IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許-信号検出回路 図1
  • 特許-信号検出回路 図2
  • 特許-信号検出回路 図3
  • 特許-信号検出回路 図4
  • 特許-信号検出回路 図5
  • 特許-信号検出回路 図6
  • 特許-信号検出回路 図7
  • 特許-信号検出回路 図8
  • 特許-信号検出回路 図9
  • 特許-信号検出回路 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-01
(45)【発行日】2024-07-09
(54)【発明の名称】信号検出回路
(51)【国際特許分類】
   H01L 21/822 20060101AFI20240702BHJP
   H01L 27/04 20060101ALI20240702BHJP
   H03K 17/16 20060101ALI20240702BHJP
   H02M 1/08 20060101ALI20240702BHJP
【FI】
H01L27/04 C
H01L27/04 F
H03K17/16 H
H02M1/08 A
【請求項の数】 5
(21)【出願番号】P 2021084647
(22)【出願日】2021-05-19
(65)【公開番号】P2022178101
(43)【公開日】2022-12-02
【審査請求日】2023-09-07
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000567
【氏名又は名称】弁理士法人サトー
(72)【発明者】
【氏名】山本 昌弘
(72)【発明者】
【氏名】丹羽 章雅
【審査官】鈴木 聡一郎
(56)【参考文献】
【文献】特開2020-113867(JP,A)
【文献】特開2005-109063(JP,A)
【文献】特開2009-200825(JP,A)
【文献】特開2006-157264(JP,A)
【文献】特開2017-168834(JP,A)
【文献】特開平06-283667(JP,A)
【文献】米国特許出願公開第2010/0237465(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/822
H01L 27/04
H02M 1/00-1/44
H03K 17/00-17/70
(57)【特許請求の範囲】
【請求項1】
スイッチング素子(6)の主端子の信号である被検出信号を検出する信号検出回路(10、41、51)であって、
直列接続された一対の分圧容量(C1、C2、C3、C4、C5、C6)を備え、前記一対の分圧容量により前記スイッチング素子の主端子間の電圧を分圧して出力する分圧回路(15、42)と、
前記分圧回路の出力電圧に基づいて前記検出信号を検出する検出回路(16)と、
を備え、
前記一対の分圧容量は、同一の半導体装置(31、43、61)に含まれており、
前記半導体装置は、
半導体基板(22、62)上に、第1導体層(32)、第1誘電体層(23)、第2導体層(24)、第2誘電体層(25)および第3導体層(26)が順に積層されて構成され、
前記第3導体層および前記第2導体層間に形成される容量により前記一対の分圧容量のうち一方と他方の一部とが構成されるとともに、前記第2導体層および前記第1導体層間に形成される容量により前記一対の分圧容量のうち他方の一部が構成され、
前記第1導体層および前記半導体基板間を短絡する短絡部(34)を備える信号検出回路。
【請求項2】
前記分圧回路(42)は、
前記一対の分圧容量を複数対備え、
前段の前記一対の分圧容量により分圧された電圧を後段の前記一対の分圧容量によりさらに分圧する多段の構成であり、
最終段の前記一対の分圧容量(C5、C6)により分圧された電圧を前記出力電圧として出力するようになっている請求項1に記載の信号検出回路。
【請求項3】
前記半導体基板において前記一対の分圧容量のうち一方が形成される第1領域(48)および前記一対の分圧容量のうち他方が形成される第2領域(49)は、前記半導体基板の厚み方向に直交する平面の所定方向に沿うように配置されており、
前記第2領域は、複数の領域に分割されており、
前記分割された複数の領域は、前記第1領域を前記所定方向に沿って挟み込むように配置されている請求項1または2に記載の信号検出回路。
【請求項4】
前記半導体装置(61)は、
前記第3導体層および前記第2導体層間に形成される容量により前記一対の分圧容量のうち一方の一部と他方の一部とが構成されるとともに、前記第2導体層および前記第1導体層間に形成される容量により前記一対の分圧容量のうち一方の一部と他方の一部とが構成され、
前記第3導体層および前記第2導体層間に形成される容量の耐圧と前記第2導体層および前記第1導体層間に形成される容量の耐圧とが等しくなるように各層間の距離が設定されている請求項1から3のいずれか一項に記載の信号検出回路。
【請求項5】
さらに、
前記分圧回路を構成する前記一対の分圧容量と同じ態様で前記半導体基板上にレイアウトされた一対のモニタ容量(C1M、C2M、C3M、C4M、C5M、C6M)を備え、前記一対のモニタ容量により所定の基準電圧を前記分圧回路と同様の分圧比で分圧して出力するモニタ回路(52)と、
前記モニタ回路の出力電圧に基づいて前記検出回路による検出値を補正する補正部(53)と、
を備える請求項1から4のいずれか一項に記載の信号検出回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スイッチング素子の主端子の信号である被検出信号を検出する信号検出回路に関する。
【背景技術】
【0002】
従来、IGBT、MOSFETなどのスイッチング素子のゲートを駆動するゲート駆動回路において、スイッチング時に発生するサージを抑制する技術、スイッチング素子の主端子の電圧の変化率であるdV/dtを制御する技術などが求められている。非特許文献1には、スイッチング素子のドレイン・ソース間電圧の観測結果に基づいて2種類のゲート抵抗のうち一方をオンするタイミングを操作することによりdV/dtを所望する値に制御する技術が開示されている。これらの技術においては、スイッチング素子の主端子の信号である被検出信号を検出する信号検出回路が用いられることになる。
【先行技術文献】
【非特許文献】
【0003】
【文献】"A 4.5V/ns Active Slew-Rate-Controlling Gate Driver with Robust Discrete-Time Feedback Technique for 600V Superjunction MOSFETs", 2019 IEEE International Solid-State Circuits Conference ,SESSION 15 POWER FOR 5G, WIRELESS POWER, AND GAN CONVERTERS 15.8
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記したような信号検出回路では、スイッチング素子が、その主端子間に比較的高い電圧が生じる用途、いわゆる高電圧用途に用いられる場合には、比較的高い耐圧を有する高耐圧素子を用いて構成する必要があるため、集積化する際に回路面積の増加を招くおそれがある。そこで、従来では、信号検出回路の前段に直列接続された一対の分圧容量からなる分圧回路を設けて主端子間の電圧を降圧してから入力することが考えられている。
【0005】
