(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-02
(45)【発行日】2024-07-10
(54)【発明の名称】変換スキップ・モードのブロック寸法設定
(51)【国際特許分類】
H04N 19/12 20140101AFI20240703BHJP
H04N 19/136 20140101ALI20240703BHJP
H04N 19/176 20140101ALI20240703BHJP
H04N 19/70 20140101ALI20240703BHJP
【FI】
H04N19/12
H04N19/136
H04N19/176
H04N19/70
【外国語出願】
(21)【出願番号】P 2023065290
(22)【出願日】2023-04-13
(62)【分割の表示】P 2021567929の分割
【原出願日】2020-05-13
【審査請求日】2023-04-18
(31)【優先権主張番号】PCT/CN2019/086656
(32)【優先日】2019-05-13
(33)【優先権主張国・地域又は機関】CN
(31)【優先権主張番号】PCT/CN2019/107144
(32)【優先日】2019-09-21
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】520476341
【氏名又は名称】北京字節跳動網絡技術有限公司
【氏名又は名称原語表記】Beijing Bytedance Network Technology Co., Ltd.
【住所又は居所原語表記】Room B-0035, 2/F, No.3 Building, No.30, Shixing Road, Shijingshan District Beijing 100041 China
(73)【特許権者】
【識別番号】520477474
【氏名又は名称】バイトダンス インコーポレイテッド
【氏名又は名称原語表記】BYTEDANCE INC.
【住所又は居所原語表記】12655 West Jefferson Boulevard, Sixth Floor, Suite No. 137 Los Angeles, California 90066 United States of America
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ザン,リー
(72)【発明者】
【氏名】ザン,カイ
(72)【発明者】
【氏名】デン,ジピン
(72)【発明者】
【氏名】リュウ,ホンビン
(72)【発明者】
【氏名】ザン,ナー
(72)【発明者】
【氏名】ワン,ユエ
【審査官】岩井 健二
(56)【参考文献】
【文献】特表2016-524409(JP,A)
【文献】G. Clare et al.,CE8: BDPCM with harmonized residual coding and CCB limitation (CE8-3.1a, CE8-3.1b, CE8-5.1a, CE8-5.1,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N0214,14th Meeting: Geneva, CH,2019年03月,pp.1-12
【文献】Marta Karczewicz, and Muhammed Coban,CE8-related: Quantized residual BDPCM,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N0413,14th Meeting: Geneva, CH,2019年03月,pp.1-5
【文献】Benjamin Bross, Jianle Chen, and Shan Liu,Versatile Video Coding (Draft 5),Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-N1001 (version 8),14th Meeting: Geneva, CH,2019年06月11日,pp.39-40,53-56,60-62,84,87-89,109-114,118-119,127-128,147-152,246-247
【文献】Sunmi Yoo et al.,CE8-related : Unified condition between BDPCM and transform skip,Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,JVET-O0206_v1,15th Meeting: Gothenburg, SE,2019年06月,pp.1-2
(58)【調査した分野】(Int.Cl.,DB名)
H04N 19/00 - 19/98
(57)【特許請求の範囲】
【請求項1】
ビデオ・データを処理する方法であって:
ビデオのビデオ領域と前記ビデオのビットストリームとの間の変換について、寸法制約条件に基づいて前記ビデオ領域の第1のブロックに関連付けられた第1のコーディングモードと前記ビデオ領域の第2のブロックに関連付けられた第2のコーディングモードとが有効にされるかどうかを決定するステップであって、
前記寸法制約条件は、前記第1のコーディングモードを使う前記第1のブロックについてと、前記第2のコーディングモードを使う前記第2のブロックについて、同じ許容される最大寸法を述べ、
エンコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は変換演算を適用せず、または、デコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は逆変換演算を適用せず;
前記第1のコーディングモードは、変換スキップ・モードを含み、前記第2のコーディングモードは差分コーディングモードを含み、前記差分コーディングモードでは、ブロックのイントラ予測モードで導出された量子化された残差と、前記量子化された残差の予測との間の差分が前記ビットストリームに含まれる、ステップと;
前記決定に基づいて前記変換を実行するステップとを含
み、
前記許容される最大寸法を示す単一の第1の構文要素が、前記第1のコーディングモードおよび前記第2のコーディングモードの使用を制御するために前記ビットストリームに含まれ
、前記第1のコーディングモードが有効にされる場合、前記第1の構文要素
はlog2_transform_skip_max_size_minus2であり、前記ビットストリームに含まれる
、
方法。
【請求項2】
前記第1のコーディングモードがコーディング単位レベルではないレベルで有効にされる、請求項
1に記載の方法。
【請求項3】
前記第2のコーディングモードを有効にするかどうかが、前記第1のコーディングモードが有効にされるかどうかに依存する、請求項1
または2に記載の方法。
【請求項4】
前記第1のコーディングモードが許容されるかどうかの条件チェックのもとに、前記第2のコーディングモードについてオン/オフ制御を示す第2の構文要素が前記ビットストリームに含まれる、請求項1ないし
3のうちいずれか一項に記載の方法。
【請求項5】
前記第2の構文要素がシーケンスパラメータセット(SPS)レベルまたはコーディングブロックレベルで含まれる、請求項
4に記載の方法。
【請求項6】
前記第1のコーディングモードにおいて、前記エンコード・プロセスにおいて量子化演算もスキップされ、前記デコード・プロセスにおいて逆量子化演算もスキップされる、請求項1ないし
5のうちいずれか一項に記載の方法。
【請求項7】
前記許容される最大寸法が、前記ビデオ領域の第3のブロックに関連付けられた第3のコーディングモードのためにも使用され、前記第3のコーディングモードは、前記第3のブロックの変換領域での係数値が、前記第3のブロックの残差ブロックの値と同じであることを許容する、請求項1ないし
6のうちいずれか一項に記載の方法。
【請求項8】
前記第2のコーディングモードが前記第2のブロックについて許容される場合、前記第1のコーディングモードが前記第2のブロックの一つまたは複数の残差ブロックに適用される、請求項1ないし
7のうちいずれか一項に記載の方法。
【請求項9】
前記差分は、ブロック・ベースの差分パルスコーディング変調表現を使って表現される、請求項1ないし
8のうちいずれか一項に記載の方法。
【請求項10】
前記第1のブロックおよび前記第2のブロックは同じブロックである、請求項1ないし
9のうちいずれか一項に記載の方法。
【請求項11】
前記変換が、前記ビデオ領域を前記ビットストリームにエンコードすることを含む、請求項1ないし
10のうちいずれか一項に記載の方法。
【請求項12】
前記変換が、前記ビデオ領域を前記ビットストリームからデコードすることを含む、請求項1ないし
10のうちいずれか一項に記載の方法。
【請求項13】
プロセッサおよび命令が記録されている非一時的メモリを有する、ビデオ・データを処理する装置であって、前記命令は、前記プロセッサによって実行されると、前記プロセッサに:
ビデオのビデオ領域と前記ビデオのビットストリームとの間の変換について、寸法制約条件に基づいて前記ビデオ領域の第1のブロックに関連付けられた第1のコーディングモードと前記ビデオ領域の第2のブロックに関連付けられた第2のコーディングモードとが有効にされるかどうかを決定するステップであって、
前記寸法制約条件は、前記第1のコーディングモードを使う前記第1のブロックについてと、前記第2のコーディングモードを使う前記第2のブロックについて、同じ許容される最大寸法を述べ、
エンコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は変換演算を適用せず、または、デコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は逆変換演算を適用せず;
前記第1のコーディングモードは、変換スキップ・モードを含み、前記第2のコーディングモードは差分コーディングモードを含み、前記差分コーディングモードでは、ブロックのイントラ予測モードで導出された量子化された残差と、前記量子化された残差の予測との間の差分が前記ビットストリームに含まれる、ステップと;
前記決定に基づいて前記変換を実行するステップとを実行させるものであ
り、
前記許容される最大寸法を示す単一の第1の構文要素が、前記第1のコーディングモードおよび前記第2のコーディングモードの使用を制御するために前記ビットストリームに含まれ、前記第1のコーディングモードが有効にされる場合、前記第1の構文要素はlog2_transform_skip_max_size_minus2であり、前記ビットストリームに含まれる、
装置。
【請求項14】
命令を記憶している非一時的なコンピュータ読み取り可能な記憶媒体であって、前記命令は、プロセッサに:
ビデオのビデオ領域と前記ビデオのビットストリームとの間の変換について、寸法制約条件に基づいて前記ビデオ領域の第1のブロックに関連付けられた第1のコーディングモードと前記ビデオ領域の第2のブロックに関連付けられた第2のコーディングモードとが有効にされるかどうかを決定するステップであって、
前記寸法制約条件は、前記第1のコーディングモードを使う前記第1のブロックについてと、前記第2のコーディングモードを使う前記第2のブロックについて、同じ許容される最大寸法を述べ、
エンコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は変換演算を適用せず、または、デコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は逆変換演算を適用せず;
前記第1のコーディングモードは、変換スキップ・モードを含み、前記第2のコーディングモードは差分コーディングモードを含み、前記差分コーディングモードでは、ブロックのイントラ予測モードで導出された量子化された残差と、前記量子化された残差の予測との間の差分が前記ビットストリームに含まれる、ステップと;
前記決定に基づいて前記変換を実行するステップとを実行させるものであ
り、
前記許容される最大寸法を示す単一の第1の構文要素が、前記第1のコーディングモードおよび前記第2のコーディングモードの使用を制御するために前記ビットストリームに含まれ、前記第1のコーディングモードが有効にされる場合、前記第1の構文要素はlog2_transform_skip_max_size_minus2であり、前記ビットストリームに含まれる、
記憶媒体。
【請求項15】
ビデオのビットストリームを記憶
する方法であっ
て:
寸法制約条件に基づいて前記ビデオのビデオ領域の第1のブロックに関連付けられた第1のコーディングモードと前記ビデオ領域の第2のブロックに関連付けられた第2のコーディングモードとが有効にされるかどうかを決定するステップであって、
前記寸法制約条件は、前記第1のコーディングモードを使う前記第1のブロックについてと、前記第2のコーディングモードを使う前記第2のブロックについて、同じ許容される最大寸法を述べ、
エンコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は変換演算を適用せず、または、デコード・プロセスについては、前記第1のコーディングモードおよび前記第2のコーディングモードの両方は逆変換演算を適用せず;
前記第1のコーディングモードは、変換スキップ・モードを含み、前記第2のコーディングモードは差分コーディングモードを含み、前記差分コーディングモードでは、ブロックのイントラ予測モードで導出された量子化された残差と、前記量子化された残差の予測との間の差分が前記ビットストリームに含まれる、ステップと;
前記決定に基づいて前記ビットストリームを生成するステップと
;
前記ビットストリームを非一時的なコンピュータ読み取り可能な記録媒体に記憶するステップとを含
み、
前記許容される最大寸法を示す単一の第1の構文要素が、前記第1のコーディングモードおよび前記第2のコーディングモードの使用を制御するために前記ビットストリームに含まれ、前記第1のコーディングモードが有効にされる場合、前記第1の構文要素はlog2_transform_skip_max_size_minus2であり、前記ビットストリームに含まれる、
方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2020年5月13日に出願された国際特許出願PCT/CN2020/089936に基づく特願2021-567929の分割出願であり、同国際特許出願は2019年5月13日に出願された国際特許出願PCT/CN2019/086656および2019年9月21日に出願された国際特許出願第PCT/CN2019/107144号の優先権を主張する。前述の特許出願すべてが、ここに本願の開示の一部として引用によりその全体において援用される。
【0002】
技術分野
本開示は、ビデオコーディング技術、装置およびシステムに関する。
【背景技術】
【0003】
ビデオ圧縮の進歩にもかかわらず、デジタル・ビデオは、依然として、インターネットおよび他のデジタル通信ネットワークにおける最大の帯域幅使用を占めている。ビデオを受信・表示できる接続されたユーザーデ装置の数が増すにつれて、デジタル・ビデオの利用に対する帯域幅需要は増加し続けることが予想される。
【発明の概要】
【課題を解決するための手段】
【0004】
デジタル・ビデオコーディング、特に視覚メディアコーディングのための無損失コーディングに関連する装置、システムおよび方法。記載される諸方法は、既存のビデオコーディング標準(たとえば、高効率ビデオコーディング(HEVC))および将来のビデオコーディング標準またはビデオ・コーデックの両方に適用されうる。
【0005】
ある代表的な側面では、開示された技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、複数の色成分を含むビデオと、該ビデオのビットストリーム表現との間の変換を実行することを含み、ビットストリーム表現は、2つの色成分についてのビットストリーム表現に一つまたは複数の構文要素が含まれて、ビットストリーム表現における該2つの色成分のビデオ・ブロックを表現するためにトランスクワント・バイパス・モードが適用可能であるかどうかを示すことを指定する規則に適合する。あるビデオ・ブロックにトランスクワント(transquant)・バイパス・モードが適用可能である場合、そのビデオ・ブロックは、変換(transform)および量子化(quantization)プロセスを使用することなくビットストリーム表現において表現されるか、またはそのビデオ・ブロックは、逆変換および逆量子化プロセスを使用することなくビットストリーム表現から取得される。
【0006】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。この方法は、ビデオの現在のビデオ・ブロックの特性に基づいて、トランスクワント・バイパス・モードが現在のビデオ・ブロックに適用可能かどうかを判定するステップであって、トランスクワント・バイパス・モードが現在のビデオ・ブロックに適用可能である場合、現在のビデオ・ブロックは変換および量子化プロセスを使用することなくビットストリーム表現において表現されるか、または現在のビデオ・ブロックは逆変換および逆量子化プロセスを使用することなくビットストリーム表現から取得される、ステップと;前記判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0007】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、寸法制約条件を満たすビデオの現在のビデオ・ブロックに基づいて、現在のビデオ・ブロックをビットストリーム表現において表現するために2つ以上のコーディングモードが有効にされていることを判別するステップであって、寸法制約条件は、現在のビデオ・ブロックについての同じセットの許容される寸法が、前記2つ以上のコーディングモードについて無効にされていることを述べ、エンコード動作については、前記2つ以上のコーディングモードは、現在のビデオ・ブロックに対する変換演算を使用することなく、現在のビデオ・ブロックをビットストリーム表現において表現し、デコード動作については、前記2つ以上のコーディングモードは、逆変換演算を使用することなく、ビットストリーム表現から現在のビデオ・ブロックを得るために使用される、ステップと;前記2つ以上のコーディングモードのうちの1つに基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0008】
別の代表的な側面では、開示された技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、寸法制約条件を満たすビデオの現在のビデオ・ブロックに基づいて、現在のビデオ・ブロックをビットストリーム表現において表現するために2つ以上のコーディングモードが有効にされていることを判別するステップであって、寸法制約条件は、同じセットの許容される寸法が、前記2つ以上のコーディングモードを有効にするために使用されることを述べ、エンコード動作については、前記2つ以上のコーディングモードは、現在のビデオ・ブロックに対する変換演算を使用することなく、現在のビデオ・ブロックをビットストリーム表現において表現し、デコード動作については、前記2つ以上のコーディングモードは、逆変換演算を使用することなく、ビットストリーム表現から現在のビデオ・ブロックを得るために使用される、ステップと;前記2つのコーディングモードのうちの1つに基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0009】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、寸法制約条件を満たすビデオの現在のビデオ・ブロックに基づいて、現在のビデオ・ブロックをビットストリーム表現において表現するためにあるコーディングモードが有効にされていることを判別するステップであって、エンコード動作においては、前記コーディングモードは、現在のビデオ・ブロックに対して変換演算を使用することなく現在のビデオ・ブロックをビットストリーム表現において表現し、デコード動作においては、逆変換演算を使用することなくビットストリーム表現から現在のビデオ・ブロックが得られ、寸法制約条件は、前記コーディングモードを使って変換演算または逆変換演算が適用されない現在のビデオ・ブロックについての第1の最大変換ブロック・サイズが、別のコーディングモードを使って、変換演算または逆変換演算が適用される現在のビデオ・ブロックについての第2の最大変換ブロック・サイズと異なることを述べる、ステップと;前記コーディングモードに基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0010】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップを含み、現在のビデオ・ブロックは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化残差の予測との差がビットストリーム表現において表現される量子化残差ブロック差分パルス符号変調(quantized residual block differential pulse-code modulation、QR-BDPCM)モードを使用して、ビットストリーム表現においてコーディングされ、ビットストリーム表現は、該ビットストリーム表現がQR-BDPCMモードのサイド情報および/または現在のビデオ・ブロックへの変換スキップ(transform skip、TS)モードの適用可能性を示す構文要素を含むかどうかを指定するフォーマット規則に適合し、該サイド情報は、QR-BDPCMモードの使用の指示またはQR-BDPCMモードの予測方向のうちの少なくとも1つを含む。
【0011】
別の代表的な側面では、開示された技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックが、現在のビデオ・ブロックに変換および量子化プロセスが適用されないトランスクワント・バイパス・モードを使用してコーディングされることを決定するステップと;前記決定に基づいて、クロマ・スケーリング付きルーマ・マッピング(luma mapping with chroma scaling、LMCS)プロセスを無効にすることによって、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含み、現在のビデオ・ブロックがルーマ成分からのものである場合には、LMCSプロセスを無効にすることは、現在のビデオ・ブロックについて再整形(reshaped)ドメインともとのドメインとのサンプルの間の切り換えの実行を無効にする、または、現在のビデオ・ブロックがクロマ成分からのものである場合には、LMCSプロセスを無効にすることは、現在のビデオ・ブロックのクロマ残差のスケーリングを無効にする。
【0012】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックが、変換演算が現在のビデオ・ブロックに適用されない第1のコーディングモードを使用してコーディングされるかどうかの第1の判定を実行するステップと;ビデオの一つまたは複数のビデオ・ブロックが、第2のコーディングモードを使用してコーディングされるかどうかの第2の判定を実行するステップであって、該一つまたは複数のビデオ・ブロックは現在のビデオ・ブロックについて使用される参照サンプルを含む、ステップと;第1の判定および第2の判定に基づいて、イントラ予測プロセスに関連する第3のコーディングモードが現在のビデオ・ブロックに適用可能であるかどうかの第3の判定を実行するステップと;第3の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0013】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックと、ビデオのビットストリーム表現との間の変換を実行するステップを含み、ビットストリーム表現は、該ビットストリーム表現が、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされるかどうかを示す構文要素を含むかどうかを指定するフォーマット規則に適合し、トランスクワント・バイパス・モードが現在のビデオ・ブロックに適用される場合、現在のビデオ・ブロックは、変換および量子化プロセスを使用することなく、ビットストリーム表現で表現される。
【0014】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、トランスクワント・バイパス・モードがビデオの現在のビデオ・ブロックに適用可能であることを決定するステップであって、トランスクワント・バイパス・モードでは、変換および量子化プロセスが現在のビデオ・ブロックに対して使用されない、ステップと;前記決定に基づいて、現在のビデオ・ブロックのサンプルについてのフィルタリング方法を無効にするステップと;前記決定および前記無効化に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0015】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、トランスクワント・バイパス・モードがビデオの現在のビデオ・ブロックに適用可能であることの第1の判定を実行するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが使用されない、ステップと;第1の判定に応答して、暗黙的な複数変換集合(multiple transform set、MTS)プロセスにおける変換選択モードが現在のビデオ・ブロックについて適用可能でないことの第2の判定を実行するステップと;第1の判定および第2の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0016】
別の代表的な側面では、開示された技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、トランスクワント・バイパス・モードがビデオの現在のビデオ・ブロックに適用可能であることの第1の判定を実行するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスは使用されず、現在のビデオ・ブロックはクロマ成分に関連している、ステップと;第1の判定に応答して、前記クロマ成分のサンプルがクロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスにおいてスケーリングされていないことの第2の判定を実行するステップと;第1の判定および第2の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0017】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、トランスクワント・バイパス・モードがビデオの現在のビデオ・ブロックに適用可能であることを決定するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが使用されない、ステップと;前記決定に基づいて、現在のビデオ・ブロックのコーディング単位(CU)、コーディングツリー単位(CTU)、スライス、タイル、タイル・グループ、ピクチャー、またはシーケンスについてクロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスを無効にするステップと;前記決定に基づいて、現在のビデオ・ブロックのコーディング単位(CU)、コーディングツリー単位(CTU)、スライス、タイル、タイル・グループ、ピクチャー、またはシーケンスについてクロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスを無効にすることによって、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含み、現在のビデオ・ブロックがルーマ成分からのものである場合には、LMCSプロセスを無効にすることは、現在のビデオ・ブロックについて再整形(reshaped)ドメインともとのドメインとのサンプルの間の切り換えの実行を無効にする、または、現在のビデオ・ブロックがクロマ成分からのものである場合には、LMCSプロセスを無効にすることは、現在のビデオ・ブロックのクロマ残差のスケーリングを無効にする。
