(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-28
(45)【発行日】2024-07-08
(54)【発明の名称】電子写真装置、プロセスカートリッジ、及びカートリッジセット
(51)【国際特許分類】
G03G 15/02 20060101AFI20240701BHJP
G03G 9/097 20060101ALI20240701BHJP
G03G 15/00 20060101ALI20240701BHJP
【FI】
G03G15/02 101
G03G9/097 372
G03G15/00 551
(21)【出願番号】P 2020174212
(22)【出願日】2020-10-15
【審査請求日】2023-09-29
(31)【優先権主張番号】P 2019191591
(32)【優先日】2019-10-18
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110002860
【氏名又は名称】弁理士法人秀和特許事務所
(72)【発明者】
【氏名】津田 祥平
(72)【発明者】
【氏名】宮川 昇
(72)【発明者】
【氏名】梅田 宜良
(72)【発明者】
【氏名】山内 一浩
(72)【発明者】
【氏名】冨永 英芳
(72)【発明者】
【氏名】琴谷 昇平
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2020-012942(JP,A)
【文献】特開2020-079907(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03G 15/02
G03G 9/097
G03G 15/00
(57)【特許請求の範囲】
【請求項1】
電子写真感光体、該電子写真感光体の表面を帯電させるための帯電装置、及び該電子写真感光体の表面に形成された静電潜像をトナーにより現像して該電子写真感光体の表面にトナー像を形成するための現像装置、を有する電子写真装置であって、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有し、
該導電性部材が、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×10
12Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さく、
該現像装置は、該トナーを含み、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO
3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下であることを特徴とする電子写真装置。
【請求項2】
前記導電性部材の断面観察における、前記導電層中の前記ドメインの隣接壁面間距離の算術平均値Dmが、0.15μm以上2.00μm以下である請求項1に記載の電子写真装置。
【請求項3】
前記Dmの分布の標準偏差をσmとしたとき、前記ドメインの隣接壁面間距離の変動係数σm/Dmが、0以上0.40以下である請求項2に記載の電子写真装置。
【請求項4】
前記導電性部材の外表面を観察した際の、前記導電層中の前記ドメインの隣接壁面間距離の算術平均値Dmsが、0.20μm以上2.50μm以下である請求項1~3のいずれか一項に記載の電子写真装置。
【請求項5】
前記R1が、1.0×10
12Ω・cmよりも大きく、1.0×10
17Ω・cm以下である請求項1~4のいずれか一項に記載の電子写真装置。
【請求項6】
前記展開画像において、前記凸幅wの法線方向において前記凸部の最大長を凸径Dとし、前記凸径Dを形成する線分における前記凸部の頂点から前記直線までの長さを凸高さH
としたとき、
前記凸部は、該凸高さHが、40nm以上300nm以下である「特定高さ凸部」を含み、
該特定高さ凸部のうち、前記凸幅wに対する前記凸径Dの比(D/w)が、0.33以上0.80以下である特定高さ凸部の個数割合P(D/w)が、50個数%以上である請求項1~5のいずれか一項に記載の電子写真装置。
【請求項7】
前記体積抵抗率R1が、前記体積抵抗率R2の1.0×10
5倍以上である請求項1~6のいずれか一項に記載の電子写真装置。
【請求項8】
前記ドメインにより形成された前記凸部の高さの平均値が、50nm~200nmである請求項1~7のいずれか一項に記載の電子写真装置。
【請求項9】
電子写真装置の本体に脱着可能であるプロセスカートリッジであって、
該プロセスカートリッジが、電子写真感光体の表面を帯電させるための帯電装置、及び該電子写真感光体の表面に形成された静電潜像をトナーにより現像して電子写真感光体の表面にトナー像を形成するための現像装置を有し、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有し、
該導電性部材が、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×10
12Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さく、
該現像装置は、該トナーを含み、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO
3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下であることを特徴とするプロセスカートリッジ。
【請求項10】
電子写真装置の本体に脱着可能である第一のカートリッジ及び第二のカートリッジを有するカートリッジセットであって、
該第一のカートリッジが、電子写真感光体の表面を帯電させるための帯電装置、及び該帯電装置を支持するための第一の枠体を有し、
該第二のカートリッジが、電子写真感光体の表面に形成された静電潜像を現像して電子写真感光体の表面にトナー像を形成するためのトナーを収容しているトナー容器を有し、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有し、
該導電性部材が、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×10
12Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さく、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO
3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下であることを特徴とするカートリッジセット。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電子写真装置、プロセスカートリッジ、及びカートリッジセットに向けたものである。
【背景技術】
【0002】
近年、電子写真画像形成装置のプロセススピードのより一層の高速化が検討されている。このとき、電子写真画像の品質を維持しつつ、プロセススピードのより一層の高速化を達成するうえで、いわゆる転写残トナーが帯電部材に固着することによる帯電部材の帯電性能の経時的な変化を防止するための技術開発が必要であると我々は認識している。
すなわち、プリンターのプロセススピードのより一層の高速化に伴って、転写残トナーが、クリーニングブレードをすり抜け易くなるため、帯電部材に転写残トナーが接触する確率も高くなる。そして、帯電部材に到達した転写残トナーは、帯電部材と静電潜像担持体のニップ間において加圧され、また、摺擦されることによって、帯電部材の外表面に固着する。そして、転写残トナーが固着した帯電部材からは、静電潜像担持体への適正な放電が生じにくく、その結果、電子写真画像に白ぽち(白抜け)が生じる場合がある。
我々は、帯電部材の外表面への転写残トナーの固着を防止する一つの方法として、転写残トナーに、帯電部材を用いて負電荷を付与することが有効であると考えた。ここで、特許文献1には、所謂クリーナーレスシステムを採用した電子写真装置において、帯電部材として、導電性の凸部を有する帯電部材を用い、トナーとして、シリカを外添したトナーを採用した構成が記載されている。当該装置により、転写残トナーに対して電荷を注入せしめることで、転写残トナーを現像ローラに効率的に回収できる旨開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
我々の検討によれば、特許文献1に係る電子写真装置は、確かに転写残トナーの帯電部材への固着防止に一定の効果が認められた。しかしながら、プロセススピードのより一層の高速化に対しては未だ改善の余地があることを認識した。具体的には、プロセススピードをより高速化した場合、転写残トナーの帯電部材への固着を十分には防止し得ない場合があることがわかった。
本開示は、プロセススピードがより一層高速化された場合であっても、帯電部材の汚染を抑制でき、高品位の電子写真画像を安定的に形成することができる電子写真装置、プロセスカートリッジ、及びカートリッジセットを提供する。
【課題を解決するための手段】
【0005】
本開示によれば、電子写真感光体、該電子写真感光体の表面を帯電させるための帯電装置、及び該電子写真感光体の表面に形成された静電潜像をトナーにより現像して該電子写真感光体の表面にトナー像を形成するための現像装置、を有する電子写真装置であって、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有し、
該導電性部材が、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×1012Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さく、
該現像装置は、該トナーを含み、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下である電子写真装置が提供される。
また、本開示によれば、電子写真装置の本体に脱着可能であるプロセスカートリッジであって、
該プロセスカートリッジが、電子写真感光体の表面を帯電させるための帯電装置、及び該電子写真感光体の表面に形成された静電潜像をトナーにより現像して電子写真感光体の表面にトナー像を形成するための現像装置を有し、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有し、
該導電性部材が、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×1012Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さく、
該現像装置は、該トナーを含み、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下であるプロセスカートリッジが提供される。
また、本開示によれば、電子写真装置の本体に脱着可能である第一のカートリッジ及び第二のカートリッジを有するカートリッジセットであって、
該第一のカートリッジが、電子写真感光体の表面を帯電させるための帯電装置、及び該帯電装置を支持するための第一の枠体を有し、
該第二のカートリッジが、電子写真感光体の表面に形成された静電潜像を現像して電子写真感光体の表面にトナー像を形成するためのトナーを収容しているトナー容器を有し、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有し、
該導電性部材が、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×1012Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さく、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下であるカートリッジセットが提供される。
【発明の効果】
【0006】
本開示によれば、プロセススピードがより一層高速化された場合であっても、帯電部材の汚染を抑制でき、高品位の電子写真画像を安定的に形成することができる電子写真装置、プロセスカートリッジ、及びカートリッジセットを提供できる。
【図面の簡単な説明】
【0007】
【
図8】帯電ローラの導電層からの断面切出し方向の説明図
【発明を実施するための形態】
【0008】
数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
本開示では、以下のトナー及び導電性部材を用いる。
トナーは、トナー母粒子及び該トナー母粒子表面の有機ケイ素重合体を有するトナー粒子を含み、
該トナーの個数平均粒径が、4.0μm以上10.0μm以下であり、
該有機ケイ素重合体は、下記式(1)で表される構造を有し、
R-SiO3/2 (1)
式(1)中、Rは、炭素数1以上6以下のアルキル基又はフェニル基を示し、
該有機ケイ素重合体は、該トナー粒子の外表面に凸部を形成しており、
該有機ケイ素重合体の該トナー母粒子に対する固着率が、80質量%以上であり、
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下である。
該導電性部材は、導電性の外表面を有する支持体、及び該支持体の該外表面上に設けられた導電層を有し、該電子写真感光体に接触可能に配置され
該導電層が、マトリックス及び該マトリックス中に分散された複数のドメインを有し、
該マトリックスが、第一のゴムを含有し、
該ドメインが、第二のゴム及び電子導電剤を含有し、
該ドメインの少なくとも一部は、該導電性部材の外表面に露出し、
該導電性部材の外表面は、少なくとも、該マトリックスと、該導電性部材の外表面に露出している該ドメインとで構成され、
該ドメインが、該導電性部材の外表面に凸部を形成しており、
該マトリックスの体積抵抗率R1は、1.00×1012Ω・cmより大きく、
該ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さい。
なお、導電性部材の外表面とは、導電性部材におけるトナーと接する面である。
【0009】
このようなトナーと、帯電部材としての導電性部材と、の組み合わせにより、プロセススピードがより一層高速化された場合であっても、帯電部材の汚染を抑制でき、高品位の電子写真画像を安定的に形成することができる。以下にその理由を説明する。
特許文献1に係る電子写真装置が、プロセススピードをより高速化させた場合に、帯電部材へのトナーの固着を十分には抑制できない理由を本発明者らは以下のように推測している。
【0010】
すなわち、特許文献1に係る帯電部材は、その表面に導電性粒子に由来する微小な凸部を有し、当該微小凸部を転写残トナーと接触させることで、転写残トナーに電荷を注入している。しかしながら、微小な凸部から転写残トナーに対して電荷が注入された後、当該
凸部への電荷が蓄積されるためには一定の時間を要すると考えられる。
そのため、プロセススピードが高速化されると、転写残トナーも高速で次々と帯電部材に到達するようになる。そうすると、当該凸部に転写残トナーが接触しても、当該凸部には転写残トナーに注入されるべき電荷が十分には蓄積されていないため、転写残トナーの負帯電化が不十分となる。その結果、帯電部材への転写残トナーの付着を十分に抑制できなくなると考えられる。
【0011】
ここで我々は、帯電部材としての導電性部材が、導電層内に多量の電荷を蓄積でき、かつ、1回の電荷注入によって導電層内に蓄積された電荷が一度に消費されないようにすれば、次々に導電性部材に到達する転写残トナーの負帯電化を確実に行い得ると考察した。
また、プリンタの高速化に対応しつつ、長期に亘って高品位な電子写真画像を安定して提供するためには、導電性部材と静電潜像担持体とのニップ間で、トナーの転動性をより高めることが、転写残トナーの負帯電化を促進するうえで重要である。
ここで、我々は、トナー粒子の外表面と導電性部材の外表面の双方に凸形状を持たせることが、ニップ部における転写残トナーと導電性部材との転動性を向上させるうえで有効であると考察した。トナー粒子外表面と導電性部材の外表面の双方の凸部が、あたかも歯車のようにかみ合うことで、トナーの転動性が向上するものと考えられる。
【0012】
さらに、トナー粒子の外表面に凸形状を持たせるための一つの方法として、粒子をトナー母粒子の周囲に外添する方法が考えられる。しかしながら、外添剤は、長期の使用によって、トナー母粒子から他の部材に移行する傾向がある。そのため、トナーの良好な転動性を長期に亘って確保するためには、トナー粒子の外表面の凸形状は、長期に亘る使用によっても変化しにくいものとすることが必要であると考えられる。
以上の考察を踏まえて我々が検討を重ねた結果、本開示に係る導電性部材、及びトナーの組み合わせが、上記に要求によく応え得ることを見出した。
【0013】
導電性部材の支持体と、電子写真感光体との間に帯電バイアスが印加されたときの導電層内においては、電荷は以下のようにして導電層の支持体側から反対側、すなわち、導電性部材の外表面側に移動すると考えられる。すなわち、電荷は、マトリックスとドメインとの界面近傍に蓄積される。