このような従来の構成では、次のような問題が生じる。すなわち、分圧回路を構成する分圧容量をチップコンデンサなどのICの外付け部品として実装した場合、分圧容量間の相対誤差が大きくなることから信号の検出精度が低下するおそれがあるとともに、信号検出回路全体としての小型化が阻害されるおそれがある。なお、ICは、Integrated Circuitの略称である。
【0006】
本発明は上記事情に鑑みてなされたものであり、その目的は、回路の大型化を抑制しつつ検出精度を良好にすることができる信号検出回路を提供することにある。
【課題を解決するための手段】
【0007】
請求項1に記載の信号検出回路(10、41、51)は、スイッチング素子(6)の主端子の信号である被検出信号を検出するものであって、分圧回路(15、42)および検出回路(16)を備えている。分圧回路は、直列接続された一対の分圧容量(C1、C2、C3、C4、C5、C6)を備え、一対の分圧容量によりスイッチング素子の主端子間の電圧を分圧して出力する。検出回路は、分圧回路の出力電圧に基づいて被検出信号を検出する。一対の分圧容量は、同一の半導体装置(31、43、61)に含まれている。その半導体装置は、半導体基板(22、62)上に、第1導体層(32)、第1誘電体層(23)、第2導体層(24)、第2誘電体層(25)および第3導体層(26)が順に積層されて構成されている。
【0008】
この場合、第3導体層および第2導体層間に形成される容量により一対の分圧容量のうち一方と他方の一部とが構成されるとともに、第2導体層および第1導体層間に形成される容量により一対の分圧容量のうち他方の一部が構成される。半導体装置は、第1導体層および半導体基板間を短絡する短絡部(34)を備える。上記構成によれば、分圧回路を構成する一対の分圧容量が同一の半導体装置上に構成されていることから、分圧容量間の相対誤差が小さく抑えられて検出精度を良好にすることができる。
【0009】
なお、上記した構成の半導体装置から第1導体層を省いた構成によっても、上記した構成と同様、分圧回路を構成する一対の分圧容量が同一の半導体装置上に構成されることから、同様の効果が得られると考えられる。ただし、このような構成では、次のような問題が生じるおそれがある。この場合、他方の分圧容量は、第3導体層および第2導体層間に形成される容量によりその一部が構成されるとともに、第2導体層および半導体基板間に形成される容量によりその一部が構成される。
【0010】
ここで、第3導体層および第2導体層に形成される容量のことを第1容量と称するとともに、第2導体層および半導体基板間に形成される容量のことを第2容量と称することとする。上記構成では、第1容量は、第3導体層を介してスイッチング素子の主端子に接続されるものの、第2容量は、半導体基板を介してスイッチング素子の主端子に接続されるような構成となる。一般に、半導体基板は抵抗成分を有するため、このような構成により、例えばサージが重畳した際における急峻な変化を伴う被検出信号を検出することを考えると、その周波数特性が低下し、検出精度が低下するおそれがある。
【0011】
これに対し、上記構成では、第2容量は、抵抗成分を有する半導体基板を介してスイッチング素子の主端子に接続されるだけでなく、第1導体層を介してスイッチング素子の主端子に接続されることになる。このような構成によれば、分圧回路にサージなどの電圧が印加された際、電流は、半導体基板を通過する経路ではなく、第1導体層を通過する経路を流れることになる。したがって、上記構成によれば、半導体基板の抵抗成分に起因する周波数特性の低下を招くことがなく、つまり周波数特性が改善され、その結果、検出精度を良好なものとすることができる。
【図面の簡単な説明】
【0012】
図1】第1実施形態に係るゲート駆動回路の構成を模式的に示す図
図2】第1実施形態に係る分圧回路を構成するキャパシタの具体的な第1構成例を示すものであり半導体装置の模式的な断面図
図3】第1実施形態に係る分圧回路を構成するキャパシタの具体的な第2構成例を示すものであり半導体装置の模式的な断面図
図4】第2実施形態に係る信号検出回路の回路構成を模式的に示す図
図5】第2実施形態に係る分圧回路を構成するキャパシタの具体的な構成例を示すものであり半導体装置の模式的な断面図
図6】第2実施形態に係る半導体装置におけるキャパシタの平面レイアウトの一例を模式的に示す図
図7】第3実施形態に係る信号検出回路の回路構成を模式的に示す図
図8】第3実施形態に係る半導体装置におけるキャパシタの平面レイアウトの一例を模式的に示す図その1
図9】第3実施形態に係る半導体装置におけるキャパシタの平面レイアウトの一例を模式的に示す図その2
図10】第4実施形態に係る分圧回路を構成するキャパシタの具体的な構成例を示すものであり半導体装置の模式的な断面図
【発明を実施するための形態】
【0013】
以下、複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
以下、第1実施形態について図1図3を参照して説明する。
【0014】
<全体構成>
図1に示すように、本実施形態のゲート駆動回路1は、一対の直流電源線2、3の間に接続されたハーフブリッジ回路4を構成するスイッチング素子5、6のうち、下アームを構成するスイッチング素子6のゲートを駆動する。ハーフブリッジ回路4の上アームを構成するスイッチング素子5は、ゲート駆動回路1と同様の構成を有するゲート駆動回路7により駆動される。
【0015】
この場合、スイッチング素子5、6の駆動は、外部から与えられる制御信号に基づいてPWM制御される。なお、PWMは、Pulse Width Modulationの略称である。スイッチング素子5、6は、パワー素子であり、本実施形態では、いずれもNチャネル型のパワーMOSFETとなっている。スイッチング素子5の一方の主端子であるドレインは、例えば電池などの図示しない直流電源の高電位側端子に接続される高電位側の直流電源線2に接続されている。
【0016】
スイッチング素子5の他方の主端子であるソースは、スイッチング素子6の一方の主端子であるドレインに接続されている。スイッチング素子6の他方の主端子であるソースは、上記した直流電源の低電位側端子に接続される低電位側の直流電源線3に接続されている。本実施形態では、上記した直流電源から出力される電源電圧は、例えば600Vといった比較的高い電圧となっている。つまり、本実施形態では、スイッチング素子5、6は、高電圧用途に用いられている。図示は省略するが、スイッチング素子5、6の相互接続ノードであるノードN1には、例えばインダクタ、モータの巻線などの負荷が接続される。
【0017】
ゲート駆動回路1は、半導体装置、つまりICとして構成されており、スイッチング素子6のドレインに接続される端子P1、スイッチング素子6のゲートに接続される端子P2、スイッチング素子6のソースに接続される端子P3、駆動部9、信号検出回路10および演算部11を備えている。駆動部9は、外部から与えられる制御信号Saに基づいてスイッチング素子6のゲートを駆動するものであり、オン駆動部12およびオフ駆動部13を備えている。
【0018】
オン駆動部12は、スイッチS1およびゲート抵抗R1を備えている。スイッチS1は、電源電圧VDDが供給される電源線14とゲート抵抗R1の一方の端子との間を開閉する。なお、電源電圧VDDは、スイッチング素子6のゲート閾値電圧よりも十分に高い電圧であり、例えば20Vとなっている。ゲート抵抗R1の他方の端子は、端子P2に接続されるノードN2に接続されている。
【0019】
オフ駆動部13は、スイッチS2およびゲート抵抗R2を備えている。スイッチS2は、直流電源線3とゲート抵抗R2の一方の端子との間を開閉する。ゲート抵抗R2の他方の端子は、ノードN2に接続されている。オン駆動部12のスイッチS1およびオフ駆動部13のスイッチS2は、制御信号Saに基づいて相補的にオンオフされるようになっている。
