(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-08
(45)【発行日】2024-07-17
(54)【発明の名称】数値制御装置、及び制御方法
(51)【国際特許分類】
B23Q 15/18 20060101AFI20240709BHJP
G05B 19/404 20060101ALI20240709BHJP
【FI】
B23Q15/18
G05B19/404 K
(21)【出願番号】P 2019219388
(22)【出願日】2019-12-04
【審査請求日】2022-10-21
(73)【特許権者】
【識別番号】390008235
【氏名又は名称】ファナック株式会社
(74)【代理人】
【識別番号】100106002
【氏名又は名称】正林 真之
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100160794
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】澤岡 浩貴
【審査官】小川 真
(56)【参考文献】
【文献】特開2000-322115(JP,A)
【文献】特開2015-093346(JP,A)
【文献】特開2016-110443(JP,A)
【文献】特開平07-124849(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23Q 15/18、17/20
G05B 19/404
(57)【特許請求の範囲】
【請求項1】
指令解析手段から受信した切削指令が示す指令座標値で工作機械に切削させる数値制御装置であって、
切削されたテストワークの形状を前記工作機械に機上測定させ、測定された前記テストワークの形状を示す測定データを取得する測定手段と、
前記切削指令が示す指令形状と前記測定手段により取得された前記測定データとに基づいて、切削において前記工作機械に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出手段と、
算出された前記動的補正パラメータに基づいて、前記指令座標値に対して前記動的誤差を少なくとも工作機械の直角度誤差として補正する動的補正手段と、を備え、
前記指令形状、及び前記テストワークの形状が円であり、
前記測定手段は、XY平面で前記テストワークに切削された半径R
0
の穴の前記測定データを取得し、
前記動的補正パラメータ算出手段は、
前記測定データが示す前記テストワークの形状に楕円をベストフィットして、前記楕円のX軸、Y軸それぞれの半径R
x
,R
y
を取得し、
XY平面における動的補正パラメータW
zx
、W
zy
を数1式で算出する、数値制御装置。
【数1】
ただし、H
z
は前記工作機械の定盤からX軸までの高さを示し、H
w
は前記定盤から前記テストワークまでの高さを示し、δ
0
及びδ
90
は前記測定データが示す加工形状位置(R
x
cos(θ+α),R
y
sin(θ+α))の角度θが0度及び90度のときのズレ量を示し、αはベストフィットした前記楕円が円周方向の負荷により傾いているときの傾き分ずらした位相を示す。
【請求項2】
動的補正パラメータ補間手段をさらに備え、
前記測定手段は、互いに異なる複数の切削負荷の各々で切削された前記テストワークの形状の前記測定データを取得し、
前記動的補正パラメータ算出手段は、前記複数の切削負荷の各々における前記指令形状と前記測定データとに基づいて前記動的補正パラメータを算出し、
前記動的補正パラメータ補間手段は、算出された複数の前記動的補正パラメータを用いて、任意の切削負荷における動的補正パラメータを補間し、
前記動的補正手段は、補間された前記任意の切削負荷における動的補正パラメータに基づいて前記切削指令の前記指令座標値を補正する、請求項
1に記載の数値制御装置。
【請求項3】
前記テストワークの切削時の負荷電流を取得し、取得した前記負荷電流、前記指令形状と前記測定データとのズレ量、及び前記動的補正パラメータに基づいて少なくともX軸及びY軸における負荷電流と切削点負荷との関係を示す関係パラメータを算出する関係パラメータ算出手段と、
前記関係パラメータと前記負荷電流とに基づいて前記切削点負荷を算出する切削点負荷算出手段と、をさらに備える、請求項
1に記載の数値制御装置。
【請求項4】
前記負荷電流は、前記工作機械に含まれるサーボモータの負荷電流から、前記工作機械に含まれる工具を加速させた時の加速度による負荷電流、及び前記工具を軸移動させた時の軸移動による負荷電流を引いて算出される、請求項
3に記載の数値制御装置。
【請求項5】
前記加速度による負荷電流、及び前記軸移動による負荷電流は、切削を伴わない前記工具の移動時の負荷電流から算出される、請求項
4に記載の数値制御装置。
【請求項6】
前記切削を伴わない前記工具の移動は、前記工具を円状に時計周りに移動させる移動、及び前記工具を円状に反時計周りに移動させる移動の両方を行う、請求項
5に記載の数値制御装置。
【請求項7】
コンピュータにより実行される、指令解析手段から受信した切削指令が示す指令座標値で工作機械に切削させる制御方法であって、
切削されたテストワークの形状を前記工作機械に機上測定させ、測定された前記テストワークの形状を示す測定データを取得する測定ステップと、
前記切削指令が示す指令形状と取得された前記測定データとに基づいて、切削において前記工作機械に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出ステップと、
算出された前記動的補正パラメータに基づいて、前記指令座標値に対して前記動的誤差を補正する動的補正ステップと、を備え、
前記指令形状、及び前記テストワークの形状が円であり、
前記測定ステップは、XY平面で前記テストワークに切削された半径R
0の穴の前記測定データを取得し、
前記動的補正パラメータ算出ステップは、
前記測定データが示す前記テストワークの形状を円でベストフィットして、前記円の半径R
tを取得し、
切削負荷で生じる前記工作機械に含まれる工具のたわみ量の動的補正パラメータW
t、及び工具径補正量r
t’を数
2式で算出する、制御方法。
【数2】
ただし、βはワーク加工時のワーク法線方向と切削点負荷方向との間の角度を示し、r
tは補正前の工具径を示し、L
tは工具長を示す。
【請求項8】
コンピュータにより実行される、指令解析手段から受信した切削指令が示す指令座標値で工作機械に切削させる制御方法であって、
切削されたテストワークの形状を前記工作機械に機上測定させ、測定された前記テストワークの形状を示す測定データを取得する測定ステップと、
前記切削指令が示す指令形状と取得された前記測定データとに基づいて、切削において前記工作機械に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出ステップと、
算出された前記動的補正パラメータに基づいて、前記指令座標値に対して前記動的誤差を補正する動的補正ステップと、を備え、
前記指令形状、及び前記テストワークの形状が円であり、
前記測定ステップは、XY平面で前記テストワークに切削された半径R
0の穴の前記測定データを取得し、
前記動的補正パラメータ算出ステップは、
前記測定データが示す前記テストワークの形状に楕円をベストフィットして、前記楕円のX軸、Y軸それぞれの半径R
x,R
yを取得し、
XY平面における動的補正パラメータW
zx、W
zyを数
3式で算出する、制御方法。
【数3】
ただし、H
zは前記工作機械の定盤からX軸までの高さを示し、H
wは前記定盤から前記テストワークまでの高さを示し、δ
0及びδ
90は前記測定データが示す加工形状位置(R
xcos(θ+α),R
ysin(θ+α))の角度θが0度及び90度のときのズレ量を示し、αはベストフィットした前記楕円が円周方向の負荷により傾いているときの傾き分ずらした位相を示す。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、数値制御装置、及び制御方法に関する。
