IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジャパンディスプレイの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-09
(45)【発行日】2024-07-18
(54)【発明の名称】表示装置
(51)【国際特許分類】
   G02F 1/1368 20060101AFI20240710BHJP
   G02F 1/1333 20060101ALI20240710BHJP
   G02F 1/1334 20060101ALI20240710BHJP
   G02F 1/13357 20060101ALI20240710BHJP
   G02F 1/1339 20060101ALI20240710BHJP
【FI】
G02F1/1368
G02F1/1333 505
G02F1/1334
G02F1/13357
G02F1/1339 500
【請求項の数】 5
(21)【出願番号】P 2020205359
(22)【出願日】2020-12-10
(65)【公開番号】P2022092511
(43)【公開日】2022-06-22
【審査請求日】2023-11-22
(73)【特許権者】
【識別番号】502356528
【氏名又は名称】株式会社ジャパンディスプレイ
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】杉山 裕紀
(72)【発明者】
【氏名】奥山 健太郎
(72)【発明者】
【氏名】大植 善英
(72)【発明者】
【氏名】大森 優二
【審査官】佐藤 洋允
(56)【参考文献】
【文献】特開2020-091401(JP,A)
【文献】特開2014-235427(JP,A)
【文献】特開2000-267109(JP,A)
【文献】特開2018-165778(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1368
G02F 1/1339
G02F 1/1333
G02F 1/1334
G02F 1/13357
(57)【特許請求の範囲】
【請求項1】
アレイ基板と、
対向基板と、
前記アレイ基板と前記対向基板との間の液晶層と、
前記アレイ基板の側面又は前記対向基板の側面に光が入るように配置される光源と、を備え、
前記アレイ基板は、
表示領域において、
第1方向に間隔をおいて並ぶ複数の信号線と、
第2方向に間隔をおいて並ぶ複数の走査線と、
前記アレイ基板において前記走査線及び前記信号線に沿って前記走査線及び前記信号線の上方を覆う格子状の有機絶縁層と、
前記走査線及び前記信号線に囲まれる領域にそれぞれ設けられる複数の画素電極と、
前記画素電極を覆う第1配向膜と、
を有し、
前記画素電極の一部は、前記有機絶縁層の斜面の上方に重なり、
前記対向基板は、
前記複数の画素電極に少なくとも重なる位置にある共通電極と、
少なくとも前記表示領域において、前記共通電極の前記アレイ基板側を覆う絶縁性及び透光性を有する無機絶縁材料の保護膜と、
前記保護膜を覆う第2配向膜と、
を有し、
前記表示領域の外側の周辺領域は、前記アレイ基板に配線があり、前記対向基板において、前記配線が配置された領域に重なる領域に前記保護膜がない領域があり、
前記液晶層は、高分子分散型液晶を含み、
前記表示領域の外側の周辺領域おいて、前記アレイ基板から前記対向基板の背景が視認され、前記対向基板から前記アレイ基板の背景が視認される、
表示装置。
【請求項2】
前記アレイ基板と前記対向基板との間に設けられるスペーサをさらに備え、
前記スペーサは、前記保護膜に接している、請求項1に記載の表示装置。
【請求項3】
前記アレイ基板と前記対向基板との間に設けられるスペーサをさらに備え、
前記スペーサは、前記保護膜の非形成領域に配置され、前記共通電極に接している、請求項1に記載の表示装置。
【請求項4】
前記保護膜の厚みは、50nm以上400nm以下である、請求項1からのいずれか1項に記載の表示装置。
【請求項5】
前記液晶層が非散乱状態の前記表示領域では、前記アレイ基板から前記対向基板の背景が視認され、前記対向基板から前記アレイ基板の背景が視認される、請求項1からのいずれか1項に記載の表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、表示装置に関する。
【背景技術】
【0002】
特許文献1には、第1透光性基板と、第1透光性基板と対向して配置される第2透光性基板と、第1透光性基板と第2透光性基板との間に封入される高分子分散型液晶を有する液晶層と、第1透光性基板及び第2透光性基板の少なくとも1つの側面に対向して配置される少なくとも1つの発光部とを備える表示装置が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2020-091401号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載されている表示装置のアレイ基板には、走査線及び信号線に沿って走査線及び信号線の上方を覆う格子状の有機絶縁層がある。このため、走査線及び信号線に囲まれる領域の絶縁層の厚みが小さくなり、表示パネルの一方の面から、反対側の他方の面側の背景を視認しやすい。走査線及び信号線の上方においても、光の散乱割合を制御したいため、画素電極の一部は、有機絶縁層の斜面の上方に重なり、画素電極が対向基板と近くなる。有機絶縁層の周辺に、導電性の異物が到達すると、有機絶縁層の上方にある画素電極と共通電極との間に、短絡が起こる可能性がある。