【0020】
上記構成によれば、オン駆動部12のスイッチS1がオンされることによりスイッチング素子6がターンオンされるとともに、オフ駆動部13のスイッチS2がオンされることによりスイッチング素子6がターンオフされる。なお、この場合、オン駆動部12は、スイッチング素子6のゲートを定電圧駆動する構成となっているが、スイッチング素子6のゲートを定電流駆動する構成としてもよい。
【0021】
上記構成において、オフ駆動部13のゲート抵抗R2は、その抵抗値が可変となっている。つまり、上記構成では、駆動部9の駆動能力、具体的にはスイッチング素子6をターンオフする際における駆動部9の駆動能力を変更することができるようになっている。駆動部9の駆動能力、つまりオフ駆動部13のゲート抵抗R2の抵抗値は、演算部11から出力される能力指令信号Sbに応じた値に設定される。
【0022】
信号検出回路10には、端子P1、P3を介してスイッチング素子6の主端子の信号が入力される。つまり、本実施形態では、スイッチング素子6のドレイン・ソース間の電圧VDSが、信号検出回路10により検出される被検出信号となる。このような構成により、信号検出回路10は、スイッチング素子6のターンオフ時におけるスイッチング素子6の電圧VDSのピーク電圧、つまりターンオフ時に発生するサージ電圧のピークを検出する。なお、信号検出回路10は、スイッチング素子6の電圧VDSの変化率であるdV/dtを検出する用途に用いることもできる。信号検出回路10は、分圧回路15および検出回路16を備えている。分圧回路15は、2つのキャパシタC1、C2を備えている。
【0023】
キャパシタC1の一方の端子は、端子P1に接続され、その他方の端子はキャパシタC2を介して端子P3に接続されている。つまり、分圧回路15は、直列接続されたキャパシタC1、C2を備えた構成となっている。この場合、キャパシタC1、C2は、一対の分圧容量として機能するものであり、ノードN1に発生する比較的高い電圧が印加されても故障することがないような高い耐圧を有する構成となっている。上記構成により、分圧回路15は、キャパシタC1、C2によりスイッチング素子6の主端子間の電圧VDSである入力電圧VINを分圧して出力する。具体的には、分圧回路15は、入力電圧VINをキャパシタC1、C2の容量比で分圧し、キャパシタC1、C2の相互接続ノードであるノードN3から出力する。
【0024】
検出回路16は、分圧回路15の出力電圧である分圧電圧VDIVに基づいて被検出信号を検出する。この場合、検出回路16は、分圧電圧VDIVを入力し、その入力電圧のピークを保持したピークホールド電圧VPHを出力するピークホールド回路として構成されている。検出回路16から出力されるピークホールド電圧VPHは、ピーク電圧の検出値に対応した電圧値となる。なお、以下では、ピークホールド電圧VPHのことを検出電圧VPHとも呼ぶ。
【0025】
演算部11は、信号検出回路10による検出値、つまりサージ電圧のピークの検出値が、所望する指令値に一致するように、駆動部9の駆動能力を変更する、といったフィードバック制御を行う。この場合、所望する指令値は、サージ許容電圧となっている。サージ許容電圧は、スイッチング素子6の耐圧より所定のマージン分だけ低い値であり、その値の電圧が主端子に印加されてもスイッチング素子6が故障する可能性はないものの、その値を超える電圧が主端子に印加されるとスイッチング素子6が故障する可能性があるような値に設定される。本実施形態では、サージ許容電圧は、例えば1200Vに設定されている。
【0026】
演算部11は、指令生成部17、減算器18および制御部19を備えている。指令生成部17は、サージ許容電圧に対応した指令電圧Vaを生成する。減算器18は、検出電圧VPHから指令電圧Vaを減算することにより、サージ電圧のピークの検出値と指令値との差に相当する偏差ΔVを求め、制御部19に出力する。制御部19は、偏差ΔVに対するPI演算を実行して能力設定信号Sbを生成する。能力設定信号Sbは、駆動部9へと出力されるようになっており、これにより、ゲート抵抗R2の抵抗値、つまり駆動部9のターンオフ時における駆動能力が設定される。
【0027】
このような構成により、演算部11は、サージ電圧のピークの検出値と所望する指令値であるサージ許容電圧との差に相当する偏差ΔVを求め、その偏差ΔVが次第に小さくなるように駆動部9の駆動能力を変更するようになっている。この場合、偏差ΔVは、求められた時点におけるサージ電圧のピークがスイッチング素子6の耐圧までどの程度余裕があるのかを表す余裕度に相当する。つまり、演算部11は、このような余裕度が次第に小さくなるように駆動部9の駆動能力を変更するようになっている。
【0028】
この場合、演算部11は、スイッチング素子6の駆動周期毎または複数の駆動周期毎に偏差ΔVを求めるようになっている。なお、本実施形態では、スイッチング素子6の駆動周期は、PWM制御の1周期となる。また、この場合、演算部11は、所定のPWM周期における駆動部9の駆動能力を、その所定のPWM周期より前のPWM周期において求めた偏差ΔVに基づいて変更するようになっている。具体的には、演算部11は、PWM周期毎に偏差ΔVを求め、前回のPWM周期で求めた偏差ΔVに基づいて次回のPWM周期における駆動部9の駆動能力を変更するようになっている。
【0029】
<キャパシタC1、C2の具体的な構成例>
本実施形態において、分圧回路15を構成するキャパシタC1、C2は、同一の半導体チップ上に形成されている、つまり同一の半導体装置に含まれている。以下、キャパシタC1、C2の具体的な2つの構成例について図2および図3を参照して説明する。
【0030】
[1]第1構成例
図2に示すように、第1構成例では、同一の半導体装置21上に酸化膜を用いて分圧回路15を構成するキャパシタC1、C2が形成されている。具体的には、半導体装置21は、半導体基板22上に、第1誘電体層23、第2導体層24、第2誘電体層25および第3導体層26が、この順に積層されて構成されている。半導体基板22は、例えばバルク基板、SOI基板などである。第1誘電体層23および第2誘電体層25は、例えばSiOなどである。第2導体層24および第3導体層26は、例えばアルミニウムなどである。
【0031】
この場合、第2導体層24と第3導体層26との間の距離、つまり第2誘電体層25の厚み方向の寸法L2が、半導体基板22と第2導体層24との間の距離、つまり第1誘電体層23の厚み方向の寸法L1よりも十分に大きい寸法となるように各寸法が設計されている。なお、ここで言う「厚み方向」とは、半導体装置21の厚み方向のことである。第2誘電体層25の厚み方向の寸法L2は、キャパシタC1、C2の耐圧として、サージ許容電圧と同程度の電圧、例えば1200Vを確保できるような値とされている。
【0032】
第3導体層26には、配線27および配線28が形成されている。配線27は、入力電圧VINが与えられる端子P1に接続されている。配線28は、回路の基準電位となるグランドが与えられる端子P3に接続されている。なお、本明細書では、グランドのことをGNDと省略することがある。第2導体層24には、配線29が形成されている。配線29は、分圧電圧VDIVが与えられるノードN3に接続されている。この場合、半導体基板22は、GNDに接続されている。
【0033】
