(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-08
(45)【発行日】2024-07-17
(54)【発明の名称】医療システム、信号処理装置、及び、信号処理方法
(51)【国際特許分類】
A61B 1/045 20060101AFI20240709BHJP
A61B 1/00 20060101ALI20240709BHJP
【FI】
A61B1/045 618
A61B1/00 620
A61B1/045 610
(21)【出願番号】P 2021509023
(86)(22)【出願日】2020-03-12
(86)【国際出願番号】 JP2020010741
(87)【国際公開番号】W WO2020195877
(87)【国際公開日】2020-10-01
【審査請求日】2023-01-19
(31)【優先権主張番号】P 2019056683
(32)【優先日】2019-03-25
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002185
【氏名又は名称】ソニーグループ株式会社
(74)【代理人】
【識別番号】100121131
【氏名又は名称】西川 孝
(74)【代理人】
【氏名又は名称】稲本 義雄
(74)【代理人】
【識別番号】100168686
【氏名又は名称】三浦 勇介
(72)【発明者】
【氏名】小林 洋平
(72)【発明者】
【氏名】相馬 芳男
(72)【発明者】
【氏名】宇山 慧佑
【審査官】北島 拓馬
(56)【参考文献】
【文献】特開2015-213753(JP,A)
【文献】国際公開第2017/057330(WO,A1)
【文献】特開2018-124984(JP,A)
【文献】国際公開第2018/216342(WO,A1)
【文献】特開2004-113802(JP,A)
【文献】特表2010-521272(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 1/00 - 1/32
G02B 23/24 -23/26
(57)【特許請求の範囲】
【請求項1】
術野を撮影して、術野画像を出力する撮像部と、
前記術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成する第1の生成部と、
前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成する第2の生成部と
を備え
、
前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである
医療システム。
【請求項2】
前記第2のアルゴリズムは、前記第1のアルゴリズムよりも高精度の3D情報が生成されるアルゴリズムである
請求項1に記載の医療システム。
【請求項3】
前記第2のアルゴリズムにより生成された3D情報を、前記第1のアルゴリズムにより生成された3D情報に統合する統合部をさらに備える
請求項1に記載の医療システム。
【請求項4】
前記統合部は、前記第1のアルゴリズムにより生成された3D情報に対して、前記第2のアルゴリズムにより生成された3D情報の位置合わせを行って、前記第2のアルゴリズムにより生成された3D情報を、前記第1のアルゴリズムにより生成された3D情報に統合する
請求項3に記載の医療システム。
【請求項5】
前記統合部は、前記注目領域が過去の前記注目領域と重複する場合、前記第1のアルゴリズムにより生成された3D情報に統合された過去の前記注目領域の3D情報を削除し、新たに生成された前記注目領域の3D情報を統合する
請求項3に記載の医療システム。
【請求項6】
前記第1のアルゴリズムは、3D情報の生成とともに、前記撮像部に基づく自己位置推定を行うアルゴリズムである
請求項1に記載の医療システム。
【請求項7】
前記第1のアルゴリズムは、Visual-SLAMである
請求項1に記載の医療システム。
【請求項8】
前記第2のアルゴリズムは、自己位置推定を行わないアルゴリズムである
請求項1に記載の医療システム。
【請求項9】
前記第2のアルゴリズムは、Multi-view stereoである
請求項1に記載の医療システム。
【請求項10】
前記第2の生成部は、前記撮像部が出力する前記術野画像のフレームから選択されたキーフレームを用いて、前記第2のアルゴリズムにより、3D情報を生成する
請求項1に記載の医療システム。
【請求項11】
前記術野画像のフレームから、特定のシーンが映る特定フレームを検出するシーン検出部をさらに備え、
前記第2の生成部は、前記術野画像のフレームのうちの、前記特定フレームを除くフレームから選択された前記キーフレームを用いて、前記第2のアルゴリズムにより、3D情報を生成する
請求項1
0に記載の医療システム。
【請求項12】
前記撮像部の位置の変化に応じて、前記キーフレームの選択の頻度が切り替えられる
請求項1
0に記載の医療システム。
【請求項13】
前記注目領域を設定する注目領域設定部をさらに備える
請求項1に記載の医療システム。
【請求項14】
前記注目領域設定部は、ユーザからの指定に応じて、前記注目領域を設定する
請求項1
3に記載の医療システム。
【請求項15】
前記注目領域設定部は、所定のロボットの出力に応じて、前記注目領域を設定する
請求項1
3に記載の医療システム。
【請求項16】
前記注目領域設定部は、あらかじめ指定された部位が映る領域を、前記注目領域を設定する
請求項1
3に記載の医療システム。
【請求項17】
術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成する第1の生成部と、
前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成する第2の生成部と
を備え
、
前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである
信号処理装置。
【請求項18】
第1の生成部と第2の生成部を備える信号処理装置の
前記第1の生成部が、術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成することと、
前記第2の生成部が、前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成することと
を含
み、
前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである
信号処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本技術は、医療システム、信号処理装置、及び、信号処理方法に関し、特に、例えば、術野を撮影した術野画像を用いて、リアルタイムで高精度の3D(Dimensional)情報を得ることができるようにする医療システム、信号処理装置、及び、信号処理方法に関する。
【背景技術】
【0002】
内視鏡や顕微鏡を用いて手術等を行う医療システムについて、3D情報を利用して、手術の効率を向上させる技術が提案されている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
内視鏡や顕微鏡を用いた医療システムにおいて、術野を撮影した術野画像に映る臓器には、血管等の細かい凹凸が存在する。手術では、そのような細かい凹凸が重要な場合がある。
【0005】
しかしながら、細かい凹凸を高精度及び高密度に表現する3D情報を生成するアルゴリズムについては、計算量が大であり、常時、リアルタイムで、3D情報を生成することは難しい。
