(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-01
(45)【発行日】2024-07-09
(54)【発明の名称】硫化物系固体電解質の製造方法
(51)【国際特許分類】
H01M 10/0562 20100101AFI20240702BHJP
H01B 13/00 20060101ALI20240702BHJP
C01B 33/00 20060101ALI20240702BHJP
【FI】
H01M10/0562
H01B13/00 Z
C01B33/00
(21)【出願番号】P 2021503976
(86)(22)【出願日】2020-02-25
(86)【国際出願番号】 JP2020007280
(87)【国際公開番号】W WO2020179523
(87)【国際公開日】2020-09-10
【審査請求日】2022-12-26
(31)【優先権主張番号】P 2019039496
(32)【優先日】2019-03-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004466
【氏名又は名称】三菱瓦斯化学株式会社
(74)【代理人】
【識別番号】100092783
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100110663
【氏名又は名称】杉山 共永
(74)【代理人】
【識別番号】100104282
【氏名又は名称】鈴木 康仁
(72)【発明者】
【氏名】伊藤 智裕
【審査官】若土 雅之
(56)【参考文献】
【文献】国際公開第2018/173939(WO,A1)
【文献】特開2015-232965(JP,A)
【文献】特開2016-157630(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 17/00
C01B 25/14
H01M 13/00
H01M 10/05-10/0587
H01M 10/36-10/39
CAplus/REGISTRY(STN)
Scopus
JSTPlus(JDreamIII)
JST7580(JDreamIII)
JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
Li
2SとP
2S
5とをLi
2S/P
2S
5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、
有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、
前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、
前記均一混合溶液とLi
2Sとを混合し、スラリー液を調製するスラリー化工程と、
前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法
であって、
前記溶液化工程2が、有機溶媒中にLi
2
S及びSiS
2
を添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、前記製造方法。
【請求項2】
前記溶液化工程1及び前記溶液化工程2における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、請求項
1に記載の硫化物系固体電解質の製造方法。
【請求項3】
前記溶液混合工程が、更に、ハロゲン化リチウムを添加して均一混合溶液を調製することを含む、請求項1
または2に記載の硫化物系固体電解質の製造方法。
【請求項4】
Li
3PS
4含有スラリー液を調製するスラリー化工程1と、
有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程と、
前記Li
3PS
4含有スラリー液と前記Li-Si-S均一溶液とを混合して混合スラリー液を調製するスラリー化工程2と、
前記混合スラリー液とLi
2Sとを混合し、スラリー液を調製するスラリー化工程3と、
前記スラリー化工程3で得られたスラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法
であって、
前記スラリー化工程1が、Li
2
SとP
2
S
5
とをLi
2
S/P
2
S
5
=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製し、該Li-P-S均一溶液と、Li
2
Sとを混合してLi
3
PS
4
含有スラリー液を調製することを含み、
前記溶液化工程が、有機溶媒中にLi
2
S及びSiS
2
を添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、前記製造方法。
【請求項5】
前記溶液化工程における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、請求項
4に記載の硫化物系固体電解質の製造方法。
【請求項6】
前記スラリー化工程2が、更に、ハロゲン化リチウムを添加して混合スラリー液を調製することを含む、請求項
4または5に記載の硫化物系固体電解質の製造方法。
【請求項7】
前記乾燥工程における温度が、60~280℃である、請求項1から
6のいずれかに記載の硫化物系固体電解質の製造方法。
【請求項8】
前記硫化物系固体電解質が、LGPS系固体電解質を含有し、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°の位置にピークを有する、請求項1から