そして、その電荷は、導電性支持体側に位置するドメインから、導電性支持体の側とは反対側に位置するドメインに順次受け渡されていき、導電層の導電性支持体の側とは反対側の表面(以降、「導電層の外表面」ともいう)に到達する。このとき、1回の帯電工程で全てのドメインの電荷が導電層の外表面側に移動すると、次の帯電工程に向けて、導電層中に電荷を蓄積するために時間を要することとなる。そうすると、高速の電子写真画像形成プロセスにおいては安定放電を達成することが困難となる。
従って、帯電バイアスが印加されたときにも、ドメイン間の電荷の授受が同時的に生じないようにすることが好ましい。また、高速の電子写真画像形成プロセスにおいては電荷の動きが制約されるため、一回の放電で十分な量の電荷を放電させるためには、各々のドメインに十分な量の電荷を蓄積させることが好ましい。
【0014】
導電層は、マトリックス及びマトリックス中に分散された複数のドメインを有する。そして、マトリックスは、第一のゴムを含有し、ドメインは第二のゴム及び電子導電剤を含有する。そして、マトリックス及びドメインは、下記構成要素(i)及び(ii)を充足する。
構成要素(i):マトリックスの体積抵抗率R1が1.00×1012Ω・cmよりも大きい。
構成要素(ii):ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さい。
【0015】
構成要素(i)、(ii)を満たす導電層を備えた導電性部材は、感光体との間にバイアスを印加したときに各々のドメインに十分な電荷を蓄積できる。また、ドメイン同士は、電気絶縁性のマトリックスで分断されているため、ドメイン間での同時的な電荷の授受を抑制できる。これにより、1回の放電で、導電層内に蓄積された電荷の大半が放出されることを防ぐことができる。
その結果、導電層内には、1回の放電が終了した直後においても、次の放電のための電荷が未だ蓄積されている状態とすることができる。そのため、短いサイクルで安定して放電を生じさせることが可能となる。なお、本開示に係る導電性部材によって達成されるこのような放電を、以降、「微細放電」とも呼ぶ。
【0016】
以上述べた通り、構成要素(i)、(ii)を充足するマトリックスドメイン構造を備えた導電層は、バイアス印加時のドメイン間での同時的な電荷の授受の発生を抑制し、かつドメイン内に十分な電荷を蓄積させることができる。そのため、当該導電性部材は、プロセススピードの速い電子写真画像形成装置に適用された場合であっても被帯電体に対して継続的に安定した電荷を付与し得る。
【0017】
また、導電性部材の外表面には、ドメインの少なくとも一部が露出し、かつ、導電性部材の外表面にドメインの凸部が形成されている。このことにより、導電性部材とトナー粒子との間での歯車効果が得られ、ニップ部におけるトナー粒子の転動性を向上させることができる。
さらに、電荷が蓄積されるドメインが、導電性部材の外表面に凸部として露出していることで、転写残トナーに対する電荷の注入をより効率的に行い得る。
【0018】
一方、トナーは、トナー母粒子の表面が所定の割合となるように有機ケイ素重合体で被覆されている。そして、トナー粒子は、その外表面に有機ケイ素重合体の凸部を有する。これにより、導電性部材の外表面におけるドメインの凸部とトナー粒子の外表面の凸部とが一対の歯車のようにかみ合うことで、トナー粒子の転動性が向上する。
また、凸部を構成している有機ケイ素重合体のトナー母粒子に対する固着率が80%以上である。これは、有機ケイ素重合体が、トナー母粒子に対して強固に付着していることを意味し、これにより、長期に亘る使用によっても、トナー粒子の表面の凸部の形状が変化しにくい。
以下に、導電性部材トナーについて説明する。
【0019】
<導電性部材>
導電性部材として、ローラ形状を有する導電性部材(以降、「導電性ローラ」ともいう)を例に、
図5を参照して説明する。
図5は、導電性ローラの軸に沿う方向(以降、「長手方向」ともいう)に対して垂直な断面図である。導電性ローラ51は、円柱状の導電性の支持体52、支持体52の外周、すなわち支持体の外表面に形成された導電層53を有している。
【0020】
<支持体>
支持体を構成する材料としては、電子写真用の導電性部材の分野で公知なものや、導電性部材として利用できる材料から適宜選択して用いることができる。一例として、アルミニウム、ステンレス、導電性を有する合成樹脂、鉄、銅合金などの金属又は合金が挙げられる。
さらに、これらに対して、酸化処理やクロム、ニッケルなどで鍍金処理を施してもよい。鍍金の種類としては電気鍍金、無電解鍍金のいずれも使用することができる。寸法安定性の観点から無電解鍍金が好ましい。ここで使用される無電解鍍金の種類としては、ニッケル鍍金、銅鍍金、金鍍金、その他各種合金鍍金を挙げることができる。
鍍金厚さは、0.05μm以上が好ましく、作業効率と防錆能力のバランスを考慮する
と、鍍金厚さは0.10μm~30.00μmであることが好ましい。支持体の円柱状の形状は、中実の円柱状でも、中空の円柱状(円筒状)でもよい。また、支持体の外径は、3mm~10mmの範囲が好ましい。
【0021】
支持体と導電層の間に、中抵抗層又は絶縁層が存在すると、放電による電荷の消費後の電荷の供給を迅速にできなくなる場合がある。よって、導電層は、支持体に直接設けるか、又はプライマーなどの、薄膜かつ導電性の樹脂層からなる中間層のみを介して支持体の外周に導電層を設けることが好ましい。
プライマーとしては、導電層形成用のゴム材料及び支持体の材質等に応じて公知のものを選択して用いることができる。プライマーの材料としては、例えば熱硬化性樹脂や熱可塑性樹脂が挙げられ、具体的には、フェノール系の樹脂、ウレタン系の樹脂、アクリル系の樹脂、ポリエステル系の樹脂、ポリエーテル系の樹脂、エポキシ系の樹脂のような公知の材料を用いることができる。
【0022】
<導電層>
導電層は、マトリックス及びマトリックス中に分散された複数のドメインを有する。そしてマトリックスは、第一のゴムを含有し、ドメインは第二のゴム及び電子導電剤を含有する。そして、マトリックス及びドメインは、下記構成要素(i)及び(ii)を充足する。
構成要素(i):マトリックスの体積抵抗率R1が1.00×1012Ω・cmよりも大きい。
構成要素(ii):ドメインの体積抵抗率R2が、該マトリックスの体積抵抗率R1よりも小さい。
【0023】
<構成要素(i);マトリックスの体積抵抗率>
マトリックスの体積抵抗率R1を、1.00×1012Ω・cmよりも大きくすることで、電荷がドメインを迂回してマトリックス中を移動することを抑制できる。そして、1回の放電で蓄積された電荷の大半が消費されることを抑制できる。また、ドメインに蓄積された電荷が、マトリックスに漏洩することによって、あたかも導電層内を連通する導電経路が形成されている状態となることを防止できる。
また、導電性部材と電子写真感光体のニップ部において、導電性部材及びトナーが噛み合うことによって、トナー中に蓄積された電荷がマトリクス側に逃げにくく、高い再帯電性が得られやすい。
体積抵抗率R1は、2.00×1012Ω・cm以上であることが好ましい。一方、R1の上限は、特に限定されないが、目安としては、1.00×1017Ω・cm以下であることが好ましく、8.00×1016Ω・cm以下であることがより好ましい。
【0024】
電荷を導電層中のドメインを介して移動させ、微細放電を達成するためには、電荷が十分に蓄積された領域(ドメイン)が、電気的に絶縁性の領域(マトリックス)で分断されている構成が有効であると本発明者らは考えている。そして、マトリックスの体積抵抗率を上記したような高抵抗領域の範囲とすることで、各ドメインとの界面において十分な電荷を留めることができ、また、ドメインからの電荷漏洩を抑制できる。
【0025】
また、放電が微細でかつ必要十分な放電量を達成するためには、電荷の移動経路が、ドメインを介在した経路に限定することが極めて有効である。ドメインからのマトリックスへの電荷の漏洩を抑制し、電荷の輸送経路を複数のドメインを介した経路に限定することにより、ドメインに存在する電荷の密度を向上させることができるため、各ドメインにおける電荷の充填量をより増大させることができる。
これにより、放電の起点である導電相としてのドメインの表面において、放電に関与できる電荷の総数を向上させることができ、結果、導電性部材の表面からの放電の出やすさ
を向上させることができると考えられる。
【0026】
<構成要素(ii);ドメインの体積抵抗率>
ドメインの体積抵抗率R2は、マトリックスの体積抵抗率R1よりも小さい。これにより、マトリックスで目的としない電荷の移動を抑制しつつ、電荷の輸送経路を複数のドメインを介する経路に限定しやすくなる。
また体積抵抗率R1は体積抵抗率R2の1.0×105倍以上であることが好ましい。R1はR2の、1.0×106倍~1.0×1018倍であることがより好ましく、1.0×107倍~1.0×1017倍であることがさらに好ましく、1.0×108倍~1.0×1016倍であることがさらにより好ましい。
そしてR2は1.00×101Ω・cm以上、1.00×104Ω・cm以下であることが好ましく、1.00×101Ω・cm以上1.00×102Ω・cm以下であることがより好ましい。
【0027】
上記を満たすことで、導電層内における電荷の輸送パスをコントロールでき、微細放電をより達成しやすくなる。そのため、転写残トナーの導電性部材表面への付着をより抑制できるため、耐久使用後のゴースト、白抜け及びハーフトーン濃度ムラを抑制しやすくなる。。
ドメインの体積抵抗率は、例えば、ドメインのゴム成分に対し、電子導電剤の種類や量を変更することによって、その導電性を所定の値にすることで調整する。
【0028】
ドメイン用のゴム材料としては、マトリックス用としてのゴム成分を含むゴム組成物を用いることができる。マトリックスドメイン構造を形成するためにマトリックスを形成するゴム材料との溶解度パラメータ(SP値)の差を一定の範囲にすることが好ましい。すなわち、第一のゴムのSP値と第二のゴムのSP値との差の絶対値が、好ましくは0.4(J/cm3)0.5以上5.0(J/cm3)0.5以下であり、より好ましくは0.4(J/cm3)0.5以上2.2(J/cm3)0.5以下である。
ドメインの体積抵抗率は、電子導電剤の種類、及びその添加量を適宜選択することによって調整することができる。ドメインの体積抵抗率を1.00×101Ωcm以上1.00×104Ωcm以下に制御するために使用する電子導電剤としては、分散する量によって高抵抗から低抵抗まで体積抵抗率を大きく変化させることができる電子導電剤が好ましい。
【0029】
ドメインに配合される電子導電剤については、カーボンブラック、グラファイト、酸化チタン、酸化錫等の酸化物;Cu、Ag等の金属;酸化物又は金属が表面に被覆され導電化された粒子等を例として挙げられる。また、必要に応じて、これらの導電剤の2種類以上を適宜量配合して使用してもよい。
以上の様な電子導電剤のうち、ゴムとの親和性が大きく、電子導電剤間の距離の制御が容易な、導電性のカーボンブラックを使用することが好ましい。ドメインに配合されるカーボンブラックの種類については、特に限定されるものではない。具体的には、例えば、ガスファーネスブラック、オイルファーネスブラック、サーマルブラック、ランプブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。
【0030】
中でも、高い導電性をドメインに付与し得る、DBP吸油量が40cm3/100g以上170cm3/100g以下である導電性カーボンブラックを好適に用いることができる。
導電性のカーボンブラック等の電子導電剤の含有量は、ドメインに含まれる第二のゴム100質量部に対して、20質量部以上150質量部以下が好ましい。より好ましくは、50質量部以上100質量部以下である。
一般的な電子写真用の導電性部材と比較して、導電剤が多量に配合されていることが好
ましい。これにより、ドメインの体積抵抗率を1.00×101Ωcm以上1.00×104Ω・cm以下の範囲に容易に制御することができる。
また、必要に応じて、ゴムの配合剤として一般に用いられている充填剤、加工助剤、架橋助剤、架橋促進剤、老化防止剤、架橋促進助剤、架橋遅延剤、軟化剤、分散剤、着色剤等を、本開示に係る効果を阻害しない範囲でドメイン用のゴム組成物に添加してもよい。
【0031】
<構成要素(iii);ドメインの隣接壁面間距離>
ドメイン同士での電荷の授受を行わせるためには、導電層の厚み方向の断面観察における、ドメインの隣接壁面間距離の算術平均値Dm(以降、単に「ドメイン間距離Dm」ともいう)は、好ましくは2.00μm以下であり、より好ましくは1.00μm以下である。
また、ドメイン同士を絶縁領域(マトリックス)で電気的に確実に分断し、電荷をドメインにより蓄積しやすくなることができるため、ドメイン間距離Dmは、好ましくは0.15μm以上であり、より好ましくは0.20μm以上である。
【0032】
・ドメイン間距離Dmの均一性
ドメイン間距離Dmの分布は均一であることが、より安定的に微細放電を形成できるため好ましい。ドメイン間距離Dmの分布が均一であることで、導電層内で局所的にドメイン間距離が長い箇所が一部できることで、電荷の供給が周囲比べて滞る箇所が生じた場合などに、放電の出やすさが抑制される現象を低減できる。
電荷が輸送される断面、すなわち、
図8(b)に示されるような導電層の厚さ方向の断面において、導電層の外表面から支持体方向への深さ0.1T~0.9Tまでの厚み領域の任意の3か所における、50μm四方の観察領域を取得する。このとき、当該観察領域内のドメイン間距離Dm及びドメイン間距離の分布の標準偏差σmを用いて、ドメイン間距離の変動係数σm/Dmが0以上0.40以下であることが好ましく、0.10以上0.30以下であることがより好ましい。
上記範囲内であることで、トナー粒子との噛み合いが、効率よく起こりやすいため、トナー1粒子が均一に再帯電されやすくなる。また、ドメイン間距離が均一であることで放電ムラの抑制も達成されるため、より高品位な画像が形成されやすい。
【0033】
<ドメインの凸高さ>
ドメインは、導電性部材の外表面に露出している。導電性部材の外表面は、少なくともマトリックスと、導電性部材の外表面に露出しているドメインとで構成される。導電性部材の外表面は、該ドメインの凸部を有する。
導電性部材の外表面がマトリックスドメイン構造を有し、電子導電剤を含有したドメインによる凸部を有することで、トナーと導電性部材の接触頻度の増加による歯車効果が生じる。また、トナーと導電性部材のマトリックス表面間に生じる摩擦帯電と、さらにトナーと接触するドメインに含有される電子導電剤からの注入帯電が同時に起きる。
ドメインが、導電性部材の外表面に露出し、凸部を形成している場合、導電性部材表面において、感光ドラムとの当接部に到達したトナーに優先的に接触する。その結果、好適に負の電荷をトナーに注入することができる。上述の通り、摩擦帯電と注入帯電の重ね合わせにより、導電性部材に付着したトナーの迅速な帯電が起きる。結果としてトナーによる導電性部材汚染が大幅に抑制される。
ドメインにより形成された凸部の高さの平均値は、具体的には50nm~200nmであることが好ましい。より好ましくは、80nm~150nmである。50nm以上の高さにすることで、トナーとの接触機会を増大でき、トナーに十分な注入電荷を付与することができる。一方、200nm以下にすることで、凸由来の放電ムラを抑制することができる。
【0034】
<ドメイン由来の凸形状の確認方法>
本発明に係る表面の凸形状の確認は導電層から表面を含む薄片を取り出し、微小探針によって凸形状の確認及び凸形状の計測を実施できる。導電性部材からサンプリングした薄片に対し、SPMで表面プロファイル及び電気抵抗プロファイルを測定する。これにより、凸部がドメイン由来の凸であることを確認できる。同時に、形状プロファイルから、凸部の高さを定量化して評価することが可能である。具体的な手順は後述する。
【0035】
<ドメインによる凸形状の形成方法>
ドメインによる凸形状の形成方法は、特に制限されない。例えば、導電性部材の表面を研削することによって凸形状を得ることができる。また、マトリックスドメイン構造を有する導電層であるからこそ、砥石による研削工程によって好適に形成することができると発明者らは考えている。具体的には、プランジ方式研磨機で、研磨砥石によって研削する方法によって形成することが好ましい。
【0036】
砥石研磨によってドメインによる凸形状が形成されるメカニズムは以下のように推測される。まず、マトリクス中に分散しているドメインは電子導電剤が充填されており、電子導電剤が充填されていないマトリックスよりも補強性が高くなっている。したがって、この補強性の違いが生む研削性の違いを利用して、ドメイン由来の凸形状を形成することができる。
具体的には、同じ砥石による研削加工を行った場合、ドメインは補強性が高いために、マトリックスよりも研削されにくい。そのため、ドメインによる凸部が形成されると考えられる。
【0037】
ここで、プランジ方式研磨機による研磨砥石について説明する。研磨砥石は、研磨効率やゴム弾性層の構成材料の種類に応じて、適宜、表面の粗さを選択することができる。この砥石表面の粗さは、砥粒の種類、粒度、結合度、結合剤、組織(砥粒率)などによって調節することができる。