【0005】
本開示の目的は、表示パネルの一方の面から、反対側の他方の面側への光の透過率を向上させつつ、画素電極と共通電極との短絡を抑制する、表示装置を提供することにある。
【課題を解決するための手段】
【0006】
一態様に係る表示装置は、アレイ基板と、対向基板と、前記アレイ基板と前記対向基板との間の液晶層と、前記アレイ基板の側面又は前記対向基板の側面に光が入るように配置される光源と、を備え、前記アレイ基板は、表示領域において、第1方向に間隔をおいて並ぶ複数の信号線と、第2方向に間隔をおいて並ぶ複数の走査線と、前記アレイ基板において前記走査線及び前記信号線に沿って前記走査線及び前記信号線の上方を覆う格子状の有機絶縁層と、前記走査線及び前記信号線に囲まれる領域にそれぞれ設けられる複数の画素電極と、前記画素電極を覆う第1配向膜と、を有し、前記画素電極の一部は、前記有機絶縁層の斜面の上方に重なり、前記対向基板は、前記複数の画素電極に少なくとも重なる位置にある共通電極と、少なくとも前記表示領域において、前記共通電極の前記アレイ基板側を覆う絶縁性及び透光性を有する保護膜と、前記保護膜を覆う第2配向膜と、を有する。
【図面の簡単な説明】
【0007】
図1図1は、本実施形態に係る表示装置の一例を表す斜視図である。
図2図2は、実施形態1の表示装置を表すブロック図である。
図3図3は、実施形態1のフィールドシーケンシャル方式において、光源が発光するタイミングを説明するタイミングチャートである。
図4図4は、画素電極への印加電圧と画素の散乱状態との関係を示す説明図である。
図5図5は、図1の表示装置の断面の一例を示す断面図である。
図6図6は、図1の表示装置の平面を示す平面図である。
図7図7は、図5の液晶層部分を拡大した拡大断面図である。
図8図8は、液晶層において非散乱状態を説明するための断面図である。
図9図9は、液晶層において散乱状態を説明するための断面図である。
図10図10は、画素において、走査線、信号線及びスイッチング素子を示す平面図である。
図11図11は、画素において、保持容量層を示す平面図である。
図12図12は、画素において、補助金属層及び開口領域を示す平面図である。
図13図13は、画素において、画素電極を示す平面図である。
図14図14は、画素において、遮光層を示す平面図である。
図15図15は、図14のXV-XV’の断面図である。
図16図16は、図14のXVI-XVI’の断面図である。
図17図17は、図14のXVII-XVII’の断面図である。
図18図18は、一方の面から、反対側の他方の面側の背景を視認する視認者と、背景の関係を説明する説明図である。
図19図19は、背景に周辺領域を重ね合わせた一例を説明する説明図である。
図20図20は、実施形態1の周辺領域を説明するための平面図である。
図21図21は、図20のXXI-XXI’の断面を模式的に示す平面図である。
図22図22は、比較例に係る、図14のXV-XV’の断面図である。
図23図23は、実施形態2に係る、図14のXV-XV’の断面図である。
図24図24は、実施形態3に係る、図20のXXI-XXI’の断面を模式的に示す平面図である。
【発明を実施するための形態】
【0008】
本開示を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本開示が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、開示の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本開示の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
【0009】
(実施形態1)
図1は、本実施形態に係る表示装置の一例を表す斜視図である。図2は、図1の表示装置を表すブロック図である。図3は、フィールドシーケンシャル方式において、光源が発光するタイミングを説明するタイミングチャートである。
【0010】
図1に示すように、表示装置1は、表示パネル2と、光源3と、駆動回路4とを有する。ここで、表示パネル2の平面の一方向がPX方向とされ、PX方向と直交する方向が第2方向PYとされ、PX-PY平面に直交する方向が第3方向PZとされている。
【0011】
表示パネル2は、アレイ基板10と、対向基板20と、液晶層50(図5参照)とを備えている。対向基板20は、アレイ基板10の表面に垂直な方向(図1に示すPZ方向)に対向する。液晶層50(図5参照)は、アレイ基板10と、対向基板20と、封止部18とで、後述する高分子分散型液晶LCが封止されている。
【0012】