7のいずれかに記載の硫化物系固体電解質の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、硫化物系固体電解質の製造方法に関する。
【背景技術】
【0002】
近年、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムなどの用途において、リチウムイオン二次電池の需要が増加している。しかしながら、現状のリチウムイオン二次電池は、電解液として可燃性の有機溶媒を使用しており、有機溶媒が漏れないように強固な外装を必要とする。また、携帯型のパソコン等においては、万が一、電解液が漏れ出した時のリスクに備えた構造を取る必要があるなど、機器の構造に対する制約も出ている。
【0003】
更には、自動車や飛行機等の移動体にまでその用途が広がり、定置型のリチウムイオン二次電池においては大きな容量が求められている。このような状況の下、安全性が従来よりも重視される傾向にあり、有機溶媒等の有害な物質を使用しない全固体リチウムイオン二次電池の開発に力が注がれている。
【0004】
例えば、全固体リチウムイオン二次電池における固体電解質として、酸化物、リン酸化合物、有機高分子、硫化物等を使用することが検討されている。
これらの固体電解質の中で、硫化物はイオン伝導度が高く、比較的やわらかく固体-固体間の界面を形成しやすい特徴がある。活物質にも安定であり、実用的な固体電解質として開発が進んでいる。
硫化物系固体電解質の中でも、Siが含まれる硫化物系固体電解質は良好なイオン伝導度が得られることが分かっており(非特許文献1、非特許文献2)、実用化への期待が高い。
【0005】
従来のSiを含んだ硫化物系固体電解質は原料にSiの硫化物であるSiS2を用いていることが多い。しかし、SiS2は大気との反応性が高く含酸素化合物が含まれていたり、未反応の原料であるSiが含まれていることが多いなど、不純物が含まれていないSiS2を用意することが難しい。
従って、従来のSiを含んだ硫化物系固体電解質の製造法において、不純物が含まれやすいSiS2を原料として用いた場合には、安定した性能を示す固体電解質が得られにくいという課題があった。
【先行技術文献】
【非特許文献】
【0006】
【文献】Acta Cryst.(2015). B71, 727-736
【文献】Nature Energy 1, Article number: 16030 (2016)
【発明の概要】
【発明が解決しようとする課題】
【0007】
このような状況の下、生産性に優れ、不純物が少なく安定した性能を示す硫化物系固体電解質の製造法を提供することが望まれている。
【課題を解決するための手段】
【0008】
そこで、本発明者らは、上記課題に鑑みて鋭意研究を行ったところ、有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を原料に用いることで、安定して不純物の少ない硫化物系固体電解質を製造できるという予想外の知見を得た。
【0009】
すなわち、本発明は、以下の通りである。
<1> Li2SとP2S5とをLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、
有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、
前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、
前記均一混合溶液とLi2Sとを混合し、スラリー液を調製するスラリー化工程と、
前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
<2> 前記溶液化工程2が、有機溶媒中にLi2S及びSiS2を添加して混合しLi-Si-S均一溶液を調製することを含む、上記<1>に記載の硫化物系固体電解質の製造方法である。
<3> 前記溶液化工程2が、有機溶媒中にLi2S及びSiS2を添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、上記<1>または<2>に記載の硫化物系固体電解質の製造方法である。
<4> 前記溶液化工程1及び前記溶液化工程2における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、上記<1>から<3>のいずれかに記載の硫化物系固体電解質の製造方法である。
<5> 前記溶液混合工程が、更に、ハロゲン化リチウムを添加して均一混合溶液を調製することを含む、上記<1>から<4>のいずれかに記載の硫化物系固体電解質の製造方法である。
<6> Li3PS4含有スラリー液を調製するスラリー化工程1と、
有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程と、
前記Li3PS4含有スラリー液と前記Li-Si-S均一溶液とを混合して混合スラリー液を調製するスラリー化工程2と、
前記混合スラリー液とLi2Sとを混合し、スラリー液を調製するスラリー化工程3と、
前記スラリー化工程3で得られたスラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
<7> 前記スラリー化工程1が、Li2SとP2S5とをLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製し、該Li-P-S均一溶液と、Li2Sとを混合してLi3PS4含有スラリー液を調製することを含む、上記<6>に記載の硫化物系固体電解質の製造方法である。
<8> 前記溶液化工程が、有機溶媒中にLi2S及びSiS2を添加して混合しLi-Si-S均一溶液を調製することを含む、上記<6>または<7>に記載の硫化物系固体電解質の製造方法である。