上記構成によれば、第3導体層26の配線27および第2導体層24の配線29間に形成される容量によりキャパシタC1が構成されるとともに、第3導体層26の配線28および第2導体層24の配線29間に形成される容量によりキャパシタC2の一部であるキャパシタC2aが構成される。また、上記構成によれば、第2導体層24の配線29および半導体基板22間に形成される容量によりキャパシタC2の一部であるキャパシタC2bが構成される。この場合、キャパシタC2aおよびキャパシタC2bの並列合成容量により、キャパシタC2が構成される。
【0034】
なお、この場合、キャパシタC2bは、半導体装置21の構造上、意図せずに形成される寄生容量である。このように、第1構成例では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC1、C2のうち一方であるキャパシタC1と他方の一部であるキャパシタC2aとが構成されるとともに、第2導体層24および半導体基板22間に形成される容量により一対のキャパシタC1、C2のうち他方の一部であるキャパシタC2bが構成される。
【0035】
[2]第2構成例
図3に示すように、第2構成例では、同一の半導体装置31上に酸化膜を用いて分圧回路15を構成するキャパシタC1、C2が形成されている。第2構成例の半導体装置31は、第1構成例の半導体装置21に対し、第1導体層32が追加されている点などが異なっている。半導体装置31は、半導体基板22上に、第1導体層32、第1誘電体層23、第2導体層24、第2誘電体層25および第3導体層26が、この順に積層されて構成される。第1導体層32は、第2導体層24などと同様、例えばアルミニウムなどである。
【0036】
第1導体層32には、配線33が形成されている。配線33は、端子P3に接続されている。第1導体層32は、複数のビア34を介して半導体基板22に接続されている。なお、図3では、一部のビアにだけ符号を付して示している。この場合、ビア34は、第1導体層32および半導体基板22間を短絡する短絡部として機能する。第2構成例では、第1導体層32と第2導体層24との距離が第1誘電体層23の厚み方向の寸法L1となる。この場合、第1誘電体層23の厚み方向の寸法L1および第2誘電体層25の厚み方向の寸法L2は、第1構成例と同様の寸法となるように設計されている。
【0037】
上記構成によれば、第2導体層24の配線29および第1導体層32の配線33間に形成される容量によりキャパシタC2の一部であるキャパシタC2bが構成される。このように、第2構成例では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC1、C2のうち一方であるキャパシタC1と他方の一部であるキャパシタC2aとが構成されるとともに、第2導体層24および第1導体層32間に形成される容量により一対のキャパシタC1、C2のうち他方の一部であるキャパシタC2bが構成される。
【0038】
以上説明した本実施形態によれば、次のような効果が得られる。
本実施形態の信号検出回路10の分圧回路15を構成する一対のキャパシタC1、C2は、同一の半導体装置21または31に含まれている。半導体装置21は、半導体基板22上に、第1誘電体層23、第2導体層24、第2誘電体層25および第3導体層26が順に積層されて構成されている。半導体装置31は、半導体基板22上に、第1導体層32、第1誘電体層23、第2導体層24、第2誘電体層25および第3導体層26が順に積層されて構成されている。
【0039】
半導体装置21では、第3導体層26および第2導体層24間に形成される容量によりキャパシタC1とキャパシタC2の一部であるキャパシタC2aとが構成されるとともに、第2導体層24および半導体基板22間に形成される容量によりキャパシタC2の一部であるキャパシタC2bが構成される。半導体装置31では、第3導体層26および第2導体層24間に形成される容量によりキャパシタC1とキャパシタC2の一部であるキャパシタC2aとが構成されるとともに、第2導体層24および第1導体層32間に形成される容量によりキャパシタC2の一部であるキャパシタC2bが構成される。
【0040】
上記した各構成によれば、分圧回路15を構成する一対のキャパシタC1、C2が同一の半導体装置21または31上に構成されていることから、キャパシタC1、C2間の相対誤差が小さく抑えられて、言い換えると分圧回路15の分圧比の精度である比精度のばらつきが低減されて、検出精度を良好にすることができる。なお、本実施形態の構成においてキャパシタC1、C2間の相対誤差が小さく抑えられる理由については、次の通りである。
【0041】
すなわち、分圧回路15を構成するキャパシタC1、C2を例えばチップコンデンサなどのICの外付け部品として実装した場合、キャパシタC1、C2のそれぞれが独立したばらつきを有することとなり、それにより分圧誤差が大きくなるおそれがある。一方、本実施形態の半導体装置21、31では、キャパシタC1とキャパシタC2aの各静電容量値が第2誘電体層25の厚み方向の寸法L2に依存するとともに、キャパシタC2bの静電容量値が第1誘電体層23の厚み方向の寸法L1に依存する。
【0042】
半導体装置21、31において寸法L1と寸法L2とは独立してばらつきが生じるものの、上記構成によれば、キャパシタC1とキャパシタC2の一部であるキャパシタC2aとは、寸法L2に起因するばらつきが同様に生じることになる。したがって、上記した各構成によれば、分圧回路15を構成する一対のキャパシタC1、C2間の相対誤差、つまり分圧回路15による分圧誤差が小さく抑えられる。
【0043】
なお、上記した各構成のうち、半導体装置21では、次のような問題が生じるおそれがある。この場合、キャパシタC2は、第3導体層26および第2導体層24間に形成される容量によりその一部であるキャパシタC2aが構成されているとともに、第2導体層24および半導体基板22間に形成される容量によりその一部であるキャパシタC2bが構成されている。
【0044】
上記構成では、キャパシタC2aは、第3導体層26の配線28を介してスイッチング素子6のソース、つまりGNDに接続されるものの、キャパシタC2bは、半導体基板22を介してGNDに接続されるような構成となる。一般に、半導体基板は抵抗成分を有するため、このような構成において、例えばサージが重畳した際における急峻な変化を伴う被検出信号を検出することを考えると、その周波数特性が低下し、検出精度が低下するおそれがある。これに対し、半導体装置31は、半導体装置21に対して第1導体層32が追加されているとともに、その第1導体層32および半導体基板22間を短絡する複数のビア34を備えている。
【0045】
このような構成の半導体装置31では、キャパシタC2bは、抵抗成分を有する半導体基板22を介してスイッチング素子6のソース、つまりGNDに接続されるだけでなく、第1導体層32の配線33を介してGNDに接続されることになる。このような構成によれば、分圧回路15にサージなどの電圧が印加された際、電流は、半導体基板22を通過する経路ではなく、よりインピーダンスの低い第1導体層32を通過する経路を流れることになる。したがって、上記構成によれば、半導体基板22の抵抗成分に起因する周波数特性の低下を招くことがなく、つまり周波数特性が改善され、その結果、検出精度を良好なものとすることができる。
【0046】
また、半導体装置31では、複数のビア34を介して半導体基板22に接続されている第1導体層32は、GNDに接続されており、その全域において半導体基板22と同電位となっている。したがって、本実施形態によれば、後述する第4実施形態の構成のようにトレンチを形成する必要がないため、半導体基板22としてバルク基板を用いることが可能となり、半導体装置31の製造コストを低く抑えることができる。
【0047】
(第2実施形態)