【0006】
本技術は、このような状況に鑑みてなされたものであり、術野画像を用いて、リアルタイムで高精度の3D情報を得ることができるようにするものである。
【課題を解決するための手段】
【0007】
本技術の医療システムは、術野を撮影して、術野画像を出力する撮像部と、前記術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成する第1の生成部と、前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成する第2の生成部とを備え、前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである医療システムである。
【0008】
本技術の信号処理装置は、術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成する第1の生成部と、前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成する第2の生成部とを備え、前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである信号処理装置である。
【0009】
本技術の信号処理方法は、第1の生成部と第2の生成部を備える信号処理装置の前記第1の生成部が、術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成することと、前記第2の生成部が、前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成することとを含み、前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである信号処理方法である。
【0010】
本技術においては、術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報が生成される。前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報が生成される。前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである。
【0011】
なお、信号処理装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
【0012】
また、信号処理装置は、コンピュータにプログラムを実行させることにより実現することができる。プログラムは、記録媒体に記録して、又は、伝送媒体を介して伝送することにより頒布することができる。
【図面の簡単な説明】
【0013】
【
図1】本技術を適用した医療システムの一実施の形態の構成例を示すブロック図である。
【
図3】SLAMを用いた手術支援の例を説明する図である。
【
図4】内視鏡11及びCCU13の第1の構成例を示すブロック図である。
【
図5】CCU13による通常マップ及び高精度マップの生成の第1の例を説明するフローチャートである。
【
図6】CCU13による通常マップ及び高精度マップの生成の第2の例を説明するフローチャートである。
【
図7】CCU13が行う信号処理の例を説明するフローチャートである。
【
図8】内視鏡11及びCCU13の第2の構成例を示すブロック図である。
【
図9】CCU13が行う信号処理の例を説明するフローチャートである。
【
図10】本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
【発明を実施するための形態】
【0014】
<本技術を適用した医療システムの一実施の形態>
【0015】
図1は、本技術を適用した医療システムの一実施の形態の構成例を示すブロック図である。
【0016】
図1の医療システムは、例えば、腹部の内視鏡外科手術において用いられる内視鏡手術システムの構成例を示している。なお、本技術は、内視鏡手術システムの他、顕微鏡を用いる医療システムにも適用することができる。
【0017】
図1の医療システムでは、腹部等の内視鏡外科手術において、腹壁を切って開腹する代わりに、開孔器具としてのトロッカ25a,25bが、腹壁に数か所取り付けられる。そして、トロッカ25a,25bに設けられている孔から、患者Uの体内を観察する観察用医療機器としての腹腔鏡(以下、内視鏡ともいう)11や、エネルギ処置具22、鉗子23等が体内に挿入される。
【0018】
術者は、内視鏡11によって(ビデオ)撮影された患者Uの体内にある患部(腫瘍など)の画像(動画)をリアルタイムに見ながら、エネルギ処置具22等によって患部を切除する等の処置を行う。内視鏡11や、エネルギ処置具22、鉗子23は、術者又はロボット等により保持される。なお、術者とは、手術室で行われる手術に関わっている医療従事者をいい、術者には、例えば手術の執刀医、助手、スコピスト、看護師の他、手術室とは別の場所からその手術をモニタしている医者等が含まれる。
【0019】
このような内視鏡下手術を行う手術室内には、内視鏡下手術のための装置類を搭載するカート31、患者Uが横たわる患者ベッド33、フットスイッチ35等が配置される。カート31には、医療機器として、例えば、カメラコントロールユニット(CCU)13、表示装置15、光源装置17、処置具用装置21、気腹装置24、レコーダ26、及びプリンタ27等の装置類が載置される。
【0020】
内視鏡11は、スコープとカメラヘッドを有する。スコープは、光源装置17が照らした術野からの光をカメラヘッドに導光する光学系である。カメラヘッドは、光学系及びイメージセンサ等を有する撮像部である。内視鏡11は、患者Uの体内に挿入され、患者Uの体内の画像(信号)を撮影する。内視鏡11で撮影された患部の画像は、カメラヘッドに接続されたカメラケーブルを介してCCU13に伝送される。CCU13は、カメラケーブルを介して内視鏡11に接続される他、無線の通信経路を介して内視鏡11に接続されてもよい。CCU13は、内視鏡11から出力(伝送)される画像に対して信号処理を施し、信号処理後の画像を表示装置15に出力する。このような構成により、患部が映る術野画像が表示装置15に表示される。なお、スコープは硬性タイプでもよいし、軟性タイプでもよい。
【0021】
なお、CCU13は、信号処理後の画像をレコーダ26に出力することで、レコーダ26に、術野画像を記録させてもよい。また、CCU13は、信号処理後の画像をプリンタ27に出力することで、プリンタ27に、術野画像を印刷させてもよい。
【0022】
光源装置17は、様々な波長の光を発生する。光源装置17は、ライトガイドケーブルを介して内視鏡11に接続され、光源装置17が発生した光は、内視鏡11から患部に対して照射される。光源装置17が発生する光は、例えば、補助光として用いられる場合もある。
【0023】
処置具用装置21は、例えば、電気熱を用いて患部を切断するエネルギ処置具22に対して高周波電流を出力する高周波出力装置である。
【0024】
気腹装置24は、送気、吸気手段を備え、患者Uの体内の、例えば腹部領域に空気を送気する。
【0025】
フットスイッチ35は、術者のフット操作に応じて、所定のトリガ信号を、CCU13や処置具用装置21等に出力する。
【0026】
<SLAMの概要>
【0027】
【0028】