図1に示すように、表示パネル2において、画像を表示可能な表示領域AAと、表示領域AAの外側の周辺領域FRと、がある。表示領域AAには、複数の画素Pixがマトリクス状に配置されている。なお、本開示において、行とは、一方向に配列されるm個の画素Pixを有する画素行をいう。また、列とは、行が配列される方向と直交する方向に配列されるn個の画素Pixを有する画素列をいう。そして、mとnとの値は、垂直方向の表示解像度と水平方向の表示解像度に応じて定まる。また、複数の走査線GLが行毎に配線され、複数の信号線SLが列毎に配線されている。
【0013】
光源3は、複数の発光部31を備えている。図2に示すように、光源制御部32は、駆動回路4に含まれる。なお、光源制御部32は、駆動回路4の回路とは別の回路にしてもよい。発光部31と、光源制御部32とは、アレイ基板10内の配線で電気的に接続されている。
【0014】
図1に示すように、駆動回路4は、アレイ基板10の表面に固定されている。図2に示すように、駆動回路4は、信号処理回路41、画素制御回路42、ゲート駆動回路43、ソース駆動回路44及び共通電位駆動回路45を備えている。アレイ基板10は、対向基板20よりもPX-PY平面の面積が大きく、対向基板20から露出したアレイ基板10の張り出し部分に、駆動回路4が設けられる。
【0015】
図2に示すように、信号処理回路41には、外部の上位制御部9の画像出力部91から、フレキシブル基板92を介して、入力信号(RGB信号など)VSが入力される。
【0016】
信号処理回路41は、入力信号解析部411と、記憶部412と、信号調整部413とを備える。入力信号解析部411は、外部から入力された第1入力信号VSに基づいて第2入力信号VCSを生成する。
【0017】
第2入力信号VCSは、第1入力信号VSに基づいて、表示パネル2の各画素Pixにどのような階調値を与えるかを定める信号である。言い換えると、第2入力信号VCSは、各画素Pixの階調値に関する階調情報を含む信号である。
【0018】
信号調整部413は、第2入力信号VCSから第3入力信号VCSAを生成する。信号調整部413は、第3入力信号VCSAを画素制御回路42へ送出し、光源制御信号LCSAを光源制御部32へ送出する。光源制御信号LCSAは、例えば、画素Pixへの入力階調値に応じて設定される発光部31の光量の情報を含む信号である。例えば、暗い画像が表示される場合、発光部31の光量は小さく設定される。明るい画像が表示される場合、発光部31の光量は大きく設定される。
【0019】
そして、画素制御回路42は、第3入力信号VCSAに基づいて水平駆動信号HDSと垂直駆動信号VDSとを生成する。本実施形態では、フィールドシーケンシャル方式で駆動されるので、水平駆動信号HDSと垂直駆動信号VDSとが発光部31が発光可能な色毎に生成される。
【0020】
ゲート駆動回路43は水平駆動信号HDSに基づいて1垂直走査期間内に表示パネル2の走査線GLを順次選択する。走査線GLの選択の順番は任意である。ゲート駆動回路43と、走査線GLとは、表示領域AAの外側の周辺領域FR(図1参照)に配置された第2配線GPLで電気的に接続されている。
【0021】
ソース駆動回路44は垂直駆動信号VDSに基づいて1水平走査期間内に表示パネル2の各信号線SLに各画素Pixの出力階調値に応じた階調信号を供給する。
【0022】
本実施形態において、表示パネル2はアクティブマトリクス型パネルである。このため、平面視で第2方向PYに延在する信号(ソース)線SL及び第1方向PXに延在する走査(ゲート)線GLがあり、信号線SLと走査線GLとの交差部には、スイッチング素子Trがある。
【0023】
スイッチング素子Trとして薄膜トランジスタが用いられる。薄膜トランジスタの例としては、ボトムゲート型トランジスタ又はトップゲート型トランジスタを用いてもよい。スイッチング素子Trとして、シングルゲート薄膜トランジスタを例示するが、ダブルゲートトランジスタでもよい。スイッチング素子Trのソース電極及びドレイン電極のうち一方は信号線SLに接続され、ゲート電極は走査線GLに接続され、ソース電極及びドレイン電極のうち他方は、後述する高分子分散型液晶LCの容量の一端に接続されている。高分子分散型液晶LCの容量は、一端がスイッチング素子Trに画素電極PEを介して接続され、他端が共通電極CEを介してコモン電位配線COMLに接続されている。また、画素電極PEと、コモン電位配線COMLに電気的に接続されている保持容量電極IOとの間には、保持容量HCが生じる。なお、コモン電位配線COMLは、共通電位駆動回路45より供給される。
【0024】
発光部31は、第1色(例えば、赤色)の発光体33Rと、第2色(例えば、緑色)の発光体33Gと、第3色(例えば、青色)の発光体33Bを備えている。光源制御部32は、光源制御信号LCSAに基づいて、第1色の発光体33R、第2色の発光体33G及び第3色の発光体33Bのそれぞれを時分割で発光するように制御する。このように、第1色の発光体33R、第2色の発光体33G及び第3色の発光体33Bは、フィールドシーケンシャル方式で駆動される。
【0025】
図3に示すように、第1サブフレーム(第1所定時間)RFにおいて、第1色の発光期間RONで第1色の発光体33Rが発光するとともに、1垂直走査期間GateScan内に選択された画素Pixが光を散乱させて表示する。表示パネル2全体では、1垂直走査期間GateScan内に選択された画素Pixに、上述した各信号線SLに各画素Pixの出力階調値に応じた階調信号が供給されていれば、第1色の発光期間RONにおいて第1色のみ点灯している。