<9> 前記溶液化工程が、有機溶媒中にLi2S及びSiS2を添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、上記<6>から<8>のいずれかに記載の硫化物系固体電解質の製造方法である。
<10> 前記溶液化工程における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、上記<6>から<9>のいずれかに記載の硫化物系固体電解質の製造方法である。
<11> 前記スラリー化工程2が、更に、ハロゲン化リチウムを添加して混合スラリー液を調製することを含む、上記<6>から<10>のいずれかに記載の硫化物系固体電解質の製造方法である。
<12> 前記乾燥工程における温度が、60~280℃である、上記<1>から<11>のいずれかに記載の硫化物系固体電解質の製造方法である。
<13> 前記硫化物系固体電解質が、LGPS系固体電解質を含有し、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°の位置にピークを有する、上記<1>から<12>のいずれかに記載の硫化物系固体電解質の製造方法である。
【発明の効果】
【0010】
本発明によれば、生産性に優れ、不純物が少なく安定した性能を示す硫化物系固体電解質の製造法を提供することができる。また、本発明によれば、該硫化物系固体電解質を加熱成形してなる成形体、該硫化物系固体電解質を含む全固体電池を提供することができる。しかも、この製造方法であれば、大量製造にも応用可能である。
【図面の簡単な説明】
【0011】
【
図1】本発明の一実施形態に係る硫化物系固体電解質の結晶構造を示す概略図である。
【
図2】本発明の一実施形態に係る全固体電池の概略断面図である。
【
図3】実施例1~3および比較例1で得られた硫化物系固体電解のX線回折測定の結果を示すグラフである。
【
図4】実施例1における<溶液化工程2>で得られたろ採と白色固体のX線回折測定の結果を示すグラフである。
【発明を実施するための形態】
【0012】
以下、本発明を詳細に説明する。なお、以下に説明する材料及び構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
本発明の第1実施形態は、Li2SとP2S5とをLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、
有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、
前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、
前記均一混合溶液とLi2Sとを混合し、スラリー液を調製するスラリー化工程と、
前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
本発明において、Li-P-S均一溶液とは有機溶媒中に少なくともリチウム(Li)元素、リン(P)元素、及び硫黄(S)元素を含み、未溶解の沈殿がない溶液と定義され、Li-Si-S均一溶液とは有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含み、未溶解の沈殿がない溶液と定義される。
【0013】
<溶液化工程1>
溶液化工程1は、Li2SとP2S5とをLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する工程である。
溶液化工程1における混合の際には基質が分散されたスラリー状態であるが、やがて反応する。粒子を砕く特別な撹拌操作は不要であり、スラリーが懸濁分散できるだけの撹拌動力を与えれば十分である。
溶液化工程1における反応温度は、室温下においても反応が緩やかに進行するが、反応速度を上げるために加熱することもできる。加熱する場合には、有機溶媒の沸点以下で行うことで十分であり、使用する有機溶媒によって異なるものの、通常は120℃未満である。オートクレーブ等を用いて加圧状態で行うことも可能であるが、120℃以上の高い温度で混合を行うと、副反応が進行することが懸念される。
【0014】
溶液化工程1における反応時間としては、有機溶媒の種類や原料の粒子径、濃度によって異なるものの、例えば0.1~24時間行うことで反応が完結し、溶液化することができる。
【0015】
Li-P-S均一溶液は、Li2SおよびP2S5をLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合して反応させることによって生成させる。ここで、上記モル比は、好ましくはLi2S/P2S5=0.75~1.4であり、より好ましくはLi2S/P2S5=0.8~1.35である。Li2S/P2S5=0.7~1.5のモル比の範囲であると、室温においてLi2SおよびP2S5を溶液化することができる。上記モル比の範囲を外れると、沈殿が生じる場合がある。
この溶液には、未反応のLi2SやP2S5が含まれてもよい。また、Li2SやP2S5から混入した不純物が含まれていてもよい。不純物は溶媒中にほとんど溶解せず、多くは沈殿するため、得られた溶液に対し濾過や遠心分離を行い沈殿を除去し、溶液を分離することによって、高純度なLi-P-Sの均一溶液を得ることが好ましい。
【0016】
P2S5は合成品でも、市販品でも使用することができる。P2S5の純度が高い方が、固体電解質中に混入する不純物が少なくなることから好ましい。P2S5の粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは100nm~30μmであり、特に好ましくは300nm~10μmの範囲である。水分の混入は、他の原料や前駆体を劣化させることから、低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。