【0018】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックが、現在のビデオ・ブロックに恒等変換が適用されるか何の変換も適用されないモードを使用してコーディングされるどうかの第1の判定を実行するステップと;第1の判定に基づいて、現在のビデオ・ブロックにコーディングツールを適用するかどうかの第2の判定を実行するステップと;第1の判定と第2の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0019】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップを含み、ビットストリーム表現は、現在のビデオ・ブロックを表現するためにトランスクワント・バイパス・モードが適用可能であるか否かを示す構文要素を含み、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能である場合、現在のビデオ・ブロックは、変換および量子化プロセスを使用することなくビットストリーム表現で表現され、トランスクワント・バイパス・モードは、現在のビデオ・ブロックについて第1のビデオ単位レベルで適用可能であり、ビットストリーム表現は、現在のビデオ・ブロックのビデオ・ブロックが第1のビデオ単位レベルよりも小さい第2のビデオ単位レベルでのトランスクワント・バイパス・モードの信号伝達を除外する。
【0020】
別の代表的な側面では、開示された技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックと、ビデオのビットストリーム表現との間の変換を実行することを含み、ビットストリーム表現は、現在のビデオ・ブロックを表現するためにトランスクワント・バイパス・モードが適用可能かどうかを示す構文要素を含み、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能である場合、現在のビデオ・ブロックは、変換および量子化プロセスを使用することなくビットストリーム表現で表現され、トランスクワント・バイパス・モードは、現在のビデオ・ブロックについて第1のビデオ単位レベルで適用可能であり、ビットストリーム表現は、現在のビデオ・ブロックの第2のビデオ単位レベルでのトランスクワント・バイパス・モードの使用のサイド情報を含む。
【0021】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックについて、現在のビデオ・ブロックに対して無損失コーディング技法が適用されるモードが適用可能かどうかを決定するステップと;前記決定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含み、ビットストリーム表現は、あるコーディングツールが現在のビデオ・ブロックのあるビデオ単位レベルで適用可能かどうかを示す構文要素を含み、前記ビデオ単位レベルはコーディング単位(CU)より大きく、前記コーディングツールは前記ビデオ単位レベル内のサンプルには適用されない。
【0022】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、ビデオの現在のビデオ・ブロックについて、イントラサブブロック分割(intra subblock partitioning、ISP)モードまたはサブブロック変換(sub-block transform、SBT)モードについて非離散コサイン変換II(DCT2)変換が許容されるかどうかを示す一つまたは複数の構文要素が、現在のビデオ・ブロックのビットストリーム表現に含まれているかどうかを判定するステップと;前記判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行するステップとを含む。
【0023】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、複数の色成分を含む現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成するステップであって、変換および量子化プロセスをスキップすることの指示が、前記複数の色成分のうち少なくとも2つの色成分についてビットストリーム表現において別個に信号伝達される、ステップと、前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップとを含む。
【0024】
別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックの特性に基づいて、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップするモードの有効化に関する決定を行うステップと、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップとを含む。
【0025】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックの少なくとも1つの寸法に基づいて、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップする第1のモード、および現在のビデオ・ブロックに変換を適用しない第2のモードの有効化に関する決定を行うステップと、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップとを含む。
【0026】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックが、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップする第2のモードおよび第1のモードを使用してコーディングされることを決定するステップと、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップとを含む。
【0027】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成するステップであって、変換および量子化プロセスをスキップすることの指示が、一つまたは複数の複数変換関連の(multiple transform related)コーディングツールに関連する構文要素を信号伝達する前にビットストリーム表現において信号伝達される、ステップと;前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップとを含む。
【0028】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックが、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップするモードを使用してコーディングされることを決定するステップと、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することの一部として、フィルタリング方法を無効にするステップとを含む。
【0029】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックが、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップするモードを使用してコーディングされていることを判定するステップと、前記判定に基づき、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することの一部として、(i)現在のビデオ・ブロックを含む現在のピクチャー、または(ii)現在のピクチャーの一部についてループ内再整形(in-loop reshaping、ILR)プロセスを無効にするステップとを含む。
【0030】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成することを含み、変換および量子化プロセスをスキップすることの指示が、量子化パラメータの一つまたは複数の指示を信号伝達した後に、ビットストリーム表現において選択的に信号伝達される、ステップと;前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップとを含む。
【0031】
さらに別の代表的な側面では、開示される技術は、ビデオ処理のための方法を提供するために使用されうる。本方法は、現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成するステップであって、現在のビデオ・ブロックに対するあるコーディングツールの適用の指示が、コーディング単位(CU)より大きいビデオ単位のレベルで、ビットストリーム表現において信号伝達される、ステップと;前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行するステップであって、該変換を実行することは、ビットストリーム表現における前記コーディングツールの適用の前記指示にもかかわらず現在のビデオ・ブロックの少なくともいくつかのサンプルに前記コーディングツールを適用することを控えることを含む。
【0032】
さらに別の代表的な側面では、上述の方法は、プロセッサ実行可能コードの形で具現され、コンピュータ読み取り可能なプログラム媒体に記憶される。
【0033】
さらに別の代表的な側面では、上述の方法を実行するように構成されたまたは動作可能な装置が開示される。本装置は、この方法を実施するようにプログラムされたプロセッサを含んでいてもよい。
【0034】
さらに別の代表的な側面では、ビデオ・デコーダ装置が、本明細書に記載の方法を実施することができる。
【0035】
開示された技術の上記および他の側面および特徴は、図面、明細書および特許請求の範囲においてより詳細に、記載されている。
【図面の簡単な説明】
【0036】
【
図1】
図1は、例示的なエンコーダのブロック図を示す。
【0037】
【0038】
【
図3A】
図3Aは、斜めおよび隣接の角度性イントラモードに適用される位置依存イントラ予測組み合わせ(PDPC)法によって使用されるサンプルの例を示す。
【
図3B】
図3Bは、斜めおよび隣接の角度性イントラモードに適用される位置依存イントラ予測組み合わせ(PDPC)法によって使用されるサンプルの例を示す。
【
図3C】
図3Cは、斜めおよび隣接の角度性イントラモードに適用される位置依存イントラ予測組み合わせ(PDPC)法によって使用されるサンプルの例を示す。
【
図3D】
図3Dは、斜めおよび隣接の角度性イントラモードに適用される位置依存イントラ予測組み合わせ(PDPC)法によって使用されるサンプルの例を示す。
【0039】
【
図4】予測ブロックの近傍の4つの参照ラインの例を示す。
【0040】
【
図5】4×8および8×4ブロックの分割例を示す。
【0041】
【
図6】4×8、8×4、4×4を除くすべてのブロックの分割の例である。
【0042】
【
図7】4×4ブロックについてのアフィン線形重み付けイントラ予測(ALWIP)の例を示す。
【0043】
【
図8】8×8ブロックについてのALWIPの例を示す。
【0044】
【
図9】8×4ブロックについてのALWIPの例を示す。
【0045】
【
図10】16×16ブロックについてのALWIPの例を示す。
【0046】
【
図11】合同探査モデル(JEM)における二次変換の例を示す。
【0047】
【
図12】提案された縮小二次変換(RST)の例を示す。
【0048】
【
図13】サブブロック変換モードSBT垂直(SBT-V)およびSBT水平(SBT-H)の例を示す。
【0049】
【
図14】再整形を伴うデコード・フローのフローチャートを示す。
【0050】
【0051】
【
図16】本開示に記載される視覚メディア・デコードまたは視覚メディア・エンコード技法を実装するためのハードウェアプラットフォームの例のブロック図である。
【0052】
【
図17】本開示の技法を利用しうる例示的なビデオコーディングシステムを示すブロック図である。
【0053】
【
図18】ビデオ・エンコーダの例を示すブロック図である。
【0054】
【
図19】ビデオ・デコーダの例を示すブロック図である。
【0055】
【
図20】本稿に開示されるさまざまな技法が実装されうる例示的なビデオ処理システムを示すブロック図である。
【0056】
【
図21】ビデオ処理のための例示的方法のフローチャートを示す。
【
図22】ビデオ処理のための例示的方法のフローチャートを示す。
【
図23】ビデオ処理のための例示的方法のフローチャートを示す。
【
図24】ビデオ処理のための例示的方法のフローチャートを示す。
【
図25】ビデオ処理のための例示的方法のフローチャートを示す。
【
図26】ビデオ処理のための例示的方法のフローチャートを示す。
【
図27】ビデオ処理のための例示的方法のフローチャートを示す。
【
図28】ビデオ処理のための例示的方法のフローチャートを示す。
【
図29】ビデオ処理のための例示的方法のフローチャートを示す。
【
図30】ビデオ処理のための例示的方法のフローチャートを示す。
【
図31】ビデオ処理のための例示的方法のフローチャートを示す。
【
図32】ビデオ処理のための例示的方法のフローチャートを示す。
【
図33】ビデオ処理のための例示的方法のフローチャートを示す。
【
図34】ビデオ処理のための例示的方法のフローチャートを示す。
【
図35】ビデオ処理のための例示的方法のフローチャートを示す。
【
図36】ビデオ処理のための例示的方法のフローチャートを示す。
【
図37】ビデオ処理のための例示的方法のフローチャートを示す。
【
図38】ビデオ処理のための例示的方法のフローチャートを示す。
【発明を実施するための形態】
【0057】
開示される技術の実施形態は、圧縮性能を改善するために、既存のビデオコーディング標準(たとえば、HEVC、H.265)および将来の標準に適用されうる。小見出しは、本開示において記載の可読性を向上させるために使用されており、議論または実施形態(および/または実装)をそれぞれのセクションのみに限定するものではない。
【0058】
2. ビデオコーディングの導入
より高解像度のビデオに対する要求が高まりつつあるため、ビデオコーディング〔符号化〕方法および技法は、現代の技術では至るところに存在している。ビデオ・コーデックは、典型的には、デジタル・ビデオを圧縮または圧縮解除する電子回路またはソフトウェアを含み、より高いコーディング効率を提供するために絶えず改良されている。ビデオ・コーデックは、圧縮されていないビデオを圧縮形式に、あるいはその逆に変換する。ビデオ品質、ビデオを表現するために使用されるデータ量(ビットレートによって決定される)、エンコードおよびデコード・アルゴリズムの複雑さ、データ損失およびエラーに対する感受性、編集の容易さ、ランダムアクセス、およびエンドツーエンド遅延(レイテンシー)の間には複雑な関係がある。圧縮フォーマットは、通例、標準的なビデオ圧縮仕様、たとえば、高効率ビデオコーディング(High Efficiency Video Coding、HEVC)規格(H.265または動画像専門家グループ(MPEG)-H Part 2としても知られている)、これから最終化される多用途ビデオコーディング(VVC)規格、または他の現在および/または将来のビデオコーディング規格に準拠する。
【0059】
ビデオコーディング規格は、主に、周知の国際電気通信連合・電気通信標準化セクター(ITU-T)および国際標準化機関(ISO)/国際電気技術委員会(IEC)規格の開発を通じて進化してきた。ITU-TはH.261とH.263を生み、ISO/IECはMPEG-1とMPEG-4 Visualを生み、両組織は合同で、H.262/MPEG-2 VideoおよびH.264/MPEG-4 Advanced Video Coding(AVC)およびH.265/HEVC規格を作成した。H.262以来、ビデオコーディング規格は、時間的予測と変換コーディングが利用されるハイブリッド・ビデオコーディング構造に基づいている。HEVCを越えた将来のビデオコーディング技術を探求するため、2015年にビデオコーディング専門家グループ(VCEG)とMPEGが合同して合同ビデオ探査チーム(Joint Video Exploration Team、JVET)を設立した。それ以来、JVETによって多くの新しい方法が採用され、合同探査モデル(Joint Exploration Model、JEM)と名付けられた参照ソフトウェアに入れられた。2018年4月には、VCEG(Q6/16)とISO/IEC JTC1 SC29/WG11(MPEG)の間の合同ビデオエキスパートチーム(Joint Video Expert Team、JVET)が発足し、HEVCに比して50%のビットレート低減を目指すVVC規格に取り組んでいる。
【0060】
2.1 典型的なビデオ・コーデックのコーディングフロー
図1は、3つのループ内フィルタリング・ブロック、すなわち、ブロッキング解除フィルタ(deblocking filter、DF)、サンプル適応オフセット(sample adaptive offset、SAO)、および適応ループ・フィルタ(ALF)を含む、VVCのエンコーダ・ブロック図の例を示している。あらかじめ定義されたフィルタを使用するDFとは異なり、SAOおよびALFは、現在のピクチャーのもとのサンプルを使用して、オフセットおよびフィルタ係数を信号伝達するコーディングされたサイド情報を用いてそれぞれオフセットを加えることおよび有限インパルス応答(FIR)フィルタを適用することにより、もとのサンプルと再構成されるサンプルとの間の平均平方誤差を低減する。ALFは、各ピクチャーの最後の処理ステージに位置し、前のステージによって生成されたアーチファクトを捕捉し修復しようとするツールと見なすことができる。
【0061】
2.2 67個のイントラ予測モードを用いたイントラモードコーディング
自然なビデオにおいて呈示される任意のエッジ方向を捕捉するために、方向性イントラモードの数は、HEVCで使用されるような33から65に拡張される。追加の方向性モードは、
図2において点線の矢印として示されており、平面モードと直流(DC)モードは同じままである。これらのより高密度の方向性イントラ予測モードは、すべてのブロック・サイズについて、ルーマおよびクロマ両方のイントラ予測のために適用される。
【0062】
従来の角度性イントラ予測方向は、
図2に示されるように、時計回り方向に45度から-135度まで定義される。VVC試験モデルの第2バージョン(VTM2)では、いくつかの従来の角度性イントラ予測モードが、非正方形ブロックについての広角イントラ予測モードに適応的に置き換えられる。置き換えられたモードは、もとの方法を用いて信号伝達され、パース後に広角モードのインデックスに再マッピングされる。イントラ予測モードの総数は変化せず、すなわち67であり、イントラモードコーディングは変化しない。
【0063】
HEVCでは、各イントラコーディングブロックは正方形の形を有し、その各辺の長さは2の冪乗である。よって、DCモードを使用してイントラ予測子を生成するために除算演算は必要とされない。VTM2では、ブロックは、一般的な場合、ブロックごとの除算演算の使用を必要とする長方形の形状を有することができる。DC予測のための除算演算を回避するために、長辺のみが非正方形ブロックについての平均を計算するために使用される。
【0064】
2.2.1 位置依存イントラ予測組み合わせ(PDPC)
【0065】
VTM2では、平面モードのイントラ予測の結果が、位置依存イントラ予測組み合わせ(position dependent intra prediction combination、PDPC)法によってさらに修正される。PDPCは、フィルタリングされていない境界参照サンプルと、フィルタリングされた境界参照サンプルを用いたHEVCスタイルのイントラ予測との組み合わせを呼び出すイントラ予測法である。PDPCは、信号伝達なしで以下のイントラモードに適用される:平面、DC、水平、垂直、左下の角度性モードとその8つの隣接する角度性モード、および右上の角度性モードとその8つの隣接する角度性モード。
【0066】
予測サンプルpred(x,y)は、次式に従って、イントラ予測モード(DC、平面、角度性)および参照サンプルの線形結合を用いて予測される:
【数1】
【0067】
ここで、Rx,-1、R-1,yは現在のサンプル(x,y)の左上に位置する参照サンプルを表し、R-1,-1は現在のブロックの左上隅に位置する参照サンプルを表す。
【0068】
PDPCがDC、平面、水平および垂直イントラモードに適用される場合、HEVCのDCモード境界フィルタまたは水平/垂直モード・エッジ・フィルタの場合に必要とされるような追加の境界フィルタは必要とされない。
【0069】
図3A~3Dは、さまざまな予測モードに対して適用されるPDPCのための参照サンプル(R
x,-1、R
-1,yおよびR
-1,-1)の定義を示す。予測サンプルpred(x',y')は予測ブロック内の(x',y')に位置する。参照サンプルR
x,-1の座標xは:x=x'+y'+1によって与えられ、参照サンプルR
-1,yの座標yは同様に:y=x'+y'+1によって与えられる。PDPCの重みは予測モードに依存し、表1に示される。
【表1】
【0070】
2.3 複数参照ライン(MRL)
複数参照ライン(multiple reference line、MRL)イントラ予測は、イントラ予測のためにより多くの参照ラインを使用する。
図4では、4つの参照ラインの例が示されており、ここで、セグメントAおよびFのサンプルは、再構成された近傍サンプルから取得されるのではなく、それぞれセグメントBおよびEからの最も近いサンプルでパディングされる。HEVCのピクチャー内予測は、最も近い参照ライン(すなわち参照ライン0)を使用する。MRLでは、2つの追加ライン(参照ライン1と参照ライン3)が使用される。
【0071】
選択された参照ラインのインデックス(mrl_idx)は信号伝達され、イントラ予測子を生成するために使用される。0より大きい参照ライン・インデックスについては、最確モード(MPM)リスト内の追加の参照ライン・モードのみを含み、残りのモードなしにMPMインデックスを信号伝達するだけである。参照ライン・インデックスは、イントラ予測モードの前に信号伝達され、平面およびDCモードは、ゼロでない参照ライン・インデックスが信号伝達される場合に、イントラ予測モードから除外される。
【0072】
MRLは、CTU内の諸ブロックの最初のラインについては無効にされる。現在のCTUラインの外側の拡張された参照サンプルを使用するのを防ぐためである。また、追加ラインが使用される場合は、PDPCは無効にされる。
【0073】
2.4 イントラサブブロック分割(ISP)
JVET-M0102では、表2に示されるように、ルーマ・イントラ予測ブロックをブロック・サイズに依存して垂直方向または水平方向に2つまたは4つのサブパーティションに分割するISPが提案されている。
図5および
図6は、2つの可能性の例を示す。すべてのサブパーティションは、少なくとも16個のサンプルをもつという条件を満たしている。ブロック・サイズが4×NまたはN×4(N>8)の場合、許容されれば、1×NまたはN×1のサブパーティションが存在してもよい。
【表2】
【0074】
これらのサブパーティションのそれぞれについて、エンコーダによって送信された係数をエントロピーデコードし、次いでそれらを逆量子化し、逆変換することによって、残差信号が生成される。次いで、サブパーティションがイントラ予測され、最後に、残差信号を予測信号に加算することによって対応する再構成サンプルが得られる。よって、各サブパーティションの再構成された値が、次のサブパーティションの予測を生成するために利用可能となり、それがプロセスを繰り返していく。すべてのサブパーティションは同じイントラモードを共有する。
【表3】
【0075】
2.5 アフィン線形重み付けイントラ予測(ALWIPまたは行列ベースのイントラ予測)
アフィン線形重み付けイントラ予測(affine linear weighted intra prediction、ALWIP)(行列ベースのイントラ予測(matrix based intra prediction、MIP)としても知られる)がJVET‐N0217で提案されている。
【0076】
2.5.1 行列ベクトル乗算による縮小予測信号の生成
近傍の参照サンプルが、まず、平均化を介してダウンサンプリングされ、縮小参照信号(reduced reference signal)bdryredを生成する。次いで、行列ベクトル積を計算し、オフセットを加えることによって、縮小予測信号(reduced prediction signal)predredが計算される。
【0077】
predred=A・bdryred+b
【0078】
ここで、Aは、Wred・Hred行をもち、W=H=4であれば4列、他のすべての場合には8列をもつ行列である。bはサイズWred・Hredのベクトルである。
【0079】
2.5.2 ALWIPプロセス全体の例解
平均化、行列ベクトル乗算、および線形補間のプロセス全体は、
図7~
図10において異なる形状について示されている。残りの形状は、図示されている場合の1つと同様に扱われることに注意されたい。
【0080】
1. 4×4ブロックが与えられた場合、ALWIPは境界の各軸に沿って2つの平均をとる。結果として得られる4つの入力サンプルが、行列ベクトル乗算に入る。マトリクスは、集合S0から取られる。オフセットを加えた後、これは16個の最終的な予測サンプルを与える。予測信号を生成するために線形補間は必要ではない。よって、サンプル当たりの合計(4・16)/(4・4)=4回の乗算が実行される。
【0081】
2. 8×8ブロックが与えられた場合、ALWIPは境界の各軸に沿って4つの平均をとる。結果として得られる8つの入力サンプルが行列ベクトル乗算に入る。行列は、集合S1から取られる。これは、予測ブロックの奇数位置に16個のサンプルを与える。よって、サンプル当たり合計(8・16)/(8・8)=2回の乗算が実行される。オフセットを加えた後、これらのサンプルは、縮小された上部境界を使用することによって垂直に補間される。その後、もとの左側の境界を使って水平補間が実行される。
【0082】
3. 8×4ブロックが与えられた場合、ALWIPは境界の水平軸に沿って4つの平均をとり、左境界上に4つのもとの境界値をとる。結果として得られる8つの入力サンプルが行列ベクトル乗算に入る。行列は、集合S1から取られる。これは、予測ブロックの奇数の水平位置で各垂直位置に16個のサンプルを与える。よって、サンプル当たり合計(8・16)/(8・4)=4回の乗算が実行される。オフセットを加えた後、これらのサンプルはもとの左境界を用いて水平方向に補間される。
【0083】
4. 16×16ブロックが与えられた場合、ALWIPは境界の各軸に沿って4つの平均をとる。結果として得られる8つの入力サンプルは、行列ベクトル乗算に入る。行列は、集合S2から取られる。これは、予測ブロックの奇数位置で64個のサンプルを与える。よって、サンプル当たり合計(8・64)/(16・16)=2回の乗算が実行される。オフセットを加えた後、これらのサンプルは、上部境界の8つの平均を用いて垂直方向に補間される。その後、もとの左側の境界を使って水平補間が実行される。この場合、補間プロセスは、いかなる乗算も追加しない。したがって、全体として、ALWIP予測を計算するためには、サンプルあたり2回の乗算が必要とされる。
【0084】
より大きな形状については、手順は本質的に同じであり、サンプル当たりの乗算数が4未満であることを確認することは容易である。
【0085】
W>8であるW×8ブロックについては、サンプルが奇数の水平位置で各垂直位置において与えられるので、水平補間のみが必要である。
【0086】
最後に、W>8であるW×4ブロックについては、A_kは、ダウンサンプリングされたブロックの横軸に沿った奇数のエントリーに対応するすべての行を除外することによって生じる行列とする。よって、出力サイズは32であり、ここでもまた、水平補間のみが実行されるべく残る。
【0087】
転置した場合もこれに応じて扱われる。
【0088】
2.6 VVCにおける複数変換集合(MTS)
2.6.1 明示的な複数変換集合(MTS)
VVC試験モデルの第4バージョン(VTM4)では、64×64までのサイズの大きなブロック・サイズの変換が可能であり、これは主に高解像度ビデオ、たとえば1080pおよび4Kシーケンスに有用である。高周波変換係数は、サイズ(幅または高さ、または幅および高さの両方)が64に等しい変換ブロックについてはゼロにされ、それにより、低周波係数のみが保持される。たとえば、Mをブロック幅、Nをブロック高さとして、M×N変換ブロックについて、Mが64に等しい場合、変換係数の左32列のみが保持される。同様に、Nが64に等しい場合、変換係数の上32行のみが保持される。大きなブロックについて変換スキップ・モードが使用される場合、どの値もゼロにせずに、ブロック全体が使用される。