なお、「砥粒の粒度」とは砥粒の大きさを示し、例えば、#80と表記する。この場合の数字は、砥粒を選別するメッシュの1インチ(25.4mm)あたり幾つの目があるかを意味しており、数字が大きくなるほど砥粒が細かいことを示す。
「砥粒の結合度」とは硬さを示し、アルファベットAからZで表す。この結合度はAに近いほど軟らかく、Zに近いほど硬いことを表す。砥粒中に結合剤を多量に含むほど、結合度の硬い砥石となる。
「砥粒の組織(砥粒率)」とは、砥石の全容積中に占める砥粒の容積比を表し、この組織の大小により組織の粗密を表す。組織を示す数字が大きいほど、粗であること示す。この組織の数字が大きく、大きな空孔を有する砥石を多孔性砥石と呼び、目詰まり、砥石焼けを防ぐ等の利点を有する。
【0038】
一般的に、この研磨砥石は、原料(砥材、結合剤、気孔剤、等)を混合し、プレス成形、乾燥、焼成、仕上げにより製造することができる。砥粒としては、緑色炭化けい素質(GC)、黒色炭化けい素質(C)、白色アルミナ質(WA)、かっ色アルミナ質(A)、ジルコニアアルミナ質(Z)などを使用することができる。これらの材料は単体で、又は複数種を混合して用いることができる。
また、上記結合剤としては、ビトリファイド(V)、レジノイド(B)、レジノイド補強(BF)、ゴム(R)、シリケート(S)、マグネシア(Mg)、シェラック(E)などを用途に応じて適宜、使用することができる。
【0039】
ここで、研磨砥石の長手方向の外径形状としては、導電性部材(帯電ローラー)をクラウン形状に研磨できるように、端部から中央部に向けて徐々に外径が小さくなる逆クラウン形状とすることが好ましい。研磨砥石の外径形状は、長手方向に対して円弧曲線又は2次以上の高次曲線の形状となることが好ましい。
また、これ以外にも、研磨砥石の外径形状は4次曲線やサイン関数等、様々な数式で表される形状となっていてもよい。研磨砥石の外形形状は外径の変化が滑らかに変化するものが好ましいが、円弧曲線等を直線による多角形状に近似した形状としてもよい。この研磨砥石の軸方向に相当する方向の幅は、導電性部材の軸方向の幅と同等か、それ以上であることが好ましい。
【0040】
上記にあげた要因を考慮して砥石を適宜選択し、ドメインとマトリックスの研削性の違いを助長する条件によって研削工程を実施することによって、ドメイン由来の凸形状を形成することができる。
具体的には、磨きを抑えた条件、切れ味が悪い砥粒を用いた条件が好ましく、例えば、粗削りをした後の精密磨き工程の時間を短くする、処理済の砥石(砥粒を配合したゴム部材でドレッシングした砥石の表面を磨くことによって砥粒を摩滅させることができる。ゴム部材で処理した砥石)を用いて研磨するなどの手段をとることができる。
【0041】
<ドメイン間距離Dmsとトナーの個数平均粒径との関係>
本開示において、導電性部材の外表面を観察した際の、導電層中のドメインの隣接壁面間距離の算術平均値Dms(μm)(以降、単に「ドメイン間距離Dms」ともいう)とトナーの個数平均粒径Dt(μm)との関係が、Dt>Dmsであることが好ましい。Dt-Dmsが、0.1~10.0であることがより好ましい。
Dt>Dmsであることで導電性部材の表面に付着したトナー粒子が、導電性部材の表面に存在する複数のドメインと接触しやすくなるため、トナーが均一に再帯電しやすくなる。
ドメイン間距離Dmsは、好ましくは0.20μm以上2.50μm以下であり、より好ましくは0.30μm以上1.50μm以下である。
【0042】
導電性部材は、例えば、下記工程(i)~(iv)を含む方法を経て形成することができる。
工程(i):カーボンブラック及び第二のゴムを含む、ドメイン形成用ゴム混合物(以降、「CMB」とも称する)を調製する工程;
工程(ii):第一のゴムを含むマトリックス形成用ゴム混合物(以降、「MRC」とも称する)を調製する工程;
工程(iii):CMBとMRCとを混練して、マトリックスドメイン構造を有するゴム混合物を調製する工程。
工程(iv):工程(iii)で調製したゴム混合物の層を、導電性支持体上に直接又は他の層を介して形成し、該ゴム組成物の層を硬化させて、導電層を形成する工程。
【0043】
そして、構成要素(i)~(iii)は、例えば、上記各工程に用いる材料の選択、製造条件の調整により制御することができる。以下説明する。
まず、構成要素(i)に関して、マトリックスの体積抵抗率は、MRCの組成によって定まる。
【0044】
MRCに用いる第一のゴムとしては、導電性の低いゴムが好ましい。天然ゴム、ブタジエンゴム、ブチルゴム、アクリロニトリルブタジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、イソプレンゴム、クロロプレンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、及びポリノルボルネンゴムからなる群から選択される少なくとも一が好ましい。
第一のゴムが、ブチルゴム、スチレンブタジエンゴム、及びエチレンプロピレンジエンゴムからなる群から選択される少なくとも一がより好ましい。
また、マトリックスの体積抵抗率が上記範囲内であれば、MRCには、必要に応じて、充填剤、加工助剤、架橋剤、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤、老化防
止剤、軟化剤、分散剤、着色剤などを添加してもよい。一方、MRCには、マトリックスの体積抵抗率を上記範囲内とするために、カーボンブラックなどの電子導電剤は含有させないことが好ましい。
【0045】
また、構成要素(ii)に関して、ドメインの体積抵抗率R2は、CMB中の電子導電剤の量によって調整し得る。例えば、電子導電剤として、DBP吸油量が、40cm3/100g以上170cm3/100g以下である導電性カーボンブラックを用いる場合を例に挙げる。CMBの第二のゴム100質量部に対し、40質量部以上200質量部以下の導電性カーボンブラックを含むようにCMBを調製することで所望の範囲を達成し得る。
【0046】
さらに、構成要素(iii)に関わるドメインの分散状態に関しては、下記(a)~(d)の4つを制御することが有効である。
(a)CMB、及びMRCの各々の界面張力σの差;
(b)CMBの粘度(ηd)、及びMRCの粘度(ηm)の比(ηm/ηd);
(c)工程(iii)における、CMBとMRCとの混練時のせん断速度(γ)、及びせん断時のエネルギー量(EDK)。
(d)工程(iii)における、CMBのMRCに対する体積分率。
以下、(a)~(d)について説明する。
【0047】
(a)CMBとMRCとの界面張力差
一般的に二種の非相溶のゴムを混合した場合、相分離する。これは、異種高分子間の相互作用よりも、同一高分子間の相互作用が強いため、同一高分子同士で凝集し、自由エネルギーを低下させ安定化しようとするためである。
相分離構造の界面は異種高分子と接触するため、同一分子同士の相互作用で安定化されている内部より、自由エネルギーが高くなる。その結果、界面の自由エネルギーを低減させるために、異種高分子と接触する面積を小さくしようとする界面張力が発生する。この界面張力が小さい場合、エントロピーを増大させるために異種高分子でもより均一に混合しようとする方向に向かう。均一に混合した状態とは溶解であり、溶解度の目安となるSP値(溶解度パラメーター)と界面張力は相関する傾向にある。
【0048】
つまり、CMBとMRCとの界面張力差は、各々が含むゴムのSP値差と相関すると考えられる。MRC中の第一のゴムの溶解度パラメーターSP値と、CMB中の第二のゴムのSP値の絶対値の差が、好ましくは0.4(J/cm3)0.5以上5.0(J/cm3)0.5以下、より好ましくは0.4(J/cm3)0.5以上2.2(J/cm3)0.5以下となるようなゴムを選択することが好ましい。この範囲であれば安定した相分離構造を形成でき、また、CMBのドメイン径を小さくすることができる。
【0049】
ここで、CMBに用い得る第二のゴムの具体例としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)、クルルプレンゴム(CR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(H-NBR)、シリコーンゴム、及びウレタンゴム(U)からなる群から選択される少なくとも一が好ましい。
第二のゴムが、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、及びアクリロニトリルブタジエンゴム(NBR)からなる群から選択される少なくとも一がより好ましく、スチレンブタジエンゴム(SBR)、及びブチルゴム(IIR)からなる群から選択される少なくとも一がさらに好ましい。
導電層の厚みは、目的とする導電性部材の機能及び効果が得られるものであれば特に限定されない。導電層の厚みは、1.0mm以上4.5mm以下とすることが好ましい。
ドメインとマトリクスとの質量比率(ドメイン:マトリクス)は、好ましくは5:95~40:60であり、より好ましくは10:90~30:70であり、さらに好ましくは13:87~25:75である。
【0050】
(b)CMBとMRCとの粘度比
CMBとMRCとの粘度比(CMB/MRC)(ηd/ηm)は、1に近い程、ドメイン径を小さくできる。具体的には、粘度比は1.0以上2.0以下であることが好ましい。CMBとMRCの粘度比は、CMB及びMRCに使用する原料ゴムのムーニー粘度の選択や、充填剤の種類や量の配合によって調整が可能である。
また、相分離構造の形成を妨げない程度に、パラフィンオイルなどの可塑剤を添加することでも可能である。また混練時の温度を調整することで、粘度比の調整を行うことができる。
なおドメイン形成用ゴム混合物やマトリックス形成用ゴム混合物の粘度は、JIS K6300-1:2013に基づきムーニー粘度ML(1+4)を混練時のゴム温度で測定することで得られる。
【0051】
(c)MRCとCMBとの混練時のせん断速度、及びせん断時のエネルギー量
MRCとCMBとの混練時のせん断速度は速いほど、また、せん断時のエネルギー量は大きいほど、ドメイン間距離Dm及びDmsを小さくすることができる。
せん断速度は、混練機のブレードやスクリューといった撹拌部材の内径を大きくし、撹拌部材の端面から混練機内壁までの間隙を小さくすることや、回転数を大きくすることで上げることができる。またせん断時のエネルギーを上げるには、撹拌部材の回転数を上げることや、CMB中の第一のゴムとMRC中の第二のゴムの粘度を上げることで達成できる。
【0052】
(d)MRCに対するCMBの体積分率
MRCに対するCMBの体積分率は、マトリックス形成用ゴム混合物に対するドメイン形成用ゴム混合物の衝突合体確率と相関する。具体的には、マトリックス形成用ゴム混合物に対するドメイン形成用ゴム混合物の体積分率を低減させると、ドメイン形成用ゴム混合物とマトリックス形成用ゴム混合物の衝突合体確率が低下する。つまり必要な導電性を得られる範囲において、マトリックス中におけるドメインの体積分率を減らすことでドメイン間距離Dm及びDmsを小さくできる。
そして、CMBのMRCに対する体積分率(すなわち、ドメインのマトリクスに対する体積分率)は、15%以上40%以下とすることが好ましい。
【0053】
<ドメイン径D>
導電層の断面から観察されるドメインの円相当径D(以降、単に「ドメイン径D」ともいう)の算術平均値は、0.10μm以上5.00μm以下であることが好ましい。
この範囲であれば、最表面のドメインがトナーと同様以下のサイズとなるため、細かい放電が可能となり、均一放電を達成することが容易となる。
ドメイン径Dの平均値を、0.10μm以上とすることで、導電層において、電荷の移動する経路を目的とする経路により効果的に限定することができる。より好ましくは0.15μm以上であり、さらに好ましくは0.20μm以上である。
また、ドメイン径Dの平均値を5.00μm以下にすることで、ドメインの全体積に対する表面積の割合、すなわち、ドメインの比表面積を指数関数的に大きくすることができ、ドメインからの電荷の放出効率を飛躍的に向上させ得る。ドメイン径Dの平均値は、上記の理由から2.00μm以下がより好ましく、1.00μm以下がさらに好ましい。
ドメイン径Dの平均値を2.00μm以下にすることで、ドメインそのものの電気抵抗を低減できるため、単発の放電の量を必要十分量として、より効率的に微細放電が可能となる。
【0054】
<導電層の外表面から観察されるドメインの円相当径Ds>
導電層の外表面から観察されるドメインの円相当径Ds(以降、単に「ドメイン径Ds」ともいう)の算術平均値は、0.05μm以上4.00μm以下であることが好ましく、0.10μm以上2.00μm以下であることがより好ましい。
ドメイン径Dsが上記範囲であると、トナー粒子との噛み合いや接触が効率よく起きるため、均一再帯電が起こりやすくなるとともに、マトリックス側へのリークも起きにくくなるため高い帯電量を持つことができる。
【0055】
なお、ドメイン間での電界集中のより一層の軽減を図る上では、ドメインの外形形状をより球体に近づけることが好ましい。そのためには、ドメイン径を、前記した範囲内でより小さくすることが好ましい。その方法としては、例えば、工程(iv)において、MRCとCMBとを混練して、MRCとCMBとを相分離させる。そして、MRCのマトリックス中にCMBのドメインを形成されたゴム混合物を調製する工程において、CMBのドメイン径を小さくするように制御する方法が挙げられる。
CMBのドメイン径を小さくすることでCMBの比表面積が増大し、マトリックスとの界面が増加するため、CMBのドメインの界面には張力を小さくしようとする張力が作用する。その結果、CMBのドメインは、その外形形状が、より球体に近づく。
【0056】
ここで、非相溶のポリマー2種を溶融混練させたときに形成されるマトリックス-ドメイン構造におけるドメイン径を決定する要素に関して、Taylorの式(式(6))、Wuの経験式(式(7)、(8))、及びTokitaの式(式(9))が知られている。
・Taylorの式
D=[C・σ/ηm・γ]・f(ηm/ηd) (6)
・Wuの経験式
γ・D・ηm/σ=4(ηd/ηm)0.84・ηd/ηm>1 (7)
γ・D・ηm/σ=4(ηd/ηm)-0.84・ηd/ηm<1 (8)
・Tokitaの式
D=12・P・σ・φ/(π・η・γ)・(1+4・P・φ・EDK/(π・η・γ))
(9)
【0057】
式(6)~(9)において、Dは、CMBのドメインの最大フェレ径、Cは、定数、σは、界面張力、ηmは、マトリックスの粘度、ηdは、ドメインの粘度、γは、せん断速度、ηは、混合系の粘度、Pは、衝突合体確率、φは、ドメイン相体積、EDKは、ドメイン相切断エネルギーを表す。
構成要素(iii)に関連して、ドメイン間距離の均一化を図るためには、式(6)~(9)に従って、ドメイン径を小さくすることが有効である。さらに、MRCとCMBとを混錬する工程において、ドメインの原料ゴムが分裂し、徐々にその粒径が小さくなっていく過程において、混錬工程をどこで止めたかによってもドメイン間距離は変化する。
したがって、そのドメイン間距離の均一性は、混錬工程における混錬時間及びその混錬の強度の指数となる混錬回転数によって制御可能であり、混錬時間が長いほど、混錬回転数が大きいほどドメイン間距離の均一性を向上させることができる。
【0058】
・ドメイン径Dの均一性;
ドメイン径Dは均一であること、つまり、粒度分布が狭い方が好ましい。導電層内の電荷が通るドメイン径Dの分布を均一とすることで、マトリックスドメイン構造内での電荷の集中を抑制し、導電性部材の全面にわたって放電の出やすさを効果的に増大することができる。
電荷が輸送される断面、すなわち、
図8(b)に示されるような導電層の厚さ方向の断
面において、導電層の外表面から支持体方向への深さ0.1T~0.9Tまでの厚み領域の任意の3か所における、50μm四方の観察領域を取得した際に、ドメイン径の標準偏差σd及びドメイン径の算術平均値Dの比σd/D(変動係数σd/D)が0以上0.40以下であることが好ましく、0.10以上0.30以下であることがより好ましい。
【0059】
ドメイン径の均一性を向上させるためには、前述のドメイン間距離の均一性を向上させる手法と等しく、式(6)~(9)に従い、ドメイン径を小さくすればドメイン径の均一性も向上する。さらにMRCとCMBとを混錬する工程において、ドメインの原料ゴムが分裂し、徐々にその粒径が小さくなっていく過程において、混錬工程をどこで止めたかによってもドメイン径の均一性は変化する。
したがって、そのドメイン径の均一性は、混錬工程における混錬時間及びその混錬の強度の指数となる混錬回転数によって制御可能であり、混錬時間が長いほど、混錬回転数が大きいほどドメイン径の均一性を向上させることができる。
【0060】
導電層の任意の9箇所からサンプリングされる、一辺が9μmの立方体形状のサンプルのうち、少なくとも8個のサンプルは、下記条件(1)を満たすことが好ましいい。
条件(1):1個のサンプルを、27個の、一辺が3μmの単位立方体に区分し、該単位立方体の各々に含まれるドメインの体積Vdを求めたとき、Vdが2.7μm3~10.8μm3である単位立方体の数が少なくとも20個であること。