【0026】
次に、第2サブフレーム(第2所定時間)GFにおいて、第2色の発光期間GONで第2色の発光体33Gが発光するとともに、1垂直走査期間GateScan内に選択された画素Pixが光を散乱させて表示する。表示パネル2全体では、1垂直走査期間GateScan内に選択された画素Pixに、上述した各信号線SLに各画素Pixの出力階調値に応じた階調信号が供給されていれば、第2色の発光期間GONにおいて第2色のみ点灯している。
【0027】
さらに、第3サブフレーム(第3所定時間)BFにおいて、第3色の発光期間BONで第3色の発光体33Bが発光するとともに、1垂直走査期間GateScan内に選択された画素Pixが光を散乱させて表示する。表示パネル2全体では、1垂直走査期間GateScan内に選択された画素Pixに、上述した各信号線SLに各画素Pixの出力階調値に応じた階調信号が供給されていれば、第3色の発光期間BONにおいて第3色のみ点灯している。
【0028】
人間の眼には、時間的な分解能の制限があり、残像が発生するので、1フレーム(1F)の期間に3色の合成された画像が認識される。フィールドシーケンシャル方式では、カラーフィルタを不要とすることができ、カラーフィルタでの吸収ロスが低減するので、高い透過率が実現できる。カラーフィルタ方式では、第1色、第2色、第3色毎に画素Pixを分割したサブピクセルで一画素を作るのに対し、フィールドシーケンシャル方式では、このようなサブピクセル分割をしなくてもよい。なお、第4サブフレームをさらに有し、第1色、第2色及び第3色とは異なる第4色を発光するようにしてもよい。
【0029】
図4は、画素電極への印加電圧と画素の散乱状態との関係を示す説明図である。図5は、図1の表示装置の断面の一例を示す断面図である。図6は、図1の表示装置の平面を示す平面図である。図5は、図6のV-V’断面である。図7は、図5の液晶層部分を拡大した拡大断面図である。図8は、液晶層において非散乱状態を説明するための断面図である。図9は、液晶層において散乱状態を説明するための断面図である。
【0030】
1垂直走査期間GateScan内に選択された画素Pixに、上述した各信号線SLに各画素Pixの出力階調値に応じた階調信号が供給されていれば、階調信号に応じて画素電極PEへの印加電圧が変わる。画素電極PEへの印加電圧が変わると、画素電極PEと、共通電極CEとの間の電圧が変化する。そして、図4に示すように、画素電極PEへの印加電圧に応じて、画素Pix毎の液晶層50の散乱状態が制御され、画素Pix内の散乱割合が変化する。
【0031】
図4に示すように、画素電極PEへの印加電圧が飽和電圧Vsat以上となると、画素Pix内の散乱割合の変化が小さくなる。そこで、駆動回路4は、飽和電圧Vsatよりも低い電圧範囲Vdrにおいて、垂直駆動信号VDSに応じた画素電極PEへの印加電圧を変化させる。
【0032】
図5及び図6に示すように、アレイ基板10は、第1主面10A、第2主面10B、第1側面10C、第2側面10D、第3側面10E及び第4側面10Fを備える。第1主面10Aと第2主面10Bとは、平行な平面である。また、第1側面10Cと第2側面10Dとは、平行な平面である。第3側面10Eと第4側面10Fとは、平行な平面である。
【0033】
図5及び図6に示すように、対向基板20は、第1主面20A、第2主面20B、第1側面20C、第2側面20D、第3側面20E及び第4側面20Fを備える。第1主面20Aと第2主面20Bとは、平行な平面である。第1側面20Cと第2側面20Dとは、平行な平面である。第3側面20Eと第4側面20Fとは、平行な平面である。
【0034】
図5及び図6に示すように、光源3は、対向基板20の第2側面20Dに対向する。光源3は、サイド光源と呼ばれることもある。図5に示すように、光源3は、対向基板20の第2側面20Dへ光源光Lを照射する。光源3と対向する対向基板20の第2側面20Dは、光入射面となる。
【0035】
図5に示すように、光源3から照射された光源光Lは、アレイ基板10の第1主面10A及び対向基板20の第1主面20Aで反射しながら、第2側面20Dから遠ざかる方向(第2方向PY)に伝播する。アレイ基板10の第1主面10A又は対向基板20の第1主面20Aから外部へ光源光Lが向かうと、屈折率の大きな媒質から屈折率の小さな媒質へ進むことになるので、光源光Lがアレイ基板10の第1主面10A又は対向基板20の第1主面20Aへ入射する入射角が臨界角よりも大きければ、光源光Lがアレイ基板10の第1主面10A又は対向基板20の第1主面20Aで全反射する。
【0036】
図5に示すように、アレイ基板10及び対向基板20の内部を伝播した光源光Lは、散乱状態となっている液晶がある画素Pixで散乱され、散乱光の入射角が臨界角よりも小さな角度となって、放射光68、68Aがそれぞれ対向基板20の第1主面20A、アレイ基板10の第1主面10Aから外部に放射される。対向基板20の第1主面20A、アレイ基板10の第1主面10Aからそれぞれ外部に放射された放射光68、68Aは、観察者に観察される。以下、図7から図9を用いて、散乱状態となっている高分子分散型液晶と、非散乱状態の高分子分散型液晶とについて説明する。