【背景技術】
【0002】
工作機械の剛性及び熱変形、又は工具のたわみ等により、切削されたワークの形状と、設計時の形状との間に誤差が生じてしまう。そこで、レーザー干渉計、オートコリメータ、水準器等を用いて加工されたワークの形状を予め測定し、測定した誤差に基づいて補正する方法がある。
しかしながら、上述の補正は、静的誤差を補正するものであり、切削時に発生する動的誤差を補正することが困難である。なお、動的誤差とは、工作機械に作用する力及び速度によって生じる誤差のことで、例えば切削点負荷により剛性の低い個所に生じる、工作機械の直角度誤差や工具のたわみによる誤差である。
この点、工具のたわみによる圧力をセンサを用いて検出し、検出された圧力に基づいて工具のたわみ量を補正することにより、高速度の切削加工であっても高精度に加工することができる技術が知られている。例えば、特許文献1参照。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、工具のたわみ量を補正するために、別途センサを用意して工作機械に取り付ける必要があり、コストがかかる。
また、補正量算出の基となる切削点負荷と加工結果のずれとの関係を算出することが難しい。
【0005】
そこで、センサを用いることなく、動的誤差を精度良く補正することが望まれている。
【課題を解決するための手段】
【0006】
(1)本開示の数値制御装置の一態様は、指令解析手段から受信した切削指令が示す指令座標値で工作機械に切削させる数値制御装置であって、切削されたテストワークの形状を前記工作機械に機上測定させ、測定された前記テストワークの形状を示す測定データを取得する測定手段と、前記切削指令が示す指令形状と前記測定手段により取得された前記測定データとに基づいて、切削において前記工作機械に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出手段と、算出された前記動的補正パラメータに基づいて、前記指令座標値に対して前記動的誤差を補正する動的補正手段と、を備え、前記動的補正パラメータ算出手段は、前記指令形状と前記測定データとの比較から前記動的誤差のみを取得し、取得した前記動的誤差から前記動的補正パラメータを算出する。
【0007】
(2)本開示の制御方法の一態様は、コンピュータにより実行される、指令解析手段から受信した切削指令が示す指令座標値で工作機械に切削させる制御方法であって、切削されたテストワークの形状を前記工作機械に機上測定させ、測定された前記テストワークの形状を示す測定データを取得する測定ステップと、前記切削指令が示す指令形状と取得された前記測定データとに基づいて、切削において前記工作機械に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出ステップと、算出された前記動的補正パラメータに基づいて、前記指令座標値に対して前記動的誤差を補正する動的補正ステップと、を備え、前記動的補正パラメータ算出ステップは、前記指令形状と前記測定データとの比較から前記動的誤差のみを取得し、取得した前記動的誤差から前記動的補正パラメータを算出する。
【発明の効果】
【0008】
一態様によれば、センサを用いることなく、動的誤差を精度良く補正することができる。
【図面の簡単な説明】
【0009】
【
図1】第1実施形態に係る数値制御装置の機能的構成例を示す機能ブロック図である。
【
図3B】工具のたわみによる誤差の一例を示す図である。
【
図4】工作機械にテストワークを切削させる一例を示す図である。
【
図5】切削点負荷が円周方向にもかかる場合のズレ量の一例を示す図である。
【
図6】動的補正パラメータと工作機械との関係の一例を示す図である。
【
図7】直角度誤差の動的補正パラメータについて説明する一例を示す図である。
【
図8】測定データに円をベストフィットする一例を示す図である。
【
図10】工具のたわみによる誤差の補正の一例を示す図である。
【
図11】第1実施形態に係る数値制御装置の一例を示す図である。
【
図12】第1実施形態に係る数値制御装置の一例を示す図である。
【
図13】工具のたわみによる誤差の補正の一例を示す図である。
【
図14】第2実施形態に係る数値制御装置のうち第1実施形態の数値制御装置に追加される機能的構成例を示す機能ブロック図である。
【
図15A】動的補正パラメータ補間手段の補間処理を説明する一例を示す図である。
【
図15B】動的補正パラメータ補間手段の補間処理を説明する一例を示す図である。
【
図16】複数の動的補正パラメータをM次関数で補間する場合の一例を示す図である。
【
図17】第3実施形態に係る数値制御装置のうち第1実施形態の数値制御装置に追加される機能的構成例を示す機能ブロック図である。
【
図18A】工具を時計周りに円運動させる場合の一例を示す図である。
【
図18B】工具を反時計周りに円運動させる場合の一例を示す図である。
【発明を実施するための形態】
【0010】
<第1実施形態>
まず、本実施形態の概略を説明する。本実施形態では、数値制御装置は、後述するテストワークを所定の形状に切削加工して、切削されたテストワークの形状を工作機械に機上測定させ、測定されたテストワークの形状を示す測定データを取得する。数値制御装置は、切削指令が示す指令形状と取得された測定データとに基づいて、切削加工に伴い工作機械に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する。数値制御装置は、算出された動的補正パラメータに基づいて指令座標値に対して動的誤差を補正する。
【0011】
これにより、本実施形態によれば、「工具のたわみによる圧力を検出するセンサを用いることなく、動的誤差を精度良く補正する」という課題を解決することができる。
以上が本実施形態の概略である。
【0012】
次に、本実施形態の構成について図面を用いて詳細に説明する。
【0013】
図1は、第1実施形態に係る数値制御装置の機能的構成例を示す機能ブロック図である。なお、制御方法の観点に基づく説明は、「手段」を「ステップ」に置き換えることで説明できるため、省略する。
【0014】
数値制御装置10は、図示しない接続インタフェースを介して、工作機械20と互いに直接接続されてもよい。なお、数値制御装置10、及び工作機械20は、LAN(Local Area Network)やインターネット等の図示しないネットワークを介して相互に接続されていてもよい。この場合、数値制御装置10、及び工作機械20は、かかる接続によって相互に通信を行うための図示しない通信部を備えている。
【0015】
<工作機械20>
工作機械20は、X軸、Y軸、及びZ軸方向に主軸頭が移動する公知の直交3軸の工作機械であり、数値制御装置10からの動作指令(切削指令)に基づいて動作する。
図2は、工作機械20の一例を示す図である。
図2に示すように、工作機械20は、XY平面状に配置されたテーブル(定盤)21と、テーブル21の両端の位置に鉛直(Z軸)方向に設けられた支柱22(1)、22(2)と、支柱22(1)と支柱22(2)との間に水平(X軸)方向に設けられた支柱23とで構成される。
【0016】
主軸頭24及び主軸頭24に取り付けられた工具25は、X軸サーボモータ31により支柱23に対してX軸方向に移動するとともに、Z軸サーボモータ33により支柱23に対してZ軸方向に上下動する。また、支柱22(1)、22(2)、及び支柱23で構成される門は、Y軸サーボモータ32によりY軸方向に移動する。
【0017】
<数値制御装置10>
数値制御装置10は、当業者にとって公知の数値制御装置であり、制御情報に基づいて動作指令を生成し、生成した動作指令を工作機械20に送信する。これにより、数値制御装置10は、工作機械20の動作を制御する。
【0018】