【0017】
<溶液化工程2>
溶液化工程2は、有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する工程である。Li-Si-S均一溶液を使用することにより、不純物が少なく、高いイオン伝導度を有する硫化物系固体電解質を安定して得ることができる。SiS2を出発物質に用いる場合、合成時にSiを固体電解質中に均一に分散させることは困難である。また、SiS2は大気との反応性が高く含酸素化合物が含まれていたり、未反応の原料であるSiが含まれていることが多いなど、不純物が含まれていないSiS2を用意することが難しい。そして、SiS2中からこれらの不純物を除去することは困難である。
一方、Li-Si-S均一溶液は、合成時に固体電解質中にSiが均一に分散しやすく、不純物が少ないことから副反応が生じにくいため、安定して高いイオン伝導度を有する硫化物系固体電解質を製造できると考えられる。
【0018】
Li-Si-S均一溶液は、Li2SおよびSiS2をLi2S/SiS2=0.3~1.0のモル比となるように有機溶媒中で混合して反応させることによって、Li、Si、及びSが溶解した溶液とすることが好ましい。ここで、上記モル比は、より好ましくはLi2S/SiS2=0.35~0.8であり、特に好ましくはLi2S/SiS2=0.4~0.7である。
この溶液には、未反応のLi2SやSiS2が含まれていてもよい。また、Li2SやSiS2から混入した不純物が含まれていてもよい。
より好ましくは、得られた溶液を、濾過や遠心分離によって沈殿を除去し、溶液を分離することで、Li-Si-Sの均一溶液が得られる。得られた均一溶液の各元素の濃度はICPにより分析されるが、Li/Si=0.6~2.0のモル比であることが好ましい。ここで、上記モル比は、より好ましくはLi/Si=0.7~1.6であり、特に好ましくはLi/Si=0.8~1.4である。
【0019】
沈殿の除去は、濾過や遠心分離により行うことができる。フィルターを用いた濾過を行う場合、フィルターの孔径は10μm以下であることが望ましい。より好ましくは5μm以下であり、特に好ましくは2μm以下である。
【0020】
沈殿として得られるのは未反応のLi2S、SiS2といった原料や、SiS2から混入した不純物である。不純物としてはSiやSiS2の含酸素化合物、SiO2などが挙げられる。
【0021】
Li2Sは合成品でも、市販品でも使用することができる。水分の混入は、他の原料や前駆体を劣化させることから、水分は低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。Li2Sの粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは100nm~30μmであり、特に好ましくは300nm~10μmの範囲である。なお、粒子径はSEMによる測定やレーザー散乱による粒度分布測定装置等で測定できる。
【0022】
SiS2は合成品でも、市販品でも使用することができる。SiS2の純度が高い方が、固体電解質中に混入する不純物が少なくなることから好ましい。SiS2の粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは100nm~30μmであり、特に好ましくは300nm~10μmの範囲である。粒子径はSEMによる測定やレーザー散乱による粒度分布測定装置等で測定できる。なお、上記の原料の一部はアモルファスであっても問題なく使用することができる。水分の混入は、他の原料や前駆体を劣化させることから、低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。
【0023】
有機溶媒は、Li2SおよびSiS2と反応しない有機溶媒であれば、特に制限はない。例えば、エーテル系溶媒、エステル系溶媒、炭化水素系溶媒、ニトリル系溶媒などが挙げられる。具体的には、テトラヒドロフラン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル、ジメチルエーテル、ジオキサン、酢酸メチル、酢酸エチル、酢酸ブチル、アセトニトリルなどが挙げられる。これらの中でも、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種であることが好ましく、特に好ましくはアセトニトリルである。原料組成物が劣化することを防止するために、有機溶媒中の酸素と水を除去しておくことが好ましく、特に水分については、100ppm以下が好ましく、より好ましくは50ppm以下である。 なお、溶液化工程1で使用される有機溶媒も上記と同様のものを好ましく使用することができる。
【0024】
有機溶媒中におけるLi、Si及びSの合計の濃度は、0.5~20重量%が好ましく、1~15重量%がより好ましく、2~10重量%が特に好ましい。有機溶媒中におけるLi、Si及びSの合計の濃度が20重量%より高いと、固体の析出により均一溶液化が困難になる。一方、有機溶媒中におけるLi、Si及びSの合計の濃度が0.5重量%より低い場合には、大量の有機溶媒を使用することになり、溶媒回収の負荷が増大すると共に、反応器の大きさが過度に大きくなる要因となる。
【0025】
<溶液混合工程>
溶液混合工程は、Li-P-S均一溶液とLi-Si-S均一溶液とを混合して均一混合溶液を調製する工程である。