【0037】
図7に示すように、アレイ基板10には、第1配向膜AL1が設けられている。対向基板20には、第2配向膜AL2が設けられている。第1配向膜AL1及び第2配向膜AL2は、例えば、垂直配向膜である。
【0038】
液晶とモノマーを含む溶液がアレイ基板10と対向基板20との間に封入されている。次に、モノマー及び液晶を第1配向膜AL1及び第2配向膜AL2によって配向させた状態で、紫外線又は熱によってモノマーを重合させ、バルク51を形成する。これにより、網目状に形成された高分子のネットワークの隙間に液晶が分散されたリバースモードの高分子分散型液晶LCを有する液晶層50が形成される。
【0039】
このように、高分子分散型液晶LCは、高分子によって形成されたバルク51と、バルク51内に分散された複数の微粒子52と、を有する。微粒子52は、液晶によって形成されている。バルク51及び微粒子52は、それぞれ光学異方性を有している。
【0040】
微粒子52に含まれる液晶の配向は、画素電極PEと共通電極CEとの間の電圧差によって制御される。画素電極PEへの印加電圧により、液晶の配向が変化する。液晶の配向が変化することにより、画素Pixを通過する光の散乱の度合いが変化する。
【0041】
例えば、図8に示すように、画素電極PEと共通電極CEとの間に電圧が印加されていない状態では、バルク51の光軸Ax1と微粒子52の光軸Ax2の向きは互いに等しい。微粒子52の光軸Ax2は、液晶層50のPZ方向と平行である。バルク51の光軸Ax1は、電圧の有無に関わらず、液晶層50のPZ方向と平行である。
【0042】
バルク51と微粒子52の常光屈折率は互いに等しい。画素電極PEと共通電極CEとの間に電圧が印加されていない状態では、あらゆる方向においてバルク51と微粒子52との間の屈折率差がゼロになる。液晶層50は、光源光Lを散乱しない非散乱状態となる。光源光Lは、アレイ基板10の第1主面10A及び対向基板20の第1主面20Aで反射しながら、光源3(発光部31)から遠ざかる方向に伝播する。液晶層50が光源光Lを散乱しない非散乱状態であると、アレイ基板10の第1主面10Aから対向基板20の第1主面20A側の背景が視認され、対向基板20の第1主面20Aからアレイ基板10の第1主面10A側の背景が視認される。
【0043】
図9に示すように、電圧が印加された画素電極PEと共通電極CEとの間では、微粒子52の光軸Ax2は、画素電極PEと共通電極CEとの間に発生する電界によって傾くことになる。バルク51の光軸Ax1は、電界によって変化しないため、バルク51の光軸Ax1と微粒子52の光軸Ax2の向きは互いに異なる。電圧が印加された画素電極PEがある画素Pixにおいて、光源光Lが散乱される。上述したように散乱された光源光Lの一部がアレイ基板10の第1主面10A又は対向基板20の第1主面20Aから外部に放射された光は、観察者に観察される。
【0044】
電圧が印加されていない画素電極PEがある画素Pixでは、アレイ基板10の第1主面10Aから対向基板20の第1主面20A側の背景が視認され、対向基板20の第1主面20Aからアレイ基板10の第1主面10A側の背景が視認される。そして、本実施形態の表示装置1は、画像出力部91から第1入力信号VSが入力されると、画像が表示される画素Pixの画素電極PEに電圧が印加され、第3入力信号VCSAに基づく画像が背景とともに視認される。このように、高分子分散型液晶が散乱状態にあるとき、表示領域において画像が表示される。
【0045】
電圧が印加された画素電極PEがある画素Pixにおいて光源光Lが散乱されて外部に放射された光によって表示された画像は、背景に重なり、表示されることになる。換言すると、本実施形態の表示装置1は、放射光68又は放射光68Aと、背景との組み合わせにより、画像を背景に重ね合わせて表示する。
【0046】
図3に示す1垂直走査期間GateScanにおいて、書き込まれた各画素電極PE(図7参照)の電位が、各1垂直走査期間GateScanの後にある第1色の発光期間RON、第2色の発光期間GON及び第3色の発光期間BONの少なくとも1つに保持されている必要がある。書き込まれた各画素電極PE(図7参照)の電位が、各1垂直走査期間GateScanの後にある第1色の発光期間RON、第2色の発光期間GON及び第3色の発光期間BONの少なくとも1つで保持できないと、いわゆるフリッカーなどが生じやすい。言い換えると、走査線の選択時間である1垂直走査期間GateScanを短くし、いわゆるフィールドシーケンシャル方式で駆動における視認性を高めるためには、第1色の発光期間RON、第2色の発光期間GON及び第3色の発光期間BONのそれぞれで、書き込まれた各画素電極PE(図7参照)の電位を保持しやすくする要望がある。
【0047】
