IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シナジー マイクロウェーブ コーポレーションの特許一覧

特許7513589モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器
<>
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図1
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図2
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図3
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図4
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図5
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図6
  • 特許-モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-01
(45)【発行日】2024-07-09
(54)【発明の名称】モノリシックに集積された多重量子井戸レーザ及び位相変調器を用いた光電子発振器
(51)【国際特許分類】
   G02F 1/025 20060101AFI20240702BHJP
   H01S 5/125 20060101ALI20240702BHJP
【FI】
G02F1/025
H01S5/125
【請求項の数】 27
(21)【出願番号】P 2021504178
(86)(22)【出願日】2019-07-24
(65)【公表番号】
(43)【公表日】2021-11-25
(86)【国際出願番号】 US2019043194
(87)【国際公開番号】W WO2020023611
(87)【国際公開日】2020-01-30
【審査請求日】2022-07-20
(31)【優先権主張番号】62/702,970
(32)【優先日】2018-07-25
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503019176
【氏名又は名称】シナジー マイクロウェーブ コーポレーション
【氏名又は名称原語表記】Synergy Microwave Corporation
(74)【代理人】
【識別番号】100099623
【弁理士】
【氏名又は名称】奥山 尚一
(74)【代理人】
【氏名又は名称】松島 鉄男
(74)【代理人】
【識別番号】100125380
【弁理士】
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【弁理士】
【氏名又は名称】森本 聡二
(74)【代理人】
【識別番号】100166268
【弁理士】
【氏名又は名称】田中 祐
(74)【代理人】
【識別番号】100170379
【弁理士】
【氏名又は名称】徳本 浩一
(74)【代理人】
【識別番号】100180231
【弁理士】
【氏名又は名称】水島 亜希子
(74)【代理人】
【氏名又は名称】有原 幸一
(72)【発明者】
【氏名】ポッダー,アジェイ・クマール
(72)【発明者】
【氏名】ローデ,ウルリッチ・エル.
(72)【発明者】
【氏名】ダリョウシュ,アフシン・エス.
【審査官】野口 晃一
(56)【参考文献】
【文献】特開昭64-010683(JP,A)
【文献】米国特許第06438148(US,B1)
【文献】米国特許第07447246(US,B2)
【文献】米国特許出願公開第2016/0149377(US,A1)
【文献】国際公開第2005/083502(WO,A1)
【文献】特表2016-513933(JP,A)
【文献】特表2003-528452(JP,A)
【文献】特表2002-535853(JP,A)
【文献】特開2002-033548(JP,A)
【文献】米国特許第05723856(US,A)
【文献】米国特許出願公開第2002/0018611(US,A1)
【文献】米国特許第06567436(US,B1)
【文献】Pan, Biwei、Lu, Dan、Zhang, Limeng、Zhao, Lingjuan,“A Widely Tunable Optoelectronic Oscillator Based on Directly Modulated Dual-Mode Laser”,IEEE Photonics Journal,2015年,Vol.7,No.6,p.1-7,DOI: 10.1109/JPHOT.2015.2498906
【文献】Yu, Liqiang、Lu, Dan、Pan, Biwei、Zhao, Lingjuan、Wu, Jiagui、Xia, Guangqiong、Wu, Zhengmao、Wang, Wei,“Monolithically Integrated Amplified Feedback Lasers for High-Quality Microwave and Broadband Chaos Generation”,Journal of Lightwave Technology,2014年,Vol.32,No.20,p.3595-3601,DOI: 10.1109/JLT.2014.2320371
【文献】Sun, Y.、Chen, Y. B.、Wang, Y.、Pan, J. Q.、Zhao, L. J.、Chen, W. X.、Wang, W.,“Widely Frequency-Tunable Optical Microwave Source Based on Amplified Feedback Laser”,2008 IEEE PhotonicsGlobal@Singapore,2008年,p.1-4,DOI: 10.1109/IPGC.2008.4781441
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
1/21-7/00
H01S 5/00-5/50
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
調整された波長のマルチモード光信号を生成する波長可変マルチモードレーザと、
前記波長可変マルチモードレーザに接続され前記マルチモード光信号を受信し、少なくとも1つの遅延線を有するフィードバックループであって、前記少なくとも1つの遅延線の出力は、前記波長可変マルチモードレーザにフィードバックされて、前記波長可変マルチモードレーザのための自己注入同期ループ及び自己位相同期ループの少なくとも一方がもたらされる、フィードバックループと
を備え、
前記波長可変マルチモードレーザは、
前記波長可変マルチモードレーザの第1の端部にある半導体光利得領域と、
前記波長可変マルチモードレーザの第2の端部にあり、モード間分離周波数によって分離された複数の波長の光信号を維持するフィードバックミラーを備えるフィードバック領域と、
前記半導体光利得領域と前記フィードバック領域との間にある位相変調領域であって、前記位相変調領域は前記位相変調領域を通じて送られる前記マルチモード光信号の位相を制御する、位相変調領域と
を有し、
前記波長可変マルチモードレーザにフィードバックされる前記少なくとも1つの遅延線の出力は、前記半導体光利得領域及び前記位相変調領域の各々に送られ、前記半導体光利得領域及び前記位相変調領域の各々にバイアスかけられて、前記マルチモード光信号の位相ドリフトが低減される、デバイス。
【請求項2】
前記波長可変マルチモードレーザは、p型半導体領域と、n型半導体領域と、前記p型半導体領域と前記n型半導体領域との間にある活性層とを有するPIN構造により形成され、
前記半導体光利得領域は、前記活性層に沿って形成された多重量子井戸構造を有する、請求項1に記載のデバイス。
【請求項3】
前記PIN構造は、リン化インジウムにより形成され、
前記多重量子井戸構造は、インジウムガリウムヒ素リン化物合金とインジウムアルミニウムヒ素合金とのいずれかにより形成される、請求項2に記載のデバイス。
【請求項4】
前記マルチモード光信号における複数の波長の前記モード間分離周波数が、約40GHzである、請求項1に記載のデバイス。
【請求項5】
前記フィードバック領域の前記フィードバックミラーは、分布ブラッグ反射鏡又はファブリ・ペロー共振器である、請求項1に記載のデバイス。
【請求項6】
前記位相変調領域は、6ボルト~7ボルトの電圧が印加されたときに約15度/(V*mm)の感度を有する位相変調器を備える、請求項1に記載のデバイス。
【請求項7】
前記フィードバックループは、前記少なくとも1つの遅延線を有する自己注入同期の部分であって、
前記少なくとも1つの遅延線の出力を増幅する半導体光増幅器と、
前記波長可変マルチモードレーザにより生成された前記マルチモード光信号と前記少なくとも1つの遅延線の出力との各々を受信し、前記少なくとも1つの遅延線の出力を前記波長可変マルチモードレーザにフィードバックするサーキュレータと
を更に備える、請求項1に記載のデバイス。
【請求項8】
前記波長可変マルチモードレーザは、前記半導体光利得領域における利得を制御するための第1の電流源と、前記位相変調領域における位相変調を制御するための第2の電流源とを備え、
前記第1の電流源及び前記第2の電流源の各々は、互いに電気的に絶縁され、
前記サーキュレータは、前記少なくとも1つの遅延線の出力を前記第1の電流源及び前記第2の電流源の各々に提供する、請求項7に記載のデバイス。
【請求項9】
前記半導体光増幅器は、約2dBの利得を有し、前記フィードバックループは、1時間の持続時間にわたる前記マルチモード光信号の周波数ドリフトを11GHz超から8GHz未満へと低減させる、請求項7又は8に記載のデバイス。