図1に示すように、数値制御装置10は、記憶部100、及び制御部200を有する。さらに、制御部200は、測定手段210、動的補正パラメータ算出手段220、指令解析手段230、静的補正手段240、動的補正手段250、補間手段260、X軸用加減速制御手段270、Y軸用加減速制御手段280、及びZ軸用加減速制御手段290を有する。
【0019】
記憶部100は、RAM(Random Access Memory)やHDD(Hard Disk Drive)等であり、静的誤差データ110、及び動的補正パラメータデータ120を記憶する。
【0020】
静的誤差データ110は、例えば、後述する静的補正手段240による工作機械20に作用する静的誤差を補正するため、予め測定された静的誤差である。
【0021】
動的補正パラメータデータ120は、例えば、後述する動的補正パラメータ算出手段220により算出された動的補正パラメータである。
【0022】
制御部200は、CPU、ROM、RAM、CMOSメモリ等を有し、これらはバスを介して相互に通信可能に構成される、当業者にとって公知のものである。
CPUは数値制御装置10を全体的に制御するプロセッサである。CPUは、ROMに格納されたシステムプログラム及びアプリケーションプログラムを、バスを介して読み出し、前記システムプログラム及びアプリケーションプログラムに従って数値制御装置10全体を制御する。これにより、
図1に示すように、制御部200が、測定手段210、動的補正パラメータ算出手段220、指令解析手段230、静的補正手段240、動的補正手段250、補間手段260、X軸用加減速制御手段270、Y軸用加減速制御手段280、及びZ軸用加減速制御手段290の機能を実現するように構成される。RAMには一時的な計算データや表示データ等の各種データが格納される。CMOSメモリは図示しないバッテリでバックアップされ、数値制御装置10の電源がオフされても記憶状態が保持される不揮発性メモリとして構成される。
【0023】
測定手段210は、例えば、後述する指令解析手段230が解析した加工プログラムの切削指令に基づいて工作機械20が切削したテストワーク(図示しない)の形状を、工作機械20に含まれる非接触式プローブ(図示しない)で機上測定させる。測定手段210は、測定されたテストワーク(図示しない)の形状を示す測定データを工作機械20から取得する。
なお、機上で形状を測定することで、切削時と測定時とで同じように静的誤差が生じ、結果として機上測定では静的誤差が相殺され、動的誤差のみを測定することができる。
【0024】
動的補正パラメータ算出手段220は、テストワーク(図示しない)を切削した切削指令が示す指令形状と測定手段210により取得された測定データとに基づいて、動的誤差を補正する動的補正パラメータを算出する。動的補正パラメータ算出手段220は、算出した動的補正パラメータを記憶部100の動的補正パラメータデータ120に記憶する。動的補正パラメータ算出手段220の動作については、後述する。
【0025】
指令解析手段230は、加工プログラムからX軸、Y軸、Z軸の移動の指令を含むブロックを逐次読みだして解析し、解析結果に基づいて各軸の移動の指令座標値を含む切削指令を生成する。
【0026】
静的補正手段240は、静的誤差データ110から静的誤差を読み出し、読み出した静的誤差に基づいて、指令解析手段230により生成された切削指令の指令座標値を補正する。
【0027】
動的補正手段250は、動的補正パラメータ算出手段220により算出された動的補正パラメータを動的補正パラメータデータ120から読み出し、読み出した動的補正パラメータに基づいて、切削指令の指令座標値に対して動的誤差を補正する。
【0028】
補間手段260は、動的補正手段250から出力される切削指令により指令される移動指令に基づいて、指令経路上の点を補間周期で補間計算した補間データを生成する。
【0029】
X軸用加減速制御手段270は、補間手段260から出力される補間データに基づいて、加減速処理を行い補間周期毎のX軸の加工速度を計算し、計算した加工速度に応じたパルスを工作機械20のX軸サーボモータ31に出力する。
【0030】
Y軸用加減速制御手段280は、補間手段260から出力される補間データに基づいて、加減速処理を行い補間周期毎のY軸の加工速度を計算し、計算した加工速度に応じたパルスを工作機械20のY軸サーボモータ32に出力する。
【0031】
Z軸用加減速制御手段290は、補間手段260から出力される補間データに基づいて、加減速処理を行い補間周期毎のZ軸の加工速度を計算し、計算した加工速度に応じたパルスを工作機械20のZ軸サーボモータ33に出力する。
【0032】
次に、動的補正パラメータ算出手段220による動的補正パラメータの算出について説明する。なお、工作機械20における動的誤差には、直角度誤差と、工具25のたわみによる誤差とがある。
図3Aは、直角度誤差の一例を示す図である。
図3Bは、工具25のたわみによる誤差の一例を示す図である。
図3Aに示すように、直角度誤差は、例えば、超精密加工機等で各軸間の剛性が低い場合で、テーブル21と支柱22(1)、22(2)とのつなぎ目、支柱22(1)、22(2)と支柱23とのつなぎ目、及び支柱23と主軸頭24とのつなぎ目等で発生する。
一方、
図3Bに示すように、工具のたわみによる誤差は、例えば、工作機械20の剛性は高いが切削点負荷が大きい場合、主軸頭24に取り付けられた工具25で発生する。
以下、直角度誤差に対する動的補正パラメータの算出、及び工具25のたわみに対する動的補正パラメータの算出それぞれについて説明する。
【0033】
<直角度誤差に対する動的補正パラメータの算出について>
数値制御装置10は、
図4に示すように、直角度誤差に対する動的補正パラメータを算出するために、工作機械20に対して、Z軸方向の高さを一定にしてXY平面で治具40に固定されたテストワーク50に半径R
0の穴を切削させる。なお、テストワーク50の切削は、例えば、実際の商品のワークの切削加工時と同じ工具25、同じ材質のワーク等の加工条件で行われるものとする。そうすることで、算出される動的補正パラメータを実際の商品のワークの切削加工時に適用することができる。
そして、数値制御装置10は、切削された穴を接触式プローブ(図示しない)で工作機械20に機上測定させる。数値制御装置10の測定手段210は、機上測定されたテストワーク50の形状を示す測定データを工作機械20から取得する。
このように、機上で形状を測定することで、切削時と測定時とで同じように静的誤差が生じ、結果として機上測定では静的誤差が相殺され、動的誤差のみを測定することができる。
【0034】
動的補正パラメータ算出手段220は、テストワーク50を切削した切削指令が示す指令形状と取得された測定データとに基づいて、動的補正パラメータを算出する。
具体的には、動的補正パラメータ算出手段220は、
図5に示すように、実線で示す測定データにベストフィットする楕円((x/R
x)
2+(y/R
y)
2=1)を、例えば、最小二乗法等で算出する。
図5の破線で示す円は、半径R
0の穴の指令形状を示す。
【0035】
なお、テストワーク50の切削時における切削点負荷は円の直径方向だけでなく、切込み量によっては円の円周方向にもかかる。これにより、
図5に示すように、ベストフィットした楕円は角度α傾く。換言すれば、切削指令が示す移動指令位置R
nがR
0(cosθ,sinθ)とする場合、測定データが示す加工形状位置R
aは(R
xcos(θ-α),R
ysin(θ-α)))となる。
そして、加工形状位置R
aの角度θが0度及び90度のときのズレ量δ
0及びδ
90は数1式のように表される。ここで、ズレ量δ
0、δ
90の向きは各々X軸平行、Y軸平行としている。
【数1】
数1式のズレ量δを用いることで、動的補正パラメータW
zx、W
zyは数2式のように表される。
【数2】
ここで、
図6に示すように、H
zはテーブル(定盤)21から主軸頭24のX軸までの高さを示し、H