SLAMは、撮像部からの画像のみ、又は、画像と画像以外のセンサ情報とから、周囲環境の3Dマップの生成と、その3Dマップ中での撮像部に基づく自己位置(及び姿勢)の推定をリアルタイムに行う技術である。
【0029】
図1の医療システムは、SLAMによって、術部(患部)を含む術野(となる範囲)の3Dマップと、術部に対する内視鏡11の相対的な位置(例えば、内視鏡11の撮像部の位置または内視鏡11のスコープの先端の位置)を取得することで、手術支援を行うことができる。手術支援としては、例えば、術中に指導医が執刀医に、術野画像上に、GUI(Graphical User Interface)で切除部位等を指示することや、術野画像を、術前に撮影したCT(Computed Tomography)画像と照合して、GUIで、手術のナビゲーションを行うこと等がある。なお、内視鏡11のスコープの先端を自己位置とする場合は、撮像部の自己位置を推定した後に、スコープの情報(例えば、撮像部からスコープ先端までの長さ情報やスコープの形情報)に基づき、自己位置をスコープ先端とすることが好ましい。このとき、スコープの情報はスコープから電気的情報としてCCU13が取得してもよいし、CCU13が術野画像の特徴からスコープの種類を推定して、予め記憶した情報から推定したスコープに紐づく情報を読み出してもよい。また、撮像部から予め定めた距離にある点や内視鏡11の光軸上の点を自己位置としてもよい。本医療システムを撮像部を有する顕微鏡に適用する場合は、顕微鏡の相対的な位置(例えば、顕微鏡の撮像部または撮像部を支える支持部の先端)を取得する構成とする。
【0030】
SLAMでは、例えば、移動する撮像部で撮影された画像から、エッジ等の特徴点が検出され、異なる時刻t1とt2とで撮影された画像それぞれに映る対応する特徴点どうしが、対応点として対応付けられる。さらに、SLAMでは、対応点の3D空間の座標が求められ、多数の対応点の3D空間の座標が表す点の集合(点群)として、被写体の3D形状、ひいては、撮像部が撮影している3D空間の3Dマップが生成される。また、SLAMでは、撮像部の自己位置が、例えば、特徴点の座標に基づく連立方程式を解くことで推定される。
【0031】
撮像部で撮影された画像を用いるSLAMは、Visual SLAMと呼ばれる。SLAMについては、例えば、Andrew J. Davison, “Real-Time Simultaneous Localization and Mapping with a Single Camera”, Proceedings of the 9th IEEE International Conference on Computer Vision Volume 2, 2003, pp.1403-1410に記載されている。
【0032】
<手術支援の概要>
【0033】
図3は、SLAMを用いた手術支援の例を説明する図である。
【0034】
図1の医療システムでは、手術支援として、例えば、指導医の操作に応じて、執刀医への指導をするための、切除部位等を指示するアノテーションを、術野画像上の、指導医が指示した位置に描画することができる。
【0035】
そして、
図1の医療システムでは、SLAMにおいて得られる3Dマップ及び撮像部に基づく自己位置に応じて、内視鏡11の位置や姿勢が変化した場合であっても、アノテーションを、術野画像上の、指導医が指示した位置に追従して表示することができる。
【0036】
<内視鏡11及びCCU13の第1の構成例>
【0037】
図4は、
図1の内視鏡11及びCCU13の第1の構成例を示すブロック図である。
【0038】
ここで、医療システムにおいて、例えば、
図3で説明したようなアノテーションを描画する等のアプリケーションで用いられる3Dマップは、安全性の観点から、高精度であることが望ましい。
【0039】
しかしながら、上述したVisual SLAM等のSLAMは、リアルタイム性に優れている反面、3Dマップの点群が疎で、多くの外れ値を含む。
【0040】
一方、多視点の画像を用いて、(点群が)密で、高精度の3Dマップを生成するアルゴリズム(計算モデル)として、例えば、Multi-view stereo等のSfM(Structure from Motion)がある。Multi-view stereoについては、例えば、Multi-View Stereo: A Tutorial. Foundations and. TrendsR in Computer Graphics and Vision, vol. 9, no. 1-2, 2013, pp.1-148 や、Evaluation of multi-view 3D reconstruction software, CAIP 2015: Computer Analysis of Images and Patterns, pp.450-461に記載されている。
【0041】
Multi-view stereoによれば、密で、高精度の3Dマップを生成することができる。しかしながら、Multi-view stereoは、計算負荷が高く、処理時間がかかるため、リアルタイムでの自己位置推定や3Dマップの生成(更新)が要求される用途には適さない。
【0042】
そこで、CCU13では、内視鏡11で術野(となる範囲)を撮影した術野画像を用いて、第1のアルゴリズムとしての、例えば、Visual SLAMにより、術野の3Dマップ(3D情報)の生成及び自己位置推定を、リアルタイムで行う。さらに、CCU13では、術野画像に注目領域が設定された場合、第1のアルゴリズムと異なる第2のアルゴリズムとしての、例えば、Multi-view stereoにより、注目領域の3Dマップを生成する。これにより、3Dマップの生成及び自己位置推定のリアルタイム性を確保しつつ、注目領域、例えば、術者が必要とする領域については、密で、高精度の3Dマップを提供すること、すなわち、リアルタイム性と3Dマップの高精度との両立を可能とする。
【0043】
図4において、内視鏡11は、撮像部101を有し、CCU13は、シーン検出部102、フレーム記憶部103、注目領域設定部104、通常マップ生成部105、高精度マップ生成部106、術前情報記憶部107、及び、表示画像生成部108を有する。
【0044】
撮像部101は、例えば、術野の可視光線を受光することにより術野を撮影し、その撮影により得られるRGB(Red, Green, Blue)の画像を術野画像として出力する。撮像部101が出力する術野画像は、シーン検出部102、及び、通常マップ生成部105に供給される。さらに、撮像部101が出力する術野画像は、通常マップ生成部105を介して、表示画像生成部108に供給される。
【0045】
シーン検出部102は、撮像部101からの術野画像の各フレームについて、特定のシーンとしての、例えば、3Dマップの生成の障害となる障害シーンを検出する。障害シーンとしては、例えば、出血、発煙、白飛び等があるシーンがある。
【0046】
シーン検出部102は、障害シーンが検出された場合、その障害シーンが映る術野画像のフレームの、フレーム記憶部103への出力を制限する。したがって、シーン検出部102からフレーム記憶部103に対しては、障害シーンが映る術野画像のフレームは出力されない。
【0047】
また、シーン検出部102は、障害シーンが検出されなかった場合、術野画像のフレームを、フレーム記憶部103に出力する。
【0048】
ここで、障害シーンとしての、例えば、出血シーンを検出する方法としては、画像認識技術等によって、画像のみから出血エリアを同定する方法がある。
【0049】