Li-Si-S均一溶液に対し、Li-P-S均一溶液を加えることで均一混合溶液を調製することができる。得られた均一混合溶液を構成する元素の濃度は、P/Si=0.7~1.5のモル比であることが好ましい。より好ましくはP/Si=0.8~1.4であり、特に好ましくはP/Si=0.9~1.3である。このモル比であるとき、高いイオン伝導度を示す硫化物系固体電解質が得られやすい。
元素の種類、濃度は、例えば、ICP発光分析装置により確認することができる。硫化物系固体電解質は、わずかな組成のずれによって性能が大きく変わることから、均一溶液に対してICP発光分析を行うことにより、元素組成を精密に制御することが好ましい。
なお、ここに、ハロゲン化合物を加えることもできる。この時、ハロゲン化合物も有機溶媒に溶解することが好ましい。ハロゲン化合物としては、具体的には、LiCl、LiBr、LiI、PCl5、PCl3、PBr5及びPBr3が好ましく挙げられ、より好ましくはLiCl、LiBr及びLiIである。これらは1種単独で使用してもよく、2種以上を併用してもよい。
【0026】
<スラリー化工程>
スラリー化工程は、溶液混合工程で得られた均一混合溶液とLi2Sとを混合し、スラリー液を調製する工程である。
混合方法として通常の撹拌羽を用いた混合で十分である。加えたLi2Sの粒子を砕くことを目的に、撹拌によって解砕させることが好ましい。更には、ホモジナイザーまたは超音波分散機を用いてもよい。
【0027】
均一混合溶液にLi2Sを追加添加する量としては、系内に加える全量の原料比がLi2S:P2S5:SiS2=6.3:1:1.6のモル比が基本となることが好ましい。好ましい範囲としては、Li2S:P2S5:SiS2=5.67:1:1.33~8.71:1:2.86のモル比である。より好ましくは、Li2S:P2S5:SiS2=5.86:1:1.43~8.00:1:2.50であり、特に好ましくは、Li2S:P2S5:SiS2=6.08:1:1.54~7.44:1:2.22である。用いる元素によって、それぞれの元素組成比には幅があると共に、ハロゲンを含有した組成のものもあるが、LGPS結晶ができる組成であればより好ましい。Siを含んだLGPS系固体電解質としては、例えば、Li9.54Si1.74P1.44S11.7Cl0.3、Li10(Si0.5Ge0.5)P2S12、Li10(Si0.5Sn0.5)P2S12、Li10.35Si1.35P1.65S12、Li9.42Si1.02P2.1S9.96O2.04等が知られている。
【0028】
LGPS型結晶構造は、Li元素およびS元素から構成される八面体Oと、P、Ge、SiおよびSnからなる群より選択される一種以上の元素およびS元素から構成される四面体T1と、P元素およびS元素から構成される四面体T2(PS4
3-アニオン)とを有し、四面体T1および八面体Oは稜を共有し、四面体T2および八面体Oは頂点を共有する結晶構造である。LGPS型結晶構造を有する固体電解質はイオン伝導度が特に高いことから、より好ましい。
【0029】
本発明で使用するLGPS型結晶構造を有する固体電解質は、X線回折測定(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°および29.58°±0.50°の位置にピークを有することが好ましい。
【0030】
Li2Sを追添加した後の混合時間は0.1~24時間が好ましく、より好ましくは4~12時間である。なお、追添加したLi2Sは溶液状態のLi2S-P2S5と反応し、Li3PS4を生成させるが、反応時間が長いとLi3PS4を多量に生成してしまい、最終生成物に不純物層が生成してしまう。
【0031】
混合する時の温度は、室温下で行うことができる。加温をしても問題はないが、あまり温度を高くしすぎると副反応が生じることが懸念される。加熱する場合には、有機溶媒の沸点以下で行うことで十分であり、使用する有機溶媒によって異なるものの、通常は120℃未満である。
【0032】
スラリー工程における混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンなどが挙げられ、アルゴンが特に好ましい。不活性ガス中の酸素および水分も除去していくことで原料組成物の劣化を抑制できる。不活性ガス中の酸素および水分は、どちらの濃度も1000ppm以下であることが好ましく、より好ましくは100ppm以下であり、特に好ましくは10ppm以下である。
【0033】
<乾燥工程>
乾燥工程は、得られたスラリー液を乾燥して有機溶媒を除去することにより前駆体を得る工程である。乾燥は不活性ガス雰囲気での加熱乾燥や真空乾燥が好ましい。
乾燥温度は、60~280℃の範囲であることが好ましく、より好ましくは100~250℃である。最適な範囲は有機溶媒の種類によって多少異なるが、温度の範囲は重要である。有機溶媒が存在する状態で乾燥温度を高くしすぎると、ほとんどの場合で前駆体が変質してしまう。また、乾燥温度が低すぎる場合には残溶媒が多くなり、そのまま次の加熱処理工程を行うと有機溶媒が炭化し、得られる硫化物系固体電解質の電子伝導性が高くなる。固体電解質の使用方法次第では電子伝導性を有することが好ましいが、
図2の2部分に使用する固体電解質は電子伝導性が十分に低いことが求められる。このような用途に用いる場合は残溶媒が極力少なくなるようにする必要がある。
【0034】
乾燥時間は有機溶媒の種類と乾燥温度によって多少異なるが、1~24時間実施することで十分に有機溶媒を除去することができる。なお、真空乾燥のように減圧下で有機溶媒を除去することや、十分に水分の少ない窒素やアルゴン等の不活性ガスを流すことで、有機溶媒を除去する際の温度を下げると共に所要時間を短くすることができる。