以下、第1実施形態に対し信号検出回路の構成が変更された第2実施形態について図4図6を参照して説明する。
<信号検出回路の回路構成>
図4に示すように、本実施形態の信号検出回路41は、図1に示した第1実施形態の信号検出回路10に対し、分圧回路15に代えて分圧回路42を備えている点などが異なっている。
【0048】
分圧回路42は、分圧回路15に対し、キャパシタC3~C6が追加されている点などが異なっている。キャパシタC3の一方の端子は、ノードN3に接続され、その他方の端子はキャパシタC4を介して端子P3に接続されている。キャパシタC5の一方の端子は、キャパシタC3、C4の相互接続ノードであるノードN41に接続され、その他方の端子はキャパシタC6を介して端子P3に接続されている。このように、分圧回路42は、いずれも直列接続された一対の分圧容量として機能するキャパシタC1、C2と、キャパシタC3、C4と、キャパシタC5、C6と、を備えた構成となっている。
【0049】
つまり、分圧回路42は、一対の分圧容量を複数対備え、前段の一対の分圧容量により分圧された電圧を後段の一対の分圧容量によりさらに分圧する多段の構成、具体的には3段の構成である。分圧回路42は、最終段のキャパシタC5、C6により分圧された電圧を、キャパシタC5、C6の相互接続ノードであるノードN42から出力電圧、つまり分圧電圧VDIVとして出力するようになっている。
【0050】
分圧回路42全体の分圧比K(=VIN/VDIV)は、下記(1)式により表すことができる。ただし、各段の分圧比をK1、K2、K3とする。より具体的には、キャパシタC1、C2による分圧比をK1とし、キャパシタC3、C4による分圧比をK2とし、キャパシタC5、C6による分圧比をK3とする。
K=K1×K2×K3 …(1)
【0051】
本実施形態では、入力電圧VINが想定される最大値、例えば1200Vであるときに、分圧電圧VDIVが後段の検出回路16の入力電圧範囲の上限値、例えば3Vとなるように分圧比Kが設定されている。つまり、本実施形態では、分圧比Kが「400」となるように各段の分圧比が設定されている。各段の分圧比K1、K2、K3が等しい値となるように設定すると、分圧比K1、K2、K3は、K=400の3乗根となるため、下記(2)式により表すことができる。
K1=K2=K3=7.36 …(2)
【0052】
ここで、端子P1-P3間、つまりVIN-GND間から見た入力容量を1pF程度とした場合、C1~C6の静電容量値は、下記の通りとなる。
C1:1.16[pF] C2:6.37[pF]
C3:1.16[pF] C4:6.37[pF]
C5:1.16[pF] C6:7.37[pF]
したがって、C1~C6のトータルの静電容量値は、22pF程度となる。
【0053】
<キャパシタC1~C6の具体的な構成例>
本実施形態の分圧回路42を構成するキャパシタC1~C6は、第1実施形態の分圧回路15を構成するキャパシタC1、C2と同様、同一の半導体装置に含まれている。図5に示すように、本実施形態では、同一の半導体装置43上に酸化膜を用いて分圧回路42を構成するキャパシタC1~C6が形成されている。半導体装置43は、第1実施形態の半導体装置31と同様の層構成となっている。
【0054】
この場合、第3導体層26には、配線27、28に加え、配線44、45が形成されている。配線44は、ノードN41に接続されている。配線45は、GNDが与えられる端子P3に接続されている。また、この場合、第2導体層24には、ノードN3に接続されている配線29に加え、配線46、47が形成されている。配線46は、GNDが与えられる端子P3に接続されている。配線47は、分圧電圧VDIVが与えられるノードN42に接続されている。
【0055】
上記構成によれば、第1実施形態の半導体装置31と同様にキャパシタC1、C2が構成される。また、上記構成によれば、第3導体層26の配線44および第2導体層24の配線29間に形成される容量によりキャパシタC3が構成されるとともに、第3導体層26の配線44および第2導体層24の配線46間の容量によりキャパシタC4が構成される。このように、本実施形態の半導体装置43では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC3、C4が構成される。なお、第2導体層24の配線46および第1導体層32の配線33間にも寄生容量が形成されるが、その寄生容量はGND同士の間に形成されることになるため、充放電されることがなく、分圧回路42の機能に何ら影響を及ぼさないことから、その図示を省略している。
【0056】
上記構成によれば、第3導体層26の配線44および第2導体層24の配線47間に形成される容量によりキャパシタC5が構成されるとともに、第3導体層26の配線45および第2導体層24の配線47間に形成される容量によりキャパシタC6の一部であるキャパシタC6aが構成される。また、上記構成によれば、第2導体層24の配線47および第1導体層32の配線33間に形成される容量によりキャパシタC6の一部であるキャパシタC6bが構成される。この場合、キャパシタC6aおよびキャパシタC6bの並列合成容量により、キャパシタC6が構成される。
【0057】
なお、この場合、キャパシタC6bは、半導体装置43の構造上、意図せずに形成される寄生容量である。このように、本実施形態の半導体装置43では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC5、C6のうち一方であるキャパシタC5と他方の一部であるキャパシタC6aとが構成されるとともに、第2導体層24および第1導体層32間に形成される容量により一対のキャパシタC5、C6のうち他方の一部であるキャパシタC6bが構成される。
【0058】
<キャパシタC1~C6の具体的なレイアウト例>
図6に示すように、キャパシタC1~C6の平面レイアウトは、キャパシタC1、C2のペア比、キャパシタC3、C4のペア比およびキャパシタC5、C6のペア比がとれるように、コモンセントロイド配置とされている。すなわち、半導体装置43には、第1領域48および第2領域49が設けられている。
【0059】
第1領域48および第2領域49は、半導体基板22の厚み方向に直交する平面の所定方向、この場合、図6の左右方向に沿うように配置されている。以下、図6の左右方向のことを横方向と称することとする。第2領域49は、複数の領域、この場合、2つの領域に分割されており、分割された複数の領域は、第1領域48を横方向に沿って挟み込むように配置されている。第1領域48には、一対の分圧容量のうち一方、つまりキャパシタC1、C3、C5が形成されている。第2領域49には、一対の分圧容量のうち他方、つまりキャパシタC2、C4、C6が形成されている。
【0060】
以上説明したように、本実施形態の信号検出回路41の分圧回路42を構成するキャパシタC1~C6は、同一の半導体装置43に含まれている。そのため、本実施形態によっても、第1実施形態と同様、キャパシタC1、C2間、キャパシタC3、C4間、キャパシタC5、C6間の各相対誤差が小さく抑えられて、言い換えると分圧回路42の分圧比の精度である比精度のばらつきが低減されて、検出精度を良好にすることができる。
【0061】