【0089】
HEVCで使用されてきたDCT‐IIに加えて、複数変換選択(Multiple Transform Selection、MTS)方式が、インターコーディングブロックおよびイントラコーディングブロックの両方の残差コーディングのために使用される。それは、DCT8/離散サイン変換(DST)7からの複数の選択された変換を使用する。新しく導入された変換行列はDST-VIIおよびDCT-VIIIである。下記の表4は、選択されたDST/DCTの基底関数を示す。
【表4】
【0090】
変換行列の直交性を維持するために、変換行列はHEVCにおける変換行列よりも正確に量子化される。水平変換後および垂直変換後に、変換された係数の中間的な値を16ビットの範囲内に維持するために、すべての係数は10ビットとする。MTS方式を制御するために、別個の有効化フラグが、それぞれイントラおよびインターについて、シーケンスパラメータセット(SPS)レベルで指定される。
【0091】
SPSでMTSが有効にされると、MTSが適用されるか否かを示すためにCUレベル・フラグが信号伝達される。ここで、MTSはルーマのみに適用される。MTS CUレベル・フラグは、以下の条件が満たされるときに信号伝達される。
【0092】
○幅および高さがどちらも32以下である。
【0093】
○CBFフラグが1に等しい。
【0094】
MTS CUフラグがゼロに等しい場合、DCT2は両方向に適用される。しかしながら、MTS CUフラグが1に等しい場合は、2つの他のフラグが追加的に、それぞれ水平方向および垂直方向についての変換タイプを示すために信号伝達される。変換と信号伝達のマッピング表は表5に示されるようになる。変換行列の精度については、8ビットの一次変換コア(primary transform core)が使用される。よって、4点DCT-2およびDST-7、8点DCT-2、16点DCT-2、32点DCT-2を含め、HEVCで使用されるすべての変換コアは、同じに保たれる。また、64点DCT-2、4点DCT-8、8点、16点、32点のDCT-7およびDCT-8を含む他の変換コアは、8ビット一次変換コアを使用する。
【表5】
【0095】
大きなサイズのDST-7およびDCT-8の複雑さを低減するために、サイズ(幅または高さ、または幅および高さの両方)が32に等しいDST-7およびDCT-8ブロックについて、高周波変換係数がゼロにされる。16×16の低周波領域内の係数のみが保持される。
【0096】
異なる変換が適用される場合に加えて、VVCは、HEVCにおけるTSの概念に似た変換スキップ(transform skip、TS)と呼ばれるモードもサポートする。TSはMTSの特殊なケースとして扱われる。
【0097】
2.6.1.1 構文とセマンティクス
MTSインデックスはビットストリームにおいて信号伝達されてもよく、そのような設計は明示的MTSと呼ばれる。さらに、変換ブロック・サイズに従って行列を直接導出する代替的な仕方も、暗黙的MTSとしてサポートされる。
【0098】
明示的なMTSについては、それはすべてのコーディングモードをサポートする。暗黙的なMTSについては、イントラモードのみがサポートされる。
【表6】
【表7】
transform_skip_flag[x0][y0]は、ルーマ変換ブロックに変換が適用されるかどうかを指定する。配列インデックスx0,y0は、ピクチャーの左上ルーマ・サンプルに対する、考えられている変換ブロックの左上ルーマ・サンプルの位置(x0,y0)を指定する。transform_skip_flag[x0][y0]が1に等しいことは、ルーマ変換ブロックに変換が適用されないことを指定する。transform_skip_flag[x0][y0]が0に等しいことは、変換がルーマ変換ブロックに適用されるかどうかの決定が他の構文要素に依存することを指定する。transform_skip_flag[x0][y0]が存在しない場合は、0に等しいと推定される。
tu_mts_idx[x0][y0]は、どの変換カーネルが、関連するルーマ変換ブロックの水平方向と垂直方向に沿って残差サンプルに適用されるかを指定する。配列インデックスx0,y0は、ピクチャーの左上ルーマ・サンプルに対する、考えられている変換ブロックの左上ルーマ・サンプルの位置(x0,y0)を指定する。tu_mts_idx[x0][y0]が存在しない場合は、0に等しいと推定される。
CABACデコード・プロセスでは、一つのコンテキストがtransform_skip_flagをデコードするために使われ、打ち切りされた単進(truncated unary)がtu_mts_idxを2値化するために使われる。tu_mts_idxの各ビンはコンテキストコーディングされ、最初のビンについては、四分木の深さ(すなわち、cqtDepth)が1つのコンテキストを選択するために使用され、残りのビンについては、1つのコンテキストが使用される。
【表8】
【0099】
2.6.2 暗黙的な複数変換集合(MTS)
ISP、SBT、およびMTSが有効にされているが暗黙的信号伝達を用いる場合は、すべて暗黙的MTSとして扱われることに留意されたい。この仕様では、暗黙的MTSが有効にされるかどうかを定義するために、implicitMtsEnabledが使用される。
8.7.4 スケーリングされた変換係数についての変換プロセス
8.7.4.1 一般
変数implicitMtsEnabled変数は次のように導出される:
・sps_mts_enabled_flagが1に等しく、次の条件のいずれかが真である場合、implicitMtsEnabledは1に等しく設定される:
・IntraSubPartitionsSplitTypeがISP_NO_SPLITと等しくない
・cu_sbt_flagが1に等しく、Max(nTbW,nTbH)が32以下
・sps_explicit_mts_intra_enabled_flagおよびsps_explicit_mts_inter_enabled_flagが両方とも0に等しく、CuPredMode[xTbY][yTbY]がMODE_INTRAに等しい
・それ以外の場合は、implicitMtsEnabledは0に等しく設定される。
水平変換カーネルを指定する変数trTypeHorおよび垂直変換カーネルを指定する変数trTypeVerは、次のように導出される:
・cIdxが0より大きい場合、trTypeHorおよびtrTypeVerは0に等しく設定される。
・それ以外の場合で、implicitMtsEnabledが1に等しい場合、次が適用される:
・IntraSubPartitionsSplitTypeがISP_NO_SPLITと等しくない場合、trTypeHorおよびtrTypeVerは、intraPredModeに応じてテーブル8-15において指定される。
・それ以外の場合で、cu_sbt_flagが1に等しい場合、trTypeHorおよびtrTypeVerは、cu_sbt_horizontal_flagおよびcu_sbt_pos_flagに依存してテーブル8-14において指定される。
・それ以外の場合(sps_explicit_mts_intra_enabled_flagおよびsps_explicit_mts_inter_enabled_flagが0に等しい)、trTypeHorおよびtrTypeVerは以下のように導出される:
【数2】
・それ以外の場合、trTypeHorおよびtrTypeVerは、tu_mts_idx[xTbY][yTbY]に依存して、テーブル8-13において指定される。
【表9】
【0100】
2.7 JVET-N0193において提案された縮小二次変換(RST)
2.7.1 JEMにおける非分離可能二次変換(NSST)
JEMでは、二次変換(secondary transform)が、順方向一次変換と量子化との間で(エンコーダにおいて)、および脱量子化と逆一次変換の間で(デコーダにおいて)に適用される。
図11に示されるように、4×4(または8×8)の二次変換が実行されるのは、ブロック・サイズに依存する。たとえば、小ブロック(すなわち、min(幅,高さ)<8)については4×4二次変換が適用され、より大きなブロック(すなわち、min(幅,高さ)>4)については8×8二次変換が8×8ブロックごとに適用される。
【0101】
非分離可能変換の適用が、入力を例に使って、以下のように記述される。非分離可能変換を適用するには、4×4入力ブロックX
【0102】
【0103】
がまずベクトル
【0104】
【0105】
非分離可能変換は、
【数5】
として計算される。ここで、矢印(→)付きのF(ベクトルF)は変換係数ベクトルを示し、Tは16×16変換行列である。その後、16×1係数ベクトル(ベクトルF)は、そのブロックの走査順序(水平、垂直、または対角方向)を使用して、4×4ブロックとして再編成される。より小さなインデックスをもつ係数は、4×4係数ブロック内の、より小さな走査インデックスをもって配置される。全部で35個の変換集合があり、変換集合あたり3個の非分離可能変換行列(カーネル)が使用される。イントラ予測モードから変換集合へのマッピングは、あらかじめ定義されている。各変換集合について、選択された非分離可能二次変換(non-separable secondary transform、NSST)候補は、明示的に信号伝達された二次変換インデックスによってさらに指定される。インデックスは、変換係数の後、イントラCU毎に一度、ビットストリームにおいて信号伝達される。
【0106】
2.7.2 JVET-N0193における縮小二次変換(RST)
RST(低周波非分離可能変換(Low Frequency Non-Separable Transform、LFNST)としても知られる)は、JVET-K0099において導入され、(35個の変換集合の代わりに)4変換集合のマッピングがJVET-L0133において導入された。このJVET-N0193では、16×64行列(さらに16×48行列に縮小)および16×16行列が用いられる。表記上の便宜上、16×64(16×48に縮小される)変換はRST8×8と記され、16×16変換はRST4×4と記される。
図12は、RSTの一例を示す。
【0107】
2.8 サブブロック変換
cu_cbfが1に等しいインター予測されたCUについて、残差ブロック全体がデコードされるか、残差ブロックのサブ部分がデコードされるかを示すために、cu_sbt_flagが信号伝達されてもよい。前者の場合、CUの変換タイプを決定するために、インターMTS情報がさらにパースされる。後者の場合、残差ブロックの一部は推定された適応変換を用いてコーディングされ、残差ブロックの他の部分はゼロにされる。SBTは複合インターイントラモード(combined inter-intra mode)には適用されない。
【0108】
サブブロック変換(sub-block transform)では、ルーマ変換ブロックに対してはSBT-VおよびSBT-Hにおいて位置依存変換が適用される(クロマ変換ブロック(TB)は常にDCT-2を使用する)。SBT-HとSBT-Vの二つの位置は、異なるコア変換と関連している。より具体的には、各SBT位置についての水平および垂直変換は、
図13において指定される。たとえば、SBT-V位置0についての水平および垂直変換は、それぞれDCT-8およびDST-7である。残差変換単位(TU)の1つのサイドが32より大きい場合、対応する変換はDCT-2として設定される。よって、サブブロック変換は、残差ブロックのTUタイリング、cbf、および水平および垂直変換を合同して指定する。これは、ブロックの主要な残差がブロックの1つのサイドにある場合についての構文ショートカットと考えられてもよい。
2.8.1 構文要素とセマンティクス
【表10】
【表11】
sps_sbt_max_size_64_flagが0に等しいことは、サブブロック変換を許容するための最大CU幅および高さが32ルーマ・サンプルであることを指定する。sps_sbt_max_size_64_flagが1に等しいことは、サブブロック変換を許容するための最大CU幅および高さが64ルーマ・サンプルであることを指定する。
MaxSbtSize=sps_sbt_max_size_64_flag ? 64:32 (7-33)
【0109】
2.9 量子化残差ドメインのブロック差分パルス符号変調コーディング(QR-BDPCM)
JVET-N0413では、量子化残差ドメインBDPCM(quantized residual domain BDPCM、以下ではRBDPCMと表される)が提案されている。イントラ予測は、ブロック全体に対して、イントラ予測と同様に予測方向(水平または垂直予測)におけるサンプル・コピーにより行われる。残差は量子化され、量子化された残差とその予測子(水平または垂直)量子化値との間のデルタがコーディングされる。
【0110】
サイズM(行)×N(列)のブロックについて、0≦i≦M-1、0≦j≦N-1としてr
i,jが、上または左のブロック境界サンプルからのフィルタリングされていないサンプルを用いて、イントラ予測を水平方向(予測されるブロックを通じてラインごとに左近傍ピクセル値をコピー)または垂直方向(予測されるブロックにおいて各ラインに上の近傍ラインをコピー)で実行した後の予測残差であるとする。0≦i≦M-1、0≦j≦N-1としてQ(r
i,j)が、残差r
i,jの量子化されたバージョンを表すとする。残差は、もとのブロックと予測されたブロックの値の差である。すると、ブロックDPCMは、量子化された残差サンプルに適用され、結果として、次の要素をもつ修正されたM×N配列
【数6】
を与える。垂直BDPCMが信号伝達される場合:
【0111】
【0112】
水平方向の予測については、同様の規則が適用され、残差量子化サンプルは次式によって得られる。
【0113】
【0114】
残差量子化サンプル
【数9】
はデコーダに送られる。
【0115】
デコーダ側では、上記の計算が逆にされて、Q(ri,j)、0≦i≦M-1、0≦j≦N-1を生成する。垂直予測の場合は、
【0116】
【0117】
水平の場合は、
【0118】
【0119】
逆量子化された残差Q-1(Q(ri,j))がブロックイントラ予測値に加算されて、再構成されたサンプル値を生成する。
【0120】
QR-BDPCMでは常に変換スキップが使用される。
【0121】
2.9.1 TSコーディングブロックおよびQR-BDPCMコーディングブロックの係数コーディング
QR-BDPCMはTSコーディングブロックについてコンテキスト・モデリング法に従う。
【0122】
TS残差についての修正された変換係数レベルコーディング。通常の残差コーディングの場合と比較して、TSについての残差コーディングは以下の変化を含む。
【0123】
(1)最後のx/y位置の信号伝達なし。
【0124】
(2)以前のすべてのフラグが0に等しいときに最後のサブブロックを除くすべてのサブブロックについてコーディングされるcoded_sub_block_flag。
【0125】
(3)縮小されたテンプレートによるsig_coeff_flagコンテキスト・モデリング。
【0126】
(4)abs_level_gt1_flagおよびpar_level_flagについての単一コンテキスト・モデル。
【0127】
(5)符号フラグについてのコンテキスト・モデリング。5、7、9より大きい追加のフラグ(additional greater than 5, 7, 9 flags)。
【0128】
(6)剰余二値化(remainder binarization)のための修正されたライス(Rice)パラメータ導出
(7)サンプル当たりのコンテキストコーディングされるビンの数の制限。1つのブロック内のサンプル当たり2つのビン。
2.9.7 構文とセマンティクス
【表12】
bdpcm_flag[x0][y0]が1に等しいことは、位置(x0,y0)におけるルーマコーディングブロックを含むコーディング単位にbdpcm_dir_flagが存在することを指定する。
bdpcm_dir_flag[x0][y0]が0に等しいことは、bdpcmブロックで使用される予測方向が水平であることを指定し、そうでない場合は、該予測方向は垂直である。
【表13】
【表14】
コンテキストコーディングされるビンの数は、各CGについて、サンプル当たり2ビン以下に制限される。
【表15】
【0129】
2.10 JVET-M0427におけるループ内再整形(ILR)
ループ内再整形(in-loop reshaping、ILR)の基本的な発想は、もとの(最初のドメインの)信号(予測/再構成信号)を第2のドメイン(再整形ドメイン)に変換することである。
【0130】
ループ内ルーマ再整形器は、一対のルックアップテーブル(LUT)として実装されるが、二つのLUTのうちの一つだけが信号伝達される必要がある。他方は信号伝達されたLUTから計算できるからである。各LUTは一次元、10ビット、1024エントリーのマッピングテーブル(1D-LUT)である。一方のLUTは、入力ルーマ符号値Y
iを変更された値Y
rにY
r=FwdLUT[Y
i]とマップする順方向LUT、FwdLUTである。他方のLUTは、
【数12】
と、変更された符号値Y
rを^付きのY
rにマップする逆LUT、InvLUTである(^付きのY
rはY
iの再構成された値を表す)。
【0131】
ILRは、VVCではクロマ・スケーリング付きルーマ・マッピング(Luma Mapping with Chroma Scaling、LMCS)としても知られている。
【0132】
2.10.1 PWLモデル
【0133】
概念的には、区分線形(piece-wise linear、PWL)は以下のように実装される。
【0134】
x1、x2を2つの入力ピボット点、y1、y2を1区分についての対応する出力ピボット点とする。x1とx2の間の任意の入力値xについての出力値yは、次式によって補間できる。
【0135】
y=((y2-y1)/(x2-x1))*(x-x1)+y1
【0136】
固定小数点実装では、この式は次のように書き換えられる。
【0137】
y=((m*x+2FP_PREC-1)>>FP_PREC)+c
【0138】
ここで、mはスカラーであり、cはオフセットであり、FP_PRECは精度を指定するための定数値である。
【0139】
CE-12ソフトウェアでは、PWLモデルは1024エントリーのFwdLUTおよびInvLUTマッピングテーブルをあらかじめ計算するために使用されるが、PWLモデルは、LUTをあらかじめ計算することなく、オンザフライで同一のマッピング値を計算する実装をも許容することに注意されたい。
【0140】
2.10.2 ルーマ再整形
ループ内ルーマ再構成のテスト2(すなわち、提案書におけるCE12-2)は、より低い複雑さのパイプラインを提供し、インタースライス再構成におけるブロックごとのイントラ予測のためのデコード・レイテンシーをもなくす。インタースライスおよびイントラスライスの両方について、イントラ予測が再整形ドメインで実行される。
【0141】
イントラ予測は、スライス・タイプに関係なく、常に再整形ドメインで実行される。そのような構成では、前のTU再構成が行われた直後に、イントラ予測が開始できる。そのような配置は、スライスに依存するのではない、イントラモードについての統一されたプロセスを提供することもできる。
図14は、モードに基づくCE12-2デコード・プロセスのブロック図を示す。
【0142】
CE12-2はまた、CE12-1の32ピースPWLモデルの代わりに、ルーマおよびクロマ残差スケーリングについて16区分の区分線形(PWL)モデルを試験する。
【0143】
CE12-2におけるループ内ルーマ再整形器をもつインタースライス再構成(明るい影のブロックは、再整形ドメインにおける信号を示す:ルーマ残差;イントラルーマ予測;およびイントラルーマ再構成)。
【0144】
2.10.3 ルーマ依存性クロマ残差スケーリング
ルーマ依存クロマ残差スケーリング(luma-dependent chroma residue scaling)は、固定小数点整数演算で実装される乗法プロセスである。クロマ残差スケーリングは、ルーマ信号の、クロマ信号との相互作用を補償する。クロマ残差スケーリングはTUレベルで適用される。より具体的には、対応するルーマ予測ブロックの平均値が利用される。
【0145】
平均は、PWLモデルにおけるインデックスを同定するために使用される。インデックスは、スケーリング因子cScaleInvを同定する。クロマ残差にその数を乗算する。
【0146】
クロマ・スケーリング因子は、再構成されたルーマ値ではなく、順方向マッピングされた予測されたルーマ値から計算されることに留意されたい。
【0147】
2.10.4 ILRの使用
エンコーダ側では、各ピクチャー(またはタイル・グループ)がまず、再整形ドメインに変換される。そして、コーディングプロセス全部が、再整形されたドメインで実行される。イントラ予測については、近傍ブロックは再整形ドメイン内にある;インター予測については、参照ブロック(デコードピクチャーバッファからのもとのドメインから生成される)がまず再整形ドメインに変換される。次いで、残差が生成され、ビットストリームにコーディングされる。
【0148】
ピクチャー(またはタイル・グループ)全体がエンコード/デコードを終えた後、再整形ドメイン内のサンプルがもとのドメインに変換され、次いで、ブロッキング解除フィルタおよび他のフィルタが適用される。
【0149】
以下の場合については、予測信号への順方向再整形が無効にされる:
【0150】
○現在のブロックがイントラコーディングされる。
【0151】
○現在のブロックがCPR(current picture referencing[現在ピクチャー参照])(イントラブロックコピー[intra block copy、IBC]としても知られる)としてコーディングされる。
【0152】
○現在のブロックが複合インターイントラモード(CIIP)としてコーディングされ、イントラ予測ブロックについて順方向再整形が無効にされている。
【0153】
3 既存の実装の欠点
現在の設計には次のような問題がある。
【0154】
(1)LMCSは、変換および量子化バイパス・モード(すなわち、cu_transquant_bypass_flagが1に等しい)でコーディングされたブロックにも適用されることがありうる。しかしながら、もとのドメインから再整形ドメインへのマッピング、またはその逆には損失がある〔不可逆〕。LMCSとcu_transquant_bypass_flagの両方を有効にすることは望ましくない。
【0155】
(2)いくつかの新しい変換関連のコーディングツール(MTSインデックス、RSTインデックス、SBTなど)、変換なしのコーディングツール(QR-DPCMなど)、およびcu_transquant_bypass_flagをどのように信号伝達するかは研究されていない。
【0156】
(3)HEVCにおけるcu_transquant_bypass_flagは、一度だけ信号伝達され、3色成分全部に適用された。デュアルツリー(dual tree)をどのように扱うかを研究する必要がある。
【0157】
(4)ある種のコーディングツール(PDPCなど)は、可逆コーディングが適用されるときにコーディング損失をもたらすことがありうる。
【0158】
(5)一部のコーディングツールは、1つのブロックが可逆的にコーディングされることを確実にするために、無効にされる。しかしながら、それは考慮に入れられていない。
【0159】
(6)最新のVVCドラフトでは、SBTとISPは暗黙的なMTSとして扱われる。すなわち、SBTおよびISPコーディングブロックについて、暗黙的な変換選択が適用される。また、sps_mts_enbaled_flagが偽の場合でも、ブロックについてSBTおよびISPが有効にされることがあるが、その代わり、DCT2のみが許容される。そのような設計では、sps_mts_enbaled_flagが偽の場合、SBT/ISPのコーディング利得は小さくなる。
【0160】
VVCドラフト6(D6)では、暗黙的なMTSを有効にするかどうかは、次のように示される。
【0161】
・sps_mts_enabled_flagが1に等しく、次の条件のいずれかが真である場合、implicitMtsEnabledが1に等しく設定される:
【0162】
・IntraSubPartitionsSplitTypeがISP_NO_SPLITと等しくない。
【0163】
・cu_sbt_flagが1に等しく、Max(nTbW,nTbH)≦32である。
【0164】
・sps_explicit_mts_intra_enabled_flagが0に等しく、CuPredMode[0][xTbY][yTbY]がMODE_INTRAに等しく、lfnst_idx[x0][y0]が0に等しく、intra_mip_flag[x0][y0]が0に等しい。
【0165】
・それ以外の場合は、implicitMtsEnabledが0に等しく設定される。
【0166】
4 視覚メディアコーディングのための可逆コーディングの例示的方法
本開示の技術の実施形態は、既存の実装の欠点を克服し、それにより、より高いコーディング効率をもつビデオコーディングを提供する。開示される技術に基づく視覚メディアコーディングのための可逆コーディングのための方法は、既存および将来のビデオコーディング規格の両方を向上させる可能性があり、さまざまな実装について記載される以下の例において明快にされる。以下に提供される開示された技術の例は、一般的概念を説明するものであり、限定するものとして解釈されることは意図されていない。一例では、明示的にそうでないことが示されない限り、これらの例に記載されるさまざまな特徴が組み合わされてもよい。
【0167】
1つのブロック・サイズをW*Hで表す。ここで、Wはブロック幅、Hはブロック高さである。最大変換ブロック・サイズはMaxTbW×MaxTbHで表される。ここで、MaxTbWおよびMaxTbHはそれぞれ最大変換ブロックの幅および高さである。最小変換ブロック・サイズはMinTbW×MinTbHで表され、ここでMinTbWおよびMinTbHはそれぞれ最小変換ブロックの幅および高さである。
【0168】
変換および量子化プロセスがスキップされるTransQuantBypass〔トランスクワントバイパス〕モードが定義される。たとえば、cu_transquant_bypass_flagが1に設定される。
複数の色成分についてのTransQuantBypassモードの使用
1. TransQuantBypassモードの指示(たとえば、cu_transquant_bypass_flag)は、異なる色成分について別個に信号伝達されてもよい。
a. 一例では、デュアルツリーが有効にされているとき、ルーマおよびクロマ成分について、あるいは各色成分についてのcu_transquant_bypass_flagが別個にコーディングされてもよい。
b. 一例では、このモードの使用はコンテキストコーディングされてもよい。
i. 一例では、コンテキストの選択は、色成分に依存してもよい。
c. 一例では、このフラグの予測コーディングが適用されてもよい。
d. 一例では、複数の指示を信号伝達するか、またはすべての色成分について1つだけ信号伝達するかは、コーディング構造(たとえば、シングルツリーかデュアルツリーか)に依存してもよい。
e. 一例では、複数の指示を信号伝達するか、またはすべての色成分について1つだけ信号伝達するかは、カラーフォーマットおよび/または色成分のコーディング方法(たとえば、別個のプレーン〔平面〕のコーディングが有効にされるか否か)および/またはコーディングモードに依存してもよい。
i. 一例では、諸クロマ・ブロックについて合同クロマ残差コーディングが有効にされている場合、それら2つのクロマ・ブロックは、TransQuantBypassの同じ有効化フラグを共有してもよい。
f. 一例では、TransQuantBypassモードが第1の色成分のブロックにおいて適用できかどうかは、TransQuantBypassモードが第2の色成分の対応する領域内に位置するサンプルに適用されるかどうかに依存してもよい。
i. 第1の色成分のブロックに対応する第2の色成分の対応する領域のサイズおよび左上のサンプルの座標は、カラーフォーマットに依存してもよい。たとえば、第1の色成分の左上のサンプルの座標が(x0,y0)であり、第1の色成分のブロック・サイズがW*Hである場合、4:2:0のカラーフォーマットについては、対応する領域のサイズは2W*2Hであってもよく、第2の色成分の左上のサンプルの座標は(2*x0,2*y0)である。