【請求項10】
前記半導体光増幅器は、約5dBの利得を有し、前記フィードバックループは、1時間の持続時間にわたる前記マルチモード光信号の周波数ドリフトを11GHz超から6GHz未満へと低減させる、請求項7又は8に記載のデバイス。
【請求項11】
前記フィードバックループは、
前記少なくとも1つの遅延線を有する光電子型の自己位相同期ループの部分であって、
前記波長可変マルチモードレーザによる遅延されていない前記マルチモード光信号を受信し、受信した、遅延されていない前記マルチモード光信号を光領域から電気領域へと変換する第1の光電気変換器と、
前記第1の光電気変換器から前記変換後の、遅延されていない前記マルチモード光信号を受信する第1の電路と、
前記少なくとも1つの遅延線から遅延された前記マルチモード光信号を受信し、受信した、遅延された前記マルチモード光信号を光領域から電気領域へと変換する第2の光電気変換器と、
前記第2の光電気変換器から前記変換後の、遅延された前記マルチモード光信号を受信する第2の電路と、
前記第1の電路及び前記第2の電路の各々に接続され、前記変換後の、遅延されていない前記マルチモード光信号と、前記変換後の、遅延された前記マルチモード光信号とを合成して合成後の信号とする位相ミキサと
を更に備え、
前記デバイスは更に、前記合成後の信号が前記波長可変マルチモードレーザにフィードバックされるように構成されている、請求項1に記載のデバイス。
【請求項12】
前記位相ミキサの出力に接続され前記合成後の信号を増幅する増幅器を更に備え、
前記デバイスは、増幅された合成後の信号が前記波長可変マルチモードレーザにフィードバックされるように構成されている、請求項11に記載のデバイス。
【請求項13】
前記第1の電路及び前記第2の電路の各々は、前記変換後の、遅延されていない前記マルチモード光信号及び前記変換後の、遅延された前記マルチモード光信号をそれぞれフィルタリングする狭帯域フィルタを備え、
各狭帯域フィルタは、前記モード間分離周波数に基づいて選択される周波数と同じ周波数を中心とする、請求項11又は12に記載のデバイス。
【請求項14】
前記フィードバックループは、
光電子型の自己注入同期・自己位相同期ループによるフィードバックループであり、
前記少なくとも1つの遅延線の出力を増幅する半導体光増幅器と、
前記波長可変マルチモードレーザにより生成された前記マルチモード光信号と前記少なくとも1つの遅延線の出力との各々を受信し、前記少なくとも1つの遅延線の出力を前記波長可変マルチモードレーザにフィードバックするサーキュレータと
を備える自己注入同期の部分と、
前記波長可変マルチモードレーザから遅延されていない前記マルチモード光信号を受信し、受信した、遅延されていない前記マルチモード光信号を光領域から電気領域へと変換する第1の光電気変換器と、
前記第1の光電気変換器から前記変換後の、遅延されていない前記マルチモード光信号を受信する第1の電路と、
前記少なくとも1つの遅延線から遅延された前記マルチモード光信号を受信し、受信した、遅延された前記マルチモード光信号を光領域から電気領域へと変換する第2の光電気変換器と、
前記第2の光電気変換器から前記変換後の、遅延された前記マルチモード光信号を受信する第2の電路と、
前記第1の電路及び前記第2の電路の各々に接続され、前記変換後の、遅延されていない前記マルチモード光信号と、前記変換後の、遅延された前記マルチモード光信号とを合成し、合成後の信号とする位相ミキサと
を備える自己位相同期ループの部分と
を有し、
前記デバイスは更に、前記合成後の信号が前記波長可変マルチモードレーザにフィードバックされるように構成されている、請求項1に記載のデバイス。
【請求項15】
前記波長可変マルチモードレーザの出力に接続され、前記波長可変マルチモードレーザにより生成された前記マルチモード光信号を分配する光カプラを更に備え、前記波長可変マルチモードレーザにより生成された前記マルチモード光信号の一部のみが前記少なくとも1つの遅延線に送られる、請求項1に記載のデバイス。
【請求項16】
前記波長可変マルチモードレーザ及び前記少なくとも1つの遅延線がモノリシックに集積されている、請求項1に記載のデバイス。
【請求項17】
前記少なくとも1つの遅延線は、トロイダルマイクロ共振器とリングマイクロ共振器とのいずれかとして選択される遅延要素を備える、請求項16に記載のデバイス。
【請求項18】
前記遅延要素は、半径が約60ミクロンのトロイダルマイクロ共振器である、請求項17に記載のデバイス。
【請求項19】
前記遅延要素は、直径が約10ミクロンのリング状マイクロ共振器である、請求項17に記載のデバイス。
【請求項20】
前記遅延要素は、レーザが約1550nmの波長で動作する場合に、減衰量として1011のオーダーのQ値を有する、請求項17~19のいずれか一項に記載のデバイス。
【請求項21】
前記遅延要素は約250μsの遅延を生じさせる、請求項17~19のいずれか一項に記載のデバイス。
【請求項22】
前記少なくとも1つの遅延線は、1つ以上のフォトニックバンドギャップファイバを含む、請求項16に記載のデバイス。
【請求項23】
前記フィードバックループは複数の遅延線を有し、各遅延線は、前記波長可変マルチモードレーザに対し、注入同期フィードバックと位相同期ループフィードバックとの少なくともいずれかを提供する、請求項1に記載のデバイス。
【請求項24】
前記複数の遅延線のうちの少なくとも1つは、前記マルチモード光信号の発振を同期させるために外部基準信号を有する位相同期ループフィードバック要素を備える、請求項23に記載のデバイス。
【請求項25】
前記波長可変マルチモードレーザの前記半導体光利得領域と前記フィードバック領域と前記位相変調領域との各々が、モノリシックに集積されている、請求項1に記載のデバイス。
【請求項26】
高周波(RF)の或る周波数帯においてモード間分離周波数を有する複数のモードを有し、調整された波長の光信号を生成する波長可変レーザと、
前記波長可変レーザに接続され前記光信号を受信する光電子フィードバックループであって、前記光電子フィードバックループは、前記光信号が蓄積される少なくとも1つの遅延部を備え、前記光電子フィードバックループの出力は前記波長可変レーザに接続され、前記光信号が前記波長可変レーザにフィードバックされる、光電子フィードバックループと
を備え、
前記波長可変レーザは、
p型半導体領域とn型半導体領域との間にある活性層を有するPIN構造と、
分布ブラッグ反射鏡又はファブリ・ペロー共振器を有し、選択された光波長において放出を行うフィードバックミラーと、
前記光信号の位相を制御する位相変調器と、
前記PIN構造における前記活性層に沿って形成された多重量子井戸構造と、
を備え、
前記光電子フィードバックループは、前記光信号の前記モード間分離周波数を安定させるために、前記光信号の自己注入同期ループ及び自己位相同期ループを提供する、
光電子デバイス。
【請求項27】
前記光電子フィードバックループは、前記光信号の前記モード間分離周波数を安定させるべく、バルクハウゼンの発振条件を満たす位相の状態となるように前記位相変調器を制御する、請求項26に記載の光電子デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の相互参照]
本願は、2018年7月25日に出願された米国仮特許出願第62/702,970号の出願日の利益を主張するものであり、その開示内容は引用することにより本明細書の一部をなすものとする。
【背景技術】
【0002】
光電子発振器(optoelectronic oscillator, OEO)は、電源からの直流電流(DC)電力の形態のエネルギーに加えて、レーザ等の光源から連続的なポンプエネルギーを受ける。このエネルギーは、高周波(radio frequency, RF)信号及びマイクロ波信号に変換される。この変換は、狭帯域フィルタリング機構を用いて、ある発振周波数において必要とされる利得及び位相の特性を満たすことによる効率的な電力変換に基づく。このようなOEOは、通常、光遅延の損失が小さく、温度感度が低く、モジュラ構造で実現することができる。このような利点により、多くの場合に品質係数が大きくなり、純粋な電子発振器に比べて、短期及び長期の両方において安定性の増加がもたらされる。
【0003】
光電子発振器は、概して、光変調器(例えば、電気光学的なマッハツェンダ型光強度変調器)を利用して、レーザからの連続波の光エネルギーを、分光的に純粋な電気信号において変調された安定的な光信号に変換する(例えば、RFマイクロ波信号)。変調された信号は、ある長さの光ファイバケーブルにより送られて、光変調器を制御するために用いられるRFソースへと供給される。
【0004】
任意の発振器において純粋な正弦波発振の信号を維持するための一つの要素は、キャリア近傍の位相雑音に寄与する周囲の干渉源から、維持される信号をアクティブフィルタリングすることである。位相雑音の低減は、いくつかの方法で実現することができ、その一部が、共有に係る特許文献1(’369特許)に記載されている。この特許文献の開示は、引用することによりその全てが本開示の一部をなすものとする。’369特許では、専用の光受信機と組み合わせた複数の長さの光ファイバケーブルを用いて、低雑音の安定したRF発振器の閉ループ部分において、自己注入同期(self-injection locking, 自己IL)機能、自己位相同期ループ(self-phase locked looping, 自己PLL)機能、及び/又は自己モード同期(self-mode locking, 自己ML)機能のための複数の電気的基準がもたらされる。’369特許に記載されている構成は、変調器に供給される電気的フィードバック信号がその振幅及び位相に関して或る発振条件を満たすと仮定して、自立した発振をサポートする。その一方で、補正用の電気的フィードバックシステムを用いて、任意の位相誤差に対する補正が、自己IL構成及び自己PLL構成並びにその組み合わせである自己IL・PLL構成の同調型(tunable、波長可変型)RF発振器に提供される。光学レーザ源に対する補正用フィードバックは、電気的誤差信号を用いる自己ML構成の場合にも提供することができる。