障害シーンとしての、例えば、発煙シーンを検出する方法としては、画像認識技術等によって、焼灼シーンを検出する方法がある。
【0050】
障害シーンとしての、例えば、白飛びのシーンを検出する方法としては、画像認識技術等によって、白飛びが生じている、又は、白飛びが発生しやすいシーンを検出する方法がある。
【0051】
フレーム記憶部103は、シーン検出部102が出力する術野画像のフレームから、高精度マップの生成に用いるフレームをキーフレームとして選択して記憶する。
【0052】
図4では、シーン検出部102において、障害シーンが映る術野画像のフレームは、フレーム記憶部103に出力されない。したがって、フレーム記憶部103では、撮像部101が出力する術野画像のフレームのうちの、障害シーンが映るフレーム(特定フレーム)を除くフレーム、すなわち、障害シーンが映っていない術野画像のフレームから選択されたフレームが、キーフレームとして記憶される。
【0053】
ここで、
図4では、後述するように、高精度マップ生成部106において、フレーム記憶部103に記憶された術野画像のキーフレームを用いて、第2のアルゴリズムとしての、例えば、Multi-view stereo等のSfMにより、高精度(及び密)の3Dマップである高精度マップが生成される。
【0054】
高精度マップ生成部106において、Multi-view stereoにより、効率的に、高精度マップを生成するには、より多くの異なる視点の画像(フレーム)が、キーフレームとして存在することが望ましい。
【0055】
そこで、フレーム記憶部103は、通常マップ生成部105によって自己位置が推定される内視鏡11の撮像部101の軌跡や、術野内の特徴点の数の変化によって、撮像部101の視点(位置)の変化を検出する。そして、フレーム記憶部103は、撮像部101の視点の変化に応じて、例えば、シーン検出部102が出力する術野画像のフレームからキーフレームを選択する間隔等のキーフレームの選択や記憶の仕方を切り替える。
【0056】
例えば、フレーム記憶部103は、撮像部101の視点の変化の変化量を閾値処理することにより、撮像部101の視点が、定常的(ほぼ停止している)な状態であるか、又は、移動している状態であるかを判定する。
【0057】
撮像部101の視点が定常的な状態である場合、シーン検出部102が出力する術野画像のフレームに映るシーンはほとんど変化しない。そこで、フレーム記憶部103は、シーン検出部102が出力する最新のフレームをキーフレームとして選択し、そのキーフレームを、過去にキーフレームとして記憶したフレーム、例えば、直前にキーフレームとして記憶したフレームに上書きする形で記憶する。
【0058】
また、撮像部101の視点が移動している状態である場合、術野(となる範囲)が変わることにより、通常マップ生成部105で行われるVisual SLAMにおいて新しい特徴点が検出される。そこで、フレーム記憶部103は、新しい特徴点が所定数だけ検出されるごとに、シーン検出部102が出力するフレームをキーフレームとして選択して記憶する。
【0059】
以上のように、フレーム記憶部103では、撮像部101の視点の変化に応じて、キーフレームの選択の頻度を切り替えることができる。
【0060】
なお、フレーム記憶部103において、キーフレームとして記憶するフレームの最大枚数は、あらかじめ決めておくことができる。フレーム記憶部103において、最大枚数のキーフレームが記憶された場合、新たなキーフレームは、最も古いキーフレームに上書きする形で記憶される。
【0061】
注目領域設定部104は、術野画像(のフレーム)に、注目領域を設定する。術野画像については、その術野画像のフレームの一部の領域を、注目領域に設定することもできるし、術野画像のフレームの全体の領域を、注目領域に設定することもできる。
【0062】
ここで、注目領域については、高精度マップ生成部106において、Multi-view stereoにより、高精度マップが生成される。Multi-view stereoによれば、高精度(及び密)の3Dマップである高精度マップを生成することができる。但し、Multi-view stereoは、計算負荷が高く、処理時間がかかるため、フレーム全体をMulti-view stereoの対象とすると、リアルタイム性を阻害する。又は、Multi-view stereoによりフレーム全体についての高精度マップを生成しながら、リアルタイム性を確保するためには、CCU13として、極めて高速な装置が必要となり、医療システムが高コスト化する。
【0063】
そこで、注目領域設定部104では、Multi-view stereoを長時間実行しても、リアルタイム性を阻害しないサイズ内の術野画像の一部の領域を、注目領域に設定することができる。また、注目領域設定部104では、術野画像のフレームの全体の領域を、Multi-view stereoの対象としてもリアルタイム性を阻害しない短時間(例えば、数秒等)の範囲内で、術野画像のフレームの全体の領域を、注目領域に設定することができる。
【0064】
例えば、注目領域設定部104では、術野画像において、手術の対象の術部(が映る領域)だけを、注目領域に設定することができる。また、例えば、注目領域設定部104では、エネルギ処置具22としての電気メスで、臓器を切り取る数秒等の短時間のシーンにおいて、術野画像のフレームの全体の領域を、注目領域に設定することができる。
【0065】
注目領域設定部104では、術野画像において、高精細であることが必要とする領域、又は、高精細であることが必要と推定される領域を、注目領域に設定することができる。
【0066】
注目領域の設定は、例えば、術者の指定に応じて行うことができる。例えば、表示装置15に表示された術野画像において、術者が、UI(User Interface)を操作することにより囲った領域を、注目領域に設定することができる。また、例えば、表示装置15に表示された術野画像を、複数の区分け領域にあらかじめ区分けしておき、ユーザによる区分け領域を指定する音声(例えば、「右上」や「左下」等)に応じて、音声により指定された区分け領域を、注目領域に設定することができる。さらに、例えば、表示装置15に表示された術野画像を見る術者の視線を検出し、その視線から推定される、術者が注目している位置を含む領域を、注目領域に設定することができる。
【0067】
注目領域の設定は、例えば、手術前に得られる情報や、手術中に得られる情報に応じて行うことができる。例えば、手術前に得られる情報や、手術中に得られる情報を用いた物体認識等によって、あらかじめ指定された物体を認識し、その物体の認識結果を用いて、注目領域を設定することができる。
【0068】
例えば、CT画像等の医用画像で、病変部位や手術の対象となる部位をあらかじめ指定しておき、通常マップ生成部105で得られる通常マップ、又は、表示画像生成部108で得られる、高精度マップを統合した通常マップにおいて、あらかじめ指定された部位と形状のマッチングがとれた領域(あらかじめ指定された部位が映る領域)を、注目領域に設定することができる。
【0069】
また、例えば、人工知能技術等によって、過去の履歴から、高精度にすべき領域を予測し、その領域を、注目領域に設定することができる。さらに、例えば、術具の画像を用いて、術具を認識するための学習をあらかじめ行っておき、術具を認識して、その術具が処置を行っている部位が映る領域を、注目領域に設定することができる。
【0070】
