の実施形態を参照しながら、本明細書で開示する技術について詳細に説明してきた。しかしながら、本明細書で開示する技術の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。
【0131】
本明細書では、車載センサのフュージョンに関する実施形態を中心に説明してきたが、本明細書で開示する技術の適用範囲は車両に限定されない。例えば、ドローンなどの無人航空機、所定の作業空間(家庭、オフィス、工場など)を自律的に移動するロボット、船舶、航空機など、さまざまなタイプの移動体装置に対して、同様に本明細書で開示する技術を適用することができる。もちろん、移動体装置に設置される情報端末や、移動型でないさまざまな装置に対しても、同様に本明細書で開示する技術を適用することができる。
【0132】
要するに、例示という形態により本明細書で開示する技術について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本明細書で開示する技術の要旨を判断するためには、特許請求の範囲を参酌すべきである。
【0133】
なお、本明細書の開示の技術は、以下のような構成をとることも可能である。
(1)センサの検出信号に基づいて物体を認識処理する認識部と、
前記認識部による認識前の第1のデータと他のデータをフュージョン処理する処理部と、
を具備する情報処理装置。この情報処理装置によれば、前記認識部で判定閾値により切り捨てる前の情報を含む第1のデータをフュージョン処理に利用することで、より多くの物体を認識することが可能になるという効果がある。
(2)前記センサはミリ波レーダーである、
上記(1)に記載の情報処理装置。この情報処理装置によれば、ミリ波レーダー用の認識器で認識した後の、尤度は高いが情報量が少ない認識結果を、認識器で判定閾値により切り捨てる前の豊富なRAWデータとフュージョン処理することで、より多くの物体を認識することが可能になるという効果がある。
(3)前記認識部は、認識前に前記センサの検出信号に基づいて物体の距離検出、速度検出、角度検出、前記物体の追跡の各処理を実施し、
前記第1のデータは、前記検出信号、前記物体の距離検出結果、速度検出結果、角度検出結果、前記物体の追跡結果のうち少なくとも1つを含む、
上記(2)に記載の情報処理装置。この情報処理装置によれば、ミリ波レーダーのRAWデータや、RAWデータの信号処理の各段階で得られる物体の距離、速度、角度、追跡結果などの情報を、認識器の認識結果とフュージョン処理することで、より多くの物体を認識することが可能になるという効果がある。
(4)第2のセンサの検出信号に基づいて物体を認識処理する第2の認識部をさらに備え、
前記処理部は、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
上記(1)乃至(3)のいずれかに記載の情報処理装置。この情報処理装置によれば、第1のセンサと第2のセンサの認識器による認識前のデータのフュージョン処理、及び、第1のセンサと第2のセンサの認識器による認識後のデータのフュージョン処理を実施して、より多くの物体を認識することが可能になるという効果がある。
(5)前記第2のセンサは、カメラ又はLiDARのうち少なくとも1つを含む、
上記(4)に記載の情報処理装置。この情報処理装置によれば、ミリ波レーダーとカメラ又はLiDARの認識結果をフュージョン処理するとともに、ミリ波レーダーとカメラ又はLiDARのRAWデータをフュージョン処理することで、より多くの物体を認識することが可能になるという効果がある。
(6)前記処理部は、前記認識部の認識結果及び前記第2の認識部の認識結果に基づいて、前記フュージョン処理における前記第1のデータの利用方法を決定する、
上記(4)又は(5)のいずれかに記載の情報処理装置。この情報処理装置によれば、前記認識部の認識結果及び前記第2の認識部の認識結果に基づいて、適応的に前記第1のデータをフュージョン処理に利用して、より多くの物体を認識することが可能になるという効果がある。
(7)前記処理部は、前記第2の認識部による認識の尤度は高いが、前記認識部による認識の尤度が低い場合に、前記フュージョン処理において前記第1のデータを利用する、
上記(6)に記載の情報処理装置。この情報処理装置によれば、前記フュージョン処理において前記第1のデータを適応的に利用することで、不要なフュージョン処理を回避しつつ、より多くの物体を認識することが可能になるという効果がある。
(8)前記処理部は、前記第2の認識部による認識結果に基づいて、前記フュージョン処理における前記第1のデータの利用方法を決定する、