【0005】
自己注入同期を用いて、発振を強制することにより、OEOにおいてキャリアから離れた位相雑音を低減することができる。従来のIL発振器の構成では、安定したマスタ発振器(すなわち、光電子発振器)が、安定度の低いスレーブ発振器(すなわち、電圧制御型のRF発振器)を、周波数同期範囲として既知の離調周波数(detuning frequency)の範囲内で、(基本周波数を含む)マスタ発振器の調和周波数に引っ張る。スレーブ発振器の周波数をマスタ発振器の周波数に引っ張ることで、周波数同期範囲におけるスレーブ発振器の周波数変動が低減され、これにより、周波数同期範囲内のスレーブ発振器の位相雑音も低減される。効率的な変調及び低い電子的雑音の観点で、光遅延線の特性は、自己ILのプロセスを従来のIL構成よりも効率的なものとし、キャリア近傍の位相雑音をより大幅に低減する。
【0006】
自己位相同期ループを用いて、単一の位相同期ループ(PLL)、又は複数のファイバ遅延要素を有する複数の位相同期ループ(PLL)を用いたOEOにおける位相雑音を低減することができる。従来のPLL発振器の構成では、位相比較器を用いて、様々な時間遅延を有する基準信号(すなわち、様々なファイバ遅延長を有するOEOからのマスタ信号)の位相が、RF発振器の信号の瞬時位相と比較される。各基準信号とRF発振器の位相差を用いて、位相誤差の出力が生成される。この出力は、スレーブ発振器の位相及び/又は周波数におけるキャリア近傍の位相偏差を補正するための可変信号として用いられる。PLL構成の閉ループシステムの効率的で低雑音の増幅により、遅延のある基準信号に対するコヒーレントな同期及び追跡がもたらされる。したがって、PLLの機構は、キャリア近傍の位相雑音の更なる改善に繋がる。
【0007】
モノリシック集積型の自己注入同期・自己位相同期ループ(自己IL・自己PLL)のOEOは、共有に係る特許文献2(’133特許)において開示されており、この特許文献の開示は、引用することによりその全体が本明細書の一部をなすものとする。’133特許は、共有に係る特許に記載されているOEO等の、他のモジュラ式設計のIL・PLLのOEOに比べて、比較的小さいサイズで集積されたIL・PLLのOEOを確立する設計トポロジを開示する。’133特許の集積手法は、ハイブリッド型シリコンレーザの製造の進歩により、低コストのシリコン製造手法と両立する。
【0008】
本分野において知られているRF発振器は、10kHzオフセットにおいて、最大で約-110dBC/Hz~約-120dBC/Hzの位相雑音の低減を達成することができる。自己IL及び自己PLLを用いた位相雑音の低減の進歩は、RF発振器の周波数安定性を高めることにおいて効果的であるが、自己IL構成及び自己PLL構成を組み合わせて用いると、追跡範囲が広くなるとともに引っ張り時間(pull-in time)が短くなるという効果が生じる。自己IL・PLL構成は、現在及び将来の応用におけるある種の発振器手法を満たすのに十分安定した信号を提供する。しかし、セルラシステム(例えば、広帯域MIMO、UWB、5G LTE、IEEE802.11AD等)は、時間とともに混雑度が増す限られた帯域幅に、増え続けるデータ量を当てはめることに依拠する。処理は、より短い波長(より高い周波数)を必要とし、ミリメートル波周波数にも近づきつつある。
【0009】
データを限られた帯域幅に当てはめるには、データが送信される周波数を、可能な限り安定的な固定の帯域幅に維持しなければならない。加えて、発振器に含まれる共振器の品質係数が、例えばミリメートル波周波数における制限に起因して(例えば、Q<1015にまで)小さくなる場合、周波数安定性の重要性は更に増す。正確な宇宙ドッキング、衝突の警告、及び深宇宙の通信等のいくつかの応用において、発振器の周波数及び位相の望ましくないシフトは小さかったとしても問題になる可能性があり、最小限に留めなければならない。従来知られている自己IL・PLLのOEO技術を用いる位相雑音低減の既知の技術及び構成では、十分に安定した信号を実現することができず、したがって、商業的に実現可能な製品を生み出すことができない。よりサイズが小さく低コストの集積における品質サービスの増え続ける需要を満たすべく、小さいサイズで低コストのマイクロエレクトロニクスの製造プロセスに対応するには、設計効率及び雑音低減において大幅な革新が必要となる。
【先行技術文献】
【特許文献】
【0010】
【文献】米国特許第9,088,369号
【文献】米国特許第9,094,133号
【発明の概要】
【発明が解決しようとする課題】
【0011】
結果として、小型かつ低コストで安定した、位相雑音が極めて低い周波数シンセサイザの要件を満たす設計トポロジを有する光電子発振器が必要とされている。
【課題を解決するための手段】
【0012】
本開示内容は、安定したRF信号を維持すべく発振周波数を光学的に強制するモノリシック集積型のOEOを提供する。このOEOは、従来の設計と同様に、自己ILの部分及び自己PLLの部分のいずれか又は双方を備える。
【0013】
モノリシック集積型のOEOの1つの態様は、モノリシックに集積された多重量子井戸(multi quantum well, MQW)構造を用いて利得媒体を導入することである。MQW構造は、多モード発振を有するマルチモードレーザを得るべく、半導体光増幅器(semiconductor optical amplifier, SOA)利得セクションと、光フィルタとして機能するフィードバック生成セクションとの各々を備えることができる。レーザ出力のモード間分離周波数(inter-modal separation frequencies)により、マイクロ波又はミリメートル波のRF周波数が生成される。そして、OEOの自己ILの部分及び自己PLLの部分を用いて、生成されたRF周波数を強制発振手法により安定させることができる。数多くのマルチモード発振の位相雑音を低減するという構想は、同調型のN個のプッシュ発振器の構成を設け、発振器間の位相誤差を動的に補償することなどにより、他の環境においては実証されているが、MQWレーザ構造により生成された多モード発振周波数を安定させるため等の、光電子の環境においては応用されていない。
【0014】
モノリシックに集積されたOEOの別の態様は、MQWレーザ利得及びフィードバックのセクションとモノリシックに統合された光位相変調器のトポグラフィを導入することである。位相変調を実現するために光導波管における屈折率変動を用いるという一般的な構想はしばらく前から既知ではあったが、位相変調器を利得セクション及びフィードバックセクションに統合することによって、閉ループ型OEOシステムにおける周波数同調の改善が可能になる。特に、多モード発振の結果として生じるRF発振周波数は、光導波管の屈折率を調整することによって調節することができる。
【0015】
モノリシックに集積されたOEOの更に別の態様は、モノリシックに両立可能な技法を用いた遅延要素を導入することである。自己IL又は自己PLLのOEOにおける位相雑音を低減するために、概して有意な長さ(例えば、3.5km)の光ファイバケーブルが設けられる。本願では、OEOループの光学部分における遅延要素は、大きいエネルギー蓄積遅延を有する共振器を用いて実現することができる。いくつかの共振器では、遅延量は、共振器の品質係数を調整することによって調整可能とすることができる。
【0016】
本開示の別の態様は、調整された波長のマルチモード光信号を生成する波長可変型マルチモードレーザと、波長可変型レーザに接続されて光信号を受信するとともに少なくとも1つの遅延線を有するフィードバックループとを備えるデバイスを更に提供する。遅延線の出力は、波長可変型マルチモードレーザの自己注入同期ループ及び自己位相同期ループのうちの少なくとも1つを提供するために、波長可変型マルチモードレーザにフィードバックすることができる。波長可変型マルチモードレーザは、第1の端部にある半導体光利得領域と、第2の端部にあり、光信号をモード間分離周波数によって分離された複数の波長に維持するフィードバックミラーを備えるフィードバック領域と、半導体光利得領域とフィードバック領域との間にある位相変調領域であって、前記位相変調領域は前記位相変調領域を通じて送られる光信号の位相を制御する、位相変調領域とを更に有することができる。レーザにフィードバックされる遅延線の出力は、光信号の位相ドリフトを低減するために、光利得領域及び位相変調領域のそれぞれにように構成することができる。
【0017】
いくつかの例では、マルチモード波長可変レーザは、p型半導体領域と、n型半導体領域と、p型半導体領域とn型半導体領域との間の活性層とを有するPIN構造により構成することができる。半導体光利得領域は、活性層に沿って形成された多重量子井戸構造を有することができる。PIN構造は、リン化インジウムから構成することができる。多重量子井戸構造は、インジウムガリウムヒ素リン化物合金又はインジウムアルミニウムヒ素合金のうちの一方から構成することができる。
【0018】
いくつかの例では、モード間分離周波数は、約40GHzとすることができる。
【0019】