その他、例えば、所定のロボットからの指定に応じて、注目領域を設定することができる。例えば、内視鏡11が、スコープホルダロボットで支持され、そのスコープホルダロボットが、領域を指定する機能を有する場合には、スコープホルダロボットから指定された領域を、注目領域に設定することができる。
【0071】
通常マップ生成部105は、撮像部101が出力する術野画像を用いて、その術野画像に映る範囲全体を対象として、第1のアルゴリズムとしての、例えば、Visual SLAM等のSLAMにより、3Dマップの生成と自己位置推定とを行う。
【0072】
第1のアルゴリズムとしては、3Dマップの生成と自己位置推定とに、画像のみを用いるVisual-SLAMの他、3Dマップを構成する点群の精度(及び疎密)の程度はともかくとして、リアルタイム性を確保することができる3Dマップの生成アルゴリズムを採用することができる。
【0073】
なお、第1のアルゴリズムとしては、自己位置推定を行わず、3Dマップの生成だけを行うアルゴリズムを採用することができる。但し、第1のアルゴリズムとして、3Dマップの生成だけを行うアルゴリズムを採用する場合には、別途、自己位置推定を行う必要がある。
【0074】
また、第1のアルゴリズムとしては、画像のみを用いて、3Dマップ(3D情報)を生成するアルゴリズムの他、画像と、ToFセンサやLidar等が出力する奥行情報とを用いて、3Dマップを生成するアルゴリズムを採用することができる。
【0075】
ここで、通常マップ生成部105が第1のアルゴリズムによりリアルタイムで生成する3Dマップを、通常マップともいう。通常マップは、撮像部101が撮影する3D空間の、撮像部101に基づく自己位置との相対的な位置関係を認識するための3Dマップである。
【0076】
高精度マップ生成部106は、注目領域設定部104で注目領域が設定された場合に、その注目領域を対象として、フレーム記憶部103に記憶された術野画像のキーフレームを用いて、第2のアルゴリズムとしての、例えば、Multi-view stereo等のSfMにより、3Dマップの生成、すなわち、注目領域に映る物体の3D形状の認識を行う。
【0077】
第2のアルゴリズムとしては、通常マップよりも高精度の3Dマップを生成することができる3Dマップの生成アルゴリズムを採用することができる。第2のアルゴリズムにより生成される3Dマップは、第1のアルゴリズムにより生成される通常マップよりも高精度であるため、第2のアルゴリズムは、計算負荷が高く、処理時間を要する。逆に言えば、第1のアルゴリズムとしては、リアルタイム性を確保することができるように、第2のアルゴリズムよりも計算量が少ないアルゴリズムが採用される。
【0078】
また、第1のアルゴリズムでは、術野画像に映る範囲(術野)全体を対象として、通常マップを生成するのに対して、第2のアルゴリズムでは、注目領域のみを対象として、3Dマップを生成する。
【0079】
なお、第2のアルゴリズムとしては、自己位置推定を行わないアルゴリズムを採用することができる。但し、第2のアルゴリズムは、自己位置推定を行うアルゴリズムであってもよい。
【0080】
ここで、高精度マップ生成部106が、第2のアルゴリズムにより生成する、通常マップよりも高精度の3Dマップを、高精度マップともいう。高精度マップは、注目領域の3D形状を、通常マップよりも高精細に表現する。第1のアルゴリズムとしてのVisual SLAMでは、第2のアルゴリズムと比較して、精度は落ちるが、高フレームレートで3Dマップ(通常マップ)を生成することができる。一方、第2のアルゴリズムとしてのMulti-view stereoでは、高フレームレートでの3Dマップ(高精度マップ)の生成は難しいが、高精度の3Dマップを生成することができる。
【0081】
術前情報記憶部107は、手術前に得られる術前情報を記憶する。術前情報とは、例えば、手術前に撮影したCT画像から構築される3Dモデル等である。
【0082】
表示画像生成部108は、通常マップ生成部105で生成された(疎らな)通常マップに、高精度マップ生成部106で生成された(密な)高精度マップを統合する統合部として機能する。
【0083】
すなわち、統合部として機能する表示画像生成部108は、通常マップに対して、高精度マップ(注目領域)の位置合わせを行って、その位置合わせ後の高精度マップを、通常マップに統合する。
【0084】
通常マップに高精度マップを統合する方法としては、Iterative closest point(ICP)といったレジストレーション手法を採用することができる。
【0085】
ここで、表示画像生成部108は、注目領域設定部104で設定された新たな注目領域が過去の注目領域と重複する場合、通常マップに統合された過去の注目領域の高精度マップを削除し、その削除後の通常マップに、高精度マップ生成部106で新たに生成された新たな注目領域の高精度マップを統合する。新たな注目領域が過去の注目領域と重複する場合、例えば、注目領域に映る臓器が切り取られること等によって、新たな注目領域と過去の注目領域とで、注目領域に映る部位の形状が異なっていることがあり、最新の注目領域に映る部位を、通常マップに反映するためである。
【0086】
表示画像生成部108は、撮像部101が出力する術野画像の他、必要に応じて、高精度マップを統合した統合後の通常マップや、術前情報記憶部107に記憶された術前情報を用いて、表示装置15で表示する表示画像を生成し、表示装置15に供給する。
【0087】
例えば、表示画像生成部108は、通常マップを用いて、術者がアノテーションを表示することを指示した3D空間内の位置を特定し、その位置に、アノテーションが描画された術野画像を、表示画像として生成することができる。
【0088】
<CCU13が行う信号処理>
【0089】
図5は、CCU13による通常マップ及び高精度マップの生成の第1の例を説明するフローチャートである。
【0090】
ステップS11において、CCU13は、撮像部101が順次出力する術野画像のフレームを取得する。撮像部101が出力する術野画像のフレームは、必要に応じて、キーフレームとして、フレーム記憶部103に記憶され、処理は、ステップS11からステップS12に進む。
【0091】
ステップS12では、CCU13において、高精度マップ生成部106が、注目領域設定部104による注目領域の設定が行われたかどうかを判定する。
【0092】
ステップS12において、注目領域が設定されていないと判定された場合、処理は、ステップS13に進む。
【0093】
ステップS13では、通常マップ生成部105は、撮像部101が出力する術野画像のフレームを用いて、第1のアルゴリズムとしてのVisual SLAMによる通常マップの生成(及び更新)と、撮像部101の自己位置推定とを行い、処理は、ステップS14に進む。
【0094】
ステップS14では、表示画像生成部108は、必要に応じて、最新の通常マップを用いて、表示画像を生成し、処理は、ステップS15に進む。
【0095】
ステップS15では、表示画像生成部108は、表示画像を、表示装置15に表示させる。
【0096】
一方、ステップS12において、注目領域が設定されたと判定された場合、処理は、ステップS16に進む。
【0097】
ステップS16では、高精度マップ生成部106は、注目領域のみについて、第2の計算アルゴリズムとしてのMulti-view stereoによる高精度マップの生成を行い、処理は、ステップS17に進む。
【0098】
ステップS17では、表示画像生成部108は、最新の通常マップに、最新の高精度マップを統合する。そして、処理は、ステップS17からステップS14に進み、以下、上述した処理が行われる。