ii. 一例では、第1の色成分は、クロマ成分(たとえば、青差分クロマ(Cb)または赤差分クロマ(Cr))である。
iii. 一例では、第2の色成分はルーマ成分である。
iv. 一例では、TransQuantBypassモードは、第1の色成分のブロックに対応する第2の色成分の領域内のすべてのサンプルがTransQuantBypassコーディングされている場合にのみ、第1の色成分のブロックにおいて使用できる。
v. 一例では、TransQuantBypassモードは、第1の色成分のブロックに対応する第2の色成分の領域内の少なくとも1つのサンプルがTransQuantBypassコーディングされている場合にのみ、第1の色成分のブロックにおいて使用できる。
vi. 上記の諸例では、TransQuantBypassが使用できない場合、TransQuantBypassは信号伝達されず、0であると推定されてもよい。
vii. 一例では、第1の色成分についてTransQuantBypassのサイド情報を信号伝達するかどうかは、第2の色成分の対応する領域内の1つのブロックまたは複数のブロックにおけるTransQuantBypassの使用に依存してもよい。
1) 対応する領域におけるすべてのブロックにTransQuantBypassが適用される場合、TransQuantBypassが有効にされることができ、第1の色成分についてのTransQuantBypassのサイド情報が信号伝達されてもよい。そうでない場合、信号伝達はスキップされ、無効にされていると推定される。
2) TransQuantBypassが対応する領域内の一つまたは複数のブロック(たとえば、対応する領域の中心位置をカバーするブロック)に適用される場合、TransQuantBypassが有効にされることができ、第1の色成分についてのTransQuantBypassのサイド情報が信号伝達されてもよい。そうでない場合、信号はスキップされ、無効にされていると推定される。
viii. あるいはまた、さらに、上記の諸方法は、デュアルツリーコーディング構造が有効にされている場合に有効にされてもよい。
2. クロマ・ブロックについてのTransQuantBypassモードの指示(たとえば、cu_transquant_bypass_flag)は、対応するルーマ領域から導出されてもよい。
a. 一例では、クロマ・ブロックが、コーディング単位(CU)または予測単位(PU)または変換単位(TU)のような一つまたは複数のブロックをカバーするルーマ領域に対応し、少なくとも1つのルーマ・ブロックがTransQuantBypassモードでコーディングされる場合、クロマ・ブロックはTransQuantBypassモードでコーディングされるべきである。
i. あるいはまた、クロマ・ブロックが一つまたは複数のブロックをカバーするルーマ領域に対応し、これらすべてのルーマ・ブロックがTransQuantBypassモードでコーディングされる場合、クロマ・ブロックはTransQuantBypassモードでコーディングされるべきである。
ii. あるいはまた、クロマ・ブロックは、サブブロックに分割されてもよい。サブブロックが一つまたは複数のブロックをカバーするルーマ領域に対応し、これらのルーマ・ブロックすべてがTransQuantBypassモードでコーディングされる場合、クロマ・サブブロックはTransQuantBypassモードでコーディングされるべきである。
3. TransQuantBypassモードは、VPDUより大きいブロックについて有効にされてもよい。
a. ブロックの幅または高さが仮想パイプラインデータ単位(VPDU)の幅または高さよりも大きい場合、ブロックはVPDUよりも大きいと定義される。
i. あるいはまた、ブロックの幅および高さの両方がそれぞれVPDUの幅および高さよりも大きい場合、ブロックはVPDUよりも大きいと定義される。
b. 一例では、TransQuantBypassモードの指示(たとえば、cu_transquant_bypass_flag)は、VPDUより大きいブロックについて信号伝達されてもよい。
c. 一例では、VPDUより大きいCTUについて、複数のVPDUに到達するまで四分木により分割されてもよいし、あるいは分割されなくてもよい。分割されない場合、cu_transquant_bypass_flagは、信号伝達されず、1であると推定されてもよい。
i. あるいはまた、それらの大きなブロックについて、イントラ予測モードが許容されてもよい。
d. あるいはまた、transQuantBypassモードは、最大許容される変換ブロック・サイズ(たとえば、MaxTbSizeY*MaxTbSizeY)より大きいブロックについて、または、最大許容される変換ブロック・サイズ(たとえば、MaxTbSizeY)より大きい幅/高さについて、有効にされてもよい。
i. あるいはまた、VPDUをMaxTbSizeYに置き換えることによって、サブブレットa~cが適用されてもよい。
4. 変換スキップ・モードおよび/または変換を適用しなかった他のコーディング方法は、VPDUより大きいブロックに対して有効にされてもよい。
a. ブロックの幅または高さがVPDUの幅または高さよりも大きい場合、ブロックはVPDUよりも大きいと定義される。
i. あるいはまた、ブロックの幅および高さの両方がそれぞれVPDUの幅および高さよりも大きい場合、ブロックはVPDUよりも大きいと定義される。
b. 一例では、変換スキップ・モードの指示は、VPDUより大きいブロックについて信号伝達されてもよい。
c. 一例では、VPDUより大きいCTUについて、複数のVPDUに到達するまで四分木により分割されてもよいし、あるいは分割されなくてもよい。分割されない場合、変換スキップフラグは、信号伝達されることなく、1であると推定されてもよい。
i. あるいはまた、それらの大きなブロックについてイントラ予測モードが許容されてもよい。
d. あるいはまた、変換スキップ・モードおよび/または変換を適用しなかった他のコーディング方法が、最大許容される変換ブロック・サイズ(たとえば、MaxTbSizeY*MaxTbSizeY)より大きいブロックについて有効にされてもよく、または、最大許容される変換ブロック・サイズ(たとえば、MaxTbSizeY)より大きい幅/高さについて有効にされてもよい。
i. あるいはまた、VPDUをMaxTbSizeYに置き換えることによって、サブブレットa~cが適用されてもよい。
e. 変換を適用しない他のコーディング方法は、変換スキップ・モード、DPCM、QR-DPCMなどを含みうる。
TransQuantBypassモードのブロック寸法設定
5. TransQuantBypassモードについての許容されるブロック寸法は、TSが有効にされうる場合と同じであってもよい。
a. TransQuantBypassモードは、QR-BDPCMが有効にされうるのと同じブロック寸法に適用可能であってもよい。
b. TransQuantBypassモードは、TSが有効にされうるのと同じブロック寸法に適用可能であってもよい。
c. TSモードは、QR-BDPCMが有効にされうるのと異なるブロック寸法に適用可能であってもよい。
i. あるいはまた、QR-BDPCMは、TSモードが無効にされている/不許可であるときでも、ビデオ単位(たとえばシーケンス)について有効にされてもよい。
d. QR-BDPCMを有効にするかどうかは、TSまたはTransQuantBypassモードのいずれかが有効にされているかどうかに依存してもよい。
i. 一例では、ビデオ単位(たとえば、シーケンス/TU/PU/CU/ピクチャー/スライス)におけるQR-BDPCMについてのオン/オフ制御フラグの信号伝達は、TSまたはTransQuantBypassのいずれかが許容されているかどうかの条件付きチェック下にあってもよい。
ii. 一例では、TransQuantBypassが許容される場合、QR-BDPCMは、TSが不許可であるときでも有効にされてもよい。
e. TransQuantBypassモードをもつブロックについての最大および/または最小ブロック寸法は、シーケンス/ビュー/ピクチャー/スライス/タイル・グループ/タイル/CTU/ビデオ単位レベルで信号伝達されてもよい。
i. 一例では、cu_transquant_bypass_flagをもつブロックについての最大および/または最小ブロック寸法の指示は、SPS/VPS/PPS/スライス・ヘッダ/タイル・グループ・ヘッダ/タイル等において信号伝達されてもよい。
6. TS、TransQuantBypassモード、QR-BDPCM、BDPCMなど、変換が無効にされるすべての種類のコーディングモードについて、許容されるブロック寸法を揃えることが提案される。
a. あるいはまた、それらの場合についての許容される最大および/または最小サイズの単一の指示が、それらのモードのすべての使用を制御するために信号伝達されてもよい。
b. 一例では、非恒等変換に頼らないコーディングツールの1つが有効にされている場合、それらの場合についての許容される最大および/または最小サイズの指示が信号伝達されてもよい。
i. 一例では、log2_transform_skip_max_size_minus2が、TSまたはQR-BDPCMのいずれかが有効にされているときに信号伝達されてもよい。
ii. 一例では、log2_transform_skip_max_size_minus2は、TSまたはTransQuantBypassが有効にされているときに信号伝達されてもよい。
7. TS、TransQuantBypassモード、QR-BDPCM、BDPCMなどの変換がスキップされるブロックについての最大変換ブロック・サイズは、変換が適用される非TSの場合について使用されるのとは異なるように設定されてもよい。
TransQuantBypassモードと他のコーディングツールとの間の相互作用
8. TransQuantBypassコーディングされるブロックについては、ルーマ再整形および/またはクロマ・スケーリングが無効にされてもよい。
a. TransQuantBypassがブロックに適用される場合、残差は、LMCSの有効化/無効化フラグに関係なく、再整形ドメインではなくもとのドメインでコーディングされる。たとえば、LMCSの有効化/無効化フラグは、スライス/シーケンス・レベルで信号伝達されてもよい。
b. 一例では、イントラおよびTransQuantBypassコーディングされるブロックについて、イントラ予測において使用される予測信号/参照サンプルは、まず、再整形ドメインからもとのドメインにマッピングされてもよい。
c. 一例では、IBCおよびTransQuantBypassコーディングされるブロックについて、IBC予測で使用される予測信号/参照サンプルは、まず、再整形ドメインからもとのドメインにマッピングされてもよい。
d. 一例では、CIIPおよびTransQuantBypassコーディングされるブロックについて、以下が適用されてもよい:
i. イントラ予測において使用されるイントラ予測/参照サンプルの予測信号は、まず、再整形ドメインからもとのドメインにマッピングされてもよい。
ii. もとのドメインから再整形ドメインへのインター予測の予測信号のマッピングはスキップされる。
e. 一例では、パレット・モードについて、パレット・テーブルは、再整形されたドメインではなく、もとのドメインにおいて生成されてもよい。
f. あるいはまた、2つのバッファが割り当てられてもよく、その一方は予測信号と残差信号(再構成された信号ともいう)の和を記憶するものであり、もう他方は再整形された和を記憶するものである。すなわち、予測信号と残差信号の和は、まずもとのドメインから再整形ドメインにマッピングされる必要があり、さらに、後続のブロックをコーディングするために利用されてもよい。
i. あるいはまた、もとのドメインにおける再構成された信号のみが記憶される。再整形領域での再構成された信号は、後続のブロックによって必要とされるときに、もとの領域の再構成された信号から変換されてもよい。
g. 上記の諸方法は、現在のタイル/スライス/タイル・グループ/ピクチャー内の参照サンプルに頼る他のコーディング方法にも適用可能である。
i. 一例では、逆再整形プロセス(すなわち、再整形ドメインからもとのドメインへの変換)が、現在のタイル/スライス/タイル・グループ/ピクチャー内の参照サンプルから生成された予測信号に適用されてもよい。
ii. あるいはまた、さらに、順方向再整形プロセス(すなわち、もとのドメインから再整形ドメインへの変換)は、参照ピクチャーなどの異なるピクチャー内の参照サンプルから生成された予測信号に適用されることは許容されない。
h. 上記の諸方法を有効にするかどうかは、TransQuantBypass/TS/QR-BDPCM/BDPCM/PCM/利用されるべき必要な参照サンプルを含んでいるブロックに変換を適用しない他のツールの有効化/無効化のステータスに依拠してもよい。
i. 一例では、イントラ予測(たとえば、通常のイントラ予測、イントラブロックコピーまたはインター‐イントラ予測、たとえばVVCにおけるCIIP)を適用するかどうかおよび/またはどのように適用するかは、現在のブロックがTransQuantBypassコーディングされるどうか、および/またはイントラ予測(または参照サンプル)を提供する一つまたは複数の近傍ブロックがTransQuantBypassコーディングされるかどうかに依存してもよい。
ii. 一例では、現在のブロックがTransQuantBypassコーディングされる場合、TransQuantBypassコーディングブロック内に位置する参照サンプルについては、参照サンプルは、変換されず(すなわち、順方向または逆方向の再整形プロセスを適用する必要がない)、予測信号を導出するために直接使用されてもよい。
iii. 一例では、現在のブロックがTransQuantBypassコーディングされる場合、TransQuantBypassコーディングブロック内に位置しない参照サンプルについては、参照サンプルは、まず(たとえば、逆再整形プロセスを適用することによって)もとのドメインに変換される必要があり、次いで、予測信号を導出するために使用されるのでもよい。
iv. 一例では、現在のブロックがTransQuantBypassコーディングされない場合、TransQuantBypassコーディングブロック内に位置しない参照サンプルについては、参照サンプルは変換されず(すなわち、順方向または逆方向の再整形プロセスを適用する必要がない)、予測信号を導出するために直接使用されてもよい。
v. 一例では、現在のブロックがTransQuantBypassコーディングされない場合、TransQuantBypassコーディングブロック内に位置する参照サンプルについては、参照サンプルは、まず(たとえば、逆再整形プロセスを適用することによって)再整形ドメインに変換される必要があり、次いで、予測信号を導出するために使用されるのでもよい。
vi. 一例では、上記の諸方法は、それらの参照サンプルが同じタイル/ブリック/スライス/ピクチャー内のブロックからのものである場合、たとえば、現在のブロックがイントラ/IBC/CIIPなどでコーディングされる場合に、適用されてもよい。
vii. 一例では、上記の諸方法は、ルミナンス(Y)成分または緑(G)成分のような特定の色成分に適用されるが、他の色成分には適用されないのでもよい。
i. 一例では、ルーマ再整形および/またはクロマ・スケーリングは、変換を適用しない方法(たとえば、TSモード)でコーディングされるブロックについては無効にされてもよい。
i. あるいはまた、さらに、上記の諸クレーム(たとえば、ブレット7a~h)は、TransQuantBypassモードを異なるコーディングモード(たとえば、TS)で置き換えることによって適用されてもよい。
9. TransQuantBypassモードの指標は、一つまたは複数の変換行列関連のコーディングツールに信号伝達する前に信号伝達されてもよい。
一例では、変換行列関連のコーディングツールは、以下のツールのうちの一つまたは複数であってもよい(関連する構文要素は、括弧内に含まれる):
i. 変換スキップ・モード(例:transform_skip_flag)
ii. 明示的なMTS(例:tu_mts_idx)
iii. RST(例:st_idx)
iv. SBT(例:cu_sbt_flag、cu_sbt_quad_flag、cu_sbt_pos_flag)
v. QR-BDPCM(例:bdpcm_flag、bdpcm_dir_flag)
b. 残差をどのようにコーディングするかは、TransQuantBypassモードの使用に依存してもよい。
i. 一例では、residual_codingをコーディングするかresidual_coding_tsをコーディングするかは、TransQuantBypassモードの使用に依存してもよい。
ii. 一例では、TransQuantBypassが無効にされ、transform_skip_flagが無効にされている場合、変換が適用されるブロックのために設計された残差コーディング方法(例、residual_coding)が、残差コーディングのために利用されてもよい。
iii. 一例では、TransQuantBypassが有効にされているか、またはtransform_skip_flagが有効にされている場合、適用される変換のないブロックについて設計された残差コーディング方法(例、residual_coding_ts)が残差コーディングのために利用されてもよい。
iv. TransQuantBypassモードは、特殊なTSモードとして扱われてもよい。
1) あるいはまた、さらに、TransQuantBypassモードがあるブロックについて有効にされているとき、transform_skip_flagは信号伝達されなくてもよく、および/または、1であると推定されてもよい。
a. あるいはまた、さらに、residual_coding_tsが使用されてもよい。
c. あるいはまた、他の種類の変換行列関連のコーディングツールのサイド情報が、TransQuantBypassモードの使用の条件下で信号伝達されてもよい。
i. TransQuantBypassモードが適用される場合、変換スキップ・モード、QR-BDPCM、BDPCMの使用のサイド情報がさらに信号伝達されてもよい。
ii. TransQuantBypassモードが適用される場合、SBT、RST、MTSの使用のサイド情報が信号伝達されなくてもよい。
10. TransQuantBypassモードの指示は、一つまたは複数の変換行列関連のコーディングツールを信号伝達した後に信号伝達されてもよい。
a. あるいはまた、変換スキップ・モード、QR-BDPCM、BDPCMなどのある種のコーディングツールが適用される場合、TransQuantBypassモードの指示がコーディングされてもよい。
b. あるいはまた、SBT、RST、MTSなどのある種のコーディングツールが適用される場合には、TransQuantBypassモードの指示はコーディングされなくてもよい。
11. TransQuantBypassモードの指示は、量子化パラメータの指示を信号伝達した後に、条件付きで信号伝達されてもよい。
a. あるいはまた、量子化パラメータの指示は、TransQuantBypassモードの指示を信号伝達した後に、条件付きで信号伝達されてもよい。
b. 一例では、TransQuantBypassが1つのブロックに適用される場合、量子化パラメータおよび/または量子化パラメータのデルタ(たとえば、cu_qp_delta_abs、cu_qp_delta_sign_flag)の信号伝達はスキップされてもよい。
i. たとえば、cu_qp_delta_absは、0であると推定されてもよい。
c. あるいはまた、量子化パラメータのデルタ(たとえば、cu_qp_delta_abs、cu_qp_delta_sign_flag)が0と等しくない場合、TransQuantBypassモードの信号伝達はスキップされてもよく、TransQuantBypassは無効であると推定される。
i. 一例では、TransQuantBypassの信号伝達は、ルーマ成分のような特定の色成分についてのみ、量子化パラメータの指示に依存してもよい。
12. あるブロックについてTransQuantBypassモードが有効にされるとき、そのブロックのサンプルについてはALFまたは非線形ALFが無効にされる。
13. あるブロックについてTransQuantBypassモードが有効にされるとき、バイラテラルフィルタまたは/および拡散フィルタ、および/または再構成ブロックを修正しうる他の種類の再構成後フィルタが、そのブロック内のサンプルについては無効にされてもよい。
14. あるブロックについてTransQuantBypassモードが有効にされるとき、PDPCは無効にされてもよい。
15. あるブロックがTransQuantBypassモードでコーディングされる場合、暗黙的MTSにおける変換選択方法は適用可能でない。
16. あるブロックがTransQuantBypassモードでコーディングされている場合、LMCSにおけるクロマ・サンプルについてのスケーリング・アプローチは適用されない。
17. TransQuantBypassが許容されているCU/CTU/スライス/タイル/タイル・グループ/ピクチャー/シーケンスについては、LMCSは無効にされてもよい。
a. 一例では、SPS/ビデオパラメータセット(VPS)/ピクチャーパラメータセット(PPS)/スライス・レベルのフラグが、変換および量子化バイパス・モードがシーケンス/ビュー/ピクチャー/スライス内のあるブロックに適用されうることを示す場合、LMCSは無効にされてもよい。
b. あるいはまた、LMCS関連の構文要素の信号伝達がスキップされてもよい。
c. シーケンス/ピクチャー/スライス/タイル・グループ/タイル/ブリック・レベルでは、LMCSが有効になされているときはTransQuantBypassモードが無効にされてもよい。
i. たとえば、TransQuantBypassを有効化/無効化することの信号伝達は、LMCSの使用に依存してもよい。
1) 一例では、LMCSが適用される場合、TransQuantBypassの指示は信号伝達されない。たとえば、TransQuantBypassは使用されないと推定される。
2) あるいはまた、LMCSの使用の信号伝達が、TransQuantBypassの有効化/無効化に依存してもよい。
d. 一例では、適合ビットストリームは、TransQuantBypassおよびLMCSが同じスライス/タイル/ブリック/タイル・グループ/ピクチャーについて有効にされないことを満足するものとする。
18. QR-BDPCMのサイド情報は、TSモード(たとえばtransform_skip_flag)の信号伝達の後に信号伝達されてもよい。
a. 一例では、QR-BDPCMはTSモードの特殊なケースとして扱われる。
i. あるいはまた、QR-BCPCMがあるブロックについて許容される場合、TSモードも有効にされる、すなわち、信号伝達される/導出されるtransform_skip_flagは1に等しい。
ii. あるいはまた、信号伝達される/導出されるtransform_skip_flagが1に等しい場合、QR-BDPCMのサイド情報がさらに信号されてもよい。
iii. あるいはまた、信号伝達される/導出されるtransform_skip_flagが0に等しい場合、QR-BDPCMのサイド情報は信号されなくてもよい。
b. 一例では、QR-BDPCMはTSモードとは異なるモードとして扱われる。
i. あるいはまた、信号伝達される/導出されるtransform_skip_flagが0に等しい場合、QR-BDPCMのサイド情報は、さらに信号伝達されてもよい。
ii. あるいはまた、信号伝達される/導出されるtransform_skip_flagが1に等しい場合、QR-BDPCMのサイド情報はさらに信号伝達されなくてもよい。
19. TransQuantBypassモードおよび/またはTSモードおよび/または変換が適用されない他のコーディング方法(たとえば、パレット・モード)は、ブロック全体(たとえば、CU/PU)ではなく、サブブロック・レベルで有効にされてもよい。
a. 一例では、デュアルツリーについて、クロマ・ブロックが複数のサブブロックに分割されてもよく、各ブロックは、対応するルーマ・ブロックのコーディングされた情報に従って、TransQuantBypassモードおよび/またはTSモードおよび/または変換が適用されない他のコーディング方法の使用を決定してもよい。
20. ループ・フィルタリング・プロセスの前に、逆再整形プロセス(すなわち、再整形ドメインからもとのドメインへの変換)を再構成されたブロックに適用するかどうかは、ブロックごとに変更されてもよい。
a. 一例では、逆再整形プロセスは、TransQuantBypassモードでコーディングされたブロックには適用されないが、非TransQuantBypassモードでコーディングされた他のブロックには適用されるのでもよい。
21. デコーダ側の動き導出またはデコーダ側のイントラモード決定またはCIIPまたはTPMのコーディングツールを適用するかどうか、および/または、どのように適用するかは、あるブロックにアイデンティファイ変換(identify transform)が適用されるか、および/または、どの変換も適用されないかに依存してもよい。
a. 一例では、ブロックについて、TransQuantBypass/TS/QR-BDPCM/DPCM/PCM/アイデンティファイ変換が適用される、および/または、変換が適用されない他のコーディングツールが有効にされている場合、デコーダ側の動き導出またはデコーダ側のイントラモード決定、または、CIIPまたはTPMのコーディングツールが無効にされてもよい。
b. 一例では、オプティカルフローによる予測洗練(Prediction Refinement with Optical Flow、PROF)、またはCIIPまたはTPMは、アイデンティファイ変換が適用されるまたはどの変換も適用されないブロックについては無効にされてもよい。
c. 一例では、双方向オプティカルフロー(Bi-directional Optical Flow、BDOF)またはCIIPまたはTPMは、アイデンティファイ変換が適用されるブロックについては無効にされてもよい。
d. 一例では、デコード側動きベクトル洗練(decode-side motion vector refinement、DMVR)またはCIIPまたはTPMは、アイデンティファイ変換が適用されるブロックについては無効化されてもよい。
22. TransQuantBypassは、ビデオ単位(たとえば、ピクチャー/スライス/タイル/ブリック)レベルで有効にされてもよい。すなわち、同じビデオ単位内のすべてのブロックは、TransQuantBypassのオン/オフ制御を共有する。より小さいビデオ・ブロック(たとえば、CU/TU/PU)でのTransQuantBypassの信号伝達はスキップされる。
a. あるいはまた、さらに、TransQuantBypassの使用のビデオ単位レベルの指示は、別のツールXの使用の条件のもとに信号伝達されてもよい。
b. あるいはまた、さらに、別のツールXの使用の指示は、TransQuantBypassのビデオ単位レベルの使用の条件のもとに信号伝達されてもよい。
c. あるいはまた、さらに、適合ビットストリームは、TransQuantBypassが有効にされているときは別のツールXが無効にされることを満足する。
d. あるいはまた、さらに、適合ビットストリームは、別のツールXが有効にされているときはTransQuantBypassが無効にされることを満足する。
e. 上記の諸例について、前記「別のツールX」は次のものであってもよい:
i. LMCS
ii. デコーダ側の動き導出(例:DMVR、BDOF、PROF)
iii. デコーダ側のイントラモード決定
iv. CIIP
v. TPM
23. TransQuantBypassのサイド情報は、TUレベルで信号伝達されてもよいが、TransQuantBypassの使用の制御は、より高いレベル(たとえば、PU/CU)で行われてもよい。
a. 一例では、1つのCU/PUが複数のTUを含む場合、TransQuantBypassのサイド情報は、一度(たとえば、CU内の最初のTUと関連付けられて)信号伝達されてもよく、CU内の他のTUは、同じサイド情報を共有してもよい。
24. コーディングツールの指示は、CUよりも大きいビデオ単位レベルで信号伝達されてもよいが、指示がツールが適用されることを告げていたとしても、ビデオ単位内のある種のサンプルについて、ツールが適用ないこともある。