いくつかの例では、フィードバック領域のフィードバックミラーは、分布ブラッグ反射鏡(distributed Bragg reflector)又はファブリ・ペロー(Fabry-Perot)共振器のうちの一方とすることができる。
【0020】
いくつかの例では、位相変調領域は、6ボルト~7ボルトの電圧が印加されたときに約15度/(V*mm)の感度を有する位相変調器を備えることができる。
【0021】
いくつかの例では、フィードバックループは、遅延線を有する、自己注入同期の部分、自己位相同期ループの部分、又は組み合わされた自己注入同期・自己位相同期ループの部分のうちの1つとすることができる。
【0022】
自己注入同期の部分は、遅延線の出力を増幅する半導体光増幅器と、レーザによって生成された光信号及び遅延線の出力のそれぞれを受信し、遅延線出力の出力をレーザにフィードバックする光コンバイナとを備えることができる。いくつかの例では、レーザは、光利得領域における利得を制御する第1の電流源と、位相変調領域における位相変調を制御する第2の電流源とを備える。第1の電流源及び第2の電流源のそれぞれは、互いに電気的に絶縁される。光コンバイナは、遅延線の出力を第1の電流源及び第2の電流源のそれぞれにフィードバックするように構成することができる。
【0023】
いくつかの例では、半導体光増幅器は、約2dbの利得を有し、フィードバックループは、1時間の持続時間にわたって光信号の周波数ドリフトを11GHzより大きい状態から8GHz未満に低減するように構成することができる。他の例では、半導体光増幅器は、約5dbの利得を有し、フィードバックループは、1時間の持続時間にわたって光信号の周波数ドリフトを11GHzより大きい状態から6GHz未満に低減するように構成することができる。
【0024】
自己位相同期の部分は、レーザからの光信号の遅延のないバージョンを受信し、受信した信号を光領域から電気領域に変換する第1の光電気変換器と、変換後の、遅延のない信号を第1の光電気変換器から受信する第1の電路と、遅延線からの光信号の遅延のあるバージョンを受信し、受信した信号を光領域から電気領域に変換する第2の光電気変換器と、変換後の、遅延のある信号を第2の光電気変換器から受信する第2の電路と、第1の電路及び第2の電路のそれぞれに接続され、遅延のない変換後の信号と遅延のある変換後の信号とを合成し、合成後の信号に変える位相ミキサとを更に備える。本デバイスは、合成された信号がレーザにフィードバックされるように更に構成することができる。
【0025】
いくつかの例では、本デバイスは、ミキサの出力に接続され、合成された信号を増幅する増幅器を更に備える。本デバイスは、増幅された合成後の信号がレーザにフィードバックされるように構成することができる。第1の電路及び第2の電路のそれぞれは、遅延のない変換後の信号及び遅延のある変換後の信号をそれぞれフィルタリングする狭帯域フィルタを備える。各狭帯域フィルタは、モード間分離周波数に基づいて選択される同じ周波数を中心とすることができる。
【0026】
いくつかの例では、デバイスは、レーザの出力に接続された光カプラを更に備えることができる。光カプラは、レーザにより生成された光信号を分配するように構成することができ、レーザにより生成された光信号の一部のみが遅延線に送られる。
【0027】
いくつかの例では、レーザ部の任意の組み合わせ又はその全てをモノリシックに集積することができる。加えて、レーザ部及びフィードバックループ部のうちの1つ又はその組み合わせをモノリシックに集積することができる。例えば、レーザ及び遅延線をモノリシックに集積することができる。遅延線は、トロイダルマイクロ共振器又はリングマイクロ共振器等の遅延要素を含むことができる。トロイダルマイクロ共振器は、約60ミクロンの半径を有することができる。リングマイクロ共振器は、約10ミクロンの直径を有することができる。いくつかの事例では、遅延要素は、約1550nmの波長で動作するレーザについて1011程度の品質係数を有することができる。いくつかの事例では、遅延要素は、約250μsの遅延を生み出すことができる。最後に、いくつかの事例では、遅延線は、1つ以上のフォトニックバンドギャップファイバを含むことができる。
【0028】
いくつかの例では、フィードバックループは、複数の遅延線を有することができる。各遅延線は、マルチモード波長可変レーザに対し、注入同期フィードバック又は位相同期ループフィードバックのうちの少なくとも一方を提供することができる。位相同期ループフィードバックのこのような例において、少なくとも1つの位相同期ループフィードバックは、光信号の発振を同期する外部基準信号を有することができる。
【0029】
いくつかの例では、波長可変マルチモードレーザの利得領域、フィードバック領域、及び位相変調領域のそれぞれは、モノリシックに集積することができる。
【0030】
本開示の更なる態様は、波長可変レーザ及び光電子フィードバックループのそれぞれを有する光電子デバイスを提供する。波長可変レーザは、或る範囲のRF周波数を有するモード間分離周波数を有する複数のモードを有する調整された波長の光信号を生成するように構成することができる。フィードバックループは、波長可変レーザに接続されて光信号を受信することができ、この光電子フィードバックループは、光信号を蓄積することができる少なくとも1つの遅延部を備えることができる。光電子フィードバックループの出力は、レーザに光信号がフィードバックされるように波長可変レーザに接続することができる。
【0031】
いくつかの例では、波長可変レーザは、p型半導体領域とn型半導体領域との間に活性層を有するPIN構造と、分布ブラッグ反射鏡及びファブリ・ペロー共振器の一方を有し、選択された光波長において放射するフィードバックミラーと、光信号の位相を制御する位相変調器と、PIN構造の活性層に沿って形成された多重量子井戸構造とを更に備えることができる。フィードバックループは、光信号のモード間分離周波数を安定させるように、光信号の自己注入同期ループ及び自己位相同期ループを提供することができる。例えば、フィードバックループは、光信号のモード間分離周波数を安定させるべく、バルクハウゼンの発振条件を満たす位相条件を有するように位相変調器を制御するように構成することができる。
【図面の簡単な説明】
【0032】
図1】本開示の一態様による波長可変マルチモードレーザの側断面図である。
図2図1のレーザの等価回路モデルの図である。
図3図1のレーザの光スペクトルのグラフである。
図4】本開示の一態様による自己注入同期型の波長可変マルチモードレーザの機能図である。
図5】或る範囲の周波数にわたる、図4の自己注入同期型の波長可変マルチモードレーザの性能のグラフである。
図6】本開示の一態様による自己位相同期ループ型の波長可変マルチモードレーザの機能図である。
図7】本開示の一態様による自己注入同期・自己位相同期ループ型の波長可変マルチモードレーザの機能図である。
【発明を実施するための形態】
【0033】
OEOの光学部分は、完全にモノリシックに集積することができる。これを実現することができる方法を示すべく、図1に、モノリシックに集積されたレーザダイオード100を示す。このレーザダイオード100は、p型半導体102と、n型半導体104と、p型半導体領域とn型半導体領域との間の活性層105とを備えるPINダイオード構造を有する半導体導波構造内に形成される。光は、活性層105において生成され、第1の端部150にて放出することができる。この構造体において対向する第2の端部152は、活性層105において生成された光の損失を防ぐために、反射防止(anti-reflective, AR)コーティング108によって被覆することができる。
【0034】
(第1の端部150から第2の端部152にかけて延びる)導波構造は、3つのセクション、すなわち、第1の端部150における光利得セクション110と、第2の端部152における光フィードバック生成セクション130と、利得セクションとフィードバックセクションとの間にある光位相変調(phase modulation, PM)セクション120とを有するものとして実質的に考えることができる。本構造体の第1の端部150から光信号160が放出される。
【0035】
利得セクション110は、PINダイオード構造の半導体材料を用いて形成することができる。例えば、利得セクションは、活性層105において形成されるとともに、多重量子井戸(MQW)構造115を有する半導体光増幅器(SOA)とすることができる。利得セクションは、図1の第1の電流源142により示す電気バイアス制御部によって電流変調され、所望の光波長で利得をもたらすことができる。適切なフィードバックによる低注入において達成される光利得は、最大飽和電力レベルまでの線形増幅を提供することができる。
【0036】
位相変調セクション120は、PINダイオード構造の同じ半導体材料を用いて形成することができ、約2mm~約3mmの物理的長さを有することができる。位相変調器120は、図1の第2の電流源144により示す別の電気バイアス制御部によって制御され、位相変調器の光導波管において所望の実効屈折率をもたらすことができる。基本的に、位相変調セクション120を調節すると、光信号の性質を安定状態にするために、位相変調セクション120の実効長が変わる。位相変調セクションの調節は、典型的には約6V~7V(最大約15V)のDC電圧が印加される場合、約10度/(V*mm)~15度/(V*mm)の感度を有することができる。この位相感度は、約3dB/mm以下の減衰(信号損失)を維持しながら、様々なデバイスによって実現することができる。
【0037】