図10は、画素において、走査線、信号線及びスイッチング素子を示す平面図である。図11は、画素において、保持容量層を示す平面図である。図12は、画素において、補助金属層及び開口領域を示す平面図である。図13は、画素において、画素電極を示す平面図である。図14は、画素において、遮光層を示す平面図である。図15は、図14のXV-XV’の断面図である。図16は、図14のXVI-XVI’の断面図である。図17は、図14のXVII-XVII’の断面図である。図1図2及び図10に示すように、アレイ基板10には、複数の信号線SLと複数の走査線GLとが平面視において格子状に設けられている。言い換えると、アレイ基板10の一方の面には、第1方向PXに間隔をおいて並ぶ複数の信号線と、第2方向PYに間隔をおいて並ぶ複数の走査線と、を備える。
【0048】
図10に示すように、隣り合う走査線GLと隣り合う信号線SLとで囲まれる領域が、画素Pixである。画素Pixには、画素電極PEとスイッチング素子Trとが設けられている。本実施形態において、スイッチング素子Trは、ボトムゲート型の薄膜トランジスタである。スイッチング素子Trは、走査線GLと電気的に接続されているゲート電極GEと平面視において重畳する半導体層SCを有する。
【0049】
図10に示すように、走査線GLは、モリブデン(Mo)、アルミニウム(Al)等の金属、これらの積層体又はこれらの合金の配線である。信号線SLは、アルミニウム等の金属又は合金の配線である。
【0050】
図10に示すように、半導体層SCは、平面視において、ゲート電極GEからはみ出さないように設けられている。これにより、ゲート電極GE側から半導体層SCに向かう光源光Lが反射され、半導体層SCに光リークが生じにくくなる。
【0051】
図5及び図20に示すように、光源3から照射された光源光Lは、第2方向PYを入射方向として、入射してくる。入射方向とは、光源3に最も近い第2側面20Dから、第2側面20Dの対向面である第1側面20Cへ向かう方向である。光源光Lの入射方向が第2方向PYである場合、半導体層SCの第1方向の長さが、半導体層SCの第1方向PXの長さよりも小さい。これにより、光源光Lの入射方向に交差する方向の長さが小さくなり、光リークの影響が低減する。
【0052】
図10に示すように、ソース電極SEは、信号線SLと同じ2つの導電体が、信号線SLと同層でかつ信号線と交差する方向に信号線SLから延びている。これにより、信号線SLと電気的に接続するソース電極SEは、平面視において、半導体層SCの一端部と重畳している。
【0053】
図10に示すように、平面視において、隣り合うソース電極SEの導電体の間の位置には、ドレイン電極DEが設けられている。ドレイン電極DEは、平面視において、半導体層SCと重畳している。ソース電極SE及びドレイン電極DEと重畳しない部分は、スイッチング素子Trのチャネルとして機能する。図13に示すように、ドレイン電極DEと電気的に接続されるコンタクト電極DEAは、コンタクトホールCHで画素電極PEと電気的に接続されている。
【0054】
図15に示すように、アレイ基板10は、例えばガラスで形成された第1透光性基材19を有している。第1透光性基材19は、透光性を有していれば、ポリエチレンテレフタレートなどの樹脂でもよい。
【0055】
図15に示すように、第1透光性基材19上には、走査線GL(図10参照)及びゲート電極GEが設けられる。
【0056】
図15に示すように、また、走査線GL及びゲート電極GEを覆って第1絶縁層11が設けられている。第1絶縁層11は、例えば、窒化シリコンなどの透明な無機絶縁材料によって形成されている。
【0057】
第1絶縁層11上には、半導体層SCが積層されている。半導体層SCは、例えば、アモルファスシリコンによって形成されているが、ポリシリコン又は酸化物半導体によって形成されていてもよい。同じ断面でみたときに、半導体層SCの長さLscは、半導体層SCに重畳するゲート電極GEの長さLgeよりも小さい。これにより、ゲート電極GEが第1透光性基材19の中を伝搬してくる光Ld1を遮光できる。その結果、実施形態1のスイッチング素子Trは、光リークが低減する。
【0058】
第1絶縁層11上には、半導体層SCの一部を覆うソース電極SE及び信号線SLと、半導体層SCの一部を覆うドレイン電極DEとが設けられている。ドレイン電極DEは、信号線SLと同じ材料で形成されている。半導体層SC、信号線SL及びドレイン電極DE上には、第2絶縁層12が設けられている。第2絶縁層12は、例えば、第1絶縁層と同様に、窒化シリコンなどの透明な無機絶縁材料によって形成される。
【0059】
第2絶縁層12上には、第2絶縁層12の一部を覆う第3絶縁層が形成されている。第3絶縁層13は、例えばアクリル樹脂などの透光性を有する有機絶縁材料により形成されている。第3絶縁層13は、無機系材料によって形成された他の絶縁膜と比べて厚い膜厚を有している。
【0060】