a. 一例では、(たとえば、TransQuantBypassモードを用いる)無損失コーディングブロック内のサンプルについて、指示がツールが有効にされることを告げていたとしても、コーディングツールは適用されないことがある。
b. 一例では、ビデオ単位は、シーケンス/ピクチャー/ビュー/スライス/タイル/ブリック/サブピクチャー/CTB/CTUであってよい。
c. 一例では、コーディングツールは、フィルタリング方法(たとえば、ALF/非線形ALFにおけるクリッピング・プロセス/SAO/バイラテラルフィルタ/アダマール変換ドメインフィルタ)/スケーリング行列/デコーダ側導出方法等でありうる。
d. あるいはまた、適合ビットストリームは、もしビデオ単位内ですべてのまたは部分サンプルが無損失コーディングされるなら、コーディングツールの指示は、そのようなツールが無効にされることを告げるという規則に従う。
25. 上記の諸方法は、無損失コーディングされたブロック(たとえば、TransQuantBypassモード、変換および量子化の両方がバイパスされる)またはほぼ無損失コーディングされたブロックに適用可能でありうる。
a. 一例では、1つのブロックがある範囲(たとえば、[4,4])内のQPを用いてコーディングされる場合、そのブロックは、ほぼ無損失コーディングされたブロックとして扱われる。
26. ISP/SBTについて非DCT2変換が許容されるかどうかを制御する(sps_mts_enabled_flagとは異なる)一つまたは複数の別個のフラグが、信号伝達されてもよい。
a. あるいはまた、さらに、ISPまたはSBTのいずれかが有効にされているときに、前記別個のフラグが信号伝達されてもよい。
i. あるいはまた、さらに、ISPとSBTの両方が有効にされているときに、前記別個のフラグが信号伝達されてもよい。
ii. あるいはまた、さらに、フラグが真に等しい場合、ISP/SBTについて非DCT2変換が許容される。
b. あるいはまた、さらに、非DCT2(たとえば、DST7/DCT8)がISPコーディングブロックについて許容されるかどうかを示す一つのフラグ(たとえば、sps_ISP_implicit_transform)が、ISPが有効にされているときに信号伝達されてもよい。
c. あるいはまた、さらに、SBTコーディングブロックについて非DCT2(たとえば、DST7/DCT8)が許容されるかどうかを示す一つのフラグ(たとえば、sps_SBT_implicit_transform)が、SBTが有効にされているときに信号伝達されてもよい。
d. あるいはまた、さらに、sps_explicit_mts_intra_enabled_flagは、明示的なMTSの使用(たとえば、tu_mts_idxがビットストリーム中に存在してもよい)、またはイントラブロック寸法に対する変換の選択(たとえば、非ISPコーディングイントラブロックに適用される暗黙的なMTS)を制御してもよい。
e. 一例では、sps_explicit_mts_intra_enabled_flagが無効にされているときでも、非DCT2変換を用いたISPが適用されることがありうる。
f. 一例では、sps_explicit_mts_inter_enabled_flagが無効にされているときでも、非DCT2変換を用いたSBTが適用されてもよい。
【0169】
上述の例は、以下に記載される方法、たとえば、ビデオ・デコーダまたはビデオ・エンコーダで実装されうる方法、たとえば1500、1510、1520、1530、1540、1550、1560、および2100~3800のコンテキストに組み込まれてもよい。
【0170】
図15Aは、ビデオ処理のための例示的方法のフローチャートを示す。方法1500は、ステップ1502において、複数の色成分を含む現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成することを含み、変換および量子化プロセスをスキップする指示が、前記複数の色成分のうちの少なくとも2つの色成分について、前記ビットストリーム表現において別個に信号伝達される。
【0171】
方法1500は、ステップ1504において、前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することを含む。いくつかの実施形態では、現在のビデオ・ブロックは、ルーマ成分と複数のクロマ成分とを含み、前記複数のクロマ成分のうちの少なくとも1つについての前記指示は、ルーマ成分についての前記指示に基づく。
【0172】
いくつかの実施形態において、変換および量子化プロセスをスキップすることの前記指示は、cu_transquant_bypass_flagとして示される。一例では、デュアルツリー分割プロセスが、現在のビデオ・ブロックについて有効にされており、ここで、cu_transquant_bypass_flagは、現在のビデオ・ブロックのルーマ成分と少なくとも1つのクロマ成分について別個にコーディングされる。別の例では、cu_transquant_bypass_flagによって表される変換および量子化プロセスのスキップの使用は、コンテキストに基づいてコーディングされる。さらに別の例では、コンテキストは、複数の色成分のうちの少なくとも1つに基づいて選択される。
【0173】
いくつかの実施形態では、前記少なくとも2つの色成分について別個に前記指示を信号伝達することは、現在のビデオ・ブロックのカラーフォーマット、色成分コーディング方法、またはコーディングモードのうちの少なくとも1つに基づく。
【0174】
いくつかの実施形態では、前記少なくとも2つの成分のうち第1の成分はクロマ成分であり、前記少なくとも2つの成分のうち第2の成分はルーマ成分である。たとえば、該クロマ成分はCbまたはCrである。
【0175】
いくつかの実施形態では、前記少なくとも2つの色成分のうちの第1の色成分のブロックにおいて前記変換および量子化プロセスをスキップすることの使用は、前記少なくとも2つの色成分のうちの第1の色成分に対応する、前記少なくとも2つの色成分のうちの第2の色成分の領域におけるすべてのサンプルに対する、前記変換および量子化プロセスをスキップすることの使用に基づく。
【0176】
いくつかの実施形態では、前記少なくとも2つの色成分のうちの第1の色成分のブロックにおいて前記変換および量子化プロセスをスキップすることの使用は、前記少なくとも2つの色成分のうちの第1の色成分に対応する、前記少なくとも2つの色成分のうちの第2の色成分の領域における少なくとも1つのサンプルに対する、前記変換および量子化プロセスをスキップすることの使用に基づく。
【0177】
図15Bは、ビデオ処理のための別の例示的方法のフローチャートを示す。方法1510は、ステップ1512において、現在のビデオ・ブロックの特性に基づいて、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップするモードの有効化に関する決定を行うことを含む。
【0178】
方法1510は、ステップ1514において、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することを含む。
【0179】
いくつかの実施形態では、前記特性は、現在のビデオ・ブロックのサイズであり、前記モードは有効にされ、現在のビデオ・ブロックのサイズは、仮想パイプライン・データ・ユニット(virtual pipelining data unit、VPDU)のサイズより大きい。一例では、現在のビデオ・ブロックの高さまたは幅は、それぞれVPDUの高さまたは幅より大きい。
【0180】
いくつかの実施形態では、変換を適用しないコーディングモードが、現在のビデオ・ブロックについて有効にされる。一例では、コーディングモードは、変換スキップ・モード、差分パルス符号変調(DPCM)モード、または量子化残差DPCMモードである。
【0181】
図15Cは、ビデオ処理のための例示的方法のフローチャートを示す。方法1520は、ステップ1522において、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップする第1のモードと、現在のビデオ・ブロックに変換を適用しない第2のモードの有効化に関して、現在のビデオ・ブロックの少なくとも1つの寸法(dimension)に基づいて決定を行うことを含む。
【0182】
方法1520は、ステップ1524において、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することを含む。いくつかの実施形態では、第2のモードは、変換スキップ(TS)モードである。他の実施形態では、第2のモードは、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードである。
【0183】
いくつかの実施形態では、現在のビデオ・ブロックの少なくとも1つの寸法の最大値または最小値は、シーケンスパラメータセット(SPS)、ビデオパラメータセット(VPS)、ピクチャーパラメータセット(PPS)、スライス・ヘッダ、タイル・グループ・ヘッダまたはタイル・ヘッダにおいて信号伝達される。
【0184】
いくつかの実施形態では、前記少なくとも1つの寸法の許容される値は、第1のモードおよび第2のモードについて同一である。一例では、第2のモードは、変換スキップ・モード、ブロック差分パルス符号変調(BDPCM)モード、または量子化残差BDPCMモードのいずれかである。
【0185】
図15Dは、ビデオ処理のための例示的方法のフローチャートを示す。方法1530は、ステップ1532において、現在のビデオ・ブロックが、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップする第2のモードおよび第1のモードを使用してコーディングされることを決定することを含む。
【0186】
方法1530は、ステップ1534において、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することを含む。いくつかの実施形態では、現在のビデオ・ブロックは、ルーマ成分およびクロマ成分を含み、ルーマ成分の再成型またはクロマ成分のスケーリングのうちの少なくとも1つは無効にされる。
【0187】
いくつかの実施形態では、第1のモードは、イントラ予測モードである。他の実施形態では、第1のモードは、イントラブロックコピー(IBC)モードである。さらに他の実施形態では、第1のモードは、複合インター‐イントラ予測(CIIP)モードである。一例では、第1のモードで使用される参照サンプルは、再整形されたドメインからもとのドメインにマッピングされる。
【0188】
いくつかの実施形態では、現在のビデオ・ブロックは、ルーマ成分およびクロマ成分を含み、第1のモードは、現在のビデオ・ブロックに変換を適用せず、クロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスの適用は、現在のビデオ・ブロックについて無効にされる。
【0189】
図15Eは、ビデオ処理のための例示的方法のフローチャートを示す。方法1540は、ステップ1542において、現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成することを含み、一つまたは複数の複数変換関連のコーディングツールに関連する構文要素を信号伝達する前に、変換および量子化プロセスをスキップすることの指示がビットストリーム表現において信号伝達される。
【0190】
方法1540は、ステップ1544において、前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することを含む。いくつかの実施形態では、前記一つまたは複数の複数変換関連のコーディングツールは、変換スキップ・モード、明示的な複数変換集合(MTS)方式、縮小二次変換(RST)モード、サブブロック変換(SBT)モード、または量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードのうちの少なくとも1つを含む。
【0191】
図15Fは、ビデオ処理のための例示的方法のフローチャートを示す。方法1550は、ステップ1552において、現在のビデオ・ブロックが、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップするモードを使用してコーディングされることを決定することを含む。
【0192】
方法1550は、ステップ1554において、前記決定に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することの一部として、フィルタリング方法を無効にすることを含む。
【0193】
いくつかの実施形態では、フィルタリング方法は、適応ループ・フィルタリング(ALF)方法または非線形ALF方法を含む。
【0194】
いくつかの実施形態では、フィルタリング方法は、バイラテラルフィルタ、拡散フィルタまたは現在のビデオ・ブロックの再構成されたバージョンを修正する再構成後フィルタのうちの少なくとも1つを使用する。
【0195】
いくつかの実施形態では、フィルタリング方法は、位置依存イントラ予測予測組み合わせ(PDPC)方法を含む。
【0196】
いくつかの実施形態では、フィルタリング方法は、ループ・フィルタリング方法を含み、方法1550は、フィルタリング方法の適用前に、現在のビデオ・ブロックの再構成されたバージョンへの逆再整形プロセスの選択的適用に関して決定を行うステップをさらに含む。
【0197】
図15Gは、ビデオ処理のための例示的方法のフローチャートを示す。方法1560は、ステップ1562において、現在のビデオ・ブロックが、現在のビデオ・ブロックに対する変換および量子化プロセスの適用をスキップするモードを使用してコーディングされることを決定することを含む。
【0198】
方法1560は、ステップ1564において、前記決定に基づき、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行することの一部として、(i)現在のビデオ・ブロックを含む現在のピクチャー、または(ii)現在のピクチャーの一部分について、ループ内再整形(ILR)プロセスを無効にすることを含む。
【0199】
いくつかの実施形態では、現在のピクチャーの前記一部分は、コーディング単位(CU)、コーディングツリー単位(CTU)、スライス、タイルまたはタイル・グループである。
【0200】
いくつかの実施形態では、前記無効化の指示が、シーケンスパラメータセット(SPS)、ビデオパラメータセット(VPS)、ピクチャーパラメータセット(PPS)、またはスライス・ヘッダにおいて信号伝達される。
【0201】
いくつかの実施形態では、現行のビデオ・ブロックのビットストリーム表現は、ILRプロセスに関連する構文要素の信号伝達を除外する。
【0202】
ビデオ処理のためのさらに別の方法は、現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成する段階であって、変換および量子化プロセスをスキップすることの指示が、量子化パラメータの一つまたは複数の指示を信号伝達した後に、ビットストリーム表現において選択的に信号伝達される、段階と;前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行する段階とを含む。
【0203】
いくつかの実施形態では、変換および量子化プロセスをスキップすることの前記指示は、前記量子化パラメータのデルタがゼロに等しくない場合、ビットストリーム表現から除外される。
【0204】
いくつかの実施形態では、変換および量子化プロセスをスキップすることの前記指示を選択的に信号伝達することは、現在のビデオ・ブロックのルーマ成分についての量子化パラメータに基づく。
【0205】
ビデオ処理のためのさらに別の方法は、現在のビデオ・ブロックについて、現在のビデオ・ブロックのビットストリーム表現を構成する段階であって、現在のビデオ・ブロックに対するコーディングツールの適用の指示が、コーディング単位(CU)より大きいビデオ単位のレベルで前記ビットストリーム表現において信号伝達される、段階と、前記構成に基づいて、現在のビデオ・ブロックと現在のビデオ・ブロックのビットストリーム表現との間の変換を実行する段階とを含み、前記変換を実行することは、ビットストリーム表現におけるコーディングツールの適用の指示にもかかわらず、現在のビデオ・ブロックの少なくともいくつかのサンプルに対してコーディングツールを適用することを控えることを含む。
【0206】
いくつかの実施形態では、前記少なくともいくつかのサンプルは、無損失コーディングブロック内にある。
【0207】
いくつかの実施形態では、前記ビデオ単位は、シーケンス、ピクチャー、ビュー、スライス、タイル、ブリック、サブピクチャー、コーディングツリーブロック(CTB)またはコーディングツリー単位(CTU)を含む。
【0208】
いくつかの実施形態では、前記コーディングツールは、フィルタリング方法、スケーリング行列、またはデコーダ側導出方法のうちの一つまたは複数を含む。
【0209】
いくつかの実施形態では、フィルタリング方法は、適応ループ・フィルタ(ALF)、バイラテラルフィルタ、サンプル適応オフセットフィルタ、またはアダマール変換ドメインフィルタのうちの少なくとも1つを含む。
【0210】
5. 開示される技術の例示的実装
図16は、ビデオ処理装置1600のブロック図である。装置1600は、本明細書に記載される方法の一つまたは複数を実装するために使用されてもよい。装置1600は、スマートフォン、タブレット、コンピュータ、モノのインターネット(IoT)受信機などにおいて具現されてもよい。装置1600は、一つまたは複数のプロセッサ1602、一つまたは複数のメモリ1604、およびビデオ処理ハードウェア1606を含んでいてもよい。プロセッサ1602は、本開示に記載される一つまたは複数の方法(方法1500、1510、1520、1530、1540、1550、1560、および2100~3800を含むが、これらに限定されない)を実装するように構成されてもよい。メモリ(複数可)1604は、本明細書に記載される方法および技法を実装するために使用されるデータおよびコードを記憶するために使用されてもよい。ビデオ処理ハードウェア1606は、本開示に記載されるいくつかの技法をハードウェア回路において実装するために使用されてもよい。
【0211】
いくつかの実施形態では、ビデオコーディング方法は、
図16に関して記載されるようなハードウェアプラットフォーム上に実装される装置を使用して実装されてもよい。
【0212】
開示される技術のいくつかの実施形態は、ビデオ処理ツールまたはモードを可能にする決定または決断を行うことを含む。一例では、ビデオ処理ツールまたはモードが有効にされる場合、エンコーダは、ビデオのブロックの処理において該ツールまたはモードを使用または実装するが、必ずしも、該ツールまたはモードの使用に基づいて、結果として得られるビットストリームを修正しなくてもよい。すなわち、ビデオのブロックからビデオのビットストリーム表現への変換は、前記決定または決断に基づいてビデオ処理ツールまたはモードが有効にされたときに、該ビデオ処理ツールまたはモードを使用する。別の例では、ビデオ処理ツールまたはモードが有効にされる場合、デコーダは、ビットストリームが前記ビデオ処理ツールまたはモードに基づいて修正されているという知識を用いて、ビットストリームを処理する。すなわち、ビデオのビットストリーム表現からビデオのブロックへの変換は、前記決定または決断に基づいて有効化されたビデオ処理ツールまたはモードを使用して実行される。
【0213】
開示される技術のいくつかの実施形態は、ビデオ処理ツールまたはモードを無効にする決定または決断を行うことを含む。一例では、ビデオ処理ツールまたはモードが無効にされている場合、エンコーダは、ビデオのブロックをビデオのビットストリーム表現に変換する際に、該ツールまたはモードを使用しない。別の例では、ビデオ処理ツールまたはモードが無効にされているとき、デコーダは、ビットストリームが、前記決定または決断に基づいて無効にされたビデオ処理ツールまたはモードを使用して修正されていないという知識を用いて、ビットストリームを処理する。
【0214】
図17は、本開示の技法を利用しうる例示的なビデオコーディングシステム100を示すブロック図である。
図17に示されるように、ビデオコーディングシステム100は、ソース装置110および宛先装置120を含んでいてもよい。ソース装置110は、エンコードされたビデオ・データを生成し、これはビデオ・エンコード装置と称されてもよい。宛先装置120は、ソース装置110によって生成された、エンコードされたビデオ・データをデコードしてもよく、これはビデオ・デコード装置と称されてもよい。ソース装置110は、ビデオ・ソース112、ビデオ・エンコーダ114、および入出力(I/O)インターフェース116を含んでいてもよい。
【0215】
ビデオ・ソース112は、ビデオ捕捉装置のようなソース、ビデオ・コンテンツ・プロバイダーからビデオ・データを受信するためのインターフェース、および/またはビデオ・データを生成するためのコンピュータ・グラフィックス・システム、またはそのようなソースの組み合わせを含んでいてもよい。ビデオ・データは、一つまたは複数のピクチャーを含んでいてもよい。ビデオ・エンコーダ114は、ビデオ・ソース112からのビデオ・データをエンコードしてビットストリームを生成する。ビットストリームは、ビデオ・データのコーディング表現を形成するビットのシーケンスを含んでいてもよい。ビットストリームは、コーディングされたピクチャーおよび関連するデータを含んでいてもよい。コーディングされたピクチャーは、ピクチャーのコーディングされた表現である。該関連するデータは、シーケンスパラメータセット、ピクチャーパラメータセット、および他の構文構造を含んでいてもよい。入出力インターフェース116は、変調器/復調器(モデム)および/または送信器を含んでいてもよい。エンコードされたビデオ・データは、I/Oインターフェース116を介してネットワーク130aを通じて宛先装置120に直接送信されてもよい。エンコードされたビデオ・データはまた、宛先装置120によるアクセスのために記憶媒体/サーバー130b上に記憶されてもよい。
【0216】
宛先装置120は、I/Oインターフェース126、ビデオ・デコーダ124、および表示装置122を含んでいてもよい。
【0217】
I/Oインターフェース126は、受信機および/またはモデムを含んでいてもよい。I/Oインターフェース126は、ソース装置110または記憶媒体/サーバー130bから、エンコードされたビデオ・データを取得してもよい。ビデオ・デコーダ124は、エンコードされたビデオ・データをデコードしてもよい。表示装置122は、デコードされたビデオ・データをユーザーに対して表示してもよい。表示装置122は、宛先装置120と一体化されてもよく、または外部表示装置とインターフェースするように構成された宛先装置120の外部にあってもよい。
【0218】
ビデオ・エンコーダ114およびビデオ・デコーダ124は、高効率ビデオコーディング(HEVC)標準、多用途ビデオコーディング(VVC)標準、および他の現行のおよび/またはさらなる標準のようなビデオ圧縮標準に従って動作してもよい。
【0219】
図18は、
図17に示されるシステム100内のビデオ・エンコーダ114であってもよいビデオ・エンコーダ200の一例を示すブロック図である。
【0220】
ビデオ・エンコーダ200は、本開示の技法のいずれかまたは全部を実行するように構成されてもよい。
図18の例では、ビデオ・エンコーダ200は、複数の機能コンポーネントを含む。本開示に記載される技法は、ビデオ・エンコーダ200のさまざまな構成要素間で共有されてもよい。いくつかの例では、プロセッサが、本開示に記載される技法のいずれかまたは全部を実行するように構成されてもよい。
【0221】
ビデオ・エンコーダ200の機能構成要素は、分割部201と、モード選択部203、動き推定部204、動き補償部205、イントラ予測部206を含んでいてもよい予測部202と、残差生成部207と、変換部208と、量子化部209と、逆量子化部210と、逆変換部211と、再構成部212と、バッファ213と、エントロピーコーディング部214とを含んでいてもよい。
【0222】
他の例では、ビデオ・エンコーダ200は、より多くの、より少ない、または異なる機能構成要素を含んでいてもよい。一例では、予測ユニット202は、イントラブロックコピー(IBC)部を含んでいてもよい。IBC部は、少なくとも1つの参照ピクチャーが現在のビデオ・ブロックが位置するピクチャーである、IBCモードで予測を実行してもよい。
【0223】
さらに、動き推定部204や動き補償部205のようないくつかの構成要素は、高度に統合されてもよいが、説明のために
図18の例では別々に示されている。分割部201は、ピクチャーを一つまたは複数のビデオ・ブロックにパーティション分割してもよい。
【0224】
ビデオ・エンコーダ200およびビデオ・デコーダ300は、さまざまなビデオ・ブロック・サイズをサポートすることができる。
【0225】
モード選択部203は、たとえば誤差結果に基づいて、イントラまたはインターのコーディングモードのうちの1つを選択し、結果として得られるイントラまたはインターコーディングされたブロックを、残差ブロック・データを生成するために残差生成部207に、また、参照ピクチャーとして使用するために、エンコードされたブロックを再構成するために再構成部212に、提供してもよい。ある例では、モード選択部203は、予測がインター予測信号およびイントラ予測信号に基づく、イントラ予測とインター予測の組み合わせ(CIIP)モードを選択してもよい。モード選択部203は、また、インター予測の場合に、ブロックについての動きベクトルの分解能(たとえば、サブピクセルまたは整数ピクセル精度)を選択してもよい。
【0226】
現在のビデオ・ブロックに対するインター予測を実行するために、動き推定部204は、バッファ213からの一つまたは複数の参照フレームを現在のビデオ・ブロックと比較することによって、現在のビデオ・ブロックの動き情報を生成してもよい。動き補償部205は、現在のビデオ・ブロックに関連するピクチャー以外のバッファ213からのピクチャーの動き情報およびデコードされたサンプルに基づいて、現在のビデオ・ブロックについての予測されるビデオ・ブロックを決定することができる。
【0227】
動き推定部204と動き補償部205は、たとえば、現在のビデオ・ブロックがIスライス内にあるか、Pスライス内にあるか、Bスライス内にあるかに依存して、現在のビデオ・ブロックについて異なる動作を実行してもよい。
【0228】
いくつかの例では、動き推定部204は、現在のビデオ・ブロックについて一方向の予測を実行してもよく、動き推定部204は、現在のビデオ・ブロックについて、参照ビデオ・ブロックについてのリスト0またはリスト1の参照ピクチャーを探索してもよい。動き推定部204は、次いで、現在のビデオ・ブロックを含むリスト0またはリスト1内の参照ピクチャーを示す参照インデックスと、現在のビデオ・ブロックと参照ビデオ・ブロックとの間の空間的変位を示す動きベクトルとを生成してもよい。動き推定部204は、現在のビデオ・ブロックの動き情報として、前記参照インデックス、予測方向インジケータ、および前記動きベクトルを出力することができる。動き補償部205は、現在のビデオ・ブロックの動き情報によって示される参照ビデオ・ブロックに基づいて、現在のブロックの予測ビデオ・ブロックを生成することができる。
【0229】
他の例では、動き推定部204は、現在のビデオ・ブロックについて双方向予測を実行してもよく、動き推定部204は、現在のビデオ・ブロックのための参照ビデオ・ブロックを求めて、リスト0内の参照ピクチャーを探索してもよく、現在のビデオ・ブロックのための別の参照ビデオ・ブロックを求めて、リスト1内の参照ピクチャーをも探索してもよい。動き推定ユニット204は、次いで、それらの参照ビデオ・ブロックを含むリスト0およびリスト1の参照ピクチャーを示す参照インデックスと、それらの参照ビデオ・ブロックと現在のビデオ・ブロックとの間の空間的変位を示す動きベクトルとを生成してもよい。動き推定部204は、現在のビデオ・ブロックの動き情報として、前記参照インデックスと、現在のビデオ・ブロックの動きベクトルとを出力することができる。動き補償部205は、現在のビデオ・ブロックの動き情報によって示される参照ビデオ・ブロックに基づいて、現在のビデオ・ブロックの予測ビデオ・ブロックを生成することができる。
【0230】
いくつかの例では、動き推定部204は、デコーダのデコード処理のために動き情報のフルセットを出力してもよい。
【0231】