こうすることで、高速プロセス下においても電気抵抗率が変化しにくく、また、導電パスの均質化により、帯電ムラや放電ムラの抑制も達成されるため、高品位な電子写真画像を安定的に形成しやすくなる。
【0061】
<トナー>
次に、トナーの個数平均粒径は、4.0μm以上10.0μm以下である。個数平均粒径がこの範囲にあることによって、後述する有機ケイ素重合体によるトナー表面の凸部と導電性部材の凸部が効率よくかみ合い、均一に再帯電することができる。
4.0μmより小さいと、トナー粒子とマトリックスが接近し、付着しやすくなり、転がりにくくなるため、迅速な帯電が起きなくなる。10.0μmより大きくなると、トナー1粒子で均一な帯電を持ちにくくなり、トナーが電子写真感光体側へ移動しにくくなる。
トナーの個数平均粒径は、好ましくは5.0μm以上8.0μm以下である。
【0062】
トナーは、トナー母粒子及び該トナー母粒子の表面に有機ケイ素重合体を有するトナー粒子を含む。有機ケイ素重合体は下記式(1)で表される構造を有する。
R-SiO3/2 (1)
式中、Rは、炭素数1以上6以下のアルキル基又はフェニル基である。
有機ケイ素重合体は、トナー粒子表面に凸部を形成している。
式(1)で表される構造において、Rは炭素数1以上6以下のアルキル基であることが好ましく、炭素数が1以上3以下のアルキル基であることがより好ましい。
炭素数が1以上3以下のアルキル基としては、メチル基、エチル基、プロピル基が好ましく例示できる。さらに好ましくは、Rはメチル基である。
【0063】
有機ケイ素重合体は、好ましくはトナー母粒子表面に面接触している。面接触することにより、有機ケイ素重合体による凸部の移動・脱離・埋没を抑制できる。これにより、長期間使用を通じて、帯電性、流動性の維持を高いレベルで達成できる。さらに長期間使用した後に、クリーニングブレードを通過したトナーであっても、しっかりとトナー粒子表面に凸部が残っているため、トナーと導電性部材との歯車効果を持続させることができる。
トナー粒子外表面が、有機ケイ素重合体による凸部を有していないと、ニップ部で十分
に転がることができず、トナーへの電荷付与が十分にできない。
【0064】
また、有機ケイ素重合体のトナー母粒子に対する固着率が、80質量%以上である。
固着率が80質量%未満であれば、外れた凸が導電性部材を汚染し、電荷付与能力が落ちる。また、耐久後トナー粒子表面に均一に凸部が残りにくく、クリーニングブレードをすり抜けた場合に転がりにくく、トナーの融着が起きる。
該固着率は、好ましくは85質量%以上であり、より好ましくは90質量%以上である。一方、上限は特に制限されないが、好ましくは100質量%以下であり、より好ましくは99質量%以下である。
【0065】
走査透過型電子顕微鏡STEMによって得た該トナー粒子の断面画像について、該トナー母粒子の輪郭線を直線に展開して該断面画像の展開画像を得たとき、
該展開画像において、
該直線の長さをLとし、
該直線上における、該凸部と該トナー母粒子との境界を構成している線分の長さを凸幅wとしたとき、該Lに対する、該凸幅wの総和Σwの割合(Σw/L)が、0.30以上0.95以下であることが必要である。
【0066】
Σw/Lは、トナー粒子表面を有機ケイ素重合体がどれだけ被覆しているかを表現した値である。Σw/Lが小さいと、有機ケイ素重合体による被覆が小さく、Σw/Lが大きいと、有機ケイ素重合体による被覆が大きい。
Σw/Lが0.30未満であると、導電性部材の凸部とトナーの凸部のかみ合いが不足し転がりが不足するため、部材汚染が発生する。Σw/Lが0.95より大きいと、トナー粒子表面の凹凸が少なくなるために、スリップのような現象が起き、トナーと導電性部材とのかみ合いが不足し、部材汚染が発生する。
Σw/Lは、0.45以上0.80以下であることが好ましい。
【0067】
これら固着率と、Σw/Lは、後述する有機ケイ素重合体の製造方法、具体的には、加水分解温度、原料となるアルコキシシランの投入部数、加水分解及び重合時のpHなどによって制御できる。
【0068】
また、該凸幅wの法線方向において該凸部の最大長を凸径Dとし、該凸径Dを形成する線分における該凸部の頂点から該直線までの長さを凸高さHとしたとき、
該凸部は、該凸高さHが、40nm以上300nm以下である「特定高さ凸部」を含み、
該特定高さ凸部のうち、該凸幅wに対する該凸径Dの比D/wが、0.33以上0.80以下である特定高さ凸部の個数割合P(D/w)が50個数%以上であることが好ましい。
【0069】
トナー粒子表面と凸部との面接触の程度を表すために、トナーのSTEMによる断面観察を行う。
図1~4にトナー粒子表面の該凸部の模式図を示す。
図1に示す1がSTEM像であり、トナー粒子の約1/4程度が分かる像であり、2はトナー母粒子、3はトナー母粒子表面、4が凸部である。また、
図2~4において、5が凸幅wであり、6が凸径Dであり、7が凸高さHである。
トナー粒子の断面画像を観察し、トナー母粒子の輪郭線を直線に展開して断面画像の展開画像を得る。該展開画像において、該直線の長さをLとする。該直線上における、該凸部と該トナー母粒子との境界を構成している部分の線分の長さを凸幅wとする。また、凸幅wの法線方向において凸部の最大長を凸径Dとし、凸径Dを形成する線分における凸部の頂点から該直線までの長さを凸高さHとする。
【0070】
図2及び
図4においては凸径Dと凸高さHは同じであり、
図3において凸径Dは凸高さHより大きくなる。
また、
図4は、中空粒子を潰す・割るなどして得られた、半球粒子の中心部が凹んだ、ボウル形状の粒子に類する粒子の固着状態を模式的に表したものである。
図4において、凸幅wはトナー母粒子表面と接している有機ケイ素重合体の長さの合計とする。すなわち、
図4における凸幅wはW1とW2の合計となる。
上記条件に基づき、有機ケイ素重合体の凸部において、該凸幅wに対する該凸径Dの比D/wが、0.33以上0.80以下の凸形状であれば、移動・脱離・埋没しにくいことを見出した。
また、個数割合P(D/w)が50個数%以上であれば、クリーニングをすり抜けたトナーに凸部がしっかりと残っており、トナーと導電性部材との歯車効果を持続させやすくなる。結果として、導電性部材汚染を抑制しやすい。
【0071】
40nm以上の凸部によって、導電性部材との歯車効果を起こしやすいと考えられる。一方、300nm以下の凸部よって、耐久評価を通じて、移動・脱離・埋没への抑制効果が著しく発現していると考えらえる。
40nm以上300nm以下の凸部の割合として、個数割合P(D/w)が50個数%以上であれば、導電性部材に付着したトナーの再帯電が均一に起きやすいことが分かった。
P(D/w)は、75個数%以上であることが好ましく、80個数%以上であることがより好ましい。一方、上限は特に制限されないが、好ましくは95個数%以下であり、より好ましくは90個数%以下である。
【0072】
また、耐久安定性と歯車効果をより良好にする観点から、該凸高さHが40nm以上300nm以下である「特定高さ凸部」において、該凸高さHの累積分布をとり、該凸高さHの小さい方から積算して80個数%にあたる該凸高さをH80としたとき、該H80は65nm以上であることが好ましい。より好ましくは70nm以上であり、さらに好ましくは73nm以上である。
上限は特に制限されないが、好ましくは120nm以下であり、より好ましくは100nm以下であり、さらに好ましくは90nm以下である。
【0073】
走査型電子顕微鏡SEMによるトナーの観察において、有機ケイ素重合体の凸部の最大径を凸径Rとしたときに、該凸径Rの個数平均径が20nm以上80nm以下であることが好ましい。より好ましくは、35nm以上60nm以下である。
【0074】
有機ケイ素重合体は、下記式(Z)で表される構造を有する有機ケイ素化合物の縮重合物であることが好ましい。
【0075】
【0076】
(式(Z)中、R1は、炭素数1以上6以下の炭化水素基(好ましくはアルキル基)を表し、R2、R3及びR4は、それぞれ独立して、ハロゲン原子、ヒドロキシ基、アセトキシ基、又は、アルコキシ基を表す。)
R1は炭素数1以上3以下の脂肪族炭化水素基であることが好ましく、メチル基である
ことがより好ましい。
【0077】
R2、R3及びR4は、それぞれ独立して、ハロゲン原子、ヒドロキシ基、アセトキシ基、又は、アルコキシ基である(以下、反応基ともいう)。これらの反応基が加水分解、付加重合及び縮重合させて架橋構造を形成する。
加水分解性が室温で穏やかであり、トナー母粒子の表面への析出性の観点から、炭素数1~3のアルコキシ基であることが好ましく、メトキシ基やエトキシ基であることがより好ましい。
また、R2、R3及びR4の加水分解、付加重合及び縮合重合は、反応温度、反応時間、反応溶媒及びpHによって制御することができる。本発明に用いられる有機ケイ素重合体を得るには、上記に示す式(Z)中のR1を除く一分子中に3つの反応基(R2、R3及びR4)を有する有機ケイ素化合物(以下、三官能性シランともいう)を1種又は複数種を組み合わせて用いるとよい。
【0078】
上記式(Z)で表される化合物としては以下のものが挙げられる。
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルジエトキシメトキシシラン、メチルエトキシジメトキシシラン、メチルトリクロロシラン、メチルメトキシジクロロシラン、メチルエトキシジクロロシラン、メチルジメトキシクロロシラン、メチルメトキシエトキシクロロシラン、メチルジエトキシクロロシラン、メチルトリアセトキシシラン、メチルジアセトキシメトキシシラン、メチルジアセトキシエトキシシラン、メチルアセトキシジメトキシシラン、メチルアセトキシメトキシエトキシシラン、メチルアセトキシジエトキシシラン、メチルトリヒドロキシシラン、メチルメトキシジヒドロキシシラン、メチルエトキシジヒドロキシシラン、メチルジメトキシヒドロキシシラン、メチルエトキシメトキシヒドロキシシラン、メチルジエトキシヒドロキシシランのような三官能性のメチルシラン。
エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリクロロシラン、エチルトリアセトキシシラン、エチルトリヒドロキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリクロロシラン、プロピルトリアセトキシシラン、プロピルトリヒドロキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリクロロシラン、ブチルトリアセトキシシラン、ブチルトリヒドロキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリクロロシラン、ヘキシルトリアセトキシシラン、ヘキシルトリヒドロキシシランのような三官能性のシラン。
フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン、フェニルトリアセトキシシラン、フェニルトリヒドロキシシランのような三官能性のフェニルシラン。
【0079】
また、本発明の効果を損なわない程度に、式(Z)で表される構造を有する有機ケイ素化合物とともに、以下を併用して得られた有機ケイ素重合体を用いてもよい。一分子中に4つの反応基を有する有機ケイ素化合物(四官能性シラン)、一分子中に2つの反応基を有する有機ケイ素化合物(二官能性シラン)又は1つの反応基を有する有機ケイ素化合物(一官能性シラン)。例えば以下のようなものが挙げられる。
ジメチルジエトキシシラン、テトラエトキシシラン、ヘキサメチルジシラザン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、ビニルトリイソシアネートシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルジエトキシメトキシシラン、ビニルエトキシジメトキシシラン、ビニルエトキシジヒドロキシシラン、ビニルジメトキシヒドロキシシラン、ビニルエトキシメトキシヒドロキシシラン、ビニルジエトキシヒドロキシシラン、のような三官能性のビニルシラン。
【0080】
さらに、トナー粒子中の有機ケイ素重合体の含有量は1.0質量%以上10.0質量%以下であることが好ましく、2.5質量%以上6.0質量%以下であることがより好ましい。
【0081】
上記特定の凸形状をトナー粒子表面に形成する好ましい手法として、水系媒体にトナー母粒子を分散しトナー母粒子分散液を得たところへ、有機ケイ素化合物を添加し凸形状を形成させトナー粒子分散液を得る方法が挙げられる。
【0082】
トナー母粒子分散液は固形分濃度を25質量%以上50質量%以下に調整することが好ましい。そして、トナー母粒子分散液の温度は35℃以上に調整しておくことが好ましい。また、該トナー母粒子分散液のpHは有機ケイ素化合物の縮合が進みにくいpHに調整することが好ましい。有機ケイ素重合体の縮合が進みにくいpHは物質によって異なるため、最も反応が進みにくいpHを中心として、±0.5以内が好ましい。
【0083】
一方、有機ケイ素化合物は加水分解処理を行ったものを用いることが好ましい。例えば、有機ケイ素化合物の前処理として別容器で加水分解しておく。加水分解の仕込み濃度は有機ケイ素化合物の量を100質量部とした場合、イオン交換水やRO水などイオン分を除去した水40質量部以上500質量部以下が好ましく、100質量部以上400質量部以下がより好ましい。加水分解の条件としては、好ましくはpHが2~7、温度が15~80℃、時間が30~600分である。
【0084】
得られた加水分解液とトナー母粒子分散液とを混合して、縮合に適したpH(好ましくは6~12、又は1~3、より好ましくは8~12)に調整する。加水分解液の量はトナー母粒子100質量部に対して有機ケイ素化合物5.0質量部以上30.0質量部以下に調整することで、凸形状を形成しやすくする。凸形状の形成と縮合の温度と時間は、35℃~99℃で、60分~72時間保持して行うことが好ましい。
【0085】
また、トナー粒子の表面の凸形状を制御するにあたって、pHを2段階に分けて調整することが好ましい。pHを調整する前の保持時間及び、二段階目にpH調整する前の保持時間を適宜調整し有機ケイ素化合物を縮合することで、トナー粒子表面における凸形状を制御できる。例えばpH4.0~6.0で0.5時間~1.5時間保持した後に、pH8.0~11.0で3.0時間~5.0時間保持することが好ましい。また、有機ケイ素化合物の縮合温度を35℃~80℃の範囲で調整することによっても凸形状が制御できる。
例えば、凸幅wは、有機ケイ素化合物の添加量、反応温度及び一段階目の反応pHや反応時間などにより制御できる。例えば、一段階目の反応時間が長くなると凸幅が大きくなる傾向がある。
また、凸径D及び凸高さHは、有機ケイ素化合物の加水分解時温度や、有機ケイ素重合体の添加量、反応温度及び二段階目のpHなどにより制御できる。例えば、加水分解温度が高いと、凸高さHが大きくなる傾向がある。また、二段階目の反応pHが高いと凸径D及び凸高さHが大きくなる傾向がある。
【0086】
以下、トナーの具体的な製造方法について説明するが、これらに限定されるわけではない。
トナー母粒子を水系媒体中で製造し、トナー母粒子表面に有機ケイ素重合体を含む凸部を形成することが好ましい。
トナー母粒子の製造方法として、懸濁重合法・溶解懸濁法・乳化凝集法が好ましく、中でも懸濁重合法がより好ましい。懸濁重合法では有機ケイ素重合体がトナー母粒子の表面に均一に析出し易く、有機ケイ素重合体の接着性に優れ、環境安定性、帯電量反転成分抑制効果、及びそれらの耐久持続性が良好になる。以下、懸濁重合法についてさらに説明する。
【0087】
懸濁重合法は、結着樹脂を生成しうる重合性単量体、及び必要に応じて着色剤などの添加剤を含有する重合性単量体組成物を水系媒体中で造粒し、該重合性単量体組成物に含まれる重合性単量体を重合することにより、トナー母粒子を得る方法である。
重合性単量体組成物には、必要に応じて離型剤、その他の樹脂を添加してもよい。また、重合工程終了後は、公知の方法で、生成した粒子を洗浄、濾過により回収することができる。なお、上記重合工程の後半に昇温してもよい。さらに未反応の重合性単量体又は副生成物を除去する為に、重合工程後半又は重合工程終了後に一部分散媒体を反応系から留去することも可能である。
このようにして得られたトナー母粒子を用い、上記方法により有機ケイ素重合体の凸部を形成させることが好ましい。
【0088】
トナーには離型剤を用いてもよい。離型剤としては、以下のものが挙げられる。
パラフィンワックス、マイクロクリスタリンワックス、ペトロラタムのような石油系ワックス及びその誘導体、モンタンワックス及びその誘導体、フィッシャートロプシュ法による炭化水素ワックス及びその誘導体、ポリエチレン、ポリプロピレンのようなポリオレフィンワックス及びその誘導体、カルナバワックス、キャンデリラワックスのような天然ワックス及びその誘導体、高級脂肪族アルコール、ステアリン酸、パルミチン酸のような脂肪酸、あるいはその酸アミド、エステル、又はケトン、硬化ヒマシ油及びその誘導体、植物系ワックス、動物性ワックス、シリコ-ン樹脂。