wはテーブル(定盤)21からテストワーク50までの高さを示す。
【0036】
なお、テストワーク50の切削時における切削点負荷が理想的に円の直径方向のみの場合、ベストフィットする楕円は傾かず、角度α=0となる。
そうすると、切削点負荷で直角度誤差が発生するとした場合、
図7に示すように、数2式の動的補正パラメータW
zx、W
zyは、数3式のように表される。すなわち、直角度誤差は、各軸の直角がずれることよって発生する誤差である。
【数3】
【0037】
この場合、ズレ量δは、数4式のように表される。
【数4】
そして、切削点負荷F(=(F
x,F
y))の方向は直径方向となることから、F/|F|=-(cosθ,sinθ)となり、ズレ量δは切削点負荷Fを用いて数5式のように表される。
【数5】
H
z-H
wは、加工の高さzである。
なお、実際の商品のワーク加工時における切削点負荷の方向、すなわち、切削点負荷が円の直径方向だけでなく円周方向にもかかる場合の方向は、公知の手法(例えば、松村隆、「切削シミュレーションの現状と課題」、精密工学会誌、Vol.80、No.9、2014)を用いて、商品のCADモデルと加工プランとから加工シミュレーションを行うことで算出されてもよい。
また、実際の商品のワーク加工時における切削点負荷の方向は、第3実施形態で後述するように、例えば、X軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33のトルクから見積もられるようにしてもよい。あるいは、実際の商品のワーク加工時における切削点負荷Fの方向は、工具25に取り付けられたセンサを用いて検出するようにしてもよい。
【0038】
そして、動的補正パラメータ算出手段220は、数1式及び数2式を用いて、動的補正パラメータWzx、Wzyを算出し、算出した動的補正パラメータWzx、Wzyを動的補正パラメータデータ120に記憶する。
【0039】
その後、動的補正手段250は、実際の商品のワークを切削加工する場合、動的補正パラメータデータ120から動的補正パラメータWzx、Wzyを読み出す。動的補正手段250は、読み出した動的補正パラメータWzx、Wzyに基づいて実際の商品となるワークに対する切削指令の指令座標値に対して直角度誤差の動的誤差を補正することができる。
【0040】
<工具25のたわみによる誤差に対する動的補正パラメータの算出について>
数値制御装置10は、直角度誤差の場合と同様に、工具25のたわみによる誤差に対する動的補正パラメータを算出するために、工作機械20に対して、Z軸方向の高さを一定にしてXY平面で治具40に固定されたテストワーク50に半径R0の穴を切削させる。なお、テストワーク50の切削は、例えば、実際の商品のワークの切削加工時と同じ工具25、同じ材質のワーク等の加工条件で行われるものとする。そうすることで、算出される動的補正パラメータを実際の商品のワークの切削加工時に適用することができる。
そして、数値制御装置10は、切削された穴を接触式プローブ(図示しない)で工作機械20に機上測定させる。数値制御装置10の測定手段210は、機上測定されたテストワーク50の形状を示す測定データを工作機械20から取得する。
【0041】
動的補正パラメータ算出手段220は、テストワーク50を切削した切削指令が示す指令形状と取得された測定データとに基づいて、動的補正パラメータを算出する。
具体的には、工具25のたわみには異方位性がないことから、動的補正パラメータ算出手段220は、
図8に示すように、実線で示す測定データにベストフィットする円(x
2+y
2=R
t
2)を、例えば、最小二乗法等で算出する。なお、
図8の破線で示す円は、
図5の場合と同様に、半径R
0の穴の指令形状を示す。
ただし、
図9に示すように、切削点負荷Fの方向は、工具25の回転と当該回転に対するテストワーク50からの反作用により、テストワーク50の法線に対して角度β傾く。このため、指令した位置と実際の切削位置とは、
図8に示すようにずれてしまう。そこで、動的補正パラメータ算出手段220は、公知の手法(例えば、谷口和雄、「金属切削機構の力学的解析(第3報)」、精密機械、29巻、第3号、1963)を用いて、切削点負荷Fの方向の傾きβを算出する。
これにより、切削点負荷で発生する工具25のたわみ量の係数(動的補正パラメータ)W
tは、数6式のように表される。
【数6】
L
tは工具長を示す。そして、ズレ量δは、数7式のように表される。
【数7】
【0042】
動的補正パラメータ算出手段220は、数6式を用いて、動的補正パラメータWtを算出し、算出した動的補正パラメータWtを動的補正パラメータデータ120に記憶する。
【0043】
その後、動的補正手段250は、実際の商品のワークを切削する場合、動的補正パラメータデータ120から動的補正パラメータW
tを読み出す。動的補正手段250は、読み出した動的補正パラメータW
tに基づいて実際の商品となるワークに対する切削指令の指令座標値に対して工具25のたわみによる動的誤差を補正する。
これにより、
図10に示すように、実線で示す実際の位置にいる工具25を破線で示す指令座標値の位置に移動させることができる。
【0044】
以上により、第1実施形態の数値制御装置10は、切削させたテストワーク50の形状を機上測定させ、測定されたテストワーク50の形状の測定データを取得する。数値制御装置10は、切削指令の指令形状と取得された測定データとに基づいて動的誤差を補正する動的補正パラメータを算出する。数値制御装置10は、算出された動的補正パラメータに基づいて指令座標値に対して動的誤差を補正することができる。
これにより、数値制御装置10は、工具のたわみによる圧力を検出するセンサを用いることなく、動的誤差を精度良く補正することができる。
また、数値制御装置10は、動的補正パラメータを算出することにより、センサ等で測定する切削点負荷と、工具のたわみとの関係を予め調べる必要がない。
以上、第1実施形態について説明した。
【0045】
<第1実施形態の変形例>
上述の第1実施形態では、数値制御装置10は、加工プログラムを解析することにより生成された切削指令の指令座標値に対して動的誤差を補正したがこれに限定されない。例えば、数値制御装置10は、工作機械20のX軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33に出力するパルスに対して、動的誤差を補正する補正パルスを加算してもよい。
【0046】
図11は、第1実施形態に係る数値制御装置10の一例を示す図である。
図11に示すように、静的補正手段240-1及び動的補正手段250-1は、X軸用加減速制御手段270、Y軸用加減速制御手段280、Z軸用加減速制御手段290の後に配置される。そして、静的補正手段240-1及び動的補正手段250-1は、X軸用加減速制御手段270、Y軸用加減速制御手段280、Z軸用加減速制御手段290の各々から出力されるパルスに対して、静的誤差を補正する補正パルス及び動的誤差を補正する補正パルスを加算することで、静的誤差及び動的誤差の補正を行う。なお、静的補正手段240-1及び動的補正手段250-1は、静的誤差の補正パルス及び動的誤差の補正パルスを加算する点を除き、
図1の静的補正手段240及び動的補正手段250と同様の動作を行う。
【0047】
また、数値制御装置10は、工具25の工具径に動的補正の補正量を組み込んでもよい。
図12は、第1実施形態に係る数値制御装置10の一例を示す図である。
図12に示す工具径動的補正手段250-2は、工具25のたわみによる誤差に対する動的補正を行う。この場合、工具径動的補正手段250-2は、数6式により算出された動的補正パラメータW
tを用いて算出される補正量を、数8式に基づいて工具25の工具径r
tに組み込んで工具径補正量r
t’を算出してもよい。
【数8】
なお、β’は、実際の切削時の切削点負荷Fの方向の傾きを示す。そして、傾きβ’がテストワーク50の切削時の切削点負荷Fの方向の傾きβと同じ場合、