いくつかの例では、動き推定部204は、現在のビデオについての動き情報のフルセットを出力しなくてもよい。むしろ、動き推定部204は、別のビデオ・ブロックの動き情報を参照して現在のビデオ・ブロックの動き情報を信号伝達してもよい。たとえば、動き推定部204は、現在のビデオ・ブロックの動き情報が近傍ビデオ・ブロックの動き情報と十分に類似していると判断することができる。
【0232】
一例では、動き推定部204は、現在のビデオ・ブロックが別のビデオ・ブロックと同じ動き情報を有することを、ビデオ・デコーダ300に示す値を、現在のビデオ・ブロックに関連する構文構造において、示してもよい。
【0233】
別の例では、動き推定部204は、現在のビデオ・ブロックに関連する構文構造において、別のビデオ・ブロックおよび動きベクトル差分(motion vector difference、MVD)を同定してもよい。動きベクトル差分は、現在のビデオ・ブロックの動きベクトルと示されたビデオ・ブロックの動きベクトルとの間の差を示す。ビデオ・デコーダ300は、示されたビデオ・ブロックの動きベクトルと動きベクトル差分とを使用して、現在のビデオ・ブロックの動きベクトルを決定することができる。
【0234】
上述のように、ビデオ・エンコーダ200は、動きベクトルを予測的に信号伝達してもよい。ビデオ・エンコーダ200によって実装されうる予測的信号伝達技法の2つの例は、先進動きベクトル予測(advanced motion vector predication、AMVP)およびマージモード(merge mode)信号伝達を含む。
【0235】
イントラ予測部206は、現在のビデオ・ブロックに対してイントラ予測を実行することができる。イントラ予測部206が現在のビデオ・ブロックに対してイントラ予測を実行するとき、イントラ予測部206は、同じピクチャー内の他のビデオ・ブロックのデコードされたサンプルに基づいて、現在のビデオ・ブロックについての予測データを生成することができる。現在のビデオ・ブロックについての予測データは、予測されるビデオ・ブロックおよびさまざまな構文要素を含んでいてもよい。
【0236】
残差生成部207は、現在のビデオ・ブロックから現在のビデオ・ブロックの予測ビデオ・ブロック(単数または複数)を減算(たとえば、マイナス記号によって示される)することによって、現在のビデオ・ブロックについての残差データを生成することができる。現在のビデオ・ブロックの残差データは、現在のビデオ・ブロック内のサンプルの異なるサンプル成分に対応する残差ビデオ・ブロックを含んでいてもよい。
【0237】
他の例では、たとえばスキップ・モードにおいては、現在のビデオ・ブロックについて現在のビデオ・ブロックのための残差データが存在しないことがあり、残差生成部207は減算演算を実行しないことがある。
【0238】
変換処理部208は、現在のビデオ・ブロックに関連する残差ビデオ・ブロックに一つまたは複数の変換を適用することによって、現在のビデオ・ブロックのための一つまたは複数の変換係数ビデオ・ブロックを生成することができる。変換処理部208が現在のビデオ・ブロックに関連する変換係数ビデオ・ブロックを生成した後、量子化部209は、現在のビデオ・ブロックに関連する一つまたは複数の量子化パラメータ(QP)値に基づいて、現在のビデオ・ブロックに関連する変換係数ビデオ・ブロックを量子化することができる。
【0239】
逆量子化部210および逆変換部211は、変換係数ビデオ・ブロックから残差ビデオ・ブロックを再構成するために、変換係数ビデオ・ブロックに対してそれぞれ逆量子化および逆変換を適用することができる。再構成部212は、予測部202によって生成された一つまたは複数の予測されたビデオ・ブロックからの対応するサンプルに、再構成された残差ビデオ・ブロックを加算して、現在のブロックに関連する再構成されたビデオ・ブロックを、バッファ213に記憶するために生成することができる。
【0240】
再構成部212がビデオ・ブロックを再構成した後、ビデオ・ブロック内のビデオ・ブロッキング・アーチファクトを低減するために、ループ・フィルタリング動作が実行されてもよい。
【0241】
エントロピーコーディング部214は、ビデオ・エンコーダ200の他の機能構成要素からデータを受信してもよい。エントロピーコーディング部214が該データを受信すると、エントロピーコーディング部214は、一つまたは複数のエントロピーコーディング演算を実行してエントロピーコーディングデータを生成し、該エントロピーコーディングデータを含むビットストリームを出力してもよい。
【0242】
図19は、
図17に示されるシステム100内のビデオ・デコーダ124であってもよいビデオ・デコーダ300の例を示すブロック図である。
【0243】
ビデオ・デコーダ300は、本開示の技術のいずれかまたはすべてを実行するように構成されてもよい。
図19の例では、ビデオ・デコーダ300は、複数の機能的構成要素を含む。本開示に記載される技法は、ビデオ・デコーダ300のさまざまな構成要素間で共有されてもよい。いくつかの例では、プロセッサは、本開示に記載される技法のいずれかまたはすべてを実行するように構成されてもよい。
【0244】
図19の例では、ビデオ・デコーダ300は、エントロピー復号部301、動き補償部302、イントラ予測部303、逆量子化部304、逆変換部305、再構成部306、バッファ307を含む。ビデオ・デコーダ300は、いくつかの例では、ビデオ・エンコーダ200(
図18)に関して説明したエンコード・パスのほぼ逆のデコード・パスを実行することができる。
【0245】
エントロピー復号部301は、エンコードされたビットストリームを取得してもよい。エンコードされたビットストリームはエントロピーコーディングされたビデオ・データ(たとえば、ビデオ・データのエンコードされたブロック)を含んでいてもよい。エントロピー復号部301はエントロピーコーディングされたビデオ・データを復号することができ、エントロピー復号されたビデオ・データから、動き補償部302は、動きベクトル、動きベクトル精度、参照ピクチャー・リスト・インデックス、および他の動き情報を含む動き情報を決定することができる。
【0246】
動き補償部302は、たとえば、AMVPおよびマージモードを実行することによって、そのような情報を決定することができる。
【0247】
動き補償部302は、動き補償されたブロックを生成することができ、可能性としては、補間フィルタに基づいて補間を実行する。サブピクセル精度で使用される補間フィルタのための識別子は、構文要素に含まれてもよい。
【0248】
動き補償部302は、ビデオ・ブロックのエンコード中にビデオ・エンコーダ20によって使用された補間フィルタを使用して、参照ブロックのサブ整数ピクセルについての補間された値を計算することができる。動き補償部302は、受領された構文情報に従ってビデオ・エンコーダ200によって使用される補間フィルタを決定し、該補間フィルタを使用して、予測ブロックを生成してもよい。
【0249】
動き補償部302は、前記構文情報の一部を使用して、エンコードされたビデオ・シーケンスのフレームおよび/またはスライスをエンコードするために使用されたブロックのサイズ、エンコードされたビデオ・シーケンスのピクチャーの各マクロブロックがどのようにパーティション分割されるかを記述するパーティション情報、各パーティションがどのようにエンコードされているかを示すモード、各インターコーディングされたブロックについての一つまたは複数の参照フレーム(および参照フレーム・リスト)、およびエンコードされたビデオ・シーケンスをデコードするための他の情報を決定してもよい。
【0250】
イントラ予測部303は、たとえばビットストリームにおいて受領されたイントラ予測モードを使用して、空間的に隣接するブロックから予測ブロックを形成してもよい。逆量子化部303は、ビットストリームにおいて提供され、エントロピー復号部301によって復号される量子化されたビデオ・ブロック係数を逆量子化する、すなわち、脱量子化する。逆変換部303は、逆変換を適用する。
【0251】
再構成部306は、残差ブロックを、動き補償部203またはイントラ予測部303によって生成された対応する予測ブロックと加算して、デコードされたブロックを形成することができる。所望であれば、ブロック性アーチファクトを除去するために、デコードされたブロックをフィルタリングするようブロッキング解除フィルタが適用されてもよい。デコードされたビデオ・ブロックは次いでバッファ307に記憶され、バッファ307は、後続の動き補償/イントラ予測のための参照ブロックを提供し、表示装置上に提示するためのデコードされたビデオを生成する。
【0252】
図20は、本明細書で開示されるさまざまな技法が実装されうる、例示的なビデオ処理システム2000を示すブロック図である。さまざまな実装は、システム2000の構成要素の一部または全部を含んでいてもよい。システム2000は、ビデオ・コンテンツを受領するための入力2002を含んでいてもよい。ビデオ・コンテンツは、生または非圧縮フォーマット、たとえば、8または10ビットの複数成分ピクセル値で受領されてもよく、または圧縮またはエンコードされたフォーマットで受領されてもよい。入力2002は、ネットワークインターフェース、周辺バスインターフェース、または記憶インターフェースを表してもよい。ネットワークインターフェースの例は、イーサネット、受動光ネットワーク(PON)などの有線インターフェース、およびワイヤレスフィデリティ(Wi-Fi)またはセルラーインターフェースなどの無線インターフェースを含む。
【0253】
システム2000は、本開示に記載されるさまざまなコーディングまたはエンコード方法を実装しうるコーディング構成要素2004を含んでいてもよい。コーディング構成要素2004は、入力2002からのビデオの平均ビットレートをコーディング構成要素2004の出力に低下させて、ビデオのコーディング表現を生成してもよい。よって、コーディング技法は、ビデオ圧縮またはビデオトランスコード技法と呼ばれることがある。コーディング構成要素2004の出力は、記憶されるか、または構成要素2006によって表されるように、接続された通信を介して伝送されうる。入力2002において受領されたビデオの記憶されたまたは通信されたビットストリーム(またはコーディング)表現は、ディスプレイインターフェース2010に送られるピクセル値または表示可能なビデオを生成するために、構成要素2008によって使用されてもよい。ビットストリーム表現からユーザーが見ることができるビデオを生成するプロセスは、ビデオ圧縮解除と呼ばれることがある。さらに、ある種のビデオ処理動作は、「コーディング」動作またはツールと称されるが、コーディングツールまたは動作は、エンコーダにおいて使用され、コーディングの結果を反転させる対応する復号ツールまたは動作がデコーダによって実行されることが理解されるであろう。
【0254】
周辺バスインターフェースまたはディスプレイインターフェースの例は、ユニバーサルシリアルバス(USB)または高精細度マルチメディアインターフェース(HDMI(登録商標))またはディスプレイポートなどを含みうる。記憶インターフェースの例は、シリアルアドバンストテクノロジーアタッチメント(SATA)、周辺コンポーネント相互接続(PCI)、統合ドライブエレクトロニクス(IDE)インターフェースなどを含む。本開示に記載される技法は、携帯電話、ラップトップ、スマートフォン、またはデジタルデータ処理および/またはビデオ表示を実行することができる他の装置のようなさまざまな電子装置に具現されうる。
【0255】
図21は、ビデオ処理のための例示的方法のフローチャートを示す。方法2100は、複数の色成分を含むビデオと該ビデオのビットストリーム表現との間の変換を実行2102するステップを含み、前記ビットストリーム表現は、2つの色成分について、前記ビットストリーム表現において、前記ビットストリーム表現における前記2つの色成分のビデオ・ブロックを表現するのにトランスクワント・バイパス・モードが適用可能であるかどうかを示す一つまたは複数の構文要素が含まれることを指定する規則に適合し、トランスクワント・バイパス・モードがあるビデオ・ブロックに適用可能である場合、そのビデオ・ブロックは、変換および量子化プロセスを使用することなく前記ビットストリーム表現において表現されるか、またはそのビデオ・ブロックは、逆変換および逆量子化プロセスを使用することなく前記ビットストリーム表現から得られる。
【0256】
方法2100のいくつかの実施形態では、トランスクワント・バイパス・モードが適用可能であるかどうかを示す前記一つまたは複数の構文要素は、一つまたは複数のcu_transquant_bypass_flagによって表される。方法2100のいくつかの実施形態では、前記2つのビデオ・ブロックについてデュアルツリー分割プロセスが有効化されることに応答して、ルーマ成分の第1のビデオ・ブロックについての第1のcu_transquant_bypass_flagは、少なくとも1つのクロマ成分の第2のビデオ・ブロックについての第2のcu_transquant_bypass_flagとは別個にコーディングされ、それらのビデオ・ブロックは、前記第1のビデオ・ブロックおよび前記第2のビデオ・ブロックを含む。方法2100のいくつかの実施形態では、前記一つまたは複数のcu_transquant_bypass_flagの使用は、コンテキストに基づいてコーディングされる。方法2100のいくつかの実施形態では、コンテキストは、前記複数の色成分のうちの少なくとも1つに基づいて選択される。方法2100のいくつかの実施形態では、前記一つまたは複数のcu_transquant_bypass_flagからの1つのcu_transquant_bypass_flagは、前記一つまたは複数のcu_transquant_bypass_flagからの別のcu_transquant_bypass_flagを使用して予測的にコーディングされる。方法2100のいくつかの実施形態では、前記複数の色成分について、前記ビットストリーム表現において1つのcu_transquant_bypass_flagが示されるかどうか、または前記複数の色成分について、前記ビットストリーム表現において複数のcu_transquant_bypass_flagが示されるかどうかを、前記2つのビデオ・ブロックのコーディング構造が決定する。
【0257】
方法2100のいくつかの実施形態では、前記コーディング構造は、単一ツリーコーディング構造またはデュアルツリーコーディング構造を含む。方法2100のいくつかの実施形態では、トランスクワント・バイパス・モードが第1の色成分の第1のビデオ・ブロックに適用可能であるかどうかは、前記変換および量子化プロセスが、または前記逆変換および逆量子化プロセスが、第2の色成分の第2のビデオ・ブロックの対応する領域に位置するサンプルについて使用されないかどうかに基づいて決定され、前記第2のビデオ・ブロックの対応する領域は前記第1のビデオ・ブロックの領域に対応し、前記ビデオ・ブロックは前記第1のビデオ・ブロックおよび前記第2のビデオ・ブロックを含む。方法2100のいくつかの実施形態では、前記第2のビデオ・ブロックの前記対応する領域のサイズと、前記第2の色成分の前記第2のビデオ・ブロックの左上のサンプルの座標とは、カラーフォーマットに依存する。方法2100のいくつかの実施形態では、前記第2のビデオ・ブロックの前記対応する領域のサイズは、2W*2Hで表され、前記左上のサンプルの座標は(2*x0,2*y0)である。これは、前記第1のビデオ・ブロックがW*Hという別のサイズおよび(x0,y0)に位置する別の左上のサンプルを有することに応答し、かつカラーフォーマットが4:2:0であることに応答してである。ここで、Wは、第1の色成分に関連するブロックの幅を表し、Hは、第1の色成分に関連するブロックの高さを表す。
【0258】
方法2100のいくつかの実施形態では、第1の色成分はクロマ成分である。方法2100のいくつかの実施形態では、クロマ成分は、青色差成分または赤色差成分である。方法2100のいくつかの実施形態では、第2の色成分はルーマ成分である。方法2100のいくつかの実施形態では、前記第2のビデオ・ブロックの前記対応する領域内に位置するすべてのサンプルが前記変換および量子化プロセスを使用することなくコーディングされるか、または前記逆変換および逆量子化プロセスを使用することなく導出されることに応答して、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスは、前記第1のビデオ・ブロックについて使用されない。方法2100のいくつかの実施形態では、前記第2色成分の第2ビデオ・ブロックの前記対応する領域に位置する少なくとも1つのサンプルが前記変換および量子化プロセスを使用することなくコーディングされるか、または前記逆変換および逆量子化プロセスを使用することなく導出されることに応答して、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスは、第1色成分の前記第1ビデオ・ブロックについて使用されない。
【0259】
方法2100のいくつかの実施形態では、第1のビデオ・ブロックまたは第2のビデオ・ブロックについて前記変換および量子化プロセスまたは前記逆変換および逆量子化プロセスが使用されないことに応答して、前記ビットストリーム表現は、第1のビデオ・ブロックまたは第2のビデオ・ブロックについてのcu_transquant_bypass_flagを除外する。方法2100のいくつかの実施形態では、前記変換および量子化プロセスまたは前記逆変換および逆量子化プロセスの使用のサイド情報が、第1の色成分の第1のビデオ・ブロックについて前記ビットストリーム表現において示されるかどうかは、前記変換および量子化プロセスまたは前記逆変換および逆量子化プロセスが、第2の色成分の前記対応する領域内の一つまたは複数のビデオ・ブロックについて使用されないかどうかに基づいて決定される。方法2100のいくつかの実施形態では、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスが、第2の色成分の前記対応する領域内の前記一つまたは複数のビデオ・ブロックのすべてについて使用されないことに応答して、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスの前記サイド情報は、第1の色成分の第1のビデオ・ブロックについて前記ビットストリーム表現において示される。
【0260】
方法2100のいくつかの実施形態では、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスが、第2の色成分の前記対応する領域内の前記一つまたは複数のビデオ・ブロックのうちの一部についてのみ使用されないことに応答して、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスの前記サイド情報は、第1の色成分の第1のビデオ・ブロックについて前記ビットストリーム表現において除外される。方法2100のいくつかの実施形態では、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスが、第2の色成分の前記対応する領域内の前記一つまたは複数のビデオ・ブロックについて使用されないことに応答して、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスの前記サイド情報は、第1の色成分の第1のビデオ・ブロックについて前記ビットストリーム表現において示される。方法2100のいくつかの実施形態では、前記一つまたは複数のビデオ・ブロックは、第2の色成分の前記対応する領域の中心位置をカバーするビデオ・ブロックを含む。
【0261】
方法2100のいくつかの実施形態では、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスが、第2の色成分の前記対応する領域内の前記一つまたは複数のビデオ・ブロックについて使用されないことに応答して、前記変換および量子化プロセス、または前記逆変換および逆量子化プロセスの前記サイド情報は、第1の色成分の第1のビデオ・ブロックについて前記ビットストリーム表現から除外される。方法2100のいくつかの実施形態では、デュアルツリーコーディング構造が、第1のビデオ・ブロックおよび第2のビデオ・ブロックについて有効にされる。方法2100のいくつかの実施形態では、前記複数の色成分は、ルーマ成分および複数のクロマ成分を含み、前記複数のクロマ成分のうち少なくとも1つのクロマ成分についての第1の構文要素は、ルーマ成分についての第2の構文に基づいており、トランスクワント・バイパス・モードが適用可能であるかどうかを示す前記一つまたは複数の構文要素は、前記第1の構文要素および前記第2の構文要素を含む。方法2100のいくつかの実施形態では、変換および量子化プロセスまたは逆変換および逆量子化プロセスがルーマ成分に関連する少なくとも1つのビデオ・ブロックについて使用されないことに応答して、変換および量子化プロセス、または逆変換および逆量子化プロセスは、前記少なくとも1つのクロマ成分のビデオ・ブロックでは使用されず、ルーマ成分に関連する少なくとも1つのビデオ・ブロックは、前記少なくとも1つのクロマ成分に関連する前記ビデオ・ブロックに対応する。
【0262】
方法2100のいくつかの実施形態では、ルーマ成分の前記一つまたは複数のビデオ・ブロックは、コーディング単位(CU)、予測単位(PU)、または変換単位(TU)を含む。方法2100のいくつかの実施形態では、変換および量子化プロセス、または逆変換および逆量子化プロセスは、ルーマ成分の前記一つまたは複数のビデオ・ブロックの全部では使用されない。方法2100のいくつかの実施形態では、前記少なくとも1つのクロマ成分のビデオ・ブロックは、サブブロックに分割され、変換および量子化プロセスまたは逆変換および逆量子化プロセスがルーマ成分の一つまたは複数のビデオ・ブロックの全部には使用されないことに応答して、変換および量子化プロセスまたは逆変換および逆量子化プロセスは、前記サブブロックからのあるサブブロックについては使用されず、ルーマ成分に関連する前記一つまたは複数のビデオ・ブロックは、前記少なくとも1つのクロマ成分に関連する前記サブブロックに対応する。
【0263】
図22は、ビデオ処理のための例示的方法のフローチャートを示す。方法2200は、ビデオの現在のビデオ・ブロックの特性に基づいて、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であるかどうかを決定2202するステップであって、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能である場合、現在のビデオ・ブロックが、変換および量子化プロセスを使用することなく前記ビットストリーム表現で表現される、または現在のブロックが、逆変換および逆量子化プロセスを使用することなく前記ビットストリーム表現から得られる、ステップと、前記決定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行2204するステップとを含む。
【0264】
方法2200のいくつかの実施形態では、前記特性は、現在のビデオ・ブロックの第1のサイズであり、トランスクワント・バイパス・モードは、現在のビデオ・ブロックの第1のサイズが仮想パイプライン・データ単位(VPDU)の第2のサイズより大きいことに応答して、現在のビデオ・ブロックに適用可能である。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さまたは幅は、それぞれ、VPDUの高さまたは幅より大きい。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さおよび幅は、それぞれ、VPDUの高さおよび幅より大きい。方法2200のいくつかの実施形態では、変換および量子化プロセスまたは逆変換および逆量子化プロセスが現在のビデオ・ブロックについて使用されないことを示す構文要素が、前記ビットストリーム表現に含まれる。方法2200のいくつかの実施形態では、本方法は、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズがVPDUの第2のサイズより大きいことに応答して、現在のビデオ・ブロックを複数のVPDUに分割するステップをさらに含む。方法2200のいくつかの実施形態では、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズは、VPDUの第2のサイズより大きく、現在のビデオ・ブロックは、複数のVPDUに分割されず、変換および量子化プロセスまたは逆変換および逆量子化プロセスが現在のビデオ・ブロックについて使用されないトランスクワント・バイパス・モードが、現在のビデオ・ブロックに対して適用可能であり、変換および量子化プロセスまたは逆変換および逆量子化プロセスが使用されないことを示す構文要素が、前記ビットストリーム表現に含まれない。
【0265】
方法2200のいくつかの実施形態では、現在のビデオ・ブロックのCTUについて、イントラ予測モードが許容される。方法2200のいくつかの実施形態では、前記特性は、現在のビデオ・ブロックの第1のサイズであり、現在のビデオ・ブロックの第1のサイズが最大許容される変換ブロックの第2のサイズより大きいことに応答して、トランスクワント・バイパス・モードは現在のビデオ・ブロックに対して適用可能である。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さまたは幅は、最大許容される変換ブロックの寸法よりも大きい。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さおよび幅は、最大許容される変換ブロックの寸法よりも大きい。方法2200のいくつかの実施形態では、変換および量子化プロセスまたは逆変換および逆量子化プロセスが現在のビデオ・ブロックについて使用されないことを示す構文要素が、ビットストリーム表現に含まれる。方法2200のいくつかの実施形態では、方法は、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズが、最大許容される変換ブロックの第2のサイズよりも大きいことに応答して、現在のビデオ・ブロックを複数の最大許容される変換ブロックに分割するステップをさらに含む。
【0266】
方法2200のいくつかの実施形態では、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズは、最大許容される変換ブロックの第2のサイズより大きく、現在のビデオ・ブロックは、複数の最大許容される変換ブロックに分割されず、変換および量子化プロセスまたは逆変換および逆量子化プロセスは、現在のビデオ・ブロックについて使用されず、変換および量子化プロセスまたは逆変換および逆量子化プロセスが使用されないことを示す構文要素はビットストリーム表現に含まれない。方法2200のいくつかの実施形態では、現在のビデオ・ブロックのCTUについてイントラ予測モードが許容される。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの第1のサイズが仮想パイプライン・データ単位(VPDU)の第2のサイズよりも大きいことに応答して、現在のビデオ・ブロックに変換を適用しないコーディングモードが有効にされる。
【0267】
方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さまたは幅は、それぞれ、VPDUの高さまたは幅より大きい。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さおよび幅は、それぞれ、VPDUの高さおよび幅より大きい。方法2200のいくつかの実施形態では、コーディングモードが現在のビデオ・ブロックについて変換を適用しないことを示す構文要素が、ビットストリーム表現に含まれる。方法2200のいくつかの実施形態では、方法は、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズがVPDUの第2のサイズより大きいことに応答して、現在のビデオ・ブロックを複数のVPDUに分割するステップをさらに含む。方法2200のいくつかの実施形態では、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズがVPDUの第2のサイズより大きく、現在のビデオ・ブロックは複数のVPDUに分割されず、前記変換は現在のビデオ・ブロックに適用されず、コーディングモードが現在のビデオ・ブロックに前記変換を適用しないことを示す構文要素は、ビットストリーム表現に含まれない。
【0268】