【0099】
図5の通常マップ及び高精度マップの生成の第1の例では、注目領域が設定されない場合には、通常マップが生成され、注目領域が設定された場合には、通常マップは生成されず、注目領域のみの高精度マップが生成される。
【0100】
図6は、CCU13による通常マップ及び高精度マップの生成の第2の例を説明するフローチャートである。
【0101】
ステップS21において、CCU13では、
図5のステップS11と同様に、撮像部101が出力する術野画像のフレームが取得され、必要に応じて、キーフレームとして、フレーム記憶部103に記憶される。そして、処理は、ステップS21からステップS22とステップS31とに並列に進む。
【0102】
ステップS22では、通常マップ生成部105は、
図5のステップS13と同様に、撮像部101が出力する術野画像のフレームを用いて、第1のアルゴリズムとしてのVisual SLAMによる通常マップの生成と、撮像部101の自己位置推定とを行い、処理は、ステップS23に進む。
【0103】
ステップS23では、表示画像生成部108は、
図5のステップS14と同様に、必要に応じて、最新の通常マップを用いて、表示画像を生成し、処理は、ステップS24に進む。
【0104】
ステップS24では、表示画像生成部108は、
図5のステップS15と同様に、表示画像を、表示装置15に表示させる。
【0105】
一方、ステップS31では、CCU13において、高精度マップ生成部106が、
図5のステップS12と同様に、注目領域設定部104による注目領域の設定が行われたかどうかを判定する。
【0106】
ステップS31において、注目領域が設定されていないと判定された場合、処理は、ステップS32及びS33をスキップして、ステップS23に進む。
【0107】
また、ステップS31において、注目領域が設定されたと判定された場合、処理は、ステップS32に進む。
【0108】
ステップS32では、高精度マップ生成部106は、
図5のステップS16と同様に、注目領域のみについて、第2の計算アルゴリズムとしてのMulti-view stereoによる高精度マップの生成を行い、処理は、ステップS33に進む。
【0109】
ステップS33では、表示画像生成部108は、
図5のステップS17と同様に、最新の通常マップに、最新の高精度マップを統合する。そして、処理は、ステップS33からステップS23に進み、以下、上述した処理が行われる。
【0110】
図6の通常マップ及び高精度マップの生成の第2の例では、通常マップは、注目領域の設定の有無にかかわらず、常時生成される。高精度マップは、
図5と同様に、注目領域が設定された場合にのみ、その注目領域についてのみ生成される。
【0111】
図7は、
図4のCCU13が行う信号処理の例を説明するフローチャートである。
【0112】
ステップS51において、通常マップ生成部105は、撮像部101が出力する術野画像を用いて、第2のアルゴリズムにより計算量が少ない第1のアルゴリズムにより、リアルタイムでの通常マップの生成及び自己位置推定を行い、処理は、ステップS52に進む。
【0113】
ステップS52では、通常マップ生成部105は、通常マップを、直前のステップS51で生成された通常マップによって更新し、処理は、ステップS53に進む。
【0114】
ステップS53では、シーン検出部102が、撮像部101が出力する術野画像の(最新の)フレームが、障害シーンが映る障害フレームであるかどうかを判定する。
【0115】
ステップS53において、撮像部101が出力する術野画像のフレームが、障害フレームでないと判定された場合、処理は、ステップS54に進む。
【0116】
ステップS54では、フレーム記憶部103は、障害フレームでない術野画像のフレームを、必要に応じて、キーフレームとして記憶し、処理は、ステップS55に進む。
【0117】
一方、ステップS53において、撮像部101が出力する術野画像のフレームが、障害フレームであると判定された場合、処理は、ステップS54をスキップして、ステップS55に進む。したがって、ここでは、障害フレームは、フレーム記憶部103には記憶されない。
【0118】
ステップS55では、高精度マップ生成部106が、注目領域設定部104において注目領域が設定されたかどうかを判定する。
【0119】
ステップS55において、注目領域が設定されていないと判定された場合、処理は、ステップS56ないしS59をスキップして、ステップS60に進む。
【0120】
また、ステップS55において、注目領域が設定されたと判定された場合、処理は、ステップS56に進む。
【0121】
ステップS56では、表示画像生成部108は、直前のステップS55で設定されたと判定された新たな注目領域(の一部又は全部)が過去の注目領域と重複するかどうかを判定する。
【0122】
ステップS56において、新たな注目領域が過去の注目領域と重複しないと判定された場合、処理は、ステップS57をスキップして、ステップS58に進む。
【0123】
また、ステップS56において、新たな注目領域が過去の注目領域と重複すると判定された場合、処理は、ステップS57に進む。
【0124】
ステップS57では、表示画像生成部108は、通常マップに統合された過去の注目領域の高精度マップを削除し、処理は、ステップS58に進む。
【0125】
ステップS58では、高精度マップ生成部106は、フレーム記憶部103に記憶されたキーフレームを用いて、第1のアルゴリズムにより高精度の第2のアルゴリズムにより、新たな注目領域についてのみ高精度マップの生成を行い、処理は、ステップS59に進む。
【0126】
ステップS59では、通常マップに、高精度マップを統合し、処理は、ステップS60に進む。
【0127】
ステップS60では、CCU13は、信号処理を終了するかどうかを判定し、終了しないと判定した場合、処理は、ステップS51に戻り、以下、同様の処理が繰り返される。
【0128】
また、ステップS60において、信号処理を終了すると判定された場合、すなわち、例えば、術者が信号処理を終了するように、医療システムを操作した場合、CCU13は、信号処理を終了する。
【0129】
<内視鏡11及びCCU13の第2の構成例>
【0130】
図8は、
図1の内視鏡11及びCCU13の第2の構成例を示すブロック図である。
【0131】
なお、図中、
図4の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
【0132】
図8において、内視鏡11は、撮像部101及びサブセンサ121を有する。したがって、
図8の内視鏡11は、撮像部101を有する点で、
図4の場合と共通する。但し、
図8の内視鏡11は、サブセンサ121が新たに設けられている点で、
図4の場合と相違する。
【0133】
また、
図8において、CCU13は、フレーム記憶部103、注目領域設定部104、通常マップ生成部105、高精度マップ生成部106、術前情報記憶部107、表示画像生成部108、及び、シーン検出部131を有する。したがって、
図8のCCU13は、フレーム記憶部103ないし表示画像生成部108を有する点で、
図4の場合と共通する。但し、
図8のCCU13は、シーン検出部102に代えて、シーン検出部131が設けられている点で、
図4の場合と相違する。
【0134】
ここで、3Dマップの生成に、RGBの画像である術野画像を用いる場合には、そのようなRGBの術野画像を用いた3Dマップの生成に障害が生じたときに、通常マップ生成部105での通常マップの生成及び自己位置推定を行うことが困難になる。