なお、後段の加熱処理工程と乾燥工程とを同時に行うことも可能である。
【0035】
<加熱処理工程>
加熱処理工程は、乾燥工程で得られた前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る工程である。
加熱温度は、種類によって異なり、Ge、SiまたはSnを含有するものは、通常200~700℃の範囲が好ましく、より好ましくは350~650℃の範囲であり、特に好ましくは400~600℃の範囲である。上記範囲よりも温度が低いと所望の結晶が生じにくく、一方、上記範囲よりも温度が高くても、目的とする以外の結晶が生成することがある。
【0036】
加熱時間は、加熱温度との関係で若干変化するものの、通常は0.1~24時間の範囲で十分に結晶化することができる。高い温度で上記範囲を超えて長時間加熱することは、硫化物系固体電解質の変質が懸念されることから、好ましくない。
加熱は、真空もしくは不活性ガス雰囲気下で行うことができるが、好ましくは不活性ガス雰囲気下である。不活性ガスとしては、窒素、ヘリウム、アルゴンなどを使用することができるが、中でもアルゴンが好ましい。酸素や水分が低いことが好ましく、その条件はスラリー化工程の混合時と同じである。
【0037】
本発明の第2実施形態は、Li3PS4含有スラリー液を調製するスラリー化工程1と、
有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程と、
前記Li3PS4含有スラリー液と前記Li-Si-S均一溶液とを混合して混合スラリー液を調製するスラリー化工程2と、
前記混合スラリー液とLi2Sとを混合し、スラリー液を調製するスラリー化工程3と、
前記スラリー化工程3で得られたスラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
第2実施形態におけるスラリー化工程1は、Li3PS4含有スラリー液を調製することができるものであれば特に制限はないが、Li2SとP2S5とをLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製し、該Li-P-S均一溶液と、Li2Sとを混合してLi3PS4含有スラリー液を調製することが好ましい。
第2実施形態におけるその他の工程は、第1実施形態で説明した工程に準じて行うことができる。
【0038】
本実施形態の製造法は、Li-Si-S均一溶液を使用していればよく、反応装置や条件については特に限定されない。原料から硫化物系固体電解質を製造する方法としては、例えば、遊星ボールミルを用いたメカニカルミリング法による固相合成、有機溶媒の存在下で原料組成物を反応させる液相合成、特許第5187703号公報に記載の溶融混合等によって製造することができる。
【0039】
上記のようにして得られる本発明の硫化物系固体電解質は、各種手段によって所望の成形体とし、以下に記載する全固体電池をはじめとする各種用途に使用することができる。成形方法は特に限定されない。例えば、後述する<全固体電池>において述べた全固体電池を構成する各層の成形方法と同様の方法を使用することができる。
【0040】
<全固体電池>
本発明の硫化物系固体電解質は、例えば、全固体電池用の固体電解質として使用され得る。また、本発明の更なる実施形態によれば、上述した全固体電池用固体電解質を含む全固体電池が提供される。
【0041】
ここで「全固体電池」とは、全固体リチウムイオン二次電池である。
図2は、本発明の一実施形態に係る全固体電池の概略断面図である。全固体電池10は、正極層1と負極層3との間に固体電解質層2が配置された構造を有する。全固体電池10は、携帯電話、パソコン、自動車等をはじめとする各種機器において使用することができる。
本発明の硫化物系固体電解質は、正極層1、負極層3および固体電解質層2のいずれか一層以上に、固体電解質として含まれてよい。正極層1または負極層3に本発明の硫化物系固体電解質が含まれる場合、本発明の硫化物系固体電解質と公知のリチウムイオン二次電池用正極活物質または負極活物質とを組み合わせて使用する。正極層1または負極層3に含まれる本発明の硫化物系固体電解質の量比は、特に制限されない。
本発明の硫化物系固体電解質は単独で構成されてもよいし、必要に応じて、酸化物固体電解質(例えば、Li
7La
3Zr
2O
12)、硫化物系固体電解質(例えば、Li
2S-P
2S
5)やその他の錯体水素化物固体電解質(例えば、LiBH
4、3LiBH
4-LiI)などを適宜組み合わせて使用してもよい。
【0042】
全固体電池は、上述した各層を成形して積層することによって作製されるが、各層の成形方法および積層方法については、特に制限されない。
例えば、固体電解質および/または電極活物質を溶媒に分散させてスラリー状としたものをドクターブレードまたはスピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて製膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していく加圧成形法等がある。
【0043】
本発明の硫化物系固体電解質は比較的柔らかいことから、加圧成形法によって各層を成形および積層して全固体電池を作製することが特に好ましい。加圧成形法としては、加温して行うホットプレスと加温しないコールドプレスとがあるが、コールドプレスでも十分に成形することができる。
なお、本発明には、本発明の硫化物系固体電解質を加熱成形してなる成形体が包含される。該成形体は、全固体電池として好適に用いられる。また、本発明には、本発明の硫化物系固体電解質を加熱成形する工程を含む、全固体電池の製造方法が包含される。
【実施例】