なお、誘導体には酸化物や、ビニル系モノマーとのブロック共重合物、グラフト変性物を含む。離型剤は単独で用いてもよいし複数を混合し使用してもよい。
離型剤の含有量は、結着樹脂又は結着樹脂を生成する重合性単量体100質量部に対して2.0質量部以上30.0質量部以下であることが好ましい。
【0089】
その他の樹脂として、例えば、以下の樹脂を用いることができる。
ポリスチレン、ポリビニルトルエンのようなスチレン及びその置換体の単重合体;スチレン-プロピレン共重合体、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタリン共重合体、スチレン-アクリル酸メチル共重合体、スチレン-アクリル酸エチル共重合体、スチレン-アクリル酸ブチル共重合体、スチレン-アクリル酸オクチル共重合体、スチレン-アクリル酸ジメチルアミノエチル共重合体、スチレン-メタクリル酸メチル共重合体、スチレン-メタクリル酸エチル共重合体、スチレン-メタクリル酸ブチル共重合体、スチレン-メタクリ酸ジメチルアミノエチル共重合体、スチレン-ビニルメチルエーテル共重合体、スチレン-ビニルエチルエーテル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-マレイン酸共重合体、スチレン-マレイン酸エステル共重合体のようなスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリビニルブチラール、シリコーン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアクリル樹脂、ロジン、変性ロジン、テルペン樹脂、フェノール樹脂、脂肪族または脂環族炭化水素樹脂、芳香族系石油樹脂。これらは単独で用いてもよいし、複数を混合し用いてもよい。
【0090】
重合性単量体として、以下に示すビニル系重合性単量体が好適に例示できる。
スチレン;α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレンのようなスチレン誘導体;メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、iso-プロピルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、tert-ブチルアクリレート
、n-アミルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-ノニルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、ジメチルフォスフェートエチルアクリレート、ジエチルフォスフェートエチルアクリレート、ジブチルフォスフェートエチルアクリレート、2-ベンゾイルオキシエチルアクリレートのようなアクリル系重合性単量体;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、iso-プロピルメタクリレート、n-ブチルメタクリレート、iso-ブチルメタクリレート、tert-ブチルメタクリレート、n-アミルメタクリレート、n-ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-オクチルメタクリレート、n-ノニルメタクリレート、ジエチルフォスフェートエチルメタクリレート、ジブチルフォスフェートエチルメタクリレートのようなメタクリル系重合性単量体;メチレン脂肪族モノカルボン酸エステル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル、蟻酸ビニルのようなビニルエステル;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルのようなビニルエーテル;ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロピルケトン。
これらのビニル単量体の中でも、スチレン、スチレン誘導体、アクリル系重合性単量体及びメタクリル系重合性単量体が好ましい。
【0091】
また、重合性単量体の重合に際して、重合開始剤を添加してもよい。重合開始剤としては、以下のものが挙げられる。
2,2’-アゾビス-(2,4-ジバレロニトリル)、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、アゾビスイソブチロニトリルのようなアゾ系、又はジアゾ系重合開始剤;ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルオキシカーボネート、クメンヒドロペルオキシド、2,4-ジクロロベンゾイルペルオキシド、ラウロイルペルオキシドのような過酸化物系重合開始剤。
これらの重合開始剤は、重合性単量体100質量部に対して0.5質量部~30.0質量部の添加が好ましく、単独で用いても複数を併用してもよい。
【0092】
また、トナー母粒子を構成する結着樹脂の分子量をコントロールする為に、重合性単量体の重合に際して、連鎖移動剤を添加してもよい。好ましい添加量としては、重合性単量体100質量部に対し0.001質量部~15.000質量部である。
【0093】
一方、トナー母粒子を構成する結着樹脂の分子量をコントロールする為に、重合性単量体の重合に際して、架橋剤を添加してもよい。例えば、以下のものが挙げられる。
ジビニルベンゼン、ビス(4-アクリロキシポリエトキシフェニル)プロパン、エチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#200、#400、#600の各ジアクリレート、ジプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエステル型ジアクリレート(MANDA 日本化薬)、及び以上のアクリレートをメタクリレートに変えたもの。
多官能の架橋性単量体としては以下のものが挙げられる。ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート及びそのメタクリレート、2,2-ビス(4-メタクリロキシ・ポリエトキシフェニル)プロパン、ジアクリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート
、トリアリルトリメリテート、ジアリールクロレンデート。
好ましい添加量としては、重合性単量体100質量部に対して、0.001質量部~15.000質量部である。
【0094】
上記懸濁重合の際に用いられる媒体が水系媒体の場合には、重合性単量体組成物の粒子の分散安定剤として以下のものを使用することができる。
リン酸三カルシウム、リン酸マグネシウム、リン酸亜鉛、リン酸アルミニウム、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタ珪酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ。
また、有機系の分散剤としては、以下のものが挙げられる。ポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプン。
また、市販のノニオン、アニオン、カチオン型の界面活性剤の利用も可能である。このような界面活性剤としては、以下のものが挙げられる。ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム。
【0095】
トナーには着色剤を用いてもよく、特に限定されず公知のものを使用することができる。
なお、着色剤の含有量は、結着樹脂又は重合性単量体100質量部に対して3.0質量部~15.0質量部であることが好ましい。
【0096】
トナー製造時に荷電制御剤を用いることができ、公知のものが使用できる。これらの荷電制御剤の添加量としては、結着樹脂又は重合性単量体100質量部に対して、0.01質量部~10.00質量部であることが好ましい。
【0097】
トナー粒子はそのままトナーとして用いてもよいし、必要に応じて、トナー粒子に各種有機又は無機微粉体を外添してもよい。該有機又は無機微粉体は、トナー粒子に添加した時の耐久性から、トナー粒子の重量平均粒径の1/10以下の粒径であることが好ましい。
有機又は無機微粉体としては、例えば、以下のようなものが用いられる。
(1)流動性付与剤:シリカ、アルミナ、酸化チタン、カーボンブラック及びフッ化カーボン。
(2)研磨剤:金属酸化物(例えばチタン酸ストロンチウム、酸化セリウム、アルミナ、酸化マグネシウム、酸化クロム)、窒化物(例えば窒化ケイ素)、炭化物(例えば炭化ケイ素)、金属塩(例えば硫酸カルシウム、硫酸バリウム、炭酸カルシウム)。
(3)滑剤:フッ素系樹脂粉末(例えばフッ化ビニリデン、ポリテトラフルオロエチレン)、脂肪酸金属塩(例えばステアリン酸亜鉛、ステアリン酸カルシウム)。
(4)荷電制御性粒子:金属酸化物(例えば酸化錫、酸化チタン、酸化亜鉛、シリカ、アルミナ)、カーボンブラック。
【0098】
トナーの流動性の改良及びトナーの帯電均一化のために有機又は無機微粉体の表面処理を行ってもよい。有機又は無機微粉体の疎水化処理の処理剤としては、未変性のシリコーンワニス、各種変性シリコーンワニス、未変性のシリコーンオイル、各種変性シリコーンオイル、シラン化合物、シランカップリング剤、その他有機ケイ素化合物、有機チタン化合物が挙げられる。これらの処理剤は単独で用いてもよいし複数を併用してもよい。
【0099】
<プロセスカートリッジ>
プロセスカートリッジは以下の態様を有する。
電子写真装置の本体に脱着可能であるプロセスカートリッジであって、
該プロセスカートリッジが、電子写真感光体の表面を帯電させるための帯電装置、及び該電子写真感光体の表面に形成された静電潜像をトナーにより現像して電子写真感光体の表面にトナー像を形成するための現像装置を有し、
該現像装置が、トナーを有し、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有する。
このプロセスカートリッジに、前述のトナー及び導電性部材を適用できる。
プロセスカートリッジは、帯電装置及び現像装置を支持するための枠体を有していてもよい。
【0100】
図9は、導電性部材を帯電ローラとして具備している電子写真用のプロセスカートリッジの概略断面図である。このプロセスカートリッジは、現像装置と帯電装置とを一体化し、電子写真装置の本体に着脱可能に構成されたものである。
現像装置は、少なくとも現像ローラ93を備え、トナー99を有している。現像装置は、必要に応じてトナー供給ローラ94、トナー容器96、現像ブレード98、攪拌羽910が一体化されていてもよい。
帯電装置は、帯電ローラ92を少なくとも備えていればよく、クリーニングブレード95及び廃トナー容器97を備えていてもよい。導電性部材が電子写真感光体に接触可能に配置されればよいため、電子写真感光体(感光ドラム91)は、プロセスカートリッジの構成要素として、帯電装置と共に一体化されていてもよいし、電子写真装置の構成要素として本体に固定されていてもよい。
帯電ローラ92、現像ローラ93、トナー供給ローラ94、及び現像ブレード98は、それぞれ電圧が印加されるようになっている。
【0101】
<電子写真装置>
電子写真装置は以下の態様を有する。
電子写真感光体、
該電子写真感光体の表面を帯電させるための帯電装置、及び
該電子写真感光体の表面に形成された静電潜像をトナーにより現像して該電子写真感光体の表面にトナー像を形成するための現像装置、を有する電子写真装置であって、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有する。
この電子写真装置に、前述のトナー及び導電性部材を適用できる。
電子写真装置は、
該電子写真感光体の表面に像露光光を照射して該電子写真感光体の表面に静電潜像を形成するための像露光装置、
該電子写真感光体の表面に形成されたトナー像を記録媒体に転写するための転写装置、及び
該記録媒体に転写された該トナー像を該記録媒体に定着させるための定着装置、
を有していてもよい。
【0102】
図10は、導電性部材を帯電ローラとして用いた電子写真装置の概略構成図である。この電子写真装置は、四つのプロセスカートリッジが着脱可能に装着されたカラー電子写真装置である。各プロセスカートリッジには、ブラック、マゼンダ、イエロー、シアンの各色のトナーが使用されている。
感光ドラム101は矢印方向に回転し、帯電バイアス電源から電圧が印加された帯電ローラ102によって一様に帯電され、露光光1011により、その表面に静電潜像が形成される。一方、トナー容器106に収納されているトナー109は、攪拌羽1010によりトナー供給ローラ104へと供給され、現像ローラ103上に搬送される。
そして現像ローラ103と接触配置されている現像ブレード108により、現像ローラ103の表面上にトナー109が均一にコーティングされると共に、摩擦帯電によりトナ
ー109へと電荷が与えられる。上記静電潜像は、感光ドラム101に対して接触配置される現像ローラ103によって搬送されるトナー109が付与されて現像され、トナー像として可視化される。
【0103】
可視化された感光ドラム上のトナー像は、一次転写バイアス電源により電圧が印加された一次転写ローラ1012によって、テンションローラ1013と中間転写ベルト駆動ローラ1014に支持、駆動される中間転写ベルト1015に転写される。各色のトナー像が順次重畳されて、中間転写ベルト上にカラー像が形成される。
転写材1019は、給紙ローラにより装置内に給紙され、中間転写ベルト1015と二次転写ローラ1016の間に搬送される。二次転写ローラ1016は、二次転写バイアス電源から電圧が印加され、中間転写ベルト1015上のカラー像を、転写材1019に転写する。カラー像が転写された転写材1019は、定着器1018により定着処理され、装置外に廃紙されプリント動作が終了する。
一方、転写されずに感光ドラム上に残存したトナーは、クリーニングブレード105により掻き取られて廃トナー収容容器107に収納され、クリーニングされた感光ドラム101は、上述の工程を繰り返し行う。また転写されずに一次転写ベルト上に残存したトナーもクリーニング装置1017により掻き取られる。
【0104】
<カートリッジセット>
カートリッジセットは以下の態様を有する。
電子写真装置の本体に脱着可能である第一のカートリッジ及び第二のカートリッジを有するカートリッジセットであって、
該第一のカートリッジが、電子写真感光体の表面を帯電させるための帯電装置、及び該帯電装置を支持するための第一の枠体を有し、
該第二のカートリッジが、電子写真感光体の表面に形成された静電潜像を現像して電子写真感光体の表面にトナー像を形成するためのトナーを収容しているトナー容器を有し、
該帯電装置が、該電子写真感光体に接触可能に配置された導電性部材を有する。
このカートリッジセットに、前述のトナー及び導電性部材を適用できる。
【0105】
導電性部材が電子写真感光体に接触可能に配置されればよいため、第一のカートリッジが電子写真感光体を備えていてもよいし、電子写真装置の本体に電子写真感光体が固定されていてもよい。例えば、第一のカートリッジが、電子写真感光体、該電子写真感光体の表面を帯電させるための帯電装置、及び該電子写真感光体及び該帯電装置を支持するための第一の枠体を有していてもよい。なお、第二のカートリッジが電子写真感光体を備えていてもよい。
第一のカートリッジ又は第二のカートリッジは、電子写真感光体の表面にトナー像を形成するための現像装置を備えていてもよい。現像装置は、電子写真装置の本体に固定されていてもよい。
【0106】
各種物性の測定方法について以下に説明する。
<ドメインの体積の測定方法>
ドメインの体積はFIB-SEMを用いた3次元での導電層の計測により求めることができる。
FIB-SEMとはFIB(Focused Ion Beam:集束イオンビーム)装置で試料の加工を行い、露出した断面をSEM(scanning electron
microscope;走査型電子顕微鏡)を用いて観察する手法である。立体的な構造を調べるためには、連続した加工・観察を繰り返して数多くの写真を取得した後、そのSEM画像に対しコンピュータソフトウェアで3D再構築処理を施して、試料構造を3次元的な立体像として構築する。
ドメイン体積の具体的な測定方法としては、FIB-SEM(エフイー・アイ社製)を
使用して、3次元の立体画像を取得し、その画像から確認する。
導電層のサンプリングは任意の9箇所から行う。ローラ形状の場合には、長手方向の長さをLとした時、端部から(1/4)L,(2/4)L、(3/4)L付近の三か所ずつローラの周方向に120度毎に、それぞれから各1つずつサンプルを切り出す。
その後、FIB-SEMを用いた3次元測定を行い、60nm間隔で一辺が9μmの立方体形状の画像を測定する。ここでは、該(1/4)L,(2/4)L、(3/4)Lの各断面における導電層断面をローラの周方向に120度毎、芯金位置から導電層表面までの距離の中心部での測定を行う。
なお、ドメイン構造の観察を好適に実施するために、ドメインとマトリックスとのコントラストが好適に得られる前処理を施してもよい。ここでは、染色処理が好適に用いることができる。