【0135】
例えば、手術中に術野内で出血や発煙等が生じた場合、第1のアルゴリズムとしてのVisual SLAMでは、被写体について十分な特徴点を検出することができず、通常マップ生成及び自己位置推定が困難になる。また、血液が付着した部位や煙で隠れた部分については、本来の3Dマップを生成することが困難になる。
【0136】
そこで、
図8では、内視鏡11において、可視光線をセンシング(受光)し、そのセンシング結果として、RGBの術野画像を出力するセンサとしての撮像部101とは別に、障害シーンのセンシングに適したセンシング条件でセンシングを行うサブセンサ121が設けられている。さらに、
図8では、シーン検出部131が、障害シーンであるかどうかによって、撮像部101が出力する術野画像、又は、サブセンサ121が出力するセンシング結果を選択し、フレーム記憶部103に出力する。
【0137】
すなわち、サブセンサ121は、例えば、可視光線以外の波長の光をセンシングするセンサであり、そのセンシングにより得られるサブセンサ画像を、センシング結果として出力する。
【0138】
したがって、サブセンサ121が出力するサブセンサ画像によれば、障害シーンであっても、十分な数の特徴点を検出することができる。
【0139】
サブセンサ121でサブセンサ画像を撮影するときの撮影方法や照明方法は、適宜選択することができる。
【0140】
例えば、出血シーンや発煙シーンについては、IR(Infrared)やNBI(Narrow Band Imaging)等による透過観察を行うことができるセンサを兼ね備えたカメラ(撮像部)を、サブセンサ121として採用し、IR等の特殊光により被写体を照明する特殊光観察技術を用いて、透過観察により、サブセンサ画像を撮影することができる。
【0141】
例えば、白飛びシーンについては、PL(Polarized Light)フィルタやND(Neutral Density)フィルタ等の偏光フィルタが搭載されたカメラを、サブセンサ121として採用し、白飛びが抑制されたサブセンサ画像を撮影することができる。
【0142】
シーン検出部131は、
図4のシーン検出部102と同様に、撮像部101からの術野画像の各フレームについて、障害シーンを検出する。
【0143】
シーン検出部131は、障害シーンが検出されなかった場合、シーン検出部102と同様に、(障害シーンが映っていない)術野画像のフレームを、フレーム記憶部103に出力する。
【0144】
また、シーン検出部131は、障害シーンが検出された場合、その障害シーンが映るフレームについては、サブセンサ121が出力するサブセンサ画像のフレームを、フレーム記憶部103に出力する。
【0145】
したがって、フレーム記憶部103において、障害シーンが映るフレームについては、サブセンサ121が出力するサブセンサ画像のフレームが、キーフレームとして記憶され得る。その結果、高精度マップ生成部106では、障害シーンについても、注目領域の高精度マップを、安定して生成することができる。
【0146】
なお、通常マップ生成部105では、障害シーンであるかどうかにかかわらず、撮像部101が出力するRGBの術野画像を常時用いて、通常マップの生成及び自己位置推定を行うことができる。また、通常マップ生成部105では、障害シーンでない場合には、撮像部101が出力するRGBの術野画像を用いて、通常マップの生成及び自己位置推定を行い、障害シーンである場合には、サブセンサ121が出力するサブセンサ画像を用いて、通常マップの生成及び自己位置推定を行うことができる。
【0147】
図9は、
図8のCCU13が行う信号処理の例を説明するフローチャートである。
【0148】
CCU13では、ステップS71ないしS74において、
図7のステップS51ないしS54とそれぞれ同様の処理が行われる。
【0149】
そして、
図7のステップS53に対応するステップS73において、撮像部101が出力する術野画像のフレームが、障害フレームであると判定された場合、処理は、ステップS91に進む。
【0150】
ステップS91では、フレーム記憶部103は、撮像部101が出力する術野画像において障害シーンが映る障害フレームについて、サブセンサ121が出力するサブセンサ画像のフレームを、必要に応じて、キーフレームとして記憶し、処理は、ステップS75に進む。
【0151】
ステップS75ないしS80では、
図7のステップS55ないしS60とそれぞれ同様の処理が行われる。
【0152】
なお、
図9において、障害シーンについては、その障害シーンが映るフレーム全体を、注目領域に設定することができる。この場合、障害シーンが短時間であれば、リアルタイム性を維持しつつ、障害によって、RGBの術野画像では見にくくなっている部分をも正確に表現する高精度マップを生成することができる。
【0153】
以上のように、術野を撮影した術野画像を用いて、第1のアルゴリズムにより、術野の3Dマップとしての通常マップを生成し、術野画像に注目領域が設定された場合、第1のアルゴリズムと異なる第2のアルゴリズムにより、注目領域の3Dマップとしての高精度マップを生成するので、例えば、第1のアルゴリズムとして、計算量が少なく、リアルタイム性を確保することができる3Dマップの生成アルゴリズムを採用するとともに、第2のアルゴリズムとして、高精度の3Dマップを生成することができる生成アルゴリズムを採用することで、3Dマップの生成(及び自己位置推定)のリアルタイム性を確保しつつ、注目領域については、高精度の3Dマップを生成することができる。その結果、術者に、3Dマップを用いて得られる情報として、正確かつ安定した情報を提供することができる。
【0154】
また、障害シーンを適切にセンシングすることができるサブセンサ121を採用することにより、注目領域が、出血シーンや発煙シーン等の、RGBの術野画像を用いた3Dマップの生成に障害があるシーンを含む場合でも、注目領域について、高精度の3Dマップを生成することができる。
【0155】
<本技術を適用したコンピュータの説明>
【0156】
次に、上述したCCU13の一連の処理は、ハードウエアにより行うこともできるし、ソフトウエアにより行うこともできる。一連の処理をソフトウエアによって行う場合には、そのソフトウエアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
【0157】
図10は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。
【0158】
プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク905やROM903に予め記録しておくことができる。
【0159】
あるいはまた、プログラムは、ドライブ909によって駆動されるリムーバブル記録媒体911に格納(記録)しておくことができる。このようなリムーバブル記録媒体911は、いわゆるパッケージソフトウエアとして提供することができる。ここで、リムーバブル記録媒体911としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。
【0160】
なお、プログラムは、上述したようなリムーバブル記録媒体911からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク905にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。