【0044】
以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
【0045】
(実施例1)
<溶液化工程1>
アルゴン雰囲気下のグローブボックス内で、Li2S:P2S5:=1:1のモル比となるように、Li2S(シグマ・アルドリッチ社製、純度99.8%)を152mg、およびP2S5(シグマ・アルドリッチ社製、純度99%)を734mg量り取った。次に、(Li2S+P2S5)の濃度が10wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)8.0gに対して、Li2S、P2S5の順に加え、室温下で3時間混合した。混合物は徐々に溶解し、Li-P-S均一溶液を得た。
【0046】
<溶液化工程2>
アルゴン雰囲気下のグローブボックス内で、Li2S:SiS2=0.5:1のモル比となるように、Li2S(シグマ・アルドリッチ社製、純度99.8%)を4g、およびSiS2(三津和化学社製)を16g量り取った。次に、(Li2S+SiS2)の濃度が3wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)610gに対して加え、室温下で24時間混合した。混合物は徐々に溶解したが、この段階では原料中の不純物が残存していた。
得られた溶液をメンブランフィルター(PTFE、孔径1.0μm)を用いて濾過することで、ろ採として2.0g、ろ液(Li-Si-S均一溶液)として578g得られた。Li-Si-S均一溶液のICP分析を行った結果、Li/Si(モル比)は50.6/49.4であった。また、(Li2S+SiS2)の濃度は3.07wt%であった。
【0047】
<溶液混合工程>
Si:P=9:11のモル比となるように、Li-P-S均一溶液を8.85g、Li-Si-S均一溶液を20.34g混合し、3時間撹拌して均一混合溶液を調製した。
【0048】
<スラリー化工程>
得られた均一混合溶液中に、P2S5に対して6.27倍モルとなるようにLi2Sを672mg撹拌しながら加え、室温下で12時間混合してスラリー液を調製した。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、Li2S:P2S5:SiS2=6.27:1:1.64となった。
【0049】
<乾燥工程>
得られたスラリー液を、真空下、180℃で4時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
【0050】
<加熱処理工程>
得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて550℃まで昇温し、その後8時間550℃で焼成することにより、Li3.45Si0.45P0.55S4結晶を合成した。
【0051】
(実施例2)
<溶液化工程1>
アルゴン雰囲気下のグローブボックス内で、Li2S:P2S5:=1:1のモル比となるように、Li2S(シグマ・アルドリッチ社製、純度99.8%)を142mg、およびP2S5(シグマ・アルドリッチ社製、純度99%)を687mg量り取った。次に、(Li2S+P2S5)の濃度が10wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)7.5gに対して、Li2S、P2S5の順に加え、室温下で3時間混合した。混合物は徐々に溶解し、Li-P-S均一溶液を得た。
【0052】
<溶液化工程2>
実施例1と同様に行い、Li-Si-S均一溶液を得た。
【0053】
<溶液混合工程>
Si:P=1:1のモル比となるように、Li-P-S均一溶液を8.29g、Li-Si-S均一溶液を23.30g混合して均一混合溶液を調製した。さらに、得られた均一混合溶液中のP2S5に対して0.40倍モルのLiCl(シグマ・アルドリッチ社製、純度99.99%)51.9mgを撹拌しながら加え、室温下で3時間混合した。
【0054】
<スラリー化工程>
得られた均一混合溶液中に、P2S5に対して6.45倍モルとなるようにLi2Sを627mg撹拌しながら加え、室温下で12時間混合してスラリー液を調製した。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、Li2S:P2S5:SiS2:LiCl=6.45:1:2:0.40となった。
【0055】
<乾燥工程>
得られたスラリー液を、真空下、180℃で4時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
【0056】
<加熱処理工程>
得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて475℃まで昇温し、その後8時間475℃で焼成することにより、Li3.355Si0.505P0.505S3.9Cl0.1結晶を合成した。
【0057】
(実施例3)
<スラリー化工程1>
アルゴン雰囲気下のグローブボックス内で、Li2S:P2S5:=1:1のモル比となるように、Li2S(シグマ・アルドリッチ社製、純度99.8%)を142mg、およびP2S5(シグマ・アルドリッチ社製、純度99%)を687mg量り取った。次に、(Li2S+P2S5)の濃度が10wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)7.5gに対して、Li2S、P2S5の順に加え、室温下で3時間混合した。混合物は徐々に溶解し、Li-P-S均一溶液を得た。次に、P2S5に対して2倍モルのLi2Sを加えて6時間撹拌し、Li3PS4の沈殿を発生させ、Li3PS4含有スラリー液を得た。