その後得られた画像を、3D可視化・解析ソフトウェア Avizo(登録商標、エフ・イー・アイ社製)を利用して、該一辺が9μmの立方体形状1個のサンプル中に含まれる27個の、一辺が3μmの該単位立方体におけるドメインの体積を算出する。
なお、ドメインの隣接壁面間距離の測定も上記の3D可視化・解析ソフトウェアを利用して同様に行うことができ、上記の測定値を得た後に、該合計27サンプルの算術平均により算出することができる。
【0107】
<SP値の測定方法>
SP値は、SP値が既知の材料を用いて、検量線を作成することで、精度良く算出することが可能である。この既知のSP値は、材料メーカーのカタログ値を用いることもできる。例えば、NBR及びSBRは、分子量に依存せず、アクリロニトリル及びスチレンの含有比率でSP値がほぼ決定される。
従って、マトリックス及びドメインを構成するゴムを、熱分解ガスクロマトグラフィー(Py-GC)及び固体NMR等の分析手法を用いて、アクリロニトリル又はスチレンの含有比率を解析する。それにより、SP値が既知の材料から得た検量線から、SP値を算出することができる。
また、イソプレンゴムは、1,2-ポリイソプレン、1,3-ポリイソプレン、3,4-ポリイソプレン、及びcis-1,4-ポリイソプレン、trans-1,4-ポリイソプレンなどの、異性体構造でSP値が決定される。従って、SBR及びNBRと同様にPy-GC及び固体NMR等で異性体含有比率を解析し、SP値が既知の材料から、SP値を算出することができる。
SP値が既知の材料のSP値は、Hansen球法で求めたものである。
【0108】
<走査透過型電子顕微鏡(STEM)におけるトナーの断面の観察方法>
走査透過型電子顕微鏡(STEM)で観察されるトナーの断面は以下のようにして作製する。
以下、トナーの断面の作製手順を説明する。
まず、カバーガラス(松波硝子社、角カバーグラス;正方形No.1)上にトナーを一層となるように散布し、オスミウム・プラズマコーター(filgen社、OPC80T)を用いて、保護膜としてトナーにOs膜(5nm)及びナフタレン膜(20nm)を施す。
次に、PTFE製のチューブ(内径Φ1.5mm×外径Φ3mm×3mm)に光硬化性樹脂D800(日本電子社)を充填し、チューブの上に前記カバーガラスをトナーが光硬化性樹脂D800に接するような向きで静かに置く。この状態で光を照射して樹脂を硬化させた後、カバーガラスとチューブを取り除くことで、最表面にトナーが包埋された円柱型の樹脂を形成する。
超音波ウルトラミクロトーム(Leica社、UC7)により、切削速度0.6mm/sで、円柱型の樹脂の最表面からトナーの半径(例えば、重量平均粒径(D4)が8.0μmの場合は4.0μm)の長さだけ切削して、トナー中心部の断面を出す。
次に、膜厚100nmとなるように切削し、トナーの断面の薄片サンプルを作製する。このような手法で切削することで、トナー中心部の断面を得ることができる。
STEMのプローブサイズは1nm、画像サイズ1024×1024pixelにて画像を取得する。また、明視野像のDetector ControlパネルのContr
astを1425、Brightnessを3750、Image Controlパネ
ルのContrastを0.0、Brightnessを0.5、Gammmaを1.00に調整して、画像を取得する。画像倍率は100,000倍にて行い、
図1のようにトナー1粒子中の断面の周のうち4分の1から2分の1程度収まるように画像取得を行う。
【0109】
得られた画像について、画像処理ソフト(イメージJ(https://imagej.nih.gov/ij/より入手可能))を用いて画像解析を行い、有機ケイ素重合体を含む凸部を計測する。画像解析はSTEM画像30枚について行う。
まず、ライン描画ツール(StraightタブのSegmented lineを選択)にてトナー母粒子の周に沿った線を描く。有機ケイ素重合体の凸部がトナー母粒子に埋没しているような部分は、トナー母粒子の周の曲率を維持するように、その埋没はないものとして滑らかに線をつなぐ。
その線を直線へ変換(EditタブのSelection選択し、propertiesにてline widthを500pixelに変更後、EditタブのSelectionを選択しStraightenerを行う)する。
これにより、トナー母粒子の輪郭線を直線に展開した展開画像が得られる。該展開画像において、有機ケイ素重合体を含む凸部一箇所ずつ、凸幅w、凸径D及び凸高さHを測定する。
該展開画像において、該直線の長さをLとする。Lが、STEM画像中のトナー母粒子表面の長さに相当する。該直線上における、該凸部と該トナー母粒子との境界を構成している部分の線分の長さを凸幅wとする。また、凸幅wの法線方向において凸部の最大長を凸径Dとし、凸径Dを形成する線分における凸部の頂点(トナー粒子の外側の頂点)から該直線までの長さを凸高さHとする。
【0110】
画像解析に用いた展開画像に存在する凸高さHが40nm以上300nm以下となる「特定高さ凸部」の凸幅wの合計値をΣwとする。一枚の画像からΣw/Lを算出し、STEM画像30枚の相加平均値を採用する。
また、STEM画像30枚測定した結果から、P(D/w)を算出する。凸高さHの累積分布をとり、H80を算出する。
詳細な凸部の計測に関しては、前述の説明や
図2~4のとおりである。
計測はImage Jにて、画像上のスケールをStraightタブのStraight Lineで重ね、AnalyzeタブのSet Scaleにて、画像上のスケールの長さを設定したのち行う。凸幅wまたは凸高さHに相当する線分をStraightタブのStraight Lineで描き、AnalyzeタブのMeasureにて計測ができる。
【0111】
<走査型電子顕微鏡(SEM)における凸部の平均粒径(凸径R)の算出方法>
SEM観察の方法は、以下の通り。日立超高分解能電界放出形走査電子顕微鏡S-4800((株)日立ハイテクノロジーズ)にて撮影される画像を用いて行う。S-4800の画像撮影条件は以下の通りである。
(1)試料作製
試料台(アルミニウム試料台15mm×6mm)に導電性ペースト(TED PELLA,Inc、Product No.16053,PELCO Colloidal Graphite,Isopropanol base)を薄く塗り、その上にトナーを吹き付ける。さらにエアブローして、余分なトナーを試料台から除去した後、15mAで15秒間白金蒸着する。試料台を試料ホルダにセットし、試料高さゲージにより試料台高さ
を30mmに調節する。
【0112】
(2)S-4800観察条件設定
S-4800の筺体に取り付けられているアンチコンタミネーショントラップに液体窒素を溢れるまで注入し、30分間置く。S-4800の「PC-SEM」を起動し、フラッシング(電子源であるFEチップの清浄化)を行う。画面上のコントロールパネルの加速電圧表示部分をクリックし、[フラッシング]ボタンを押し、フラッシング実行ダイアログを開く。フラッシング強度が2であることを確認し、実行する。フラッシングによるエミッション電流が20~40μAであることを確認する。試料ホルダをS-4800筺体の試料室に挿入する。コントロールパネル上の[原点]を押し試料ホルダを観察位置に移動させる。
加速電圧表示部をクリックしてHV設定ダイアログを開き、加速電圧を[2.0kV]、エミッション電流を[10μA]に設定する。オペレーションパネルの[基本]のタブ内にて、信号選択を[SE]に設置し、SE検出器を[下(L)]を選択し、反射電子像を観察するモードにする。同じくオペレーションパネルの[基本]のタブ内にて、電子光学系条件ブロックのプローブ電流を[Normal]に、焦点モードを[UHR]に、WDを[8.0mm]に設定する。コントロールパネルの加速電圧表示部の[ON]ボタンを押し、加速電圧を印加する。
【0113】
(3)焦点調整
コントロールパネルの倍率表示部内をドラッグして、倍率を5000(5k)倍に設定する。操作パネルのフォーカスつまみ[COARSE]を回転させ、ある程度焦点が合ったところでアパーチャアライメントの調整を行う。コントロールパネルの[Align]をクリックし、アライメントダイアログを表示し、[ビーム]を選択する。操作パネルのSTIGMA/ALIGNMENTつまみ(X,Y)を回転し、表示されるビームを同心円の中心に移動させる。
次に[アパーチャ]を選択し、STIGMA/ALIGNMENTつまみ(X,Y)を一つずつ回し、像の動きを止める又は最小の動きになるように合わせる。アパーチャダイアログを閉じ、オートフォーカスで、ピントを合わせる。この操作を更に2度繰り返し、ピントを合わせる。観察粒子の最大径の中点を測定画面の中央に合わせた状態でコントロールパネルの倍率表示部内をドラッグして、倍率を10000(10k)倍に設定する。操作パネルのフォーカスつまみ[COARSE]を回転させ、ある程度焦点が合ったところでアパーチャアライメントの調整を行う。コントロールパネルの[Align]をクリックし、アライメントダイアログを表示し、[ビーム]を選択する。操作パネルのSTIGMA/ALIGNMENTつまみ(X,Y)を回転し、表示されるビームを同心円の中心に移動させる。
次に[アパーチャ]を選択し、STIGMA/ALIGNMENTつまみ(X,Y)を一つずつ回し、像の動きを止める又は最小の動きになるように合わせる。アパーチャダイアログを閉じ、オートフォーカスで、ピントを合わせる。その後、倍率を50000(50k)倍に設定し、上記と同様にフォーカスつまみ、STIGMA/ALIGNMENTつまみを使用して焦点調整を行い、再度オートフォーカスでピントを合わせる。この操作を再度繰り返し、ピントを合わせる。
【0114】
(4)画像保存
ABCモードで明るさ合わせを行い、サイズ640×480ピクセルで写真撮影して保存する。
得られたSEM画像から、トナー粒子表面に存在する、20nm以上の該凸部500箇所の個数平均径(D1)の計算を画像処理ソフト(イメージJ)により行う。測定方法は以下の通りである。
・有機ケイ素重合体の凸部の個数平均径の測定
粒子解析により、画像中の凸部とトナー母粒子を二値化により、色分けする。次に、計測コマンドの中から、選択された形状の最大長さを選択し、凸部1箇所の凸径R(最大径)を計測する。この操作を複数行い、500箇所の相加平均値を求めることで、凸径Rの個数平均径を算出する。
【0115】
<有機ケイ素重合体の固着率の測定方法>
イオン交換水100mLにスクロース(キシダ化学製)160gを加え、湯せんをしながら溶解させ、ショ糖濃厚液を調製する。遠心分離用チューブ(容量50ml)に上記ショ糖濃厚液を31gと、コンタミノンN(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)を6mL入れ分散液を作製する。この分散液にトナー1.0gを添加し、スパチュラなどでトナーのかたまりをほぐす。
遠心分離用チューブをシェイカーにて350spm(strokes per min)、20分間振とうする。振とう後、溶液をスイングローター用ガラスチューブ(容量50mL)に入れ替えて、遠心分離機(H-9R 株式会社コクサン製)にて3500rpm、30分間の条件で分離する。トナーと水溶液が十分に分離されていることを目視で確認し、最上層に分離したトナーをスパチュラ等で採取する。採取したトナーを含む水溶液を減圧濾過器で濾過した後、乾燥機で1時間以上乾燥する。乾燥品をスパチュラで解砕し、蛍光X線でケイ素の量を測定する。水洗後のトナーと初期のトナーの測定対象の元素量比から固着率(%)を計算する。
各元素の蛍光X線の測定は、JIS K 0119-1969に準ずるが、具体的には以下の通りである。
【0116】
測定装置としては、波長分散型蛍光X線分析装置「Axios」(PANalytical社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「SuperQ ver.4.0F」(PANalytical社製)を用いる。なお、X線管球のアノードとしてはRhを用い、測定雰囲気は真空、測定径(コリメーターマスク径)は10mm、測定時間10秒とする。また、軽元素を測定する場合にはプロポーショナルカウンタ(PC)、重元素を測定する場合にはシンチレーションカウンタ(SC)で検出する。
測定サンプルとしては、専用のプレス用アルミリング直径10mmの中に水洗後のトナー又は初期のトナーを約1g入れて平らにならし、錠剤成型圧縮機「BRE-32」(前川試験機製作所社製)を用いて、20MPaで60秒間加圧し、厚さ約2mmに成型したペレットを用いる。
上記条件で測定を行い、得られたX線のピーク位置をもとに元素を同定し、単位時間あたりのX線光子の数である計数率(単位:cps)からその濃度を算出する。
【0117】
トナー中の定量方法としては、例えばケイ素量はトナー粒子100質量部に対して、例えば、シリカ(SiO2)微粉末を0.5質量部となるように添加し、コーヒーミルを用いて充分混合する。同様にして、シリカ微粉末を2.0質量部、5.0質量部となるようにトナー粒子とそれぞれ混合し、これらを検量線用の試料とする。
それぞれの試料について、錠剤成型圧縮機を用いて上記のようにして検量線用の試料のペレットを作製し、PETを分光結晶に用いた際に回折角(2θ)=109.08°に観測されるSi-Kα線の計数率(単位:cps)を測定する。この際、X線発生装置の加速電圧、電流値はそれぞれ、24kV、100mAとする。得られたX線の計数率を縦軸に、各検量線用試料中のSiO2添加量を横軸として、一次関数の検量線を得る。
次に、分析対象のトナーを、錠剤成型圧縮機を用いて上記のようにしてペレットとし、そのSi-Kα線の計数率を測定する。そして、上記の検量線からトナー中の有機ケイ素重合体の含有量を求める。上記方法により算出した初期のトナーの元素量に対して、水洗後のトナーの元素量の比率を求め固着率(%)とする。
【0118】
<トナーの重量平均粒径(D4)及び個数平均粒径(D1)の測定方法>
トナーの重量平均粒径(D4)及び個数平均粒径(D1)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出する。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
なお、測定、解析を行う前に、以下のように専用ソフトの設定を行う。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
【0119】
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、専用ソフトの「アパーチャーチューブのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー(粒子)約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナー(粒子)を分散した前記(5)の電解水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)又は個数平均粒径(D1)を算出する。なお、専用ソフトでグラフ/個数%、グラフ/体積%とそれぞれ設定したときの、分析/個数統計値(算術平均)、分析/体積統計値(算術平均)画面の「算術径」がそれぞれ個数平均粒径(D1)、重量平均粒径(D4)である。
【実施例】
【0120】
以下、実施例及び比較例を挙げて本開示に係る構成をさらに詳細に説明するが、本開示に係る構成は、実施例に具現化された構成に限定されるものではない。また、実施例及び比較例中で使用する「部」は特に断りのない限り質量基準である。
【0121】
[トナー1の製造例]
(水系媒体1の調製工程)
撹拌機、温度計、還留管を具備した反応容器中にイオン交換水650.0部に、リン酸ナトリウム(ラサ工業社製・12水和物)14.0部を投入し、窒素パージしながら65℃で1.0時間保温した。
T.K.ホモミクサー(特殊機化工業株式会社製)を用いて、15000rpmにて攪拌しながら、イオン交換水10.0部に9.2部の塩化カルシウム(2水和物)を溶解した塩化カルシウム水溶液を一括投入し、分散安定剤を含む水系媒体を調製した。さらに、水系媒体に10質量%塩酸を投入し、pHを5.0に調整し、水系媒体1を得た。
【0122】
(重合性単量体組成物の調製工程)
・スチレン :60.0部
・C.I.ピグメントブルー15:3 :6.5部
前記材料をアトライタ(三井三池化工機株式会社製)に投入し、さらに直径1.7mmのジルコニア粒子を用いて、220rpmで5.0時間分散させて、顔料分散液を調製した。前記顔料分散液に下記材料を加えた。
・スチレン:20.0部
・n-ブチルアクリレート:20.0部
・架橋剤(ジビニルベンゼン):0.3部
・飽和ポリエステル樹脂:5.0部
(プロピレンオキサイド変性ビスフェノールA(2モル付加物)とテレフタル酸との重縮合物(モル比10:12)、ガラス転移温度Tg=68℃、重量平均分子量Mw=10000、分子量分布Mw/Mn=5.12)
・フィッシャートロプシュワックス(融点78℃):7.0部
これを65℃に保温し、T.K.ホモミクサー(特殊機化工業株式会社製)を用いて、500rpmにて均一に溶解、分散し、重合性単量体組成物を調製した。