方法2200のいくつかの実施形態では、現在のビデオ・ブロックのCTUについてイントラ予測モードが許容される。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの第1のサイズが、最大許容される変換ブロックの第2のサイズよりも大きいことに応答して、現在のビデオ・ブロックに変換を適用しないコーディングモードが有効にされる。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さまたは幅は、最大許容される変換ブロックの寸法よりも大きい。方法2200のいくつかの実施形態では、現在のビデオ・ブロックの高さおよび幅は、最大許容される変換ブロックの寸法よりも大きい。方法2200のいくつかの実施形態では、コーディングモードが現在のビデオ・ブロックについて変換を適用しないことを示す構文要素が、ビットストリーム表現に含まれる。方法2200のいくつかの実施形態では、方法は、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズが、最大許容される変換ブロックの第2のサイズよりも大きいことに応答して、現在のビデオ・ブロックを、複数の最大許容される変換ブロックに分割するステップをさらに含む。
【0269】
方法2200のいくつかの実施形態では、現在のビデオ・ブロックのコーディングツリー単位(CTU)のサイズは、最大許容される変換ブロックの第2のサイズより大きく、現在のビデオ・ブロックは、複数の最大許容される変換ブロックに分割されず、変換および量子化プロセスまたは逆変換および逆量子化プロセスは、現在のビデオ・ブロックについては使用されず、コーディングモードが現在のビデオ・ブロックについて変換を適用しないことを示す構文要素は、ビットストリーム表現に含まれない。方法2200のいくつかの実施形態では、現在のビデオ・ブロックのCTUについてイントラ予測モードが許容される。方法2200のいくつかの実施形態では、前記コーディングモードは、変換スキップ・モード、差分パルス符号変調(DPCM)モード、または量子化残差DPCM(QR-DPCM)モードであり、QR-DPCMモードでは、現在ビデオ・ブロックのイントラ予測の量子化残差と該量子化残差の予測との差が、差分パルスコーディング変調(DPCM)表現を使用して、現在のビデオ・ブロックについてのビットストリーム表現において表現される。
【0270】
図23は、ビデオ処理のための例示的方法のフローチャートを示す。方法2300は、ビデオの現在のビデオ・ブロックが寸法制約条件を満たすことに基づいて、ビットストリーム表現において現在のビデオ・ブロックを表現するために2つ以上のコーディングモードが有効であることを決定2302するステップであって、前記寸法制約条件は、現在のビデオ・ブロックについて同じセットの許容される寸法が、前記2つ以上のコーディングモードについて無効にされることを述べ、エンコード動作については、前記2つ以上のコーディングモードは、現在のビデオ・ブロックに対して変換演算を使用することなく、現在のビデオ・ブロックをビットストリーム表現において表現する、または、デコード動作については、前記2つ以上のコーディングモードは、逆変換演算を使用することなく、ビットストリーム表現から現在のビデオ・ブロックを取得するために使用される、ステップと;前記2つ以上のコーディングモードのうちの1つに基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間で変換を実行2304するステップとを含む。
【0271】
方法2300のいくつかの実施形態では、前記2つ以上のコーディングモードは、変換スキップ(TS)モード、トランスクワント・バイパス・モード、ブロック差分パルス符号変調(BDPCM)モード、および量子化残差BDPCM(QR-BDPCM)モードのうちの任意の2つ以上を含み、前記トランスクワント・バイパス・モードにおいて、エンコード動作中は、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されず、前記トランスクワント・バイパス・モードにおいて、デコード動作中は、現在のビデオ・ブロックを得るために逆変換および逆量子化プロセスが適用されず、前記QR-BDPCMモードでは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化された残差の予測との差分がビットストリーム表現において表現される。方法2300のいくつかの実施形態では、前記2つ以上のコーディングモードについて寸法の許容される最大値および/または許容される最小値を示す単一の構文要素が、ビットストリーム表現において信号伝達される。方法2300のいくつかの実施形態では、前記2つ以上のコーディングモードについて寸法の許容される最大値および/または許容される最小値を示す構文要素は、前記2つ以上のコーディングモードのうちの1つのコーディングモードが有効にされること応答して、ビットストリーム表現において信号伝達され、前記1つのコーディングモードは、非恒等変換に依拠しない。
【0272】
方法2300のいくつかの実施形態では、前記構文要素は、log2_transform_skip_max_size_minus2値である。方法2300のいくつかの実施形態では、前記1つのコーディングモードは、変換スキップ(TS)モード、トランスクワント・バイパス・モード、またはQR-BDPCMモードである。方法2300のいくつかの実施形態では、前記1つのコーディングモードは、コーディング単位レベルではないレベルで有効にされる。方法2300のいくつかの実施形態では、前記1つのコーディングモードは、変換スキップ(TS)モードまたは量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードを含み、前記構文要素は、TSモードまたはQR-BDPCMモードのいずれかが有効にされていることに応答して、log2_transform_skip_max_size_minus2値に含まれる。
【0273】
方法2300のいくつかの実施形態では、前記1つのコーディングモードは、変換スキップ(TS)モードまたはトランクアント・バイパス・モードを含み、前記構文要素は、TSモードまたはトランスクオン・バイパス・モードのいずれかを有効にすることに応答して、log2_transform_skip_max_size_minus2値に含まれる。方法2300のいくつかの実施形態では、前記2つ以上のコーディングモードから有効にされるコーディングモードがあって、該コーディングモードの使用の指示がビットストリーム表現に含まれる。方法2300のいくつかの実施形態では、方法は、ビデオの現在のビデオ・ブロックが寸法制約条件を満たさないことに基づいて、前記2つ以上のコーディングモードが現在のビデオ・ブロックについて有効にされないことを決定するステップをさらに含む。方法2300のいくつかの実施形態では、前記2つ以上のコーディングモードからのあるコーディングモードの使用の指示は、そのコーディングモードが現在のビデオ・ブロックについて有効にされないことに応答して、ビットストリーム表現に含まれない。
【0274】
図24は、ビデオ処理のための例示的方法のフローチャートを示す。方法2400は、ビデオの現在のビデオ・ブロックが寸法制約条件を満たすことに基づいて、ビットストリーム表現において現在のビデオ・ブロックを表現するために2つのコーディングモードが有効にされることを決定2402するステップであって、寸法制約条件は、前記2つのコーディングモードを有効にするために同じセットの許容される寸法が使用されることを述べ、エンコード動作については、前記2つのコーディングモードは、現在のビデオ・ブロックに対して変換演算を使用することなく、現在のビデオ・ブロックをビットストリーム表現において表現し、デコード動作については、前記2つのコーディングモードが、逆変換演算を使用することなく、ビットストリーム表現から現在のビデオ・ブロックを得るために使用される、ステップと;前記2つのコーディングモードのうちの1つに基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行2404するステップとを含む。
【0275】
方法2400のいくつかの実施形態では、前記2つのコーディングモードは、トランスクワント・バイパス・モードおよび変換スキップ(TS)モードを含み、前記トランスクワント・バイパス・モードにおいて、エンコード動作中は、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されず、前記トランスクワント・バイパス・モードにおいて、デコード動作中は、現在のビデオ・ブロックを得るために逆変換および逆量子化プロセスが適用されない。方法2400のいくつかの実施形態では、前記2つのコーディングモードは、トランスクワント・バイパス・モードおよび量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードを含み、前記トランスクワント・バイパス・モードにおいて、エンコード動作中は、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されず、前記トランスクワント・バイパス・モードにおいて、デコード動作中は、現在のビデオ・ブロックを得るために逆変換および逆量子化プロセスが適用されず、前記QR-BDPCMモードでは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化された残差の予測との間の差が、ビットストリーム表現において表現される。方法2400のいくつかの実施形態では、TSモードを有効にするための一組の寸法は、QR-BDPCMモードに関連する寸法とは異なる。方法2400のいくつかの実施形態では、QR-BDPCMモードは、TSモードがビデオ単位について許容されないか、または無効にされているときに、ビデオの該ビデオ単位について有効にされる。
【0276】
方法2400のいくつかの実施形態では、前記2つのコーディングモードは、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードおよび変換スキップ(TS)モードを含む。方法2400のいくつかの実施形態では、現在のビデオ・ブロックに変換を適用しないQR-BDPCMモードを有効にするかどうかは、現在のビデオ・ブロックについて変換スキップ(TS)モードが有効にされているかどうかに基づく、または現在のビデオ・ブロックについて変換および量子化プロセスまたは逆変換および逆量子化プロセスが使用されないトランスクワント・バイパス・モードが有効にされているかどうかに基づく。方法2400のいくつかの実施形態では、方法は、ビットストリーム表現が、QR-BDPCMモードが有効にされているかどうかを示す構文要素を、ビデオの現在のビデオ単位について含むかどうかの判定を実行するステップをさらに含み、該判定を実行することは、TSモードが有効にされているかどうか、または現在のビデオ・ブロックについてトランスクワント・バイパス・モードが有効にされているかどうかに基づく。
【0277】
方法2400のいくつかの実施形態では、現在のビデオ単位は、シーケンス、変換単位(TU)、予測単位(PU)、コーディング単位(CU)、ピクチャー、または現在のビデオ・ブロックのスライスを含む。方法2400のいくつかの実施形態では、現在のビデオ・ブロックに前記変換を適用しないQR-BDPCMモードは、トランスクワント・バイパス・モードが有効化されていることに応答して、および現在のビデオ・ブロックについてTSモードが無効化されていることに応答して、有効にされる。方法2400のいくつかの実施形態では、前記2つのコーディングモードについての寸法の許容される最大値または許容される最小値が、ビットストリーム表現において、シーケンス、ビュー、ピクチャー、スライス、タイル・グループ、タイル、コーディングツリー単位(CTU)、またはビデオ単位のレベルで信号伝達される。方法2400のいくつかの実施形態では、前記2つのコーディングモードについての寸法の許容される最大値または許容される最小値は、ビットストリーム表現において、シーケンスパラメータセット(SPS)、ビデオパラメータセット(VPS)、ピクチャーパラメータセット(PPS)、スライス・ヘッダ、タイル・グループ・ヘッダ、またはタイル・ヘッダにおいて信号伝達される。方法2400のいくつかの実施形態では、現在のビデオ・ブロックについて有効にされている前記2つのコーディングモードについて、前記2つのコーディング方法の使用の指示がビットストリーム表現に存在する。
【0278】
方法2400のいくつかの実施形態では、方法は、ビデオの現在のビデオ・ブロックが寸法制約条件を満たさないことに基づいて、前記2つのコーディングモードが現在のビデオ・ブロックについて有効にされないことを決定するステップをさらに含む。方法2400のいくつかの実施形態では、前記2つのコーディングモードが現在のビデオ・ブロックについて有効にされていないことに応答して、前記2つのコーディングモードの使用の指示はビットストリーム表現に含まれない。
【0279】
図25は、ビデオ処理のための例示的方法のフローチャートを示す。方法2500は、現在のビデオ・ブロックをビットストリーム表現において表現するためにあるコーディングモードが有効にされることを、ビデオの現在のビデオ・ブロックが寸法制約条件を満たすことに基づいて、決定2502するステップであって、エンコード動作中に、前記コーディングモードは、現在のビデオ・ブロックに対して変換演算を使用することなく現在のビデオ・ブロックをビットストリーム表現において表現し、または、デコード動作中に、現在のビデオ・ブロックが、逆変換演算を使用することなくビットストリーム表現から得られ、前記寸法制約条件は、前記コーディングモードを使って変換演算または逆変換演算が適用されない現在のビデオ・ブロックについての第1の最大変換ブロック・サイズが、別のコーディングモードを使って変換演算または逆変換演算が適用される現在のビデオ・ブロックについての第2の最大変換ブロック・サイズとは異なることを述べる、ステップと、前記コーディングモードに基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行2504するステップとを含む。
【0280】
方法2500のいくつかの実施形態では、前記コーディングモードは、変換スキップ(TS)モード、トランスクワント・バイパス・モード、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モード、またはブロック差分パルス符号変調(BDPCM)モードを含み、前記トランスクワント・バイパス・モードでは、エンコード動作中には、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されず、前記トランスクワント・バイパス・モードでは、デコード動作中には、現在のビデオ・ブロックを得るために逆変換および逆量子化プロセスは適用されず、前記QR-BDPCMモードでは、現在のビデオ・ブロックのイントラ予測の量子化された残差と前記量子化された残差の予測との差分がビットストリーム表現において表現される。
【0281】
図26は、ビデオ処理のための例示的方法のフローチャートを示す。方法2600は、ビデオの現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行2602するステップを含み、現在のビデオ・ブロックは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化された残差の予測との差がビットストリーム表現において表現される量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードを使用して、ビットストリーム表現においてコーディングされ、前記ビットストリーム表現は、該ビットストリーム表現がQR-BDPCMモードのサイド情報および/または現在のビデオ・ブロックへの変換スキップ(TS)モードの適用可能性を示す構文要素を含むかどうかを指定するフォーマット規則に適合し、前記サイド情報は、QR-BDPCMモードの使用の指示またはQR-BDPCMモードの予測方向のうちの少なくとも1つを含む。
【0282】
方法2600のいくつかの実施形態では、TSモードは、QR-BDPCMモードが現在のビデオ・ブロックについて使用されることに応答して、現在のビデオ・ブロックに適用される。方法2600のいくつかの実施形態では、前記構文要素はビットストリームに存在せず、現在のビデオ・ブロックにTSモードを適用するために導出される。方法2600のいくつかの実施形態では、前記フォーマット規則は、前記サイド情報が前記構文要素の後に前記ビットストリーム表現に含まれることを指定する。方法2600のいくつかの実施形態では、前記構文要素は、TSモードが現在のビデオ・ブロックに適用されることを示す。方法2600のいくつかの実施形態では、前記フォーマット規則は、TSモードが現在のビデオ・ブロックに適用されることに応答して、QR-BDPCMモードのサイド情報がビットストリーム表現に含まれることを指定する。方法2600のいくつかの実施形態では、前記フォーマット規則は、TSモードが現在のビデオ・ブロックについて適用されないことに応答して、QR-BDPCMモードのサイド情報がビットストリーム表現に含まれないことを指定する。
【0283】
方法2600のいくつかの実施形態では、前記フォーマット規則は、TSモードが現在のビデオ・ブロックに適用されないことに応答して、QR-BDPCMモードのサイド情報がビットストリーム表現に含まれることを指定する。方法2600のいくつかの実施形態では、前記フォーマット規則は、TSモード現在のビデオ・ブロックに適用されることに応答して、QR-BDPCMモードのサイド情報がビットストリーム表現に含まれないことを指定する。
【0284】
図27は、ビデオ処理のための例示的方法のフローチャートを示す。方法2700は、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されないトランスクワント・バイパス・モードを使用して、ビデオの現在のビデオ・ブロックがコーディングされることを決定2702するステップと;前記決定に基づいて、クロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスを無効にすることによって、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行2704するステップとを含み、LMCSプロセスを無効にすることは、現在のビデオ・ブロックがルーマ成分からのものである場合に、現在のビデオ・ブロックについて再整形ドメインともとのドメインとのサンプル間の切り換えの実行を無効にする、または、LMCSプロセスを無効にすることは、現在のビデオ・ブロックがクロマ成分からのものである場合に、現在のビデオ・ブロックのクロマ残差のスケーリングを無効にする。
【0285】
方法2700のいくつかの実施形態では、イントラ予測モードが現在のビデオ・ブロックに適用され、現在のビデオ・ブロックについてイントラ予測モードで使用される予測信号または参照サンプルが、再整形ドメインからもとのドメインにマッピングされる。方法2700のいくつかの実施形態では、イントラブロックコピー(IBC)モードが現在のビデオ・ブロックに適用され、現在のビデオ・ブロックについてIBCモードで使用される予測信号または参照サンプルが、再整形ドメインからもとのドメインにマッピングされる。方法2700のいくつかの実施形態では、複合インター‐イントラ予測(CIIP)モードが現在のビデオ・ブロックに適用され、現在のビデオ・ブロックについてのCIIPモードで使用される予測信号または参照サンプルが、再整形ドメインからもとのドメインにマッピングされる。方法2700のいくつかの実施形態では、複合インター‐イントラ予測(CIIP)モードが現在のビデオ・ブロックに適用され、現在のビデオ・ブロックについてのCIIPモードで使用される予測信号の、もとのドメインから再整形ドメインへのマッピングは実行されない。
【0286】
方法2700のいくつかの実施形態では、方法は、パレット・モードで、もとのドメインにおいて、現在のビデオ・ブロックについてのパレット・テーブルを生成することをさらに含む。方法2700のいくつかの実施形態では、方法は、第1のバッファおよび第2のバッファを現在のビデオ・ブロックに割り当てるステップをさらに含み、第1のバッファは、予測信号および残差信号の和を記憶するように構成され、第2のバッファは、予測信号および残差信号の和をもとのドメインから再整形ドメインにマッピングすることによって得られる再整形された和を記憶するように構成される。
【0287】
方法2700のいくつかの実施形態では、方法は、予測信号および残差信号の和をもとのドメインで記憶するように構成されたバッファを、現在のビデオ・ブロックに割り当てるステップをさらに含み、再整形された和は、予測信号および残差信号の和を、もとのドメインから再整形ドメインにマッピングすることによって導出される。方法2700のいくつかの実施形態では、方法は、現在のビデオ・ブロックに対して、現在のタイトル、スライス、タイル・グループ、または現在のビデオ・ブロックのピクチャー内の参照サンプルを使用するコーディングモードを適用することをさらに含む。
【0288】
図28は、ビデオ処理のための例示的方法のフローチャートを示す。方法2800は、ビデオの現在のビデオ・ブロックが、現在のビデオ・ブロックに変換演算が適用されない第1のコーディングモードを使用してコーディングされるかどうかの第1の判定を実行2802するステップと;ビデオの一つまたは複数のビデオ・ブロックが第2のコーディングモードを使用してコーディングされるかどうかの第2の判定を実行2804するステップであって、前記一つまたは複数のビデオ・ブロックは現在のビデオ・ブロックについて使用される参照サンプルを含む、ステップと;前記第1の判定および前記第2の判定に基づいて、イントラ予測プロセスに関係する第3のコーディングモードが現在のビデオ・ブロックに適用可能であるかどうかの第3の判定を実行2806するステップと;前記第3の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行2808するステップとを含む。
【0289】
方法2800のいくつかの実施形態では、前記第2のコーディングモードは、トランスクワント・バイパス・モード、変換スキップ(TS)モード、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モード、ブロック差分パルス符号変調(BDPCM)モード、またはパルス符号変調(PCM)モードを含み、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されず、QR-BDPCMモードでは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化された残差の予測との差が、ビットストリーム表現において表現される。方法2800のいくつかの実施形態では、前記第1のコーディングモードおよび前記第2のコーディングモードは、前記ビデオのビデオ・ブロックに対して変換および量子化プロセスが適用されないトランスクワント・バイパス・モードであり、現在のビデオ・ブロックに前記第3のコーディングモードが適用されるかどうかの前記第3の判定は、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされるかどうかに基づいて、およびトランスクワント・バイパス・モードが、参照サンプルを提供する現在のビデオ・ブロックの一つまたは複数の近傍ビデオ・ブロックをコーディングするために使用されるかどうかに基づいて実行される。方法2800のいくつかの実施形態では、前記第3のコーディングモードは、イントラ予測モード、イントラブロックコピー(IBC)モード、または複合インター‐イントラ予測(CIIP)モードを含む。
【0290】
方法2800のいくつかの実施形態では、前記第1のコーディングモードは、ビデオのビデオ・ブロックに対して変換および量子化プロセスが適用されないトランスクワント・バイパス・モードであり、現在ビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされることに応答して、かつ、参照サンプルが現在のビデオ・ブロック内に位置することに応答して、順方向再整形プロセスまたは逆再整形プロセスで変換されない参照サンプルを使用して、予測信号が導出される。方法2800のいくつかの実施形態では、前記第1のコーディングモードは、ビデオのビデオ・ブロックに対して変換および量子化プロセスが適用されないトランスクワント・バイパス・モードであり、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされることに応答して、かつ、参照サンプルが現在のビデオ・ブロックの外に位置することに応答して、参照サンプルがもとのドメインに変換される逆整形プロセスによって得られる変換された参照サンプルを使用して、予測信号が導出される。
【0291】
方法2800のいくつかの実施形態では、前記第1のコーディングモードは、ビデオのビデオ・ブロックに対して変換および量子化プロセスが適用されないトランスクワント・バイパス・モードであり、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされるのでないことに応答して、かつ参照サンプルが現在のビデオ・ブロックの外に位置することに応答して、順方向再整形プロセスまたは逆再整形プロセスで変換されない参照サンプルを使用して、予測信号が導出される。方法2800のいくつかの実施形態では、前記第1のコーディングモードは、ビデオのビデオ・ブロックに対して変換および量子化プロセスが適用されないトランスクワント・バイパス・モードであり、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされるのでないことに応答して、かつ、参照サンプルが現在のビデオ・ブロック内に位置することに応答して、参照サンプルが再整形ドメインに変換される逆整形プロセスによって得られる変換された参照サンプルを使用して、予測信号が導出される。方法2800のいくつかの実施形態では、現在のビデオ・ブロックは、前記第3のコーディングモードを使用してコーディングされ、前記参照サンプルは、現在のビデオ・ブロックと同じタイル、ブリック、スライス、またはピクチャー内の前記一つまたは複数のビデオ・ブロックからのものであり、前記イントラ予測プロセスは、前記第3のコーディングモードを使用することによって、現在のビデオ・ブロックに対して実行される。方法2800のいくつかの実施形態において、現在のビデオ・ブロックは、ルーマ成分または緑色成分に関連付けられる。
【0292】
図29は、ビデオ処理のための例示的方法のフローチャートを示す。方法2900は、ビデオの現在のビデオ・ブロックとビデオのビットストリーム表現との間で変換を実行2902するステップを含み、ビットストリーム表現は、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされるかどうかを示す構文要素をビットストリーム表現が含むかどうかを指定するフォーマット規則に適合し、現在のビデオ・ブロックにトランスクワント・バイパス・モードが適用可能である場合、変換および量子化プロセスを使用することなく、現在のビデオ・ブロックがビットストリーム表現で表現される。
【0293】
方法2900のいくつかの実施形態では、前記フォーマット規則は、前記構文要素が前記ビットストリーム表現に含まれることを指定し、前記フォーマット規則は、現在のビデオ・ブロックについての一つまたは複数の変換行列関連のコーディングツールの使用の信号伝達の前に、前記構文要素が前記ビットストリーム表現に含まれることを指定する。方法2900のいくつかの実施形態では、前記一つまたは複数の変換行列関連のコーディングツールは、変換スキップ(TS)モード、明示的な複数変換集合(MTS)方式、縮小二次変換(RST)モード、サブブロック変換(SBT)モード、または量子化残差ブロック差分パルス符号変調(QR-BDPCM)モードを含み、QR-BDPCMモードでは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化された残差の予測との差が、ビットストリーム表現において表現される。方法2900のいくつかの実施形態では、現在のビデオ・ブロックがトランスクワント・バイパス・モードを使用してコーディングされるかどうかに基づいて、残差コーディング技法のための第2の構文要素がビットストリーム表現に含まれる。方法2900のいくつかの実施形態では、残差コーディング技法は、現在のビデオ・ブロックに変換を適用するか、または現在のビデオ・ブロックに対して該変換を適用しない。