【0058】
<溶液化工程>
実施例1の溶液化工程2と同様に行い、Li-Si-S均一溶液を得た。
【0059】
<スラリー化工程2>
Si:P=1:1のモル比となるように、Li3PS4含有スラリー液を8.57g、Li-Si-S均一溶液を23.30g混合して混合スラリー液を調製した。さらに、得られた混合スラリー液中のP2S5に対して0.40倍モルのLiCl(シグマ・アルドリッチ社製、純度99.99%)51.9mgを撹拌しながら加え、室温下で3時間混合した。
【0060】
<スラリー化工程3>
得られた混合スラリー液中に、P2S5に対して6.45倍モルとなるようにLi2Sを343mg撹拌しながら加え、室温下で12時間混合してスラリー液を調製した。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、Li2S:P2S5:SiS2:LiCl=6.45:1:2:0.40となった。
【0061】
<乾燥工程>
得られたスラリー液を、真空下、180℃で4時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
【0062】
<加熱処理工程>
得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて475℃まで昇温し、その後8時間475℃で焼成することにより、Li3.355Si0.505P0.505S3.9Cl0.1結晶を合成した。
【0063】
(比較例1)
<溶液化工程>
実施例1の溶液化工程1と同様に行い、Li-P-S均一溶液を得た。
【0064】
<スラリー化工程>
得られたLi-P-S均一溶液中のP2S5に対して1.64倍モルとなるようにSiS2(三津和化学社製)498mgを撹拌しながら加え、室温下で12時間混合した。更に上記均一溶液中のP2S5に対して6.27倍モルとなるようにLi2Sを799mg撹拌しながら加え、室温下で24時間混合してスラリー液を得た。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、Li2S:P2S5:SiS2=6.27:1:1.64となった。
【0065】
<乾燥工程>
得られたスラリー液を、真空下、180℃で2時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
【0066】
<加熱処理工程>
得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて550℃まで昇温し、その後8時間550℃で焼成することにより、Li3.45Si0.45P0.55S4結晶を合成した。
【0067】
<X線回折測定>
実施例1~3、比較例1で得られた硫化物系固体電解質の粉末について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert3 Powder」、CuKα:λ=1.5405Å)を実施した。
実施例1~3、比較例1で得られた硫化物系固体電解質のX線回折測定の結果を
図3に示す。
図3に示したとおり、実施例1~3では、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°に回折ピークが観測され、このパターンはICSDデータベースのLi
10GeP
2S
12と一致した。
【0068】
<リチウムイオン伝導度測定>
実施例1~3および比較例1で得られた硫化物系固体電解質を一軸成型(420MPa)に供し、厚さ約1mm、直径10mmのディスクを得た。全固体電池評価セル(宝泉株式会社製)を用い、室温(25℃)において、インジウム電極を利用した四端子法による交流インピーダンス測定(Solartron社製「SI1260 IMPEDANCE/GAIN―PHASE ANALYZER」)を行い、リチウムイオン伝導度を算出した。
具体的には、サンプルを25℃に設定した恒温槽に入れて30分間保持した後にリチウムイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。リチウムイオン伝導度の測定結果を下記表1に示す。
【0069】
【0070】
以下では、実施例1の<溶液化工程2>で行った濾過後のろ採とろ液(Li-Si-S均一溶液)について不純物が取り除けているかどうかを確認した。
ろ液については、<溶液化工程2>で得られたLi-Si-S均一溶液の一部を採取し、真空下、200℃で2時間乾燥させることで、溶媒を除去し白色の固体を得て分析した。
【0071】
<SEM-EDX測定>
得られたろ採および白色固体について、真空条件下、室温(25℃)にて、SEM-EDX測定(日立ハイテクノロジーズ社製走査電子顕微鏡「S-3400N」加速電圧:表面観察時5.0kV, EDX時15.0 kV)を実施した。測定結果を表2、表3に示す。表2、表3に示したとおり、ろ採に比べて、ろ液乾燥品である白色固体では酸素量が少なくなっており、濾過により酸素含有化合物が取り除けたと考えられる。
【0072】
【0073】
【0074】
<X線回折測定>
得られたろ採および白色固体について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert3 Powder」、CuKα:λ=1.5405Å)を実施した。
得られたろ採および白色固体のX線回折測定の結果を
図4に示す。
図4に示したとおり、ろ採では不純物である金属Siのピークが見えた。一方で、ろ液乾燥品の白色固体では不純物ピークは見えなかったことから、濾過により金属Siが取り除けたと考えられる。
【符号の説明】
【0075】
1 正極層
2 固体電解質層
3 負極層
10 全固体電池