フィードバック生成セクション130は、フィードバックミラー等の、共振空洞又は分布フィードバック(distributed feedback, DFB)構造から形成することができる。いくつかの事例では、分布ブラッグ反射鏡(DBR:distributed Bragg reflector)の回折格子135からフィードバックを提供することができる。DBRは、光信号の多重波長通過帯域フィルタとして機能することができ、最大約200GHzの周波数感度を有することができる。他の事例では、ファブリ・ペロー(FP:Fabry Perot)ベースの反射鏡からフィードバックを提供することができる。FP反射鏡は、最大約2000GHzの周波数感度を有することができる。フィードバック生成セクション130の反射周波数は、利得セクション110の増幅器の利得スペクトルに一致するように設計することができる。
【0038】
MQWレーザの製造は、複合半導体材料を用いて行うことができる。例えば、PINダイオード構造は、リン化インジウム(InP)から形成することができる。MQW構造は、インジウムガリウムヒ素リン化物(InGaAsP)の層から形成することができる。用いることができる他の化合物としては、HBT/HEMTベースのAlGaAs/GaAs、InGaAaP/InP又はInAlAs/InPベースの超高速電子素子が挙げられる。また更なる例では、異なるIII-V又はII-VI半導体化合物を利用することができる。これらの化合物を更に用いて、本開示の他のモノリシックに集積された部分を形成することができる。
【0039】
図2に、図1のレーザダイオード100と等価な回路を示す。図2に見られるように、利得セクション110及び位相変調セクション120のそれぞれは、第1の電流源142及び第2の電流源144によってそれぞれ制御される。さらに、利得セクション110及び位相変調セクション120は互いにモノリシックに集積される。その一方で、当該セクションは実効抵抗を有する絶縁セクション225により互いに電気的に分離される。各電流源142、144が、その所定のセクションにバイアスをかけ、他のセクションにバイアスをかけないようにするためである。
【0040】
動作時に、利得セクション110のMQW構造115は、広い光スペクトルにわたって高利得を提供することができ、多くの多モード発振を有するマルチモード光信号を更にもたらすことができる。例えば、レーザダイオード100は、1550nmの波長において若しくはその波長の周辺で、又は1550nm若しくはその周辺を中心とする波長の範囲で動作するように構成することができ、利得セクション110は、第1の電流源142によって電流変調されて、およそ1550nmの光波長で利得をもたらすことができる。多モード発振は、約3GHz~300GHzとすることができる。
【0041】
RF周波数の光信号は、ヘテロダイン光検出によって、マルチモード光信号の多モード発振から生成することができる。これにより、モード間分離周波数は、自走(free-run)RF信号として実質的にみなされる。ヘテロ接合複合材料の適切な組み合わせを用いた場合、IR~UV領域光波長のうちの任意の波長を本開示の設計によって生成することができる。
【0042】
モード間分離周波数は、Δvにより定めることができる。ここで、Δv=1/2τであり、τは光共振空洞構造における光信号の移動時間である。これは、光移動時間が増加するにつれて、多モード周波数間の分離が小さくなることを意味する。例えば、短い(50μm)ファブリ・ペロー共振器により、1000GHzのモード間分離周波数においてモード数が制限される。対照的に、長い(5mm)FP長により、10GHzのモード間分離周波数において利得スペクトル下のモード数が増える。この点に関して、レーザのモード間分離周波数は、接続された共振空洞を通して光信号の移動時間に影響を与えることにより、例えば、位相変調セクション120における光導波管の屈折率に影響を与えることにより、調整できることがわかる。
【0043】
実際、マルチモード光信号の様々なモード間のモード間分離周波数は、変動を受ける。この変動は、経時的に光信号のドリフトに繋がる。したがって、マルチモード信号の位相ドリフトを防止するために、強制的な発振が必要となる。特に、位相変調器がドリフトを最小にすべくモード間分離周波数を実効的に調整するために、一般的に、バルクハウゼンの発振条件を満たす位相の条件が求められる。この意味で、強制的な発振フィードバックは、マルチモード光信号のモード間のモード間分離周波数の相違によって生まれる位相誤差を動的に補償するために、同調型のN個のプッシュ発振器の構成と同様に構成することができる。これは結果として、さらに、レーザ利得セクションに正のフィードバックをもたらし、これにより、高周波光信号が強化される。
【0044】
本開示において後述するように、利得セクション110及び位相変調セクション120のそれぞれに印加されるバイアスは、レーザダイオード100における上述の強制的発振をもたらし、光信号のドリフトを最小にするために用いることができる。低周波数変調又は高周波数変調のいずれかを適用することができる。出力電力、波長調整、及び強制的発振を、レーザのそれぞれのセグメントに行うことができる。実際、電流制御部142及び周波数制御部144の入力を用いて、レーザダイオード100を、所望の利得及び所望の波長のそれぞれに同調することができる。したがって、図2は、図1のモノリシックに集積されたレーザダイオード100が安定しながらも波長可変マルチモードの長空洞レーザを提供することができることを示している。
【0045】
図2の回路図は、図1の光学的構成の電気的モデルであり、この電気モデルを用いて、図1の光学的配置の電気的性質をモデル化して推定することができることにも留意すべきである。さらに、図2の電気的モデルは、レーザのキャリア近傍の位相雑音をより良好に推定するために、同調型のN個のプッシュ発振器の構成等の他の電気的モデルと組み合わせてモデル化することができる。
【0046】
図3は、(上述した1550nm波長におおよそ対応する)200THz又はその周辺を中心とする範囲の光周波数にわたって図1のレーザダイオード100から放出される光信号の光スペクトルのグラフ表現である。光信号は、光スペクトルアナライザを用いて測定することができる。あるいは、光信号の多モード発振は、超高速フォトダイオードを用いて検出することができる。
【0047】
いくつかの多モード周波数は、フィードバック生成セクションにおける共振フィードバック構造135に存在する特有の光遅延の結果として生成されることが図3からわかる。特に、図3は、マルチモードレーザダイオード100において励起される10個を超えるモードを示している。2本の垂直線401及び402は、(例えば、-27.0dBの減衰よりも良好である)強力な放出電力を有するTEMモードと位置合わせされている。線301と302との間の合計周波数分離は、約0.4070THzである。2つのデータ点303及び304は、隣接する極大点及び極小点に対応し、-0.021THzの合計周波数分離を有する。線301及び302は、データ点303及び304とともに、光信号のモード間の多モード周波数分離が約40GHzであることを示している。したがって、レーザダイオードの出力から生成されるものと期待される安定したヘテロダイン光検出RF信号は、約40GHzとなる。
【0048】
図3に示した結果は、図1に示したDBRベースのフィードバック構造に対応することに留意すべきである。同様の結果をFPベースのフィードバック構造から得ることができる。FPフィードバック構造の場合、ミリメートル範囲のFP長に関連する遅延は、数十ピコ秒のオーダーである可能性がある。したがって、この条件下では、FP構造に特有な遅延によって生成されるRF発振は、同様に、約40GHzのモード間分離周波数をもたらす。
【0049】
図3に示す信号は自走(free-run)であるため、高いレベルで周波数が不安定となる可能性がある(例えば、1時間で11MHzを超える周波数ドリフト)。周波数安定性を改善するために、図1に関連して述べたように、利得セクション110及び位相変調セクション120のそれぞれにバイアスを印加して、レーザダイオード100において強制的発振を生成することができる。こうした強制的発振は、自己ILフィードバックループと、自己PLLフィードバックと、これらの2つの組み合わせとのいずれかによるものとすることができる。
【0050】
図4は、マルチモードレーザを安定させるために自己ILフィードバックループを用いる一例としての回路400である。図4では、一例としての回路400が、波長可変マルチモードレーザ、例えば(限定はしないが)図1に示したレーザ100に接続される。回路400は、純粋に光を利用するものであり、レーザ100にフィードバックを提供するのに遅延線450を利用する。いくつかの事例では、遅延線450は、光ファイバケーブルとすることができ、約3.5kmの長さ又はそれほどの長さを有することができる。分散フォトニック結晶ファイバ又はチャープファイバブラッググレーティングを用いて、ファイバケーブルにおいて好適な遅延を生み出すことができる。他の例では、自己ILに関する関連分野で見られるような、より短い又はより長い遅延線を利用することができる。他の事例では、遅延線は、より詳細に後述するように、高エネルギー蓄積共振器とすることができる。図4に示した遅延線450のループは、時間遅延を表すことのみを目的とし、必ずしも、遅延線450において用いられる特定の遅延要素の特定の長さを示すとは限らない。
【0051】