図13に示すように、数8式は、数9式のように表される。
【数9】
なお、
図12の数値制御装置10は、静的補正手段240を省略したが、静的補正手段240を有してもよい。
【0048】
<第2実施形態>
次に、第2実施形態について説明する。第1実施形態では、テストワーク50の加工時と、実際の商品のワークの加工時とで負荷の大きさに差があった場合、その差分は考慮されない。この場合、例えば、切削負荷の大きさの差分が一定以下(数値制御装置10が正常に機能する範囲)になるように、特開2016-137557号公報等の公知の手法を用いて、自動で切削条件を変更することができるが、切削条件を変更することが余儀なくされる。そこで、第2実施形態では、数値制御装置10は、第1実施形態の機能に加えて、テストワークを互いに異なる複数の切削負荷の各々で切削して算出された複数の動的補正パラメータを用いて、任意の切削負荷における動的補正パラメータを補間し、補間した任意の切削負荷における動的補正パラメータに基づいて切削指令の指令座標値を補正する。
【0049】
これにより、第2実施形態の数値制御装置10は、テストワークの加工時の切削点負荷の大きさと、実際の商品のワークの加工時の切削点負荷の大きさが異なる場合でも、適切に動的誤差を補正することができる。
以下に、第2実施形態について説明する。
【0050】
図14は、第2実施形態に係る数値制御装置のうち第1実施形態の数値制御装置10に追加される機能的構成例を示す機能ブロック図である。
図1の数値制御装置10の要素と同様の機能を有する要素については、同じ符号を付し、詳細な説明は省略する。
以下、切削負荷と単位時間当たりの切削体積とは、強い相関関係があることから、切削負荷に替えて、単位時間当たりの切削体積Vを変数にして説明する。
【0051】
図14に示すように、制御部200は、切削負荷算出手段300、及び動的補正パラメータ補間手段310をさらに備える。これらの各機能部は、制御部200が制御部200のROM(図示しない)に格納されたシステムプログラム及びアプリケーションプログラムを実行することにより実現される。
【0052】
なお、測定手段210は、例えば、指令解析手段230が解析した加工プログラムの切削指令に基づいて工作機械20が互いに異なる複数の切削負荷、すなわち複数の切削体積V1からVNの各々で切削したテストワーク50の各々の形状を、工作機械20の非接触式プローブ(図示しない)で機上測定させる。Nは、2以上の整数である。測定手段210は、測定された各テストワーク50の形状の測定データを工作機械20から取得する。
【0053】
動的補正パラメータ算出手段220は、直角度誤差の場合、複数の切削体積V1からVNの各々でテストワーク50を切削した時の切削指令の指令形状と、測定手段210により取得された測定データとに基づき、数1式及び数2式を用いて動的補正パラメータ{Wzx(Vi)|1≦i≦N、Nは2以上の整数}、{Wzy(Vi)|1≦i≦N}を算出する。
また、動的補正パラメータ算出手段220は、工具25のたわみによる誤差の場合、複数の切削体積V1からVNの各々でテストワーク50を切削した時の切削指令の指令形状と、測定手段210により取得された測定データとに基づき、数6式から動的補正パラメータ{Wt(Vi)|1≦i≦N}を算出する。
そして、動的補正パラメータ算出手段220は、各切削点負荷の直角度誤差の動的補正パラメータ{Wzx(Vi)|1≦i≦N}、{Wzy(Vi)|1≦i≦N}、及び工具25のたわみによる誤差の動的補正パラメータ{Wt(Vi)|1≦i≦N}を、切削体積V1からVNの各々と対応付けして動的補正パラメータデータ120に記憶する。
【0054】
切削負荷算出手段300は、指令解析手段230が解析した加工プログラムの加工条件に基づいて、単位時間当たりの切削体積Vを算出する。なお、加工条件から切削体積Vを算出する方法は公知の方法を用いることができ、説明を省略する。
【0055】
動的補正パラメータ補間手段310は、動的補正パラメータデータ120から複数の動的補正パラメータ{Wzx(Vi)|1≦i≦N}、{Wzy(Vi)|1≦i≦N}(又は複数の動的補正パラメータ{Wt(Vi)|1≦i≦N})を読み出す。動的補正パラメータ補間手段310は、読み出した複数の動的補正パラメータ{Wzx(Vi)|1≦i≦N}、{Wzy(Vi)|1≦i≦N}(又は複数の動的補正パラメータ{Wt(Vi)|1≦i≦N})を用いて、切削負荷算出手段300により算出された切削体積Vにおける動的補正パラメータWzx(V)、Wzy(V)(又は動的補正パラメータWt(V))を補間する。
以下、直角度誤差に対する動的補正パラメータの補間、及び工具25のたわみに対する動的補正パラメータの補間それぞれについて説明する。
【0056】
<直角度誤差に対する動的補正パラメータの補間について>
図15A及び
図15Bは、動的補正パラメータ補間手段310の補間処理を説明する一例を示す図である。なお、
図15Aは、動的補正パラメータW
zx(V)の場合を示し、
図15Bは、動的補正パラメータW
zy(V)の場合を示す。また、
図15A及び
図15Bは、N=2の場合を示すが、Nが3以上の場合も同様である。
【0057】
動的補正パラメータ補間手段310は、例えば、
図15Aに示すように、動的補正パラメータW
zx(V
1)、W
zx(V
2)を線形補間して、切削負荷算出手段300により算出された切削体積Vにおける動的補正パラメータW
zx(V)を算出する。また、動的補正パラメータ補間手段310は、
図15Bに示すように、動的補正パラメータW
zy(V
1)、W
zy(V
2)を線形補間して、切削負荷算出手段300により算出された単位時間当たりの切削体積Vにおける動的補正パラメータW
zy(V)を算出する。動的補正パラメータ補間手段310は、算出した動的補正パラメータW
zx(V)、W
zy(V)を動的補正手段250に出力する。
なお、動的補正パラメータ補間手段310は、Nが3以上の場合、
図16に示しように、M次関数でベストフィットしてもよく、機械学習で求めてもよい(Mは2以上の整数)。
【0058】
そして、動的補正手段250は、動的補正パラメータ補間手段310により算出された動的補正パラメータWzx(V)、Wzy(V)に基づいて実際の商品となるワークに対する切削指令の指令座標値に対して直角度誤差の動的誤差を補正する。
【0059】
<工具25のたわみによる誤差に対する動的補正パラメータの補間について>
動的補正パラメータ補間手段310は、直角度誤差の場合と同様に、例えば、2つの切削体積V1、V2の各々における動的補正パラメータWt(V1)、Wt(V2)を線形補間して、切削負荷算出手段300により算出された切削体積Vにおける動的補正パラメータWt(V)を算出する。動的補正パラメータ補間手段310は、算出した動的補正パラメータWt(V)を動的補正手段250に出力する。
なお、動的補正パラメータ補間手段310は、Nが3以上の場合、M次関数でベストフィットしてもよく、機械学習で求めてもよい(Mは2以上の整数)。
【0060】
そして、動的補正手段250は、動的補正パラメータ補間手段310により算出された動的補正パラメータWt(V)に基づいて実際の商品となるワークに対する切削指令の指令座標値に対して工具25のたわみによる誤差の動的誤差を補正する。
【0061】
以上により、第2実施形態の数値制御装置10は、互いに異なる複数の切削体積(切削負荷)の各々で切削されたテストワークの形状の測定データを取得し、複数の切削体積の各々における指令形状と測定データとに基づいて、切削体積毎の動的補正パラメータを算出する。数値制御装置10は、算出された切削体積毎の動的補正パラメータを用いて、任意の切削体積における動的補正パラメータを補間し、補間した任意の切削体積における動的補正パラメータに基づいて切削指令の指令座標値を補正する。