また、本実施形態によれば、次のような効果が得られる。すなわち、本実施形態の信号検出回路41の分圧回路42は、一対の分圧容量を複数対備えた多段の構成、具体的には3段の構成となっている。このような多段の構成の分圧回路42によれば、第1実施形態の分圧回路15のような1段の構成に対し、次のようなメリットがある。すなわち、第1実施形態の1段構成の分圧回路15において、本実施形態の分圧回路42と同様の分圧比「K=400」を実現する場合、入力容量を本実施形態と同様に1pF程度とすると、キャパシタC1の静電容量値を1pFにするとともに、キャパシタC2の静電容量値を400pFにする必要が生じる。そうすると、キャパシタC1、C2のトータルの静電容量値が401pFとなり、それを確保するため、分圧回路15を構成するために必要な回路面積が非常に大きなものとなる。
【0062】
これに対し、本実施形態の3段構成の分圧回路42において、分圧比「K=400」を実現する場合、前述したとおり、キャパシタC1~C6のトータルの静電容量値を、22pF程度に抑えることが可能となる。したがって、本実施形態の構成によれば、第1実施形態の構成に対し、分圧回路42を構成する分圧容量のトータルの静電容量値が1/20程度に抑えられることから、分圧回路42を構成するために必要な回路面積も同様に1/20程度に抑えることができる。
【0063】
本実施形態では、キャパシタC1~C6の平面レイアウトは、コモンセントロイド配置となっている。例えば、一対のキャパシタC1、C2の配置に着目すると、キャパシタC1が形成される第1領域48の横方向の両側にキャパシタC2が形成される第2領域49が配置される、といったレイアウトとなる。半導体装置では、プロセスの勾配があり、例えば横方向の一端部から他端部にかけて厚みなどが大きい部分から小さい部分へと変化することがある。
【0064】
そうすると、上記したような平面レイアウトによれば、一端部側の第2領域49に形成されたキャパシタC2は厚みが最も大きくなり、キャパシタC1は厚みが中間の値となり、他端部側の第2領域49に形成されたキャパシタC2は厚みが最も小さくなる。そのため、キャパシタC1の厚みは中間の値であり、キャパシタC2の総合的な厚みは、最も大きい値と最も小さい値の平均値、つまり中間の値となる。つまり、上記した平面レイアウトによれば、プロセスの勾配に関係なく、キャパシタC1、C2の厚みが同様のものとなり、それらのペア比を良好に維持することができる。
【0065】
このように、本実施形態によれば、キャパシタC1~C6の平面レイアウトをコモンセントロイド配置としたことにより、キャパシタC1、C2のペア比、キャパシタC3、C4のペア比およびキャパシタC5、C6のペア比を良好に維持することができ、その結果、分圧回路42の分圧比の精度である比精度が一層良好なものとなり、検出精度を一層高めることができる。
【0066】
(第3実施形態)
以下、第2実施形態に対し信号検出回路の構成が変更された第3実施形態について図7図9を参照して説明する。
<信号検出回路の回路構成>
図7に示すように、本実施形態の信号検出回路51は、図4に示した第2実施形態の信号検出回路41に対し、モニタ回路52および補正部53が追加されている点などが異なっている。
【0067】
モニタ回路52は、直列接続された一対のキャパシタC1M、C2M、直列接続された一対のキャパシタC3M、C4Mおよび直列接続された一対のキャパシタC5M、C6Mを備えている。キャパシタC1M、C2Mは、分圧回路42を構成するキャパシタC1、C2と同じ態様で半導体基板22上にレイアウトされたものであり、一対のモニタ容量として機能する。
【0068】
キャパシタC1M、C2Mの各静電容量値は、キャパシタC1、C2の各静電容量値よりも十分に小さい値であり且つキャパシタC1M、C2Mの比がキャパシタC1、C2の比と同じ値になるように設定されている。キャパシタC1Mの一方の端子は、基準電圧線54に接続され、その他方の端子はキャパシタC2Mを介して端子P3に接続されている。基準電圧線54には、IC内部の変動の少ない高精度な既知の電圧である基準電圧Vrが与えられる。
【0069】
キャパシタC3M、C4Mは、分圧回路42を構成するキャパシタC3、C4と同じ態様で半導体基板22上にレイアウトされたものであり、一対のモニタ容量として機能する。キャパシタC3M、C4Mの各静電容量値は、キャパシタC3、C4の各静電容量値よりも十分に小さい値であり且つキャパシタC3M、C4Mの比がキャパシタC3、C4の比と同じ値になるように設定されている。キャパシタC3Mの一方の端子は、基準電圧線54に接続され、その他方の端子はキャパシタC4Mを介して端子P3に接続されている。
【0070】
キャパシタC5M、C6Mは、分圧回路42を構成するキャパシタC5、C6と同じ態様で半導体基板22上にレイアウトされたものであり、一対のモニタ容量として機能する。キャパシタC5M、C6Mの各静電容量値は、キャパシタC5、C6の各静電容量値よりも十分に小さい値であり且つキャパシタC5M、C6Mの比がキャパシタC5、C6の比と同じ値になるように設定されている。キャパシタC5Mの一方の端子は、基準電圧線54に接続され、その他方の端子はキャパシタC6Mを介して端子P3に接続されている。
【0071】
上記したような構成により、モニタ回路52は、キャパシタC1M、C2Mにより所定の基準電圧Vrを分圧回路42のキャパシタC1、C2と同様の分圧比K1で分圧した電圧VM1をキャパシタC1M、C2Mの相互接続ノードであるノードN51から出力する。また、モニタ回路52は、キャパシタC3M、C4Mにより所定の基準電圧Vrを分圧回路42のキャパシタC3、C4と同様の分圧比K2で分圧した電圧VM2をキャパシタC3M、C4Mの相互接続ノードであるノードN52から出力する。また、モニタ回路52は、キャパシタC5M、C6Mにより所定の基準電圧Vrを分圧回路42のキャパシタC5、C6と同様の分圧比K3で分圧した電圧VM3をキャパシタC5M、C6Mの相互接続ノードであるノードN53から出力する。
【0072】
補正部53は、A/D変換器などを備えた構成となっている。なお、本明細書では、A/D変換器のことをADCと省略することがある。補正部53には、モニタ回路52の出力電圧である電圧VM1、VM2、VM3が入力されている。補正部53は、電圧VM1、VM2、VM3に基づいて検出回路16による検出値を表す検出電圧VPHを補正する。すなわち、電圧VM1は、現在のキャパシタC1M、C2Mによる分圧比、ひいては現在のキャパシタC1、C2による分圧比K1に対応した電圧となる。
【0073】
また、電圧VM2は、現在のキャパシタC3M、C4Mによる分圧比、ひいては現在のキャパシタC3、C4による分圧比K2に対応した電圧となる。また、電圧VM3は、現在のキャパシタC5M、C6Mによる分圧比、ひいては現在のキャパシタC5、C6による分圧比K3に対応した電圧となる。補正部53は、既知である基準電圧Vrの電圧値および電圧VM1、VM2、VM3に基づいて現在の分圧比K1、K2、K3の値を算出する。
【0074】
補正部53は、このようにして算出した現在の分圧比K1~K3の値と、分圧比K1~K3の目標値(=7.36)との差分を求め、それらの差分をキャンセルするように検出電圧VPHを補正する。つまり、補正部53は、分圧比K1~K3の目標値からのずれを補正するようになっている。補正部53は、このような補正後の検出電圧VPHを出力する。補正部53による上記補正は、信号検出回路51が設けられる装置やシステムの起動時などにおける初期設定時に行われるとともに、装置やシステムの起動後における所定のタイミングに行われる。
【0075】
<キャパシタC1M~C6Mの具体的なレイアウト例>
図8および図9に示すように、キャパシタC1M~C6Mの平面レイアウトは、キャパシタC1M、C2Mのペア比、キャパシタC3M、C4Mのペア比およびキャパシタC5M、C6Mのペア比がとれるように、コモンセントロイド配置とされている。図8に示す第1レイアウト例は、分圧回路42のキャパシタC1~C6とモニタ回路52のキャパシタC1M~C6Mとを別々の領域に配置した例である。