レーザ100の出力は、サーキュレータ415及び必要に応じたカプラ430といった、1つ以上の光デバイスを通過する。図4の例では、設けられたサーキュレータ415は、低い前方挿入損失及び高い逆絶縁を有する。カプラ430は、設けられる場合には、等しい分配(すなわち、50:50)又は等しくない分配(10:90)を有しモノリシックに集積された方向性カプラとすることができる。カプラ430から出る1つの分岐440を用いて、マルチモードレーザ100の出力の性質(例えば、光特性、多モード発振周波数の特性等)をモニタリングすることができ、又は、光信号を別の部分に出力することができる。このようなモニタリングには、光検出及び表示システムを設けることが更に必要となり得る。カプラ430から出る他の分岐は、遅延線450に供給することができる。光信号の少なくとも一部を、必要に応じて半導体光増幅器等の増幅器455に送ることができ、最終的にはサーキュレータ415にフィードバックすることができる。例えば、増幅器455をフィードバックループ内の遅延線450に含めることで、光信号は大幅に減衰する(例えば、約6dB以上、約10dB以上)ことになり得る。
【0052】
サーキュレータ415は、遅延のある増幅後の光信号をレーザ100の変調器にフィードバックする。これは時間に応じて行うことができる。さらに、電流制御ソース142及び周波数制御ソース144のそれぞれに関連する別個の光回線に信号を供給することができる。光回線は、ソース142、144のそれぞれの制御機能を提供するように構成することができる。いくつかの事例では、光信号を、レーザ100及び発振器の外部で使用する(例えば、当該技術の関連応用、更なるモニタリング)光出力を提供するために、(例えば、カプラを用いて)更に分配することができる。
【0053】
動作時に、回路400の遅延線450は、リアルタイムの自走発振の同調(entrainment)を、それ自体の遅延のあるコピーに強制することによる雑音最小化の要素として機能する。光回路における雑音最小化に必要な遅延は、0.1μs~100μsほどである。
【0054】
上述したように、図4に示した実験的な構成400の要素は、全て本質的に光を利用するものある。これは、’369特許に記載されている自己ILフィードバック構成とは異なる。’369特許では、レーザの光出力は電気信号に変換され、増幅され、RF発振器に提供されたのち、電気入力としてレーザにフィードバックされる。位相誤差の補正は、電気領域又は光領域で行うことができる。電気領域での補正の場合、電気的に制御された位相シフタ(分散又は非分散)を用いることができる。光領域での補正の場合、マッハツェンダ型変調器(調整可能な動作点を有する)又は光位相変調器(バイアス電圧の変化に基づく)のうちのいずれかを用いることができる。本願の例は、光位相変調器の使用に主眼を置く。なぜなら、多くの場合にこの手法が最も効率的であるためである。マッハツェンダ型変調器の動作バイアスを変化させると、非線形の振幅変調がもたらされ、高調波歪みが増加し得る。第3の可能性としては、フィルタを通過した中心波長を調整するために同調型の光トランスバーサルフィルタを用いることである。光トランスバーサルフィルタの帯域通過特性。これは、発振信号の狭帯域フィルタリングに用いられる同調型のイットリウム鉄ガーネット(YIG)フィルタと更に組み合わせることができる。これらの光フィルタは、光位相変調器に含めることができ、光領域での位相同期及びフィルタリングに更なる自由度をもたらすことができる。
【0055】
要するに、自己IL入力は、マルチモードレーザダイオードに安定した動作をするように強制することができる。この構成により、生成されるモード間分離周波数のキャリアから離れた位相雑音を大幅に低減することができる。さらに、レーザダイオードにフィードバックされる自己ILのレベルは、増幅器455を制御することによってそれ自体調整可能とすることができる。
【0056】
図5は、或る範囲の周波数にわたってプロットされた、自走状態及び自己注入(自己IL)状態の双方において波長可変マルチモードレーザから出力されるRF電力のグラフである。図5の例では、自己ILに3.5km長の光ファイバ遅延線が用いられ、およそ17.5ミリ秒の遅延がもたらされる。図1図3の例と同様に、波長可変マルチモードレーザのモード間分離周波数は、様々な光注入電力レベルにおいて、様々な光増幅器利得につき約40GHzである。
【0057】
図5の曲線501は、約1時間続く自走発振(注入なし)のRF電力特性を示している。自走発振は、高い雑音をもたらし、約12MHzの帯域にわたって周波数ドリフト(約41.048GHzから約41.060GHzまで)が生じる。これと比較して、自己ILフィードバックが1時間を超えて続く発振の周波数安定性は、周波数ドリフトが低減する。特に、曲線502は、2dBの光増幅器電力レベルにおける自己IL発振のRF電力特性を示している。これにより、1時間にわたって約7MHzの周波数ドリフト(約41.049GHzから約41.056GHzまで)がもたらされる。曲線503は、5dBの光増幅器電力レベルにおける自己ILフィードバックを有する発振のRF電力特性を示している。これにより、わずか約5MHzの周波数ドリフト(約41.061GHzから約41.066GHzまで)がもたらされる。したがって、自己ILにより、フィードバック信号の強制相互作用に起因して、マルチモードレーザにより生成される40GHzの多モード発振の周波数シフトが起こることが図5の結果からわかる。
【0058】
図4及び図5に示した自己ILの原理に加えて、安定した発振を強制するために自己PLLの原理を発振器に適用することができる。自己PLLフィードバックループの場合、光信号は、複数の非高調波的に関連する遅延を有する2つ以上の経路に分配される。こうした遅延の位相を比較するために、光信号は電気領域に変換されて位相比較器に送られる。比較器は、低減した位相雑音特性を有する結合された処理信号を出力することができ、この信号はレーザダイオードに供給され、特に、レーザダイオードの利得セクション及び位相変調セクションにバイアスをかけるのに用いることができる。この構成により、発振器の同期範囲内のキャリア近傍の位相雑音を大幅に低減することができる。
【0059】
図4に関連して上述した自己ILループとは異なり、自己PLLループは光だけを利用するものではない。しかし、自己PLLループは、’369特許に記載されている自己PLLフィードバック構成とも異なる。’369特許では、比較器の出力は、RF発振器に送られたのち、レーザにフィードバックされる。自己PLLフィードバックは、マルチモードレーザ出力の多モード周波数を安定させるのに用いられるため、フィードバックは、利得セクション及び位相変調セクションのそれぞれのバイアスとしてレーザダイオードに直接、送ることができる。
【0060】
図6は、波長可変マルチモードレーザ100の多モード発振の位相同期を行う自己PLL構成600の機能図である。図6では、光信号を実線で示し、電気信号を破線で示す。
【0061】
回路600は、多モード発振周波数の遅延のないバージョン601と遅延のあるバージョン602との間のリアルタイムの位相誤差検出を用いる。遅延のない側601では、レーザ出力が、フォトダイオード655、又は光信号を光領域から電気領域に変換する他の光・電気変換器等の光検出器を用いて電気信号へと変換され、狭帯域フィルタ656に送られる。フィルタは、レーザの性質に応じて所望の帯域に設定することができる。約40GHzのRF発振が生成される本願の特定の例では、狭帯域フィルタは40GHz又は約40GHzを中心とすることができる。フィルタリングされた入力は、比較器658の基準信号として用いられる。
【0062】
回路600の遅延のある側602では、レーザ出力は、必要に応じてカプラ610に送られる。カプラが設けられる場合、カプラの出力は、例えば、光信号をモニタリング又は出力する分配の1つの分岐640を用いて、図4のカプラと同様に2つの信号に分けられる。そして、光信号の少なくとも一部は、遅延線650を通過したのち、フォトダイオード652、又は光信号を光領域から電気領域へと変換する他の光・電気変換器等の光検出器を用いて電気信号へと変換される。遅延線650は、図4に関連して説明した遅延線450と同じ又は同様とすることができる。フォトダイオードの出力は、基準側の狭帯域フィルタ656と同じ周波数(例えば、本願では40GHz)を中心とする狭帯域フィルタ654に送られ、その後、フィルタリングされた電気信号は比較器658に送られる。位相ミキサ658(図6の例では乗算回路として示す)は、遅延のない信号と遅延のある信号とを結合し、その結果を増幅器660に送り(結果は基準信号670と比較される)、最終的に波長可変レーザ100に戻される。回路600の構成の結果は、安定性が改善された位相同期信号である。
【0063】
図4及び図5の自己ILの原理と、図6の自己PLLの原理とは、図7において、組み合わされた自己IL・自己PLL構成を有する回路700に組み込まれる。簡単にするため、回路700の要素の大半は、図4の構成400及び図6の構成600と同じとすることができることに留意されたい。特に、位相同期要素(例えば、それぞれの分岐440及び640を有する必要に応じたカプラ430及び610、遅延線450及び650、レーザ出力の遅延のあるバージョン740、750及び遅延のないバージョン760、フォトダイオード652及び655、フィルタ654及び656、位相ミキサ658、基準信号670を有する増幅器660、並びに必要に応じた光増幅器455)は、同じ又は同様とすることができる。これらの部分に加えて、自己IL・自己PLL回路700は、遅延線650の後ではあるが、光信号がフォトダイオード652において電気信号に変換される前の、回路700の遅延セクション602に位置する第2のカプラ710を有する。これは、図4及び図6にて示したように、遅延のある光信号を自己ILの用途及び自己PLLの用途の双方に用いることができるからである。第2のカプラ710は、光信号を所望のように2つの分岐に分配(例えば、50:50、90:10等)し、第1の分岐は、回路700の自己ILループ740を提供し、第2の分岐は、回路700の第1の自己PLLループ750(図6のループ601に対応する)を提供する。第2の自己PLLループ760(図6のループ602に対応する)は、遅延線650を通過することなく、レーザ100から直接、提供される。