上記(4)乃至(7)のいずれかに記載の情報処理装置。この情報処理装置によれば、前記フュージョン処理において前記第1のデータを適応的に利用することで、不要なフュージョン処理を回避しつつ、より多くの物体を認識することが可能になるという効果がある。
(9)前記処理部は、前記第2の認識部による認識の尤度が低い場合に、前記フュージョン処理において前記第1のデータを利用する、
上記(8)に記載の情報処理装置。この情報処理装置によれば、前記フュージョン処理において前記第1のデータを適応的に利用することで、不要なフュージョン処理を回避しつつ、より多くの物体を認識することが可能になるという効果がある。
(10)センサの検出信号に基づいて物体を認識処理する認識ステップと、
前記認識ステップによる認識前の第1のデータと他のデータをフュージョン処理する処理ステップと、
を有する情報処理方法。この情報処理方法によれば、前記認識ステップにおいて認識後の第2のデータを、前記認識ステップにおいて判定閾値により切り捨てる前の情報を含む第1のデータとフュージョン処理することで、より多くの物体を認識することが可能になるという効果がある。
(11)前記処理ステップでは、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
上記(10)に記載の情報処理方法。
(12)センサの検出信号に基づいて物体を認識処理する認識部、
前記認識部による認識前の第1のデータと他のデータをフュージョン処理する処理部、
としてコンピュータを機能させるようにコンピュータ可読形式で記述されたコンピュータプログラム。
(13)前記処理部は、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
上記(12)に記載のコンピュータプログラム。
(14)移動手段と、
センサと、
前記センサの検出信号に基づいて物体を認識処理する認識部と、
前記認識部による認識前の第1のデータと他のデータをフュージョン処理する処理部と、
前記処理部による処理結果に基づいて前記移動手段を制御する制御部と、
を具備する移動体装置。この移動体装置によれば、前記認識部による認識後の第2のデータを、前記認識部で判定閾値により切り捨てる前の情報を含む第1のデータとフュージョン処理することで、より多くの物体を認識することができ、物体との衝突を回避するように前記移動手段を成業することが可能になるという効果がある。
(15)前記処理部は、前記第2の認識部による認識前の第3のデータと前記第1のデータとのフュージョン処理、前記第2の認識部による認識後の第4のデータと前記第1のデータとのフュージョン処理、前記第1のデータと前記認識部による認識後の第2のデータとのフュージョン処理、又は、前記第4のデータと前記第2のデータとのフュージョン処理のうち少なくとも1つのフュージョン処理を実施する、
上記(14)に記載の移動体装置。
【符号の説明】
【0134】
100…車両制御システム
101…入力部、102…データ取得部、103…通信部
104…車内機器、105…出力制御部、106…出力部
107…駆動系制御部、108…駆動系システム
109…ボディ系制御部、110…ボディ系システム、111記憶部
112…自動運転制御部、121…通信ネットワーク
131…検出部、132…自己位置推定部、133…状況分析部
134…計画部、135…動作制御部
141…車外情報検出部、142…車内情報検出部
143…車両状態検出部
151…マップ解析部、152…交通ルール認識部
153…状況認識部、154…状況予測部
161…ルート計画部、162…行動計画部、163…動作計画部
171…緊急事態回避部、172…加減速制御部、173…方向制御部
1000…情報処理装置
1010…カメラ認識処理部、1011…RAWデータ処理部
1012…信号処理部、1013…認識器
1020…レーダー認識処理部、1021…RAWデータ処理部
1022…信号処理部、1023…認識器
1030…LiDAR認識処理部、1031…RAWデータ処理部
1032…信号処理部、1033…認識器
1040…フュージョン処理部、1041…Lateフュージョン処理部
1042…Earlyフュージョン処理部
1043…ハイブリッドフュージョン処理部、1050…ECT
1060…ACT(アクチュエータ)、1070…カメラ
1080…ミリ波レーダー、1090…LiDAR
601…距離検出部、602…速度検出部、603…角度検出部
604…追跡部、605…MISC処理部