【0076】
第1レイアウト例では、半導体装置43には、キャパシタC1M~C6Mを形成するための専用の領域である第1領域55および第2領域56が設けられている。第1領域55および第2領域56は、第1領域48および第2領域49と同じ態様となるように設けられている。第1領域55には、一対のモニタ容量のうち一方、つまりキャパシタC1M、C3M、C5Mが形成されている。第2領域56には、一対のモニタ容量のうち他方、つまりキャパシタC2M、C4M、C6Mが形成されている。
【0077】
図9に示す第2レイアウト例は、分圧回路42のキャパシタC1~C6とモニタ回路52のキャパシタC1M~C6Mとを同じ領域に配置した例、つまり分圧回路42内にモニタ回路52のキャパシタC1M~C6Mを配置した例である。第2レイアウト例では、第1領域48には、一対の分圧容量のうち一方、つまりキャパシタC1、C3、C5に加え、一対のモニタ容量のうち一方、つまりキャパシタC1M、C3M、C5Mが形成されている。第2領域49には、一対の分圧容量のうち他方、つまりキャパシタC2、C4、C6に加え、一対のモニタ容量のうち一方、つまりキャパシタC2M、C4M、C6Mが形成されている。
【0078】
以上説明した本実施形態によっても第2実施形態と同様の効果が得られるうえ、さらに次のような効果も得られる。すなわち、本実施形態の信号検出回路51は、分圧回路42を構成するキャパシタC1~C6と同じ態様で半導体基板22上にレイアウトされたキャパシタC1M~C6Mを備え、それらキャパシタC1M~C6Mにより所定の基準電圧Vrを分圧回路42と同様の分圧比で分圧して出力するモニタ回路52と、そのモニタ回路52の出力電圧に基づいて検出回路16による検出値を補正する補正部53と、を備えている。
【0079】
このような構成によれば、半導体装置43の各層間、つまり第3導体層26および第2導体層24間、第2導体層24および第1導体層32間における容量ばらつきなどに起因して分圧比が目標値から外れた値となる分圧比ずれが生じたとしても、その分圧比ずれを補正することが可能となる。したがって、上記構成によれば、半導体装置43の各層間の容量ばらつきなどに起因する検出精度の低下が抑制される。また、補正部53による上記補正は、装置やシステムの起動時などにおける初期設定時に行われるとともに、装置やシステムの起動後における所定のタイミングに行われるようになっている。このようにすれば、製造過程において生じる初期的な分圧比ずれだけでなく、経年劣化に伴い生じる分圧比ずれについても補正することができる。
【0080】
モニタ回路52のキャパシタC1M~C6Mの平面レイアウトは、分圧回路42のキャパシタC1~C6と同様、コモンセントロイド配置となっている。このようにすれば、キャパシタC1M、C2Mのペア比、キャパシタC3M、C4Mのペア比およびキャパシタC5M、C6Mのペア比を良好に維持することができ、その結果、モニタ回路52の分圧比の精度である比精度が良好なものとなり、補正部53による補正の精度を高めることができる。また、本実施形態では、モニタ回路52のキャパシタC1M~C6Mの静電容量値が分圧回路42のキャパシタC1~C6の静電容量値に比べて十分に小さい値に設定されているため、モニタ回路52の追加に伴う回路面積の増加を極力小さく抑えることができる。
【0081】
(第4実施形態)
以下、第2実施形態に対し分圧回路を構成するキャパシタの具体的な構成が変更された第4実施形態について図10を参照して説明する。
<キャパシタC1~C6の具体的な構成例>
図10に示すように、本実施形態の分圧回路42を構成するキャパシタC1~C6は、第2実施形態と同様、同一の半導体装置に含まれている。
【0082】
なお、この場合、キャパシタC11、C12の並列合成容量によりキャパシタC1が構成され、キャパシタC21、C22の並列合成容量によりキャパシタC2が構成され、キャパシタC31、C32の並列合成容量によりキャパシタC3が構成され、キャパシタC41、C42の並列合成容量によりキャパシタC4が構成され、キャパシタC51、C52の並列合成容量によりキャパシタC5が構成され、キャパシタC61、C62の並列合成容量によりキャパシタC6が構成される。
【0083】
図10に示すように、本実施形態では、同一の半導体装置61上に酸化膜を用いて分圧回路42を構成するキャパシタC1~C6が形成されている。半導体装置61は、第2実施形態の半導体装置43と同様の層構成となっている。半導体装置61は、半導体装置43に対し、半導体基板22に代えて半導体基板62を備える点などが異なっている。半導体基板62は、例えばSOI基板などである。この場合、第1誘電体層23の厚み方向の寸法L1と第2誘電体層25の厚み方向の寸法L2とが、同じ寸法となるように各寸法が設計されている。これら各寸法L1、L2は、キャパシタC1~C6の耐圧として、サージ許容電圧と同程度の電圧、例えば1200Vを確保できるような値とされている。
【0084】
この場合、第3導体層26には、配線63~65が形成されている。配線63は、ノードN3に接続されている。配線64は、ノードN41に接続されている。配線65は、分圧電圧VDIVが与えられるノードN42に接続されている。この場合、第2導体層24には、配線66~72が形成されている。配線66は、入力電圧VINが与えられる端子P1に接続されている。配線67は、GNDが与えられる端子P3に接続されている。配線68は、ビア73を介して第3導体層26の配線63に接続されている、つまりノードN3に接続されている。配線69は、GNDが与えられる端子P3に接続されている。
【0085】
配線70は、ビア74を介して第3導体層26の配線64に接続されている、つまりノードN41に接続されている。配線71は、GNDが与えられる端子P3に接続されている。配線72は、ビア75を介して第3導体層26の配線65に接続されている、つまりノードN42に接続されている。この場合、第1導体層32には、配線76~78が形成されている。配線76は、ビア73を介して第3導体層26の配線63に接続されている、つまりノードN3に接続されている。
【0086】
配線77は、ビア74を介して第3導体層26の配線64に接続されている、つまりノードN41に接続されている。配線78は、ビア75を介して第3導体層26の配線65に接続されている、つまりノードN42に接続されている。この場合も、第1導体層32は、複数のビア34を介して半導体基板62に接続されている。ただし、この場合、第1導体層32に形成された3つの配線76~78は、互いに異なる電位となっている。そのため、半導体基板62には、第1導体層32の配線76~78のそれぞれに対応する3つの領域を絶縁分離するためのトレンチ79が形成されている。
【0087】
上記構成によれば、第3導体層26の配線63および第2導体層24の配線66間に形成される容量によりキャパシタC11が構成されるとともに、第3導体層26の配線63および第2導体層24の配線67間の容量によりキャパシタC21が構成される。また、上記構成によれば、第2導体層24の配線66および第1導体層32の配線76間に形成される容量によりキャパシタC12が構成されるとともに、第2導体層24の配線67および第1導体層32の配線76間の容量によりキャパシタC22が構成される。
【0088】