【0064】
自己ILループ740では、光信号の第1の部分は、波長可変マルチモードレーザ100にフィードバックされる。光信号をレーザ100にフィードバックする方法は、図4に関する説明(例えば、サーキュレータ(図7において不図示)の使用)と同じ又は同様とすることができる。
【0065】
自己PLLループ760において、遅延のある光信号の第2の部分は、電気領域に変換され、レーザ700からの遅延のない信号と比較される。回路700の結果、同期した光信号が、発振器の同期範囲内で、低減された、キャリアから離れた位相雑音と、低減されたキャリア近傍の位相雑音との双方を有することになる。基本的に、この構成により、自走発振手法に比べてより良好な安定性及び性能が実現し、長い持続時間であっても周波数ドリフトが低減する。
【0066】
モノリシックに集積された方式で上述の進展を得るために、遅延線(例えば、図4図6及び図7の遅延線450及び650)はそれ自体、モノリシックに集積された遅延要素であるほうがよい。これはマイクロ共振器を用いて実現することができる。マイクロ共振器は、回路の所望の動作波長において高い品質係数を有するように選択することができる。例えば、マイクロ共振器は、非常に高い品質係数(10~10ほど)を有するマイクロディスク共振器とすることができる。別の事例では、マイクロ共振器は、約1011ほどの品質係数を有するウィスパリングギャラリーモード(whispering gallery mode, WGM)共振器とすることができる。上述の品質係数は、約1550nmの波長(約250μsの光遅延に対応する)等における、回路の動作波長におけるものである。
【0067】
WGM共振器の遅延量は、加えられる品質係数を調整することによって調整することができる。いくつかの事例では、WGM共振器の品質係数は、可変の屈折率を有する電気光学ベースの材料(例えば、Si-Ge)を含めることによって、それ自体変更又は調節することができる。屈折率は、印加される外部電界に基づいて変化し得る。さらに、これにより、共振器の共振周波数が変化し、品質係数に変化が生じ得る。
【0068】
1つの例では、マイクロ共振器は、D. K. Armani, T. Kippenberg, S. M. Spillane and K. J. Vahala 「Ultra-high-Q toroid microcavity on a chip」Nature, vol. 421, pp. 925-929, 27 February 2003に記載されている共振器等の、約60ミクロンの半径を有するトロイダル共振器とすることができる。別の例では、マイクロ共振器は、L. Tobing and P. Dumon, “Fundamental Principles of Operation and Notes on Fabrication of Photonic Microresonators”, Research and Applications, 156, pp. 1-27 (2010)に記載されている共振器等、約10ミクロンの直径を有するリング共振器とすることができる。当該技術分野において既知の技法を用いて、共振器を入出力の光導波管に集積することができる。
【0069】
別の例では、周波数選択性を増加するために、複数の共振器を含めることができる。このような事例では、共振器は、(単一のWGM共振器を用いる例に比べて)比較的低いQで設計することができる。共振器は、カスケード方式で整列させることができる。
【0070】
別の例では、WGM共振器の遅延線に接続された基本的な光導波管を用いる代わりに、フォトニックバンドギャップ(photonic bandgap, PBG)の技術をフォトニック結晶(photonic crystal, PhC)として用いて、分散光導波管を実装することができる。遅延要素は、1つ以上のフォトニックバンドギャップファイバを含むことができる。
【0071】
上記の例で記載した位相誤差の検出及び制御用の光導波管、光カプラ、光遅延要素及び電子部品は、ヘテロジーニアスに集積されたシリコンベースのフォトニクスを用いてシリコンゲルマニウム(SiGe)又はシリコン(Si)の基板上などに、モノリシックに集積することができる。1つの例では、SiGeヘテロ接合バイポーラトランジスタ(heterojunction bipolar transistor, HBT)デバイス又はSiGe CMOS技術を用いるフィードバック増幅器を用いることができる。狭帯域フィルタリングは、アクティブフィルタリング機能又はパッシブフィルタリング機能を含むことができる。低雑音Siベースの低雑音Bi-CMOS回路と組み合わせたSiフォトニクスのマイクロ加工プロセスによって、10kHzオフセットにおいて-150dBC/Hzに迫る位相雑音を有する光電子発振器をもたらすことができる。このように期待される結果は、共有に係る米国特許第7,088,189号に記載されているような、互いに同期されるマルチモード結合発振器の解析モデル化に基づく。
【0072】
上記の例は、光信号生成器に対する自己IL及び自己PLLの双方のフィードバックを実現するために単一の遅延線を用いることを示している。しかし、L. Zhang, A. Poddar, U. Rohde, A. Daryoush, 「Analytical and Experimental Evaluation of SSB Phase Noise Reduction in Self-Injection Locked Oscillators Using Optical Delay Loops,」 IEEE Photonics Journal, Volume 5, Number 6, December 2013に記載されているように、複数の自己IL機能及び自己PLL機能を実現するために複数の遅延線を設けることができることは、当業者であれば容易に理解するであろう。さらに、自己多重ILの複数の遅延要素(二重半デジタルIL遅延線等)又は自己多重PLLの複数の遅延要素(二重半デジタルPLL等)を、個々に用いることもできるし、それらを組み合わせて、波長可変レーザにおいて発振を強制する自己多重IL・PLLフィードバック要素を構築することもできる。いくつかの事例では、複数の遅延線は、加えられる品質係数が異なるWGM共振器を用いて実現することができる。
【0073】
本開示は、光信号の発振を制御するために自己同期機構を用いることを記載しているが、自己同期機構を、追加の基準ベースの機構、例えば、外部基準に応じたPLLフィードバックループと組み合わせて、光信号発振を同期することができることも理解されたい。外部基準信号は、例えば、水晶発振器又は原子時計によって生成することができ、光信号の安定した発振を強制するために、外部基準クロック周波数をモード間分離周波数の十分な近傍に持ち込む周波数乗算器及び除算器と更に組み合わせることができる。図6及び図7のそれぞれに示す電圧基準670は、周波数安定性を実現する外部基準を表すものとみなすことができる。
【0074】
上述の技法を用いて、上記例示の回路400、600、700のそれぞれは、マイクロ波周波数において、又はミリメートル波周波数においても安定した反復的な光信号を生成することができる。回路設計の、モノリシックに集積された構造は、主要な電気通信波長(例えば、1550nm又はその周辺)を含む範囲の波長にわたって動作することが更に可能である。この構造は、高いQ、高いエネルギー蓄積の共振器に比べて、ファイバケーブル遅延線を有する構造等の、完全には集積されていない設計よりも省スペースである。
【0075】
本開示の発振器は、複数の周波数チャネルを互いに近くなるように維持すると同時に、密にまとめられた複数の周波数チャネルを離しておくのに十分な雑音低減、位相制御及び位相誤差低減、並びにビット誤り率低減を呈することができる。複数の周波数チャネルを離しておくことは、基本的に、高次周波数分割、例えば、直交周波数分割多重(OFDM)又は高次位相シフトキーイング(PSK)に依拠するセルラ技術にとって重要である。本開示の光電子発振器は、基地局、レーダシステム、高分解能リモート検知システム、時間計測システム、又は周波数シンセサイザにおいても利用することができる。
【0076】
加えて、こうした構造体の製造は、要素(例えば、位相変調器、半導体光増幅器利得セクション、反射フィードバックセクション)の多くを互いに集積することができ、これにより波長可変マルチモードレーザの製造プロセスがより能率的になるため、費用効果が高い。こうした製造及び動作技法により、OEO及び光共振器設計における熱感度の低減にも繋がる。
【0077】
こうした回路は、多数の用途を有し、アナログ・デジタル変換装置における広帯域情報の電気及び光サンプリング、並びに、サンプル及びホールド技法を用いること等による、他の複数のデジタル処理技法に向けた安定したクロックとして用いることができる。高周波数及び位相安定性を有するRF発振器は、従来の既知のシステムにより実現されるものよりも、(例えば、位相雑音の低減に起因した)より狭いチャネル分解能と、(例えば、温度感度の低減に起因した)より精密な同期周波数との双方を実現するためにも必要とされる。結果として、本開示の例示のデバイスは、所与の通信帯域幅、例えば、位相シフトキーイング式又は直交振幅変調式の通信システムにおける通信帯域にわたって送信されたデータのビット誤り率の低減をもたらす。
【0078】
要するに、本明細書に記載した回路は、広帯域MIMO、UWB、5G LTE、IEEE802.11AD等の先進セルラシステムに好適な光信号を生成する、費用効果の高い解決策である。