これにより、数値制御装置10は、工具のたわみによる圧力を検出するセンサを用いることなく、動的誤差を精度良く補正することができる。
また、数値制御装置10は、テストワークの加工時の切削負荷の大きさと、実際の商品のワークの加工時の切削負荷の大きさが異なる場合でも、適切に動的誤差を補正することができる。
以上、第2実施形態について説明した。
【0062】
<第2実施形態の変形例>
上述の第2実施形態では、数値制御装置10は、
図1の数値制御装置10に
図14の構成を追加することで、加工プログラムを解析することにより生成された切削指令の指令座標値に対して動的誤差を補正したがこれに限定されない。例えば、数値制御装置10は、
図11の数値制御装置10に
図14の構成を追加することで、工作機械20のX軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33に出力するパルスに対して、動的誤差を補正する補正パルスを加算してもよい。
あるいは、数値制御装置10は、
図12の数値制御装置10に
図14の構成を追加することで、工具25の工具径に動的補正の補正量を組み込み、動的誤差を補正してもよい。
【0063】
<第3実施形態>
次に、第3実施形態について説明する。第3実施形態では、数値制御装置10は、第1実施形態の機能に加えて、テストワークの切削時の負荷電流を取得し、取得した負荷電流、指令形状と測定データとのズレ量、及び動的補正パラメータに基づいて各軸の負荷電流と切削点負荷との関係を示す関係パラメータを算出し、関係パラメータと負荷電流とに基づいて切削点負荷を算出する。
【0064】
これにより、第3実施形態の数値制御装置10は、ハードウェアに手を加えることなく、追加のハードウェアも不要で切削点負荷を推定することができる。
以下に、第3実施形態について説明する。
【0065】
図17は、第3実施形態に係る数値制御装置のうち第1実施形態の数値制御装置10に追加される機能的構成例を示す機能ブロック図である。
図1の数値制御装置10の要素と同様の機能を有する要素については、同じ符号を付し、詳細な説明は省略する。
【0066】
図17に示すように、制御部200は、関係パラメータ算出手段320、及び切削点負荷算出手段330をさらに備える。これらの各機能部は、制御部200が制御部200のROM(図示しない)に格納されたシステムプログラム及びアプリケーションプログラムを実行することにより実現される。
【0067】
関係パラメータ算出手段320は、テストワーク50の切削時のX軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33から負荷電流を取得する。関係パラメータ算出手段320は、取得された負荷電流、指令形状と測定データとのズレ量δ、及び動的補正パラメータに基づいて少なくともX軸及びY軸における負荷電流と切削点負荷との関係を示す関係パラメータを算出する。
具体的には、関係パラメータ算出手段320は、X軸及びY軸における負荷電流と切削点負荷との関係を示す関係パラメータを算出するために、
図18Aに示すように、主軸頭24に取り付けられた工具25による切削加工は行わずに速度一定でXY平面を時計周りに円運動させる。工具25がZ軸方向に移動しないことから、関係パラメータ算出手段320は、工具25が円運動している時のX軸サーボモータ31、Y軸サーボモータ32の負荷電流を取得する。この場合、負荷電流I
1(θ)は、(I
1x(θ),I
1y(θ))と表される。なお、θは円運動の位相を示す。
【0068】
同様に、関係パラメータ算出手段320は、
図18Bに示すように、主軸頭24に取り付けられた工具25による切削加工は行わずに、時計周りの場合と同じ速度一定でXY平面を反時計周りに円運動させる。工具25がZ軸方向に移動しないことから、関係パラメータ算出手段320は、工具25が円運動している時のX軸サーボモータ31、Y軸サーボモータ32の負荷電流を取得する。この場合、負荷電流I
2(θ)は、(I
2x(θ),I
2y(θ))と表される。
ここで、負荷電流I
1(θ)と負荷電流I
2(θ)との加速度は、法線方向で向きが同じになるのに対し、負荷電流I
1(θ)と負荷電流I
2(θ)との速度は、接線方向で向きが逆になる。このことから、I
1(θ)+I
2(θ)は、速度の影響がキャンセルされ、加速度の影響のみになる。一方、I
1(θ)-I
2(θ)は、加速度の影響がキャンセルされ、速度の影響のみになる。
【0069】
そこで、関係パラメータ算出手段320は、加速度の影響を示すI
1(θ)+I
2(θ)にベストフィットする楕円((x/R
ax)
2+(y/R
ay)
2=1)を、例えば、最小二乗法等で算出する。また、関係パラメータ算出手段320は、速度の影響を示すI
1(θ)-I
2(θ)にベストフィットする楕円((x/R
vx)
2+(y/R
vy)
2=1)を、例えば、最小二乗法等で算出する。これにより、I
1(θ)+I
2(θ)、及びI
1(θ)-I
2(θ)は、数10式のように表される。
【数10】
【0070】
一方、X軸の加速度とトルクの比例係数K
x、Y軸の加速度とトルクの比例係数K
y、X軸の速度とトルクの比例係数L
x、Y軸の速度とトルクの比例係数L
yとする場合、負荷電流I
1(θ)、I
2(θ)は、数11式のように表される。なお、aは加速度を示す。vは速度を示す。
【数11】
そして、数11式の負荷電流I
1(θ)、I
2(θ)を用いて、I
1(θ)+I
2(θ)及びI
1(θ)-I
2(θ)は、数12式のよう表される。
【数12】
【0071】
これにより、X軸及びY軸の加速度とトルクの比例係数(加速度と負荷電流との関係パラメータ)K
x、K
y、及びX軸及びY軸の速度とトルクの比例係数(速度と負荷電流との関係パラメータ)L
x、L
yは、数10式の値R
ax、R
ay、R
vx、R
vy、a及びvを用いて数13式のように表される。
【数13】
【0072】
換言すれば、関係パラメータ算出手段320は、負荷電流I1(θ) 、I2(θ)、数10式及び数13式から加速度と負荷電流との関係パラメータKx、Ky、及び速度と負荷電流との関係パラメータLx、Lyを算出する。そして、関係パラメータ算出手段320は、算出した加速度と負荷電流との関係パラメータKx、Ky、及び速度と負荷電流との関係パラメータLx、Lyを後述する切削点負荷算出手段330に出力する。なお、関係パラメータ算出手段320は、算出した加速度と負荷電流との関係パラメータKx、Ky、及び速度と負荷電流との関係パラメータLx、Lyを記憶部100に記憶してもよい。
【0073】
次に、数値制御装置10は、第1実施形態の場合と同様に、直角度誤差に対する動的補正パラメータWzx、Wzy、又は工具25のたわみによる誤差に対する動的補正パラメータWtを算出するために、工作機械20に対して、Z軸方向の高さを一定にしてXY平面で治具40に固定されたテストワーク50に半径R0の穴を切削させる。
そして、数値制御装置10は、切削された穴を接触式プローブ(図示しない)で工作機械20に機上測定させる。数値制御装置10の測定手段210は、機上測定されたテストワーク50の形状を示す測定データを工作機械20から取得する。
動的補正パラメータ算出手段220は、第1実施形態の場合と同様に、テストワーク50を切削した切削指令が示す指令形状と取得された測定データとに基づいて、直角度誤差に対する動的補正パラメータWzx、Wzy、又は工具25のたわみによる誤差に対する動的補正パラメータWtを算出する。
【0074】
また、関係パラメータ算出手段320は、テストワーク50の切削加工時にX軸サーボモータ31、及びY軸サーボモータ32から負荷電流If(X)、If(Y)を取得する。関係パラメータ算出手段320は、取得された切削加工時の負荷電流If(X)、If(Y)を用いて、X軸の負荷電流と切削点負荷Fとの比例係数(負荷電流と切削点負荷との関係パラメータ)Jx、及びY軸の負荷電流と切削点負荷Fとの比例係数(負荷電流との切削点負荷との関係パラメータ)Jyを算出する。