図15図16及び図17に示すように、第3絶縁層13がある領域と、第3絶縁層13がない領域とがある。図16及び図17に示すように、第3絶縁層13がある領域は、走査線GLの上方及び信号線SLの上方である。第3絶縁層13は、走査線GL及び信号線SLに沿って走査線GL及び信号線SLの上方を覆う格子状になる。また、図15に示すように、第3絶縁層13がある領域は、半導体層SCの上方、つまりスイッチング素子Trの上方である。このため、スイッチング素子Tr、走査線GL、信号線SLは保持容量電極IOから比較的距離をおいて離れることで、保持容量電極IOからのコモン電位の影響を受けにくくなる。さらに、アレイ基板10において、走査線GLと信号線SLとに囲まれた領域には第3絶縁層13がない領域ができるので、平面視で信号線SL及び走査線GLに重なる絶縁層の厚さよりも絶縁層の厚さが小さい領域ができる。走査線GLと信号線SLとに囲まれた領域では、走査線GLの上方及び信号線SLの上方よりも相対的に、光の透過率が向上し、透光性が向上する。
【0061】
図15に示すように、第3絶縁層13上には、金属層TMが設けられている。導電性の金属層TMは、モリブデン(Mo)、アルミニウム(Al)等の金属、これらの積層体又はこれらの合金の配線である。図12に示すように、金属層TMは、平面視において、信号線SL、走査線GL及びスイッチング素子Trに重なる領域に設けられている。これにより、金属層TMは、格子状となり、金属層TMで囲まれた開口部APができる。
【0062】
図15に示すように、第3絶縁層13上及び金属層TM上には、保持容量電極IOが設けられている。保持容量電極IOは、ITO(Indium Tin Oxide)などの透光性導電材料によって形成されている。保持容量電極IOは、第3透光性電極ともいう。図11に示すように、保持容量電極IOは、走査線GLと信号線SLとに囲まれた領域に透光性導電材料がない領域IOXを有する。保持容量電極IOは、隣り合う画素Pixに跨がって、複数の画素Pixに渡って設けられている。保持容量電極IOは、透光性導電材料がある領域が走査線GL又は信号線SLに重なり、隣の画素Pixに延びている。
【0063】
保持容量電極IOは、走査線GL及び信号線SLに沿って走査線GL及び信号線SLの上方を覆う格子状である。これにより、透光性導電材料がない領域IOXと、画素電極PEとの間の保持容量HCが減少するので、透光性導電材料がない領域IOXの大きさにより保持容量HCが調整される。
【0064】
図12に示すように、走査線GLと信号線SLとに接続されたスイッチング素子Trが設けられ、少なくともスイッチング素子Trは、有機絶縁層である第3絶縁層13で覆われており、第3絶縁層13の上方にはスイッチング素子Trよりも大きな面積の金属層TMがある。これにより、スイッチング素子Trの光リークを抑制することができる。
【0065】
より具体的には、アレイ基板10には、少なくともスイッチング素子Trを覆う有機絶縁層である第3絶縁層13と、第3絶縁層13の上方に重畳して設けられ、スイッチング素子Trよりも大きな面積の金属層TMとがある。走査線GLと信号線SLとに囲まれた領域には、平面視で走査線GL及び信号線SLに重なる第3絶縁層13の厚さよりも厚さが小さい領域がある。このため、平面視でスイッチング素子Trよりも光源3に近い側にある第3絶縁層13の厚みが変化する斜面ができる。図5に示すように、光源3から照射された光源光Lは、第2方向PYを入射方向として、入射してくる。上述した斜面は、図15に示すように、光源光Lのうち光Luが入射する側の第3絶縁層13の斜面13Fと、光Luが入射する側とは反対側の第3絶縁層13の斜面13Rとを含む。図15に示すように、光Luが入射する側の第3絶縁層13の斜面13Fは、金属層TMtで覆われている。ここで、金属層TMtは、金属層TMと同じ材料で形成され、金属層TMが延在して形成されたテーパー状の部分である。
【0066】
図15に示すように、入射方向には、光Luが到達する。光Luは、スイッチング素子Trよりも光源3に近い側から到達する光源光Lの一部の光である。ここで、金属層TMtは、光Luを遮光するので、光リークが低減される。
【0067】
斜面13Rが金属層TMに覆われ、アレイ基板10から対向基板20の背景が視認される場合、観察者が見る光Ld2が斜面13Rを覆う金属層TMに反射し、反射光が観察者に視認されてしまう可能性がある。実施形態1において、斜面13Rを覆う金属層TMがない。このため、実施形態1の表示装置では、観察者の視認を妨げる反射光が低減される。
【0068】
金属層TMは、保持容量電極IOの上にあってもよく、保持容量電極IOと積層されていればよい。金属層TMは、保持容量電極IOよりも電気抵抗が小さい。このため、表示領域AAのうち画素Pixがある位置による保持容量電極IOの電位のばらつきが抑制される。
【0069】
図12に示すように、平面視で、信号線SLに重なる金属層TMの幅は、信号線SLの幅よりも大きい。これにより、信号線SLのエッジで反射する反射光を表示パネル2より放出することを抑制する。ここで、金属層TMの幅及び信号線SLの幅は、信号線SLの延在する方向に交差する方向の長さである。また、走査線GLに重なる金属層TMの幅は、走査線GLの幅よりも大きい。ここで、金属層TMの幅及び走査線GLの幅は、走査線GLの延在する方向に交差する方向の長さである。
【0070】
図15に示すように、保持容量電極IO及び金属層TMの上には、第4絶縁層14が設けられている。第4絶縁層14は、例えば、窒化シリコンなどの透明な無機絶縁材料によって形成されている無機絶縁層である。
【0071】