【0079】
特定の実施形態を参照しながら本発明を説明したが、これらの実施形態は本発明の原理及び適用例の例示にすぎないことを理解されたい。それゆえ、添付の特許請求の範囲によって定められるような本発明の趣旨及び範囲から逸脱することなく、例示的な実施形態に数多くの変更を加えることができること、及び他の構成を考案することができることを理解されたい。
【0080】
[本技術の追加の例]
[例1]
調整された波長のマルチモード光信号を生成する波長可変マルチモードレーザと、
前記波長可変レーザに接続され前記光信号を受信し、少なくとも1つの遅延線を有するフィードバックループであって、前記遅延線の出力は、前記波長可変マルチモードレーザにフィードバックされて、前記マルチモード波長可変レーザのための自己注入同期ループ及び自己位相同期ループの少なくとも一方がもたらされる、フィードバックループと
を備え、
前記マルチモード波長可変レーザは、
前記マルチモード波長可変レーザの第1の端部にある半導体光利得領域と、
前記マルチモード波長可変レーザの第2の端部にあり、モード間分離周波数によって分離された複数の波長の光信号を維持するフィードバックミラーを備えるフィードバック領域と、
前記半導体光利得領域と前記フィードバック領域との間にある位相変調領域であって、前記位相変調領域は前記位相変調領域を通じて送られる前記光信号の位相を制御する、位相変調領域と
を有し、
前記レーザにフィードバックされる前記遅延線の出力は、前記光利得領域及び前記位相変調領域の各々にバイアスをかけ、前記光信号の位相ドリフトが低減される、デバイス。
[例2]
前記マルチモード波長可変レーザは、p型半導体領域と、n型半導体領域と、前記p型半導体領域と前記n型半導体領域との間にある活性層とを有するPIN構造により形成され、
前記半導体光利得領域は、前記活性層に沿って形成された多重量子井戸構造を有する、例1に記載のデバイス。
[例3]
前記PIN構造は、リン化インジウムにより形成され、
前記多重量子井戸構造は、インジウムガリウムヒ素リン化物合金とインジウムアルミニウムヒ素合金とのいずれかにより形成される、例2に記載のデバイス。
[例4]
前記光信号における複数の波長の前記モード間分離周波数が、約40GHzである、例1~3のいずれかに記載のデバイス。
[例5]
前記フィードバック領域の前記フィードバックミラーは、分布ブラッグ反射鏡又はファブリ・ペロー共振器である、例1~4のいずれかに記載のデバイス。
[例6]
前記位相変調領域は、6ボルト~7ボルトの電圧が印加されたときに約15度/(V*mm)の感度を有する位相変調器を備える、例に記載のデバイス。
[例7]
前記フィードバックループは、前記遅延線を有する自己注入同期の部分であって、
前記遅延線の出力を増幅する半導体光増幅器と、
前記レーザにより生成された前記光信号と前記遅延線の出力との各々を受信し、前記遅延線出力の出力を前記レーザにフィードバックする光コンバイナと
を更に備える、例1~6のいずれかに記載のデバイス。
[例8]
前記レーザは、前記光利得領域における利得を制御するための第1の電流源と、前記位相変調領域における位相変調を制御するための第2の電流源とを備え、
前記第1の電流源及び前記第2の電流源の各々は、互いに電気的に絶縁され、
前記光コンバイナは、前記遅延線の出力を前記第1の電流源及び前記第2の電流源の各々に提供する、例7に記載のデバイス。
[例9]
前記半導体光増幅器は、約2dBの利得を有し、前記フィードバックループは、1時間の持続時間にわたる前記光信号の周波数ドリフトを11GHz超から8GHz未満へと低減させる、例7又は8に記載のデバイス。
[例10]
前記半導体光増幅器は、約5dBの利得を有し、前記フィードバックループは、1時間の持続時間にわたる前記光信号の周波数ドリフトを11GHz超から6GHz未満へと低減させる、例7又は8に記載のデバイス。
[例11]
前記フィードバックループは、
前記遅延線を有する光電子型の自己位相同期ループの部分であって、
前記レーザによる前記光信号の遅延のないバージョンを受信し、受信した信号を光領域から電気領域へと変換する第1の光電気変換器と、
前記第1の光電気変換器から前記変換後の遅延のない信号を受信する第1の電路と、
前記遅延線から前記光信号の遅延のあるバージョンを受信し、受信した信号を光領域から電気領域へと変換する第2の光電気変換器と、
前記第2の光電気変換器から前記変換後の遅延のある信号を受信する第2の電路と、
前記第1の電路及び前記第2の電路の各々に接続され、前記変換後の遅延のない信号と前記変換後の遅延のある信号とを合成して合成後の信号とする位相ミキサと
を更に備え、
前記デバイスは更に、前記合成後の信号が前記レーザにフィードバックされるように構成されている、例1~6のいずれかに記載のデバイス。
[例12]
前記ミキサの出力に接続され前記合成後の信号を増幅する増幅器を更に備え、
前記デバイスは、増幅された合成後の信号が前記レーザにフィードバックされるように構成されている、例11に記載のデバイス。
[例13]
前記第1の電路及び前記第2の電路の各々は、前記変換後の遅延のない信号及び前記変換後の遅延のある信号をそれぞれフィルタリングする狭帯域フィルタを備え、
各狭帯域フィルタは、前記モード間分離周波数に基づいて選択される周波数と同じ周波数を中心とする、例11又は12に記載のデバイス。
[例14]
前記フィードバックループは、
光電子型の自己注入同期・自己位相同期ループによるフィードバックループであり、
前記遅延線の出力を増幅する半導体光増幅器と、
前記レーザにより生成された前記光信号と前記遅延線の出力との各々を受信し、前記遅延線出力の出力を前記レーザにフィードバックする光コンバイナと
を備える自己注入同期の部分と、
前記レーザから前記光信号の遅延のないバージョンを受信し、受信した信号を光領域から電気領域へと変換する第1の光電気変換器と、
前記第1の光電気変換器から前記変換後の遅延のない信号を受信する第1の電路と、
前記遅延線から前記光信号の遅延のあるバージョンを受信し、受信した信号を光領域から電気領域へと変換する第2の光電気変換器と、
前記第2の光電気変換器から前記変換後の遅延のある信号を受信する第2の電路と、
前記第1の電路及び前記第2の電路の各々に接続され、前記変換後の遅延のない信号と前記変換後の遅延のある信号とを合成し、合成後の信号とする位相ミキサと
を備える自己位相同期ループの部分と
を有し、
前記デバイスは更に、前記合成後の信号が前記レーザにフィードバックされるように構成されている、例1~6のいずれかに記載のデバイス。
[例15]
前記レーザの出力に接続され、前記レーザにより生成された前記光信号を分配する光カプラを更に備え、前記レーザにより生成された前記光信号の一部のみが前記遅延線に送られる、例1~4のいずれかに記載のデバイス。
[例16]
前記レーザ及び前記遅延線がモノリシックに集積されている、例1~15のいずれかに記載のデバイス。
[例17]
前記遅延線は、トロイダルマイクロ共振器とリングマイクロ共振器とのいずれかとして選択される遅延要素を備える、例16に記載のデバイス。
[例18]
前記遅延要素は、半径が約60ミクロンのトロイダルマイクロ共振器である、例17に記載のデバイス。
[例19]
前記遅延要素は、直径が約10ミクロンのリング状マイクロ共振器である、例17に記載のデバイス。
[例20]
前記遅延要素は、レーザが約1550nmの波長で動作する場合に、1011のオーダーの品質係数を有する、例17~19のいずれかに記載のデバイス。
[例21]
前記遅延要素は約250μsの遅延を生じさせる、例17~20のいずれかに記載のデバイス。
[例22]
前記遅延線は、1つ以上のフォトニックバンドギャップファイバを含む、例16に記載のデバイス。
[例23]
前記フィードバックループは複数の遅延線を有し、各遅延線は、前記マルチモード波長可変レーザに対し、注入同期フィードバックと位相同期ループフィードバックとの少なくともいずれかを提供する、例1~22のいずれかに記載のデバイス。
[例24]
前記複数の遅延線のうちの少なくとも1つは、前記光信号の発振を同期させるために外部基準信号を有する位相同期ループフィードバック要素を備える、例23に記載のデバイス。
[例25]
前記波長可変マルチモードレーザの前記利得領域と前記フィードバック領域と前記位相変調領域との各々が、モノリシックに集積されている、例24に記載のデバイス。
[例26]
あるRF周波数帯においてモード間分離周波数を有する複数のモードを有し、調整された波長の光信号を生成する波長可変レーザと、
前記波長可変レーザに接続され前記光信号を受信する光電子フィードバックループであって、前記光電子フィードバックループは、前記光信号が蓄積される少なくとも1つの遅延部を備え、前記光電子フィードバックループの出力は前記波長可変レーザに接続され、前記光信号が前記レーザにフィードバックされる、光電子フィードバックループと
を備え、
前記波長可変レーザは、
p型半導体領域とn型半導体領域との間にある活性層を有するPIN構造と、
分布ブラッグ反射鏡又はファブリ・ペロー共振器を有し、選択された光波長において放出を行うフィードバックミラーと、
前記光信号の位相を制御する位相変調器と、
前記PIN構造における前記活性層に沿って形成された多重量子井戸構造と、
を備え、
前記光電子フィードバックループは、前記光信号の前記モード間分離周波数を安定させるために、前記光信号の自己注入同期ループ及び自己位相同期ループを提供する、
光電子デバイス。
[例27]
光電子フィードバックループは、前記光信号の前記モード間分離周波数を安定させるべく、バルクハウゼンの発振条件を満たす位相の状態となるように前記位相変調器を制御する、例26に記載の光電子デバイス。
図1
図2
図3
図4
図5
図6
図7