【0294】
方法2900のいくつかの実施形態では、トランスクワント・バイパス・モードが現在のビデオ・ブロックに適用可能でないことに応答して、かつ、変換スキップ(TS)モードが現在のビデオ・ブロックに適用されないことに応答して、前記第2の構文要素は、現在のビデオ・ブロックに対して変換が適用される残差コーディング技法を、ビットストリーム表現において、示す。方法2900のいくつかの実施形態では、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることに応答して、かつ現在のビデオ・ブロックに対して変換スキップ(TS)モードが適用されることに応答して、前記第2の構文要素は、現在のビデオ・ブロックに対して変換が適用されない残差コーディング技法を、ビットストリーム表現において、示す。方法2900のいくつかの実施形態では、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることに応答して、ビットストリーム表現は、現在のビデオ・ブロックについての変換スキップ(TS)モードについての信号伝達を含まない。
【0295】
方法2900のいくつかの実施形態では、変換を適用しない残差コーディング技法が、現在のビデオ・ブロックに適用される。方法2900のいくつかの実施形態では、ビットストリーム表現は、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であるかどうかに基づいて、変換行列関連のコーディングツールに関連するサイド情報を含む。方法2900のいくつかの実施形態では、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることに応答して、ビットストリーム表現は、変換スキップ(TS)モード、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モード、またはブロック差分パルス符号変調(BDPCM)モードの使用を示す前記サイド情報を含む。方法2900のいくつかの実施形態では、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることに応答して、ビットストリーム表現は、サブブロック変換(SBT)モード、縮小二次変換(RST)モード、または明示的な複数変換集合(MTS)方式の使用を示す前記サイド情報を含まない。
【0296】
方法2900のいくつかの実施形態では、前記フォーマット規則は、前記構文要素が前記ビットストリーム表現に含まれることを指定し、前記フォーマット規則は、一つまたは複数の変換行列関連のコーディングツールについての信号伝達の後に、前記構文要素が前記ビットストリーム表現に含まれることを指定する。方法2900のいくつかの実施形態では、前記一つまたは複数の変換行列関連のコーディングツールからのある変換行列関連のコーディングツールが現在のビデオ・ブロックに対して適用されるとき、前記構文要素は前記ビットストリーム表現においてコーディングされる。方法2900のいくつかの実施形態では、前記一つまたは複数の変換行列関連のコーディングツールは、変換スキップ(TS)モード、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モード、またはブロック差分パルス符号変調(BDPCM)モードを含む。方法2900のいくつかの実施形態では、前記フォーマット規則は、サブブロック変換(SBT)モード、縮小二次変換(RST)モード、または明示的な複数変換集合(MTS)方式が現在のビデオ・ブロックに対して適用されることに応答して、前記構文要素が前記ビットストリーム表現に含まれないことを指定する。
【0297】
図30は、ビデオ処理のための例示的方法のフローチャートを示す。方法3000は、ビデオの現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることを判定3002するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが使用されない、ステップと;前記判定に基づいて、現在のビデオ・ブロックのサンプルについてフィルタリング方法を無効化3004するステップと;前記判定および前記無効化に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3006するステップとを含む。
【0298】
方法3000のいくつかの実施形態では、前記フィルタリング方法は、適応ループ・フィルタリング(ALF)方法または非線形ALF方法を含む。方法3000のいくつかの実施形態では、前記フィルタリング方法は、バイラテラルフィルタ、または拡散フィルタ、または現在のビデオ・ブロックの再構成されたサンプルを修正する再構成後フィルタを含む。方法3000のいくつかの実施形態では、前記フィルタリング方法は、位置依存イントラ予測組み合わせ(PDPC)方法を含む。
【0299】
図31は、ビデオ処理のための例示的方法のフローチャートを示す。方法3100は、ビデオの現在のビデオ・ブロックにトランスクワント・バイパス・モードが適用可能であることの第1の判定を実行3102するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが使用されない、ステップと;前記第1の判定に応答して、暗黙的な複数変換集合(MTS)プロセスにおける変換選択モードが現在のビデオ・ブロックについて適用可能でないことの第2の判定を実行3104するステップと;前記第1の判定および前記第2の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3106するステップとを含む。
【0300】
図32は、ビデオ処理のための例示的方法のフローチャートを示す。方法3202は、ビデオの現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることの第1の判定を実行3202するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスは使用されず、現在のビデオ・ブロックはクロマ成分に関連している、ステップと;前記第1の判定に応答して、前記クロマ成分のサンプルがクロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスでスケーリングされないことの第2の判定を実行3204するステップと;前記第1の判定および前記第2の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3206するステップとを含む。
【0301】
図33は、ビデオ処理のための例示的方法のフローチャートを示す。方法3300は、ビデオの現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能であることを決定3302するステップであって、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが使用されない、ステップと;前記決定に基づいて、現在のビデオ・ブロックのコーディング単位(CU)、コーディングツリー単位(CTU)、スライス、タイル、タイル・グループ、ピクチャー、またはシーケンスについてクロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスを無効化3204するステップと;前記決定に基づいて、現在のビデオ・ブロックのコーディング単位(CU)、コーディングツリー単位(CTU)、スライス、タイル、タイル・グループ、ピクチャー、またはシーケンスについてクロマ・スケーリング付きルーマ・マッピング(LMCS)プロセスを無効化することによって、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3306するステップとを含む。ここで、LMCSプロセスを無効にすることは、現在のビデオ・ブロックがルーマ成分からのものである場合、現在のビデオ・ブロックについての再整形ドメインともとのドメインのサンプル間の切り換えの実行を無効にする、またはLMCSプロセスを無効にすることは、現在のビデオ・ブロックがクロマ成分からのものである場合、現在のビデオ・ブロックのクロマ残差のスケーリングを無効にする。
【0302】
方法3300のいくつかの実施形態では、シーケンスパラメータセット(SPS)、ビデオパラメータセット(VPS)、ピクチャーパラメータセット(PPS)、またはスライス・ヘッダが、現在のビデオ・ブロックに対する変換および量子化プロセスが、現在のビデオ・ブロックについて使用されないことを示す。方法3300のいくつかの実施形態では、ビデオのビットストリーム表現は、LMCSプロセスに関連する構文要素の信号伝達を除外する。
【0303】
図34は、ビデオ処理のための例示的方法のフローチャートを示す。方法3400は、ビデオの現在のビデオ・ブロックが、現在のビデオ・ブロックに対して恒等変換が適用されるまたは変換が適用されないモードを使用してコーディングされるかどうかの第1の判定を実行3402するステップと;前記第1の判定に基づいて、現在のビデオ・ブロックに対してコーディングツールを適用するかどうかの第2の判定を実行するステップと;前記第1の判定および前記第2の判定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3406するステップとを含む。
【0304】
方法3400のいくつかの実施形態では、第2の判定は、現在のビデオ・ブロックに対して恒等変換が適用されるまたは変換が適用されないという前記第1の判定に基づいて、現在のビデオ・ブロックに対してコーディングツールが適用されないことを決定することを含む。方法3400のいくつかの実施形態では、前記モードは、トランスクワント・バイパス・モード、変換スキップ(TS)モード、量子化残差ブロック差分パルス符号変調(QR-BDPCM)モード、差分パルス符号変調(DPCM)モード、またはパルス符号変調(PCM)モードを含み、前記コーディングツールは、デコーダ側動き導出ツール、デコーダ側イントラモード決定ツール、複合インター‐イントラ予測(CIIP)モード、三角分割モード(triangular partition mode、TPM)を含み、トランスクワント・バイパス・モードでは、現在のビデオ・ブロックに対して変換および量子化プロセスが適用されず、QR-BDPCMモードでは、現在のビデオ・ブロックのイントラ予測の量子化された残差と該量子化された残差の予測との間の差が、ビットストリーム表現において表現される。方法3400のいくつかの実施形態では、第2の判定は、現在のビデオ・ブロックに対して恒等変換が適用されるまたは変換が適用されないという前記第1の判定に基づいて、現在のビデオ・ブロックに対してコーディングツールが適用されないことを決定することを含み、前記コーディングツールは、オプティカルフローによる予測洗練(PROF)ツール、複合インター‐イントラ予測(CIIP)モード、または三角分割モード(TPM)を含む。
【0305】
方法3400のいくつかの実施形態では、第2の決定は、現在のビデオ・ブロックに対して恒等変換が適用されるという前記第1の判定に基づいて、現在のビデオ・ブロックに対してコーディングツールが適用されないことを決定することを含み、前記コーディングツールは、双方向オプティカルフロー(BDOF)ツール、複合インター‐イントラ予測(CIIP)モード、または三角分割モード(TPM)を含む。方法3400のいくつかの実施形態では、第2の判定は、現在のビデオ・ブロックに対して恒等変換が適用されるという前記第1の判定に基づいて、現在のビデオ・ブロックに対して前記コーディングツールが適用されないことを決定することを含み、前記コーディングツールは、デコード側動きベクトル洗練(DMVR)ツール、複合インター‐イントラ予測(CIIP)モード、または三角分割モード(TPM)を含む。
【0306】
図35は、ビデオ処理のための例示的方法のフローチャートを示す。方法3500は、ビデオの現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3502するステップを含み、前記ビットストリーム表現は、現在のビデオ・ブロックを表現するためにトランスクワント・バイパス・モードが適用可能であるかどうかを示す構文要素を含み、現在のビデオ・ブロックに対してトランスクワント・バイパス・モードが適用可能である場合、現在のビデオ・ブロックは、変換および量子化プロセスを使用することなく前記ビットストリーム表現において表現され、トランスクワント・バイパス・モードは、現在のビデオ・ブロックについて第1のビデオ単位レベルで適用可能であり、前記ビットストリーム表現は、現在のビデオ・ブロックのビデオ・ブロックが前記第1のビデオ単位レベルでのものよりも小さい第2のビデオ単位レベルでのトランスクワント・バイパス・モードの信号伝達を除外する。
【0307】
方法3500のいくつかの実施形態では、前記第1のビデオ単位のレベルは、現在のビデオ・ブロックのピクチャー・レベル、スライド・レベル、タイル・レベル、またはブリック・レベルを含み、前記第2のビデオ単位のレベルは、コーディング単位(CU)、変換単位(TU)、または予測単位(PU)を含む。方法3500のいくつかの実施形態では、前記ビットストリーム表現は、コーディングツールが現在のビデオ・ブロックに対して適用されるかどうかに基づいて、前記第1のビデオ単位レベルでトランスクワント・バイパス・モードが適用可能であるかどうかの信号伝達を含む。方法3500のいくつかの実施形態では、前記ビットストリーム表現は、前記第1のビデオ単位レベルでトランスクワント・バイパス・モードが適用可能であるかどうかに基づいて、現在のビデオ・ブロックにコーディングツールが適用されるかどうかの信号伝達を含む。方法3500のいくつかの実施形態では、前記ビットストリーム表現が前記第1のビデオ単位レベルでトランスクワント・バイパス・モードが適用可能であることの信号伝達を含むことに応答して、現在のビデオ・ブロックに対してコーディングツールが適用されない。方法3500のいくつかの実施形態では、前記ビットストリーム表現が現在のビデオ・ブロックにコーディングツールが適用されることを示すことに応答して、トランスクワント・バイパス・モードは、第1のビデオ単位レベルで適用可能でない。方法3500のいくつかの実施形態では、前記コーディングツールは、クロマ・スケーリング付きルーマ・マッピング(LMCS)プロセス、デコーダ側動き導出、デコーダ側イントラモード決定、複合インター‐イントラ予測(CIIP)モード、または三角分割モード(TPM)を含む。方法3500のいくつかの実施形態では、デコーダ側動き導出プロセスは、デコーダ側動きベクトル洗練(DMVR)ツール、双方向オプティカルフロー(BDOF)ツール、またはオプティカルフローによる予測洗練(PROF)ツールを含む。
【0308】
図36は、ビデオ処理のための例示的方法のフローチャートを示す。方法3600は、ビデオの現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3602するステップを含み、前記ビットストリーム表現は、現在のビデオ・ブロックを表現するためにトランスクワント・バイパス・モードが適用可能かどうかを示す構文要素を含み、現在のビデオ・ブロックにトランスクワント・バイパス・モードが適用可能である場合、現在のビデオ・ブロックは、変換および量子化プロセスを使用することなく前記ビットストリーム表現において表現され、トランスクワント・バイパス・モードは、現在のビデオ・ブロックについて第1のビデオ単位レベルで適用可能であり、前記ビットストリーム表現は、現在のビデオ・ブロックの第2のビデオ単位レベルで、トランスクワント・バイパス・モードの使用のサイド情報を含む。
【0309】
方法3600のいくつかの実施形態では、前記第1のビデオ単位のレベルは、現在のビデオ・ブロックの予測単位(PU)またはコーディング単位(CU)を含み、前記第2のビデオ単位のレベルは、現在のビデオ・ブロックの変換単位(TU)を含む。方法3600のいくつかの実施形態では、前記PUまたはCUが複数のTUを含むことに応答して、現在のビデオ・ブロックについて、サイド情報が、前記ビットストリーム表現において一度だけ含まれる。方法3600のいくつかの実施形態では、前記サイド情報は、前記CU内の最初のTUと関連付けられ、残りの一つまたは複数のTUは、前記サイド情報を共有する。
【0310】
図37は、ビデオ処理のための例示的方法のフローチャートを示す。方法3700は、ビデオの現在のビデオ・ブロックについて、現在のビデオ・ブロックに無損失コーディング技法が適用されるモードが適用可能であるかどうかを決定3702するステップと;前記決定に基づいて、現在のビデオ・ブロックと、ビデオのビットストリーム表現との間の変換を実行3704するステップとを含み、前記ビットストリーム表現は、現在のビデオ・ブロックのビデオ単位レベルでコーディングツールが適用可能であるかどうかを示す構文要素を含み、前記ビデオ単位レベルは、コーディング単位(CU)レベルより大きく、前記コーディングツールは、前記ビデオ単位レベル内のサンプルに適用されない。
【0311】
方法3700のいくつかの実施形態では、前記コーディングツールは、前記コーディングツールが前記ビデオ単位レベルに適用されるべく適用可能であることを前記コーディングツールの前記構文要素が示すときに、前記ビデオ単位レベル内のサンプルに適用されない。方法3700のいくつかの実施形態では、前記ビデオ単位のレベルは、現在のビデオ・ブロックのシーケンス、ピクチャー、ビュー、スライス、タイル、ブリック、サブピクチャー、コーディングツリーブロック(CTB)、またはコーディングツリー単位(CTU)を含む。方法3700のいくつかの実施形態では、前記コーディングツールは、適応ループ・フィルタリング(ALF)方法、非線形ALFにおけるクリッピング・プロセス、サンプル適応オフセット(SAO)、バイラテラルフィルタ、ハムダード(Hamdard)変換ドメインフィルタ、スケーリング行列、デコーダ側導出技法を含むフィルタリングプロセスを含む。方法3700のいくつかの実施形態では、前記コーディングツールの前記構文要素は、前記ビデオ単位レベルのサンプルの一部または全部が適用可能な前記モードを使用してコーディングされることに応答して、前記コーディングツールが前記ビデオ単位レベルについて適用可能でないことを示す。方法3700のいくつかの実施形態では、前記無損失コーディング技法は、現在のビデオ・ブロックに変換および量子化プロセスが適用されないトランスクワント・バイパス・モードを含む、または前記無損失コーディング技法は、ほぼ無損失のコーディング技法を含む。方法3700のいくつかの実施形態では、ほぼ無損失のコーディング技法は、現在のビデオ・ブロックがある範囲内の量子化パラメータを有することを含む。方法3700のいくつかの実施形態では、前記ある範囲が[4,4]である。
【0312】
図38は、ビデオ処理のための例示的方法のフローチャートを示す。方法3800は、ビデオの現在のビデオ・ブロックについて、非離散コサイン変換II(DCT2)変換が、イントラサブブロック分割(ISB)モードまたはサブブロック変換(SBT)モードについて許容されるかどうかを示す一つまたは複数の構文要素が現在のビデオ・ブロックについてのビットストリーム表現に含まれるかどうかを、ビデオの現在のビデオ・ブロックについて決定3802するステップと;前記決定に基づいて、現在のビデオ・ブロックとビデオのビットストリーム表現との間の変換を実行3804するステップとを含む。
【0313】
方法3800のいくつかの実施形態では、前記一つまたは複数の構文要素は、ISPモードまたはSBTモードのいずれかが現在のビデオ・ブロックに適用されることに応答して、前記ビットストリーム表現において信号伝達される。方法3800のいくつかの実施形態では、前記一つまたは複数の構文要素は、ISPモードおよびSBTモードの両方が現在のビデオ・ブロックに適用されることに応答して、前記ビットストリーム表現において信号伝達される。方法3800のいくつかの実施形態では、前記非DCT2変換は、前記一つまたは複数の構文要素が真条件(true condition)を示すことに応答して許容される。方法3800のいくつかの実施形態では、ISPモードの両方が現在のビデオ・ブロックに適用されることに応答して、1つの構文要素が、前記ビットストリーム表現において信号伝達される。方法3800のいくつかの実施形態では、SBTモードの両方が現在のビデオ・ブロックに適用されることに応答して、1つの構文要素が、前記ビットストリーム表現において信号伝達される。方法3800のいくつかの実施形態では、前記ビットストリーム表現は、現在のビデオ・ブロックについての明示的な複数変換集合(MTS)プロセスの使用、または現在のビデオ・ブロックについてのイントラブロック寸法に関する変換の選択を示す別の構文要素を含む。方法3800のいくつかの実施形態では、イントラブロック寸法は、現在のビデオ・ブロックの非ISPコーディングされたイントラブロックに適用される暗黙的なMTSを含む。方法3800のいくつかの実施形態では、非DCT2変換を用いるISPモードは、前記別の構文要素が、明示的なMTSプロセスが現在のビデオ・ブロックに適用されないことを示すことに応答して、現在のビデオ・ブロックに適用される。方法3800のいくつかの実施形態では、非DCT2変換を用いるSBTモードは、前記別の構文要素が、明示的なMTSプロセスが現在のビデオ・ブロックに適用されないことを示すことに応答して、現在のビデオ・ブロックに適用される。
【0314】
以上から、本明細書において、例解の目的で、本開示の技術の個別的な実施形態が記載されてきたが、本開示の範囲から逸脱することなく、さまざまな修正を行うことができることが理解されるであろう。よって、本開示の技術は、添付の特許請求の範囲による場合を除き、限定されない。
【0315】
本開示に記載されている主題および機能動作の実装は、本明細書に開示されている構造およびその構造的等価物を含む、さまざまなシステム、デジタル電子回路、またはコンピュータ・ソフトウェア、ファームウェア、もしくはハードウェアにおいて、またはそれらの一つまたは複数の組み合わせにおいて実装できる。本明細書に記載された主題の実装は、一つまたは複数のコンピュータ・プログラム・プロダクト、すなわち、データ処理装置による実行のための、またはデータ処理装置の動作を制御するための、有形で非一時的なコンピュータ読み取り可能媒体上にエンコードされたコンピュータ・プログラム命令の一つまたは複数のモジュールとして実装できる。コンピュータ読み取り可能媒体は、機械読み取り可能な記憶装置、機械読み取り可能な記憶基板、メモリ装置、機械読み取り可能な伝搬信号に影響を実現する物質の組成、またはそれらの一つまたは複数の組み合わせでありうる。用語「データ処理ユニット」または「データ処理装置」は、たとえば、プログラマブルプロセッサ、コンピュータ、または複数のプロセッサもしくはコンピュータを含む、データを処理するためのすべての装置、デバイス、および機械を包含する。装置は、ハードウェアに加えて、問題のコンピュータ・プログラムのための実行環境を生成するコード、たとえば、プロセッサファームウェア、プロトコルスタック、データベース管理システム、オペレーティングシステム、またはそれらの一つまたは複数の組み合わせを構成するコードを含むことができる。
【0316】
コンピュータ・プログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、またはコードとしても知られる)は、コンパイルまたはインタープリットされる言語を含む、任意の形のプログラミング言語で書くことができ、それは、スタンドアローン・プログラムとして、またはコンピューティング環境における使用に好適なモジュール、コンポーネント、サブルーチン、または他のユニットとしてを含め、任意の形で展開できる。コンピュータ・プログラムは、必ずしもファイルシステム内のファイルに対応するものではない。プログラムは、他のプログラムまたはデータを保持するファイルの一部分(たとえば、マークアップ言語文書で格納される一つまたは複数のスクリプト)、問題のプログラム専用の単一ファイル、または複数の協調させられたファイル(たとえば、一つまたは複数のモジュール、サブプログラム、またはコード部分を格納するファイル)に記憶できる。コンピュータ・プログラムは、1つのコンピュータ上で、または1つのサイトに位置する、または複数のサイトに分散され通信ネットワークによって相互接続される複数のコンピュータ上で実行されるように展開できる。
【0317】
本明細書に記載されるプロセスおよび論理フローは、入力データに対して作用し、出力を生成することによって機能を実行するよう、一つまたは複数のコンピュータ・プログラムを実行する一つまたは複数のプログラマブルプロセッサによって実行できる。プロセスおよび論理フローはまた、たとえばフィールドプログラマブルゲートアレイ(FPGA)または特定用途向け集積回路(ASIC)のような特殊目的論理回路によって実行されることもでき、装置もかかる特殊目的論理回路として実装されることができる。
【0318】
コンピュータ・プログラムの実行に好適なプロセッサは、たとえば、汎用および専用マイクロプロセッサの両方、および任意の種類のデジタル・コンピュータの任意の一つまたは複数のプロセッサを含む。一般に、プロセッサは、読み出し専用メモリまたはランダム・アクセス・メモリまたはその両方から命令およびデータを受領する。コンピュータの本質的な要素は、命令を実行するためのプロセッサと、命令およびデータを記憶するための一つまたは複数のメモリ装置である。一般に、コンピュータはまた、データを記憶するための一つまたは複数の大容量記憶装置、たとえば、磁気、光磁気ディスク、または光ディスクを含んでいてもよく、またはかかる大容量記憶装置からデータを受領し、かかる大容量記憶装置にデータを転送するように動作上結合される。しかしながら、コンピュータは、そのような装置を有する必要はない。コンピュータ・プログラム命令およびデータを記憶するのに好適なコンピュータ読み取り可能媒体は、たとえば半導体メモリデバイス、たとえば消去可能なプログラム可能な読み出し専用メモリ(EPROM)、電気的に消去可能なプログラム可能な読み出し専用メモリ(EEPROM)、およびフラッシュメモリデバイスを含む、あらゆる形の不揮発性メモリ、媒体およびメモリデバイスを含む。プロセッサおよびメモリは、特殊目的論理回路によって補足されることができ、またはかかる特殊目的論理回路に組み込まれることができる。
【0319】
明細書は、図面とともに、単に例示的とみなされることが意図されている。ここで、例示的とは例を意味する。本明細書中で使用されるところでは、「または」の使用は、文脈がそうでないことを明確に示すのでない限り、「および/または」を含むことが意図される。
【0320】
本開示は多くの詳細が含んでいるが、これらは、いずれかの実施形態の範囲または特許請求されうるものに対する限定として解釈されるべきではなく、具体的な実施形態の具体的な実施形態に特有でありうる事項の記述として解釈されるべきである。本開示において別個の実施形態の文脈で記載されているある種の特徴は、単一の実施形態において組み合わせて実装されることもできる。逆に、単一の実施形態の文脈において記述されているさまざまな特徴が、複数の実施形態において別個に、または任意の好適なサブコンビネーションにおいて実装されることもできる。さらに、上記では特徴は、ある種の組み合わせにおいて作用するものとして記述され、当初はそのようにクレームされることさえありうるが、クレームされた組み合わせからの一つまたは複数の特徴が、場合によっては、該組み合わせから切り出されることができ、クレームされた組み合わせは、サブコンビネーションまたはサブコンビネーションの変形に向けられてもよい。
【0321】
同様に、図面には特定の順序で動作が示されているが、これは、所望の結果を達成するために、そのような動作が示されている特定の順序で、または逐次順に実行されること、または、示されるすべての動作が実行されることを要求するものとして理解されるべきではない。さらに、本開示に記載されている実施形態におけるさまざまなシステム構成要素の分離は、すべての実施形態においてそのような分離を必要とするものとして理解されるべきではない。
【0322】
少数の実装および例のみが記述されており、本開示に記載され、説明されている内容に基づいて、他の実装、拡張および変形がなされてもよい。