【0123】
(造粒工程)
水系媒体1の温度を70℃、T.K.ホモミクサーの回転数を15000rpmに保ちながら、水系媒体1中に重合性単量体組成物を投入し、重合開始剤であるt-ブチルパーオキシピバレート10.0部を添加した。そのまま該撹拌装置にて15000rpmを維持しつつ10分間造粒した。
【0124】
(重合・蒸留工程)
造粒工程の後、攪拌機をプロペラ撹拌羽根に換え150rpmで攪拌しながら70℃を保持して5.0時間重合を行い、85℃に昇温して2.0時間加熱することで重合反応を行った。
その後、反応容器の還留管を冷却管に付け替え、スラリーを100℃まで加熱することで、蒸留を6時間行い未反応の重合性単量体を留去し、トナー母粒子分散液を得た。
【0125】
(有機ケイ素化合物の重合)
撹拌機、温度計を備えた反応容器に、イオン交換水60.0部を秤量し、10質量%の塩酸を用いてpHを4.0に調整した。これを撹拌しながら加熱し、温度を10℃にした。その後、有機ケイ素化合物であるメチルトリエトキシシラン40.0部を添加して2時
間以上撹拌して加水分解を行った。加水分解の終点は目視にて油水が分離せず1層になったことで確認を行い、冷却して有機ケイ素化合物の加水分解液を得た。
得られたトナー母粒子分散液の温度を55℃に冷却したのち、有機ケイ素化合物の加水分解液を25.0部添加して有機ケイ素化合物の重合を開始した。そのまま15分保持した後に、3.0%炭酸水素ナトリウム水溶液で、pHを5.5に調整した。55℃で撹拌を継続したまま、60分間保持したのち、3.0%炭酸水素ナトリウム水溶液を用いてpHを9.5に調整し、更に240分保持してトナー粒子分散液を得た。
【0126】
(洗浄、乾燥工程)
重合工程終了後、トナー粒子分散液を冷却し、トナー粒子分散液に塩酸を加えpH=1.5以下に調整して1時間撹拌放置してから加圧ろ過器で固液分離し、トナーケーキを得た。これをイオン交換水でリスラリーして再び分散液とした後に、前述のろ過器で固液分離してトナーケーキを得た。
得られたトナーケーキを40℃の恒温槽にて72時間かけて乾燥・分級を行い、トナー粒子1を得た。表1にトナー粒子1の製造の条件を示す。
【0127】
[トナー粒子2~8の製造方法]
表1に示す条件に変更した以外は、トナー粒子1と同様にしてトナー粒子2~8を得た。
【0128】
[比較用トナー粒子(トナー粒子9)の製造方法]
有機ケイ素化合物の重合に関して、下記に示すように変更した以外はトナー粒子1と同様にして、比較用トナー粒子であるトナー粒子9を得た。
(有機ケイ素化合物の重合)
ポリビニルアルコール1.0部をエタノール/水=1:1(質量比)の混合溶液20部に溶解した混合溶媒をトナー母粒子分散液に分散させて、次いで、ケイ素化合物として3-(メタクリルオキシ)プロピルトリメトキシシラン20部を溶解させ、さらに5時間の攪拌を行って、トナー粒子内に3-(メタクリルオキシ)プロピルトリメトキシシランを膨潤させて内在させた。
次いで、温度を70℃にしたのち、3.0%炭酸水素ナトリウム水溶液でpHを9.5に調整した。10時間室温にて攪拌することによって、トナー粒子表面でゾルゲル反応を進行させて、トナー粒子9を得た。
【0129】
[比較用トナー粒子(トナー粒子10)の製造方法]
トナー粒子1の製造例で有機ケイ素化合物の重合を行わないことで、比較用トナー粒子であるトナー粒子10を得た。
【0130】
【表1】
表中、保持時間及び時間の単位はhである。「添加量」は有機ケイ素化合物の重合工程における有機ケイ素化合物の添加量(部)である。
【0131】
<導電性部材1の製造例>
[1-1.ドメイン形成用ゴム混合物(CMB)の調製]
表2に示す各材料を、表2に示す配合量で、6リットル加圧ニーダー(商品名:TD6-15MDX、トーシン社製)を用いて混合してCMBを得た。混合条件は、充填率70体積%、ブレード回転数30rpm、30分間とした。
【0132】
【0133】
[1-2.マトリックス形成用ゴム混合物(MRC)の調製]
表3に示す各材料を、表3に示す配合量で、6リットル加圧ニーダー((商品名:TD6-15MDX、トーシン社製)を用いて混合してMRCを得た。混合条件は、充填率70体積%、ブレード回転数30rpm、16分間とした。
【0134】
【0135】
[1-3.導電層形成用未加硫ゴム混合物の調製]
上記で得たCMB及びMRCを、表4に示す配合量で、6リットル加圧ニーダー(商品名:TD6-15MDX、トーシン社製)を用いて混合した。混合条件は、充填率70体積%、ブレード回転数30rpm、20分間とした。
【0136】
【0137】
次いで、CMB及びMRCの混合物100部に対して、表5に示す加硫剤及び加硫促進剤を、表5に示す配合量加え、ロール径12インチ(0.30m)のオープンロールを用いて混合し、導電層成形用ゴム混合物を調製した。
混合条件は、前ロール回転数10rpm、後ロール回転数8rpmで、ロール間隙2mmとして合計20回左右の切り返しを行った後、ロール間隙を0.5mmとして10回薄通しを行った。
【0138】
【0139】
(2.導電性部材の作製)
[2-1.導電性の外表面を有する支持体の用意]
導電性の外表面を有する支持体として、ステンレス鋼(SUS)の表面に無電解ニッケルメッキ処理を施した全長252mm、外径6mmの丸棒を用意した。
【0140】
[2-2.導電層の成形]
支持体の供給機構、及び未加硫ゴムローラの排出機構を有するクロスヘッド押出機の先端に、内径12.5mmのダイスを取付け、押出機とクロスヘッドの温度を80℃に、支持体の搬送速度を60mm/secに調整した。この条件で、押出機から、導電層形成用ゴム混合物を供給して、クロスヘッド内にて支持体の外周部を、該導電層形成用ゴム混合物で被覆し、未加硫ゴムローラを得た。
次に、160℃の熱風加硫炉中に前記未加硫ゴムローラを投入し、60分間加熱することで導電層形成用ゴム混合物を加硫し、支持体の外周部に導電層が形成されたローラを得た。その後、導電層の両端部を各10mm切除して、導電層部の長手方向の長さを231mmとした。
【0141】
[2-3.導電層の研磨]
次に、導電層の表面を下記研磨条件1に記載の研磨条件にて研磨することにより、中央部の直径が、8.5mm、中央部から両端部側へ各90mmの位置における各直径が8.44mmである、クラウン形状を有する導電性部材1を得た。
【0142】
(研磨条件1)
砥石として、直径305mm、長さ235mmの円筒形状の砥石(テイケン社製)を用意した。砥粒の種類、粒度、結合度、結合剤、及び、組織(砥粒率)砥粒の材質は、以下の通りである。
・砥粒材質:GC(緑色炭化ケイ素質)、(JIS R6111-2002)
・砥粒の粒度:#80(平均粒径177μm JIS B4130)
・砥粒の結合度:HH (JIS R6210)
・結合剤:V4PO(ビトリファイド)
・砥粒の組織(砥粒率):23 (砥粒の含有率16% JIS R6242)
上記砥石を用いて、以下の研磨条件で導電層の表面を研磨した。
まず、砥石の回転数を2100rpm、導電性部材の回転数を250rpmとし、粗削り工程として導電性部材への砥石の侵入スピード20mm/秒で導電性部材の外周面に接触してから0.24mm侵入させる。
精密磨き工程として侵入スピードを0.5mm/秒に変更し、0.01mm侵入させた後、砥石を導電性部材から離して研磨を完了する。
研磨方式としては、砥石と導電性部材の回転方向を同一方向とするアッパーカット方式を採用する。
【0143】
導電性部材に関する物性の測定方法は以下の通りである。
[マトリックスドメイン構造の確認]
導電層におけるマトリックスドメイン構造の形成の有無について以下の方法により確認を行う。
カミソリを用いて導電性部材の導電層の長手方向と垂直な断面が観察できるように切片(厚さ500μm)を切り出す。次いで、白金蒸着を行い、走査型電子顕微鏡(SEM)(商品名:S-4800、(株)日立ハイテクノロジーズ製)を用いて1000倍で撮影し、断面画像を得る。
導電層からの切片において観察されたマトリックスドメイン構造は、断面画像内において、
図6のように、複数のドメイン6bがマトリックス6a中に分散されて、ドメイン同士が接続せずに独立した状態で存在する形態を示す。6cは電子導電剤である。一方で、マトリックスは画像内で連通し、ドメインがマトリックスによって分断されている状態である。
【0144】
さらに、得られた撮影画像を定量化するために、SEMでの観察により得られた破断面画像に対し、画像処理ソフト(商品名:ImageProPlus、Media Cybernetics社製)を使用して、8ビットのグレースケール化を行い、256階調のモノクロ画像を得る。次いで、破断面内のドメインが白くなるように、画像の白黒を反転処理した後、画像の輝度分布に対して大津の判別分析法のアルゴリズムに基づいて、2値化の閾値を設定し、2値化画像を得る。
当該2値化画像に対してカウント機能によって、50μm四方の領域内に存在し、かつ、2値化画像の枠線に接点を持たないドメインの総数に対して、上記のように、ドメイン同士が接続せずに孤立しているドメインの個数パーセントKを算出する。
具体的には、画像処理ソフトのカウント機能において、当該2値化画像の4方向の端部の枠線に接点を有するドメインがカウントされないよう設定する。
導電性部材の導電層を長手方向に均等に5等分し、周方向に均等に4等分して得られた領域のそれぞれから任意に1点ずつ、合計20点から当該切片を作製して上記測定を行った際のKの算術平均値(個数%)を算出する。
Kの算術平均値(個数%)が80以上の場合に、マトリックスドメイン構造を「有」すると評価し、Kの算術平均値(個数%)が80を下回る場合に「無」と評価する。
【0145】
[マトリックスの体積抵抗率R1の測定]
マトリックスの体積抵抗率R1は、例えば、導電層から、マトリクスドメイン構造が含まれている所定の厚さ(例えば、1μm)の薄片を切り出し、当該薄片中のマトリクスに走査型プローブ顕微鏡(SPM)や原子間力顕微鏡(AFM)の微小探針を接触させることによって計測することができる。
弾性層からの薄片の切り出しは、例えば、
図3(b)に示したように、導電性部材の長手方向をX軸、導電層の厚み方向をZ軸、周方向をY軸とした場合において、薄片が、導電性部材の軸方向に対して垂直なYZ平面(例えば、83a、83b、83c)に平行な面の少なくとも一部を含むように切り出す。切り出しは、例えば、鋭利なカミソリや、ミクロトーム、収束イオンビーム法(FIB)を用いて行うことができる。
体積抵抗率の測定は、導電層から切り出した薄片の片面を接地する。次いで、当該薄片の接地面とは反対側の面のマトリクスの部分に走査型プローブ顕微鏡(SPM)や原子間力顕微鏡(AFM)の微小探針を接触させ、50VのDC電圧を5秒間印加し、接地電流値を5秒間測定した値から算術平均値を算出し、その算出した値で印加電圧を除することで電気抵抗値を算出する。最後に薄片の膜厚を用いて、抵抗値を体積抵抗率に変換する。このとき、SPMやAFMは、抵抗値と同時に当該薄片の膜厚も計測できる。
円柱状の帯電部材におけるマトリックスの体積抵抗率R1の値は、例えば、導電層を周方向に4分割、長手方向に5分割した領域のそれぞれから各1つずつ薄片サンプルを切り出し、上記の測定値を得た後に、合計20サンプルの体積抵抗率の算術平均値を算出することによって求める。
本実施例においては、まず、導電性部材の導電層から、ミクロトーム(商品名:Leica EM FCS、ライカマイクロシステムズ製)を用いて、切削温度-100℃にて、1μmの厚みの薄片を切り出した。薄片は、
図3(b)に示したように、導電性部材の長手方向をX軸、導電層の厚み方向をZ軸、周方向をY軸とした場合において、導電性部材の軸方向に対して垂直なYZ平面(例えば、83a、83b、83c)の少なくとも一部が含まれるように切り出した。
温度23℃、湿度50%RH環境において、当該薄片の一方の面(以降、「接地面」ともいう)を金属プレート上に接地させ、当該薄片の接地面とは反対側の面(以降、「測定面」ともいう)のマトリクスに相当し、かつ、測定面と接地面との間にドメインが存在していない箇所に走査型プローブ顕微鏡(SPM)(商品名:Q-Scope250、Quesant Instrument Corporation製)のカンチレバーを接触させた。続いて、5秒間、カンチレバーに50Vの電圧を印加し、電流値を測定して5秒間の算術平均値を算出した。
SPMで測定切片の表面形状を観察し、得られる高さプロファイルから測定箇所の厚さを算出した。さらに、表面形状の観察結果から、カンチレバーの接触部の凹部面積を算出した。当該厚さと当該凹部面積とから体積抵抗率を算出した。
薄片は、導電層を長手方向に5等分し、周方向に4等分して得られたそれぞれの領域内から任意に1点ずつ、合計20点の当該切片を作製して上記測定を行った。その平均値を、マトリックスの体積抵抗率R1とした。
なお、走査型プローブ顕微鏡(SPM)(商品名:Q-Scope250、Quesant Instrument Corporation製)はコンタクトモードで操作した。
【0146】
[ドメインの体積抵抗率R2の測定]
上記マトリックスの体積抵抗率R1の測定において、超薄切片のドメインに該当する箇所で測定を実施し、測定の電圧を1Vにする以外は、同様の方法で、ドメインの体積抵抗率R2を測定する。
本実施例では、上記(マトリックスの体積抵抗率R1の測定)において、測定面のカンチレバーを接触させる箇所を、ドメインに相当し、かつ、測定面と接地面との間にマトリクスが存在しない箇所に変更し、電流値の測定の際の印加電圧を1Vに変更した以外は同様の方法で実施し、R2を算出した。
【0147】
[外表面の、ドメインによる凸部の高さの測定]
導電性部材の導電層から、ミクロトーム(商品名:Leica EM FCS、ライカマイクロシステムズ社製)を用いて、切削温度-100℃にて、1μmの厚みを有する薄
片を切り出す。この時、薄片は導電性の支持体の軸と垂直な面とする。
導電層からの切り出し位置は、導電層の長手方向の長さをLとして、長手方向の中央、及び導電層の両端から中央に向かってL/4の3か所とする。
このとき、ドメイン由来の凸形状を確認するためには、導電性部材の表面に対しては、いずれの加工も加えられないよう留意する。次に、上記のようにして得た導電性部材表面を含む切片に対して、走査型プローブ顕微鏡(SPM)(商品名:MFP-3D-Origin;オックスフォード・インストゥルメンツ社製)を用いて、下記条件で導電性部材の表面を計測することで、電気抵抗値のプロファイル及び形状プロファイルを計測する。・測定モード:AM-FMモード
・探針:OMCL-AC160TS(商品名;オリンパス社製)
・共振周波数:251.825~261.08kHz
・バネ定数:23.59~25.18N/m
・スキャン速度:0.8~1.5Hz
・スキャンサイズ:10μm、5μm、3μm
・Target Amplitude:3V及び4V
・Set Point:すべて2V
次いで、上記の計測で得られた表面形状のプロファイルにおける凸部が、電気抵抗値のプロファイル中で周囲よりも導電性が高いドメイン由来であることを確認する。さらに、当該プロファイルから凸形状の高さを、算出する。
算出方法は、ドメイン由来の形状のプロファイルの算術平均値と、隣接するマトリックスの形状プロファイルの算術平均値との差分を取ることにより、求める。なお当該算術平均値は、上記3か所から切り出した切片のそれぞれにおいて、ランダムに選択した50個の凸部を測定した値から算出する。
【0148】
[導電層の断面から観察されるドメインの円相当径Dの測定]
ドメインの円相当径Dは以下のようにして算出する。
導電層の長手方向の長さをL、導電層の厚さをTとしたとき、導電層の長手方向の中央、及び導電層の両端から中央に向かってL/4の3か所から、
図8(b)に示されるような導電層の厚さ方向の断面(83a、83b、83c)が表れている面を有する、厚みが1μmのサンプルを、ミクロトーム(商品名:Leica EM FCS、ライカマイクロシステムズ社製)を用いて切り出す。
得られた3つのサンプルの各々の、導電層の厚さ方向の断面に白金を蒸着する。次いで、各サンプルの白金蒸着面のうち、導電層の外表面から深さ0.1T~0.9Tまでの厚み領域内の任意に選択した3か所を走査型電子顕微鏡(SEM)(商品名:S-4800、(株)日立ハイテクノロジーズ製)を用いて5000倍で撮影する。
得られた9枚の撮影画像の各々を、画像処理ソフト(製品名:ImageProPlus;Media Cybernetics社製)によって、2値化、カウント機能による定量化を行って、各撮影画像に含まれるドメインの面積の算術平均値Sを算出する。
次いで、各撮影画像について算出したドメインの面積の算術平均値Sから、ドメインの円相当径(=(4S/π)
0.5)を計算する。次に、各撮影画像のドメインの円相当径の算術平均値を算出して、被測定対象である導電性部材の導電層断面から観察されるドメインの円相当径Dを得る。
【0149】
[ドメインの粒度分布の測定]
ドメインの円相当径Dの均一性を評価するための、ドメインの粒度分布の測定は、次のようにして行う。まず、上記ドメインの円相当径Dの測定で得られる、走査型電子顕微鏡(商品名:S-4800、(株)日立ハイテクノロジーズ製)による5000倍の観察画像に対して画像処理ソフト(商品名:ImageProPlus;Media Cybernetics社製)によって、2値化画像を得る。次いで、当該2値化画像内のドメイン群に対して、画像処理ソフトのカウント機能により平均値Dと標準偏差σdを算出し、