以下、直角度誤差における負荷電流と切削点負荷との関係パラメータの算出、及び工具25のたわみにおける負荷電流と切削点負荷との関係パラメータの算出それぞれについて説明する。
【0075】
<直角度誤差における負荷電流と切削点負荷との関係パラメータの算出について>
関係パラメータ算出手段320は、テストワーク50を切削加工したことにより発生する直角度誤差は工作機械20の各軸間の剛性が低いことによるため、取得された負荷電流I
f(=(I
f(X)、I
f(Y))にベストフィットする楕円((x/I
fx)
2+(y/I
fy)
2=1)を、例えば、最小二乗法等で算出する。なお、I
fxは楕円のX軸方向の半径である。また、I
fyは楕円のY軸方向の半径である。
ここで、数5式に基づいて、ズレ量δ(=(R
0-R
x,R
0-R
y))は、加工の高さ(座標値)z、直角度誤差の動的補正パラメータW
zx、W
zy、及び切削点負荷Fで表されることから、数14式のように表される。
【数14】
なお、負荷電流と切削点負荷との関係パラメータ(比例係数)J
x、J
yを求める必要があるのは、同じ負荷電流でも発生する切削点負荷FがX軸とY軸とで異なるためである。
【0076】
関係パラメータ算出手段320は、数14式から変形した数15式と、算出したI
fx、I
fyと、動的補正パラメータデータ120から読み出した動的補正パラメータW
zx、W
zyと、動的補正パラメータ算出手段220により算出されたR
0、R
x、R
yとを用い、負荷電流と切削点負荷との関係パラメータJ
x、J
yを算出することができる。
【数15】
そして、関係パラメータ算出手段320は、算出した負荷電流と切削点負荷との関係パラメータJ
x、J
yを切削点負荷算出手段330に出力する。なお、関係パラメータ算出手段320は、算出した負荷電流と切削点負荷との関係パラメータJ
x、J
yを記憶部100に記憶してもよい。
【0077】
切削点負荷算出手段330は、実際の商品のワークを切削加工時において、関係パラメータ算出手段320により算出された加速度と負荷電流との関係パラメータK
x、K
y、及び速度と負荷電流との関係パラメータL
x、L
yと、X軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33から取得した実際の商品のワークの切削加工時の負荷電流Iと、数16式とから切削による負荷電流I
fを算出する。
【数16】
なお、数16式は、負荷電流Iが加速度による負荷電流、速度による負荷電流、及び切削による負荷電流I
fの和となることから得られる。また、a
xはX軸方向の加速度を示す。a
yはY軸方向の加速度を示す。v
xはX軸方向の速度を示す。v
yはY軸方向の速度を示す。
そして、切削点負荷算出手段330は、関係パラメータ算出手段320により算出された負荷電流と切削点負荷との関係パラメータJ
x、J
yと、算出した負荷電流I
fと、数17式とを用いて、切削点負荷Fを算出する。
【数17】
【0078】
動的補正手段250は、動的補正パラメータデータ120から読み出した動的補正パラメータWzx、Wzy、切削点負荷算出手段330により算出された切削点負荷F、及び数5式からズレ量δを算出する。動的補正手段250は、算出したズレ量δに基づいて実際の商品のワークに対する切削指令の指令座標値に対して直角度誤差の動的誤差を補正する。
【0079】
<工具25のたわみにおける負荷電流と切削点負荷との関係パラメータの算出について>
工具25のたわみには異方位性がないが、同じ切削点負荷を発生させるための負荷電流の大きさが、軸の慣性やモータ特性により異なる。そのため、切削点負荷を発生させるのに、大きな電流が必要な軸方向(慣性が大きな軸方向)では半径が大きく、小さな電流ですむ軸方向(慣性が小さな軸方向)では半径が小さくなる。
そこで、関係パラメータ算出手段320は、テストワーク50を切削加工した際に取得した負荷電流I
f(=(I
f(X)、I
f(Y))にベストフィットする惰円((x/I
ftx)
2+(y/I
fty)
2=1)を、例えば、最小二乗法等で算出する。なお、I
ftxは楕円のX軸方向の半径である。また、I
ftyは楕円のY軸方向の半径である。
ここで、数7式に基づいて、ズレ量δ(=(R
0-R
t,R
0-R
t))は、工具長L
t、動的補正パラメータW
t、及び切削点負荷Fで表されることから、数18式のように表される。
【数18】
関係パラメータ算出手段320は、数18式から変形した数19式と、算出したI
ftx、I
ftyと、動的補正パラメータデータ120から読み出した動的補正パラメータW
tと、動的補正パラメータ算出手段220により算出されたR
0、R
tとを用い、負荷電流と切削点負荷との関係パラメータJ
x、J
yを算出することができる。
【数19】
そして、関係パラメータ算出手段320は、算出した負荷電流と切削点負荷との関係パラメータJ
x、J
yを切削点負荷算出手段330に出力する。なお、関係パラメータ算出手段320は、算出した負荷電流と切削点負荷との関係パラメータJ
x、J
yを記憶部100に記憶してもよい。
【0080】
切削点負荷算出手段330は、実際の商品のワークを切削時において、関係パラメータ算出手段320により算出された加速度と負荷電流との関係パラメータKx、Ky、及び速度と負荷電流との関係パラメータLx、Lyと、X軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33から取得した実際の商品のワークの切削加工時の負荷電流Iと、数16式とから切削による負荷電流Ifを算出する。
そして、切削点負荷算出手段330は、関係パラメータ算出手段320により算出された負荷電流と切削点負荷との関係パラメータJx、Jyと、算出した負荷電流Ifと、数17式とを用いて、切削点負荷Fを算出する。
【0081】
動的補正手段250は、動的補正パラメータデータ120から読み出した動的補正パラメータWt、切削点負荷算出手段330により算出された切削点負荷F、及び数7式からズレ量δを算出する。動的補正手段250は、算出したズレ量δに基づいて実際の商品のワークに対する切削指令の指令座標値に対して工具25のたわみによる誤差の動的誤差を補正する。
【0082】
以上により、第3実施形態の数値制御装置10は、テストワーク50の切削時の負荷電流を取得し、取得した負荷電流、指令形状と測定データとのズレ量δ、及び動的補正パラメータに基づいて負荷電流と切削点負荷との関係パラメータJx、Jyを算出する。数値制御装置10は、負荷電流と切削点負荷との関係パラメータJx、Jyと実際の商品のワークの切削時の負荷電流Iとに基づいて切削点負荷Fを算出し、算出した切削点負荷F及び動的補正パラメータに基づいて切削指令が示す指令座標値に対して動的誤差を補正する。
これにより、数値制御装置10は、センサを用いることなく、動的誤差を精度良く補正することができる。
また、数値制御装置10は、ハードウェアに手を加えることなく、追加のハードウェアも不要で切削点負荷を推定することができる。
以上、第3実施形態について説明した。
【0083】
<第3実施形態の変形例>
上述の第3実施形態では、数値制御装置10は、
図1の数値制御装置10に
図17の構成を追加することで、加工プログラムを解析することにより生成された切削指令の指令座標値に対して動的誤差を補正したがこれに限定されない。例えば、数値制御装置10は、
図11の数値制御装置10に
図17の構成を追加することで、工作機械20のX軸サーボモータ31、Y軸サーボモータ32、Z軸サーボモータ33に出力するパルスに対して、動的誤差を補正する補正パルスを加算してもよい。
あるいは、数値制御装置10は、
図12の数値制御装置10に
図17の構成を追加することで、工具25の工具径に動的補正の補正量を組み込み、動的誤差を補正してもよい。
【0084】