上記構成によれば、第3導体層26の配線64および第2導体層24の配線68間に形成される容量によりキャパシタC31が構成されるとともに、第3導体層26の配線64および第2導体層24の配線69間の容量によりキャパシタC41が構成される。また、上記構成によれば、第2導体層24の配線68および第1導体層32の配線77間に形成される容量によりキャパシタC32が構成されるとともに、第2導体層24の配線69および第1導体層32の配線77間の容量によりキャパシタC42が構成される。
【0089】
上記構成によれば、第3導体層26の配線65および第2導体層24の配線70間に形成される容量によりキャパシタC51が構成されるとともに、第3導体層26の配線65および第2導体層24の配線71間の容量によりキャパシタC61が構成される。また、上記構成によれば、第2導体層24の配線70および第1導体層32の配線78間に形成される容量によりキャパシタC52が構成されるとともに、第2導体層24の配線71および第1導体層32の配線78間の容量によりキャパシタC62が構成される。
【0090】
このように、本実施形態の半導体装置61では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC1、C2のうち一方の一部であるキャパシタC11と他方の一部であるキャパシタC21とが構成されるとともに、第2導体層24および第1導体層32間に形成される容量により一対のキャパシタC1、C2のうち一方の一部であるキャパシタC12と他方の一部であるキャパシタC22とが構成される。
【0091】
また、本実施形態の半導体装置61では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC3、C4のうち一方の一部であるキャパシタC31と他方の一部であるキャパシタC41とが構成されるとともに、第2導体層24および第1導体層32間に形成される容量により一対のキャパシタC3、C4のうち一方の一部であるキャパシタC32と他方の一部であるキャパシタC42とが構成される。
【0092】
また、本実施形態の半導体装置61では、第3導体層26および第2導体層24間に形成される容量により一対のキャパシタC5、C6のうち一方の一部であるキャパシタC51と他方の一部であるキャパシタC61とが構成されるとともに、第2導体層24および第1導体層32間に形成される容量により一対のキャパシタC5、C6のうち一方の一部であるキャパシタC52と他方の一部であるキャパシタC62とが構成される。
【0093】
さらに、本実施形態の半導体装置61では、第3導体層26および第2導体層24間に形成される容量であるキャパシタC11、C21、C31、C41、C51、C61の耐圧と第2導体層24および第1導体層32間に形成される容量であるキャパシタC12、C22、C32、C42、C52、C62の耐圧とが等しくなるように各層間の距離が設定されている。
【0094】
以上説明したように、本実施形態の分圧回路42を構成するキャパシタC1~C6は、同一の半導体装置61に含まれている。そのため、本実施形態によっても、第2実施形態と同様の効果が得られる。また、本実施形態によれば、次のような効果も得られる。第2実施形態の半導体装置43では、キャパシタC2の一部であるキャパシタC2bおよびキャパシタC6の一部であるキャパシタC6bには、寸法L1に起因するばらつきが生じることになり、これらの影響により分圧誤差が生じてしまい、その結果、検出精度の低下を招くおそれがあった。
【0095】
これに対し、本実施形態の半導体装置61では、キャパシタC1の一部であるキャパシタC11およびキャパシタC2の一部であるキャパシタC21の静電容量値が寸法L2に依存するとともに、キャパシタC1の一部であるキャパシタC11およびキャパシタC2の一部であるキャパシタC22の静電容量値が寸法L1に依存する。つまり、半導体装置61では、キャパシタC1、C2のそれぞれの静電容量値が寸法L1、L2の両方に依存する。
【0096】
また、キャパシタC3、C4およびキャパシタC5、C6についても同様に、それぞれの静電容量値が寸法L1、L2の両方に依存する。そのため、半導体装置61では、寸法L1、L2が独立してばらついたとしても、キャパシタC1、C2間、キャパシタC3、C4間およびキャパシタC5、C6間の各相対誤差を小さく抑えることができる。したがって、本実施形態によれば、分圧回路42による分圧誤差を一層小さく抑えることができ、その結果、検出精度を一層高めることができる。
【0097】
ただし、第2実施形態の半導体装置43は、本実施形態の半導体装置61に対し、次のような点において優位性がある。すなわち、半導体装置61では、キャパシタC1~C6の耐圧として、サージ許容電圧と同程度の比較的高い電圧を確保するためには、第1誘電体層23および第2誘電体層25の各厚み、つまり寸法L1およびL2を比較的大きくする必要がある。
【0098】
これに対し、半導体装置43では、第1誘電体層23の厚み、つまり寸法L1だけを比較的大きくすることにより、キャパシタC1~C6の耐圧として比較的高い電圧を確保することができる。そのため、半導体装置43では、半導体装置61に比べ、第2誘電体層25の厚み、つまり寸法L2を小さくすることができる。したがって、第2実施形態の半導体装置43によれば、本実施形態の半導体装置61に対し、その製造に係る工数を少なくするとともに製造コストを低減することができる。
【0099】
(その他の実施形態)
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
上記各実施形態で示した数値などは例示であり、それに限定されるものではない。
本発明は、ハーフブリッジ回路4の下アームを構成するスイッチング素子6の主端子の信号である被検出信号を検出する信号検出回路10、41、51に限らず、例えばハーフブリッジ回路4の上アームを構成するスイッチング素子6の主端子の信号である被検出信号を検出する信号検出回路など、スイッチング素子の主端子の信号である被検出信号を検出する信号検出回路全般に適用することができる。
【0100】
分圧回路42は、3段の構成となっていたが、多段の構成であればよく、回路面積の低減効果が所望する程度得られるようであれば、例えば2段の構成とすることもできるし、4段以上の構成とすることもできる。なお、分圧回路42の段数を何段にすれば回路面積の低減効果が最大限に得られるかは、被検出信号の電圧値、所望する分圧比などに応じて定まることになる。
【0101】
半導体装置43、61において、キャパシタC1~C6、C1M~C6Mの平面レイアウトは、コモンセントロイド配置となっていたが、分圧比の精度が所望する程度に得られるようであれば、他の平面レイアウトを採用することもできる。
【0102】
信号検出回路51において、モニタ回路52を構成するキャパシタC1M~C6Mは、分圧回路42を構成するキャパシタC1~C6と同一の半導体装置43に含まれるように構成されていた、つまり同一の半導体チップ上に形成されていたが、別の半導体装置として構成すること、つまり別の半導体チップ上に形成することもできる。
【0103】
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
【符号の説明】
【0104】
6…スイッチング素子、10、41、51…信号検出回路、15、42…分圧回路、16…検出回路、22、62…半導体基板、23…第1誘電体層、24…第2導体層、25…第2誘電体層、26…第3導体層、31、43、61…半導体装置、32…第1導体層、34…ビア、48…第1領域、49…第2領域、52…モニタ回路、53…補正部、C1、C2、C3、C4、C5、C6…キャパシタ、C1M、C2M、C3M、C4M、C5M、C6M。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10