次いで粒度分布の指標であるσd/Dを計算する。
ドメイン径のσd/D粒度分布の測定においては、導電層の長手方向の長さをL、導電層の厚さをTとしたとき、導電層の長手方向の中央、及び導電層の両端から中央に向かってL/4の3か所における、
図8(b)に示されるような導電層の厚さ方向の断面を取得する。上記の3つの測定位置から得られた3つの切片のそれぞれの、導電層外表面から深さ0.1T~0.9Tまでの厚み領域の任意の3か所、合計9か所において、50μm四方の領域を解析画像として抽出して測定を実施し、9か所の算術平均値を算出する。
【0150】
[導電層の断面から観察されるドメイン間距離Dmの測定]
導電層の長手方向の長さをL、導電層の厚さをTとしたとき、導電層の長手方向の中央、及び導電層の両端から中央に向かってL/4の3か所から、
図8(b)に示されるような導電層の厚さ方向の断面(83a、83b、83c)が表れている面を有するサンプルを取得する。
得られた3つのサンプルの各々について、導電層の厚さ方向の断面が表れた面における、導電層外表面から深さ0.1T~0.9Tまでの厚み領域の任意の3か所に50μm四方の解析領域を置く。当該3つの解析領域を、走査型電子顕微鏡(商品名:S-4800、(株)日立ハイテクノロジーズ製)を用いて倍率5000倍で撮影する。得られた合計9枚の撮影画像の各々を、画像処理ソフト(商品名:LUZEX;ニレコ社製)を使用して2値化する。
2値化の手順は以下のように行う。撮影画像に対し、8ビットのグレースケール化を行い、256階調のモノクロ画像を得る。そして、撮影画像内のドメインが白くなるように、画像の白黒を反転処理し、2値化し、撮影画像の2値化画像を得る。次いで、9枚の2値化画像の各々について、ドメインの壁面間距離を算出し、さらにそれらの算術平均値を算出する。この値をDmとする。なお、壁面間距離とは、最も近接しているドメイン同士の壁面間の距離(最短距離)であり、上記画像処理ソフトにおいて、測定パラメーターを隣接壁面間距離と設定することで求めることができる。
【0151】
[ドメイン間距離Dmの均一性の測定]
上記ドメイン間距離Dmの測定過程において得たドメインの壁面間距離の分布から、ドメイン間距離の標準偏差σmを算出し、ドメイン間距離の均一性の指標である変動係数σm/Dmを計算する。
【0152】
[導電層の外表面から観察されるドメインの円相当径Ds]
導電層の外表面から観察されるドメインの円相当径Dsは以下のように測定する。
導電層の長手方向の長さをLとしたとき、導電層の長手方向の中央、及び導電層の両端から中央に向かってL/4の3か所から、ミクロトーム(商品名:Leica EM FCS、ライカマイクロシステムズ社製)を用いて、導電層の外表面が含まれるサンプルを切り出す。サンプルの厚さは1μmとする。
当該サンプルの導電層の外表面に該当する面に白金を蒸着する。該サンプルの白金蒸着面の任意の3か所を選択し、走査型電子顕微鏡(SEM)(商品名:S-4800、(株)日立ハイテクノロジーズ製)を用いて5000倍で撮影する。得られた合計9枚の撮影画像の各々を画像処理ソフト(商品名:ImageProPlus;Media Cybernetics社製)を用いて2値化、カウント機能による定量化を行って、撮影画像の各々に含まれるドメインの平面積の算術平均値Ssを算出する。
次いで、各撮影画像について算出したドメインの平面積の算術平均値Ssから、ドメインの円相当径(=(4S/π)0.5)を計算する。次いで、各撮影画像のドメインの円
相当径の算術平均値を算出して、被測定対象である導電性部材を外表面から観察したときのドメインの円相当径Dsを得る。算出結果を、表7に「円相当径Ds」として示す。
【0153】
[導電性部材の外表面から観察されるドメインの隣接壁面間距離Dms]
導電層の長手方向の長さをL、導電層の厚さをTとしたとき、導電層の長手方向の中央、及び導電層の両端から中央に向かってL/4の3か所から、カミソリを用いて導電性部材の外表面が含まれるようにサンプルを切り出す。サンプルのサイズは、導電性部材の周方向、及び長手方向に各々2mm、厚みは、導電性部材の厚さTとする。
得られた3つのサンプルの各々について、導電性部材の外表面に該当する面の任意の3ヶ所に50μm四方の解析領域を置き、当該3つの解析領域を、走査型電子顕微鏡(商品名:S-4800、(株)日立ハイテクノロジーズ製)を用いて倍率5000倍で撮影する。得られた合計9枚の撮影画像の各々を、画像処理ソフト(商品名:LUZEX;ニレコ社製)を使用して2値化する。
2値化の手順は、上記したドメイン間距離Dmを求める際の2値化の手順と同様である。次いで、9枚の撮影画像の2値化画像の各々について、ドメインの壁面間距離を求め、さらにそれらの算術平均値を算出する。この値をDmsとする。
【0154】
<導電性部材2~12の製造例>
原料ゴム、導電剤、加硫剤、加硫促進剤に関して表6A-1~表6A-4に示す材料及び条件を用いた以外は、導電性部材1と同様にして導電性部材2~12を製造した。なお、表6A-1~表6A-4中に示した材料の詳細については、ゴム材料は表6B-1、導電剤は6B-2、加硫剤及び加硫促進剤は6B-3に示す。また、表6A-2に記載の研磨条件2~研磨条件5は、各々下記のとおりである。
【0155】
(研磨条件2)
精密磨き工程における侵入スピードを0.2mm/秒とした以外は、研磨条件1と同じである。
【0156】
(研磨条件3)
精密磨き工程における侵入スピードを0.15mm/秒とした以外は、研磨条件1と同じである。
【0157】
(研磨条件4)
精密磨き工程における侵入スピードを1.0mm/秒とした以外は、研磨条件1と同じである。
【0158】
(研磨条件5)
精密磨き工程における侵入スピードを1.5mm/秒とした以外は、研磨条件1と同じである。
得られた導電性部材1~12の測定結果及び評価結果を表7に示す。
【0159】
【0160】
表中のムーニー粘度に関し、原料ゴムの値は各社のカタログ値である。ドメイン形成用ゴム混合物の値は、JIS K6300-1:2013に基づくムーニー粘度ML(1+4)であり、ドメイン形成用ゴム混合物を構成する材料すべてを混練している時のゴム温度で測定されたものである。
SP値の単位は、(J/cm3)0.5であり、DBPは、DBP吸油量(cm3/100g)を示す。各材料については表6B-1~6B~3に示す。
【0161】
【表6-A2】
表中のムーニー粘度に関し、原料ゴムの値は各社のカタログ値である。マトリックス形成用ゴム混合物のムーニー粘度の値は、JIS K6300-1:2013に基づくムーニー粘度ML
(1+4)であり、マトリックス形成用ゴム混合物を構成するすべての材料を混練している時のゴム温度で測定されたものである。
【0162】
【0163】
【0164】
【0165】
<導電性部材13の製造方法>
未加硫ゴム組成物の材料として、表6-C1に示した材料を用い、研磨条件2で研磨した以外は実施例1と同様に導電性基材C13を製造した。
次いで、以下の方法に従って、さらに導電層基材C13上に導電性樹脂層を設け導電性部材13を製造し、実施例1と同様の測定を行った。結果を表7に示す。
【0166】
【0167】
先ず、カプロラクトン変性アクリルポリオール溶液「プラクセルDC2016」(商品名、(株)ダイセル製)にメチルイソブチルケトンを加え、固形分が12質量%となるように調整した。この溶液834部(アクリルポリオール固形分100部)に対して、下記表6-C2に示す他の5種類の材料を加え、混合溶液を調製した。
【0168】
【0169】
次いで、内容積450mLのガラス瓶内に上記混合溶液188.5gを、メディアとしての平均粒径0.8mmのガラスビーズ200gと共に入れ、ペイントシェーカー分散機を用いて48時間分散した。分散後、多孔質樹脂粒子「テクポリマーMPB-20」(商品名、積水化成品工業(株)製)を7.2g添加した。
なお、これは、アクリルポリオール固形分100部に対して、多孔質樹脂粒子40部相当量である。その後、5分間分散し、ガラスビーズを除去して表面層用の塗布液を作製した。
【0170】
〔5.表面層の形成〕
導電性基材C13をその長手方向を鉛直方向にして、塗布液中に浸漬して、導電性樹脂層をディッピング法で塗工した。浸漬時間は9秒間、引き上げ速度は、初期速度が20mm/s、最終速度は、2mm/s、その間は、時間に対して、直線的に速度を変化させた。得られた塗工物を、23℃で30分間風乾した後、熱風循環乾燥炉にて温度80℃で30分間、更に、温度160℃で1時間乾燥して、塗膜を硬化させて、導電性基材の外周部に、導電性樹脂層が形成された導電性部材13を得た。
【0171】
【表7】
表7中、例えば「7.13E+16」は、「7.13×10
16」であることを示す。また、MD構造は、マトリックスドメイン構造の有無を示す。
【0172】
<実施例1>
<トナー1の製造例>
トナー粒子1をそのままトナー1として、下記実機評価を行った。トナーの諸物性及び実機評価結果を表8及び9に示す。
まず、電子写真装置として、電子写真方式のレーザープリンタ(商品名:LBP9950Ci、Canon社製)を用意した。次に、導電性部材1、電子写真装置、プロセスカートリッジを、測定環境にならす目的で、15℃10%RHの環境に48時間放置した。
当該電子写真装置は、
図10に示す構成に該当する。
なお、高速プロセスにおける評価とするために、以下のように改造した。改造点は、評価機本体のギア及びソフトウェアを変更することにより、現像ローラーの回転数をドラムに対して2倍の周速で回転するように設定した事、プロセススピードを330mm/secに変更した事である。LBP9950Ciのトナーカートリッジの中に入っているトナーを抜き取り、エアーブローにて内部を清掃した後、評価するトナー1を180gを装填した。さらに、導電性部材1をプロセスカートリッジの帯電ローラとしてセットし、レーザープリンタに組み込み、当該レーザープリンタ内の前露光装置を撤去した。
以上のような改造を施すことで、トナーや有機ケイ素重合体がクリーニングブレードをすり抜け、帯電部材汚染レベル、ゴーストレベルを評価する上ではより厳しいモードとなる。
次に、そのまま当該環境にて左右に余白を50mmずつとり中央部に、4.0%の印字率の画像をA4用紙横方向で20000枚までプリントアウトして、初期画像と20000枚出力後に評価を行った。
【0173】
<ゴースト画像評価>
評価画像の形成には、上記のレーザープリンタをそのまま使用した。
評価画像は、画像上部に「E」文字、画像中央部から下部はハーフトーン画像を有するものとした。
具体的には、画像の上端10cmは、サイズが4ポイントのアルファベットの「E」の文字が、印字率4.0%となるようにプリントされる画像とした。これにより、転写プロ
セス後、すなわち帯電プロセス前の感光ドラムの表面電位が、最初の「E」の文字に相当する表面電位に沿ったムラを、感光ドラム1周程度の領域で、形成できる。
図7に当該評価画像の例を示す。
さらに、10cmより下部は、ハーフトーン(感光ドラムの回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)画像を出力した。このハーフトーン画像を目視で観察し、下記の基準で評価した。C以上を良好と判断した。
[ハーフトーン画像上の「E」文字の評価]
A:顕微鏡で観察してもハーフトーン画像上に「E」の文字に由来する画像ムラが全く見えない。
B:目視ではハーフトーン画像上の一部に「E」のに由来する画像ムラはないが、顕微鏡で観察すると、「E」の文字に由来する画像ムラが観察される。
C:目視でハーフトーン画像上の一部に「E」の文字の画像が見られる。
D:目視でハーフトーン画像上の全面に「E」の文字の画像が見られる。
【0174】
<部材汚染評価>
凸部の外れ及び外添剤による部材汚染(ハーフトーンの諧調安定性)の評価は次のようにして行った。
ドラムユニットへ新品の導電性部材1を新たに取り付け、画像出力を行った。画像は全面にハーフトーンが印字された画像を作製した。ハーフトーン画像中の左右30mmの余白部と中央部の濃度をそれぞれ測定し、余白部と中央部の濃度差から評価を行った。
なお、帯電部材が汚染されている場合には、感光体上に帯電ムラが生じ、ハーフトーン画像の濃度ムラが生じることが知られている。
また、濃度はX-Riteカラー反射濃度計(X-rite社製、X-rite 50
0Series)で測定した。C以上を良好と判断した。
(評価基準)
A:耐久評価後のハーフトーンの濃度差が0.030未満
B:耐久評価後のハーフトーンの濃度差が0.030以上0.050未満
C:耐久評価後のハーフトーンの濃度差が0.050以上0.100未満
D:耐久評価後のハーフトーンの濃度差が0.100以上
【0175】
<白抜けの評価>
トナーによる帯電部材汚染によって引き起こされる帯電部材および感光体へのトナー融着レベルは、20000枚の耐久使用後の、感光体表面のトナー融着状況とそれによって発生する画像への影響(白ぽち)を目視で評価した。C以上を良好と判断した。
(評価基準)
A:未発生
B:トナー融着はあるが軽微で目立たない
C:トナー融着が多く、ベタ黒画像で点状の白抜けが少し見られる
D:大きなトナー融着が発生し、数mmの線状に白抜けした画像欠陥が目立つ
【0176】
【表8】
ケイ素量は、トナー粒子中の有機ケイ素重合体の含有量である。凸径Rは、個数平均径である。
【0177】
【0178】
<実施例2~19及び比較例1~5>
<トナー2~11の製造例>
トナー粒子2~トナー粒子9はそのままトナー2~9として評価に用いた。トナー10及びトナー11は比較用のトナー粒子10を使用して以下のように製造し、実施例1と同様の方法で評価した。物性を表8、評価結果を表9に示す。
各トナー及び導電性部材を表9の組み合わせで用いて、評価した。
【0179】
・比較トナー10の作製
まず下記に示すように有機ケイ素微粒子Aを合成した。
反応容器にイオン交換水500gを仕込み、48%水酸化ナトリウム水溶液0.2gを添加して水溶液とした。この水溶液にメチルトリメトキシラン65g及びテトラエトキシラン50gを添加し、温度を13~15℃に保ちながら1時間加水分解反応を行い、更に20%ドデシルベンゼンスルホン酸ナトリウム水溶液2.5gを添加し、同温度で3時間加水分解反応を行った。約4時間でシラノール化合物を含有する透明な反応物を得た。
次いで、得られた反応物の温度を70℃に保持しながら5時間縮合反応を行って、有機ケイ素化合物からなる微粒子を含有する水性懸濁液を得た。この水性懸濁液をメンブランフィルターで濾過し、通過液状部を遠心分離機に供して白色微粒子を分離した。分離した白色微粒子を水洗し、150℃で5時間、熱風乾燥を行って有機ケイ素微粒子Aを得た。
有機ケイ素微粒子Aについて走査型電子顕微鏡による観察を行ったところ、この有機ケイ素微粒子Aは中空半球状体であり、画像解析を行い半球の長径及び短径の個数平均粒子
径(μm)を算出すると、長径180nm及び短径80nmであった。
比較用のトナー粒子10:100部に、有機ケイ素微粒子Aを3.0部添加し、ヘンシェルミキサーにて攪拌翼の周速20m/sで混合し、そののち個数平均粒子径12nmのヘキサメチルジシラザン処理された疎水性シリカ1.5部をヘンシェルミキサーにて攪拌翼の周速20m/sで混合し、比較トナー10を作製した。
【0180】
・比較トナー11の作製
比較トナー10の作製で、有機ケイ素微粒子Aを疎水性ゾルゲルシリカ(日本アエロジル社製:個数平均径80nm)に変更し、ヘンシェルミキサー撹拌翼の周速を20m/sから40m/sに変更した以外は同様にして比較トナー11を作製した。
【符号の説明】
【0181】
1 STEM画像、2 トナー粒子、3 トナー粒子表面、4 凸形状の有機ケイ素化合物、 5 有機ケイ素化合物の凸幅W、6 有機ケイ素化合物の凸径D、 7 有機ケイ素化合物の凸高さH、
51 導電性部材の外表面、52 導電性支持体、53 導電層、
6a マトリックス、 6b ドメイン、 6c 電子導電剤、
81 導電性部材、82 XZ平面、82a XZ平面82と平行な断面、83 導電性部材の軸方向と垂直なYZ平面、83a 導電層の一端から中央に向かってL/4の箇所の断面、83b 導電層の長手方向の中央での断面、83c 導電層の一端から中央に向かってL/4の箇所の断面、
91 電子写真感光体、92 導電性部材(帯電ローラ)、93 現像ローラ、94 トナー供給ローラ、95 クリーニングブレード、96 トナー容器、97 廃トナー容器、98 現像ブレード、99 トナー、910 攪拌羽、
101 感光ドラム、102 帯電ローラ、103 現像ローラ、104 トナー供給ローラ、105 クリーニングブレード、106 トナー容器、107 廃トナー収容容器、108 現像ブレード、109 トナー、1010 攪拌羽、1011 露光光、1012 一次転写ローラ、1013 テンションローラ、1014 中間転写ベルト駆動ローラ、1015 中間転写ベルト、1016 二次転写ローラ、1017 クリーニング装置、1018 定着器、1019 転写材