以上、第1実施形態から第3実施形態について説明したが、数値制御装置10は、上述の実施形態に限定されるものではなく、目的を達成できる範囲での変形、改良等を含む。
【0085】
<変形例>
上述の第1実施形態から第3実施形態では、工作機械20は、直交3軸の工作機械としたが、5軸等の工作機械でもよい。
【0086】
なお、第1実施形態から第3実施形態に係る数値制御装置10に含まれる各機能は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
また、数値制御装置10に含まれる各構成部は、電子回路等を含むハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。
【0087】
プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(Non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(Tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAMを含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(Transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は、無線通信路を介して、プログラムをコンピュータに供給できる。
【0088】
なお、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0089】
以上を換言すると、本開示の数値制御装置は、次のような構成を有する各種各様の実施形態を取ることができる。
【0090】
(1)本開示の数値制御装置10は、指令解析手段230から受信した切削指令が示す指令座標値で工作機械20に切削させる数値制御装置であって、切削されたテストワーク50の形状を工作機械20に機上測定させ、測定されたテストワーク50の形状を示す測定データを取得する測定手段210と、切削指令が示す指令形状と測定手段210により取得された測定データとに基づいて、切削において工作機械20に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出手段220と、算出された前記動的補正パラメータに基づいて、指令座標値に対して動的誤差を補正する動的補正手段250と、を備え、動的補正パラメータ算出手段220は、指令形状と測定データとの比較から動的誤差のみを取得し、取得した動的誤差から動的補正パラメータを算出する。
この数値制御装置10によれば、センサを用いることなく、動的誤差を精度良く補正することができる。
【0091】
(2)指令形状、及びテストワーク50の形状が円でもよい。
そうすることで、動的補正パラメータを容易に算出することができる。
【0092】
(3)測定手段210は、XY平面でテストワーク50に切削された半径R
0の穴の測定データを取得し、動的補正パラメータ算出手段220は、測定データが示すテストワーク50の形状に楕円をベストフィットして、前記楕円のX軸、Y軸それぞれの半径R
x,R
yを取得し、XY平面における動的補正パラメータW
zx、W
zyを数20式で算出してもよい。
【数20】
ただし、H
zは工作機械20の定盤からX軸までの高さを示し、H
wは定盤からテストワーク50までの高さを示し、δ
0及びδ
90は測定データが示す加工形状位置(R
xcos(θ+α),R
ysin(θ+α))の角度θが0度及び90度のときのズレ量を示し、αはベストフィットした楕円が円周方向の負荷により傾いているときの傾き分ずらした位相を示す。
そうすることで、直角度誤差の動的補正パラメータを算出することができる。
【0093】
(4)測定手段210は、XY平面でテストワーク50に切削された半径R
0の穴の測定データを取得し、動的補正パラメータ算出手段220は、測定データが示すテストワーク50の形状を円でベストフィットして、円の半径R
tを取得し、切削負荷で生じる工作機械20に含まれる工具のたわみ量の動的補正パラメータW
t、及び工具径補正量r
t’を数21式で算出してもよい。
【数21】
ただし、βはワーク加工時のワーク法線方向と切削点負荷方向との間の角度を示し、r
tは補正前の工具径を示し、L
tは工具長を示す。
そうすることで、工具のたわみによる誤差の動的補正パラメータを算出することができる。
【0094】
(5)動的補正パラメータ補間手段310をさらに備え、測定手段210は、互いに異なる複数の切削負荷の各々で切削されたテストワーク50の形状の測定データを取得し、動的補正パラメータ算出手段220は、複数の切削負荷の各々における指令形状と測定データとに基づいて動的補正パラメータを算出し、動的補正パラメータ補間手段310は、算出された複数の動的補正パラメータを用いて、任意の切削負荷における動的補正パラメータを補間し、動的補正手段250は、補間された任意の切削負荷における動的補正パラメータに基づいて切削指令の指令座標値を補正してもよい。
そうすることで、テストワーク50の加工時の切削負荷の大きさと、実際の商品のワークの加工時の切削負荷の大きさが異なる場合でも、適切に動的誤差を補正することができる。
【0095】
(6)テストワークの切削時の負荷電流を取得し、取得した負荷電流、指令形状と測定データとのズレ量、及び動的補正パラメータに基づいて少なくともX軸及びY軸における負荷電流と切削点負荷との関係を示す関係パラメータを算出する関係パラメータ算出手段320と、関係パラメータと負荷電流とに基づいて切削点負荷を算出する切削点負荷算出手段330と、をさらに備えてもよい。
そうすることで、ハードウェアに手を加えることなく、追加のハードウェアも不要で切削点負荷を推定することができる。
【0096】
(7)負荷電流は、工作機械20に含まれるサーボモータの負荷電流から、工作機械20に含まれる工具25を加速させた時の加速度による負荷電流、及び工具25を軸移動させた時の軸移動による負荷電流を引いて算出されてもよい。
そうすることで、切削による負荷電流Ifを算出することができる。
【0097】
(8)加速度による負荷電流、及び軸移動による負荷電流は、切削を伴わない工具25の移動時の負荷電流から算出されてもよい。
そうすることで、空加工時の加速度による負荷電流、及び軸移動による負荷電流を算出することができる。
【0098】
(9)切削を伴わない工具25の移動は、工具25を円状に時計周りに移動させる移動、及び工具25を円状に反時計周りに移動させる移動の両方を行ってもよい。
そうすることで、加速度による負荷電流、及び軸移動による負荷電流を算出することができる。
【0099】
(10)本開示の制御方法は、コンピュータにより実行される、指令解析手段230から受信した切削指令が示す指令座標値で工作機械に切削させる制御方法であって、切削されたテストワーク50の形状を工作機械20に機上測定させ、測定されたテストワーク50の形状を示す測定データを取得する測定ステップと、切削指令が示す指令形状と取得された測定データとに基づいて、切削において工作機械20に作用する力及び速度によって生じる動的誤差を補正する動的補正パラメータを算出する動的補正パラメータ算出ステップと、算出された動的補正パラメータに基づいて、指令座標値に対して動的誤差を補正する動的補正ステップと、を備え、動的補正パラメータ算出ステップは、指令形状と測定データとの比較から動的誤差のみを取得し、取得した動的誤差から動的補正パラメータを算出する。
この制御方法によれは、(1)と同様の効果を奏することができる。
【符号の説明】
【0100】
10 数値制御装置
20 工作機械
25 工具
50 テストワーク
100 記憶部
200 制御部
210 測定手段
220 動的補正パラメータ算出手段
230 指令解析手段
250 動的補正手段
310 動的補正パラメータ補間手段
320 関係パラメータ算出手段
330 切削点負荷算出手段