【0161】
コンピュータは、CPU(Central Processing Unit)902を内蔵しており、CPU902には、バス901を介して、入出力インタフェース910が接続されている。
【0162】
CPU902は、入出力インタフェース910を介して、ユーザによって、入力部907が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)903に格納されているプログラムを実行する。あるいは、CPU902は、ハードディスク905に格納されたプログラムを、RAM(Random Access Memory)904にロードして実行する。
【0163】
これにより、CPU902は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU902は、その処理結果を、必要に応じて、例えば、入出力インタフェース910を介して、出力部906から出力、あるいは、通信部908から送信、さらには、ハードディスク905に記録等させる。
【0164】
なお、入力部907は、キーボードや、マウス、マイク等で構成される。また、出力部906は、LCD(Liquid Crystal Display)やスピーカ等で構成される。
【0165】
ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
【0166】
また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
【0167】
さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
【0168】
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
【0169】
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
【0170】
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0171】
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
【0172】
また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【0173】
なお、本技術は、以下の構成をとることができる。
【0174】
<1>
術野を撮影して、術野画像を出力する撮像部と、
前記術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成する第1の生成部と、
前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成する第2の生成部と
を備える医療システム。
<2>
前記第2のアルゴリズムは、前記第1のアルゴリズムよりも高精度の3D情報が生成されるアルゴリズムである
<1>に記載の医療システム。
<3>
前記第2のアルゴリズムにより生成された3D情報を、前記第1のアルゴリズムにより生成された3D情報に統合する統合部をさらに備える
<1>又は<2>に記載の医療システム。
<4>
前記統合部は、前記第1のアルゴリズムにより生成された3D情報に対して、前記第2のアルゴリズムにより生成された3D情報の位置合わせを行って、前記第2のアルゴリズムにより生成された3D情報を、前記第1のアルゴリズムにより生成された3D情報に統合する
<3>に記載の医療システム。
<5>
前記統合部は、前記注目領域が過去の前記注目領域と重複する場合、前記第1のアルゴリズムにより生成された3D情報に統合された過去の前記注目領域の3D情報を削除し、新たに生成された前記注目領域の3D情報を統合する
<3>又は<4>に記載の医療システム。
<6>
前記第1のアルゴリズムは、3D情報の生成とともに、前記撮像部に基づく自己位置推定を行うアルゴリズムである
<1>ないし<5>のいずれかに記載の医療システム。
<7>
前記第1のアルゴリズムは、Visual-SLAMである
<1>ないし<6>のいずれかに記載の医療システム。
<8>
前記第2のアルゴリズムは、自己位置推定を行わないアルゴリズムである
<1>ないし<7>のいずれかに記載の医療システム。
<9>
前記第2のアルゴリズムは、Multi-view stereoである
<1>ないし<8>のいずれかに記載の医療システム。
<10>
前記第1のアルゴリズムは、前記第2のアルゴリズムよりも計算量が少ないアルゴリズムである
<1>ないし<9>のいずれかに記載の医療システム。
<11>
前記第2の生成部は、前記撮像部が出力する前記術野画像のフレームから選択されたキーフレームを用いて、前記第2のアルゴリズムにより、3D情報を生成する
<1>ないし<10>のいずれかに記載の医療システム。
<12>
前記術野画像のフレームから、特定のシーンが映る特定フレームを検出するシーン検出部をさらに備え、
前記第2の生成部は、前記術野画像のフレームのうちの、前記特定フレームを除くフレームから選択された前記キーフレームを用いて、前記第2のアルゴリズムにより、3D情報を生成する
<11>に記載の医療システム。
<13>
前記撮像部の位置の変化に応じて、前記キーフレームの選択の頻度が切り替えられる
<11>又は<12>に記載の医療システム。
<14>
前記注目領域を設定する注目領域設定部をさらに備える
<1>ないし<13>のいずれかに記載の医療システム。
<15>
前記注目領域設定部は、ユーザからの指定に応じて、前記注目領域を設定する
<14>に記載の医療システム。
<16>
前記注目領域設定部は、所定のロボットの出力に応じて、前記注目領域を設定する
<14>又は<15>に記載の医療システム。
<17>
前記注目領域設定部は、あらかじめ指定された部位が映る領域を、前記注目領域を設定する
<14>ないし<16>のいずれかに記載の医療システム。
<18>
術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成する第1の生成部と、
前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成する第2の生成部と
を備える信号処理装置。
<19>
術野を撮影した術野画像を用いて、第1のアルゴリズムにより、前記術野の3D情報を生成することと、
前記術野画像に注目領域が設定された場合、前記第1のアルゴリズムと異なる第2のアルゴリズムにより、前記注目領域の3D情報を生成することと
を含む信号処理方法。
【符号の説明】
【0175】
11 内視鏡, 13 CCU, 15 表示装置, 17 光源装置, 21 処置具用装置, 22 エネルギ処置具, 23 鉗子, 24 気腹装置, 25a,25b トロッカ, 26 レコーダ, 27 プリンタ, 31 カート, 33 患者ベッド, 35 フットスイッチ, 101 撮像部, 102 シーン検出部, 103 フレーム記憶部, 104 注目領域設定部, 105 通常マップ生成部, 106 高精度マップ生成部, 107 術前情報記憶部, 108 表示画像生成部, 121 サブセンサ, 131 シーン検出部, 901 バス, 902 CPU, 903 ROM, 904 RAM, 905 ハードディスク, 906 出力部, 907 入力部, 908 通信部, 909 ドライブ, 910 入出力インタフェース, 911 リムーバブル記録媒体