図15に示すように、第4絶縁層14上には、画素電極PEが設けられている。画素電極PEは、ITOなどの透光性導電材料によって形成されている。画素電極PEは、第4絶縁層14及び第3絶縁層13及び第2絶縁層12に設けられたコンタクトホールCHを介してコンタクト電極DEAと電気的に接続されている。図13に示すように、画素電極PEは、画素Pix毎に区画されている。画素電極PEの上には、第1配向膜AL1が設けられている。
【0072】
図15に示すように、対向基板20は、例えばガラスで形成された第2透光性基材29を有している。第2透光性基材29は、透光性を有していれば、ポリエチレンテレフタレートなどの樹脂でもよい。第2透光性基材29には、共通電極CEが設けられている。共通電極CEは、ITOなどの透光性導電材料によって形成されている。保護膜21は、共通電極CEのアレイ基板10側を覆う、絶縁性及び透光性を有する窒化シリコンや酸化シリコンなどの無機絶縁材料によって形成されている。保護膜21のアレイ基板10側には、第2配向膜AL2が設けられている。
【0073】
実施形態1において、保護膜21は、少なくとも表示領域AAに、ベタ膜として、一様に形成されている。保護膜21の厚みは、50nm以上400nm以下である。保護膜21の厚みは、共通電極CEの厚み以上になっている。保護膜21の厚みが、50nmより小さいと、異物が保護膜21を突き抜けやすくなりやすい。保護膜21の厚みが、400nmを超えると、表示パネル2の一方の面から、反対側の他方の面側への光の透過が低下しやすい。また、保護膜21の厚みが、400nmを超えると、保護膜21の誘電率の影響が大きくなり、共通電極CEと、画素電極PEとの間の実効電圧が低下する可能性がある。
【0074】
また、対向基板20は、第2透光性基材29と共通電極CEとの間に遮光層LSを有する。遮光層LSは黒色の樹脂又は金属材料で形成されている。
【0075】
また、アレイ基板10と対向基板20との間にスペーサPSが形成され、スペーサPSは、保護膜21と第2配向膜AL2とで挟まれて、保護膜21と接している。スペーサPSの厚みは、第3絶縁層13の厚みの分小さくできるので、1μm以上4μm以下にできる。その結果、第3絶縁層13の頂部と、対向基板20との距離が小さくなる。スペーサPSは、アクリル系樹脂やエチレン系樹脂などの有機絶縁体で形成されている。これにより、スペーサPSは、透光性を有するので、光を遮光しにくい。
【0076】
図12及び図16に示すように、実施形態1の表示装置では、走査線GLと同層の遮光層GSが、信号線SLに沿って延在し、かつ信号線SLの一部と重なる位置に設けられている。遮光層GSは、走査線GLと同じ材料で形成されている。遮光層GSは、走査線GLと信号線SLとが平面視において交差する部分には設けられていない。
【0077】
図12に示すように、遮光層GSと、信号線SLとは、コンタクトホールCHGで電気的に接続されている。これにより、信号線SLのみの配線抵抗に比べて、遮光層GS及び信号線SLで構成する配線抵抗が下がる。その結果、信号線SLに供給された階調信号の遅延が抑制される。なお、コンタクトホールCHGがなく、遮光層GSと、信号線SLとが接続されていなくてもよい。
【0078】
図16に示すように、遮光層GSは、信号線SLに対して金属層TMとは反対側に設けられている。遮光層GSの幅は、信号線SLの幅よりも大きく、金属層TMの幅より小さい。遮光層GSの幅、金属層TMの幅及び信号線SLの幅は、信号線SLの延在する方向に交差する方向の長さである。このように、遮光層GSは、信号線SLよりも幅が広くなっているので、信号線SLのエッジで反射する反射光を表示パネル2より放出することを抑制する。その結果、表示装置1において、画像の視認性が向上する。
【0079】
図14及び図15に示すように、対向基板20には、遮光層LSが設けられている。遮光層LSは、平面視において、信号線SL、走査線GL及びスイッチング素子Trに重なる領域に設けられている。
【0080】
図14図15図16及び図17に示すように、遮光層LSは、金属層TMよりも大きい幅を有している。これにより、信号線SL、走査線GL及び金属層TMのエッジで反射する反射光を表示パネル2より放出することを抑制する。その結果、表示装置1において、画像の視認性が向上する。
【0081】
コンタクトホールCH及びコンタクトホールCHGは、光源光Lが当たると乱反射しやすい。このため、遮光層LSは、平面視において、コンタクトホールCH及びコンタクトホールCHGに重なる領域に設けられている。
【0082】
図15に示すように、アレイ基板10と対向基板20との間には、スペーサPSが配置される。スペーサPSは、アレイ基板10と対向基板20との間の距離の均一性を向上する。
【0083】
図18は、一方の面から、反対側の他方の面側の背景を視認する視認者と、背景の関係を説明する説明図である。図19は、背景に周辺領域を重ね合わせた一例を説明する説明図である。図18に示すように、観察者IBが、表示装置1の一方から他方をみる場合、背景BS1が表示装置1を透過して視認される。図19に示すように、表示領域AAの外側の第1周辺領域FR1が光を透過しないと、背景BS1が見えなくなり、違和感を与える可能性があるので、第1周辺領域FR1及び第2周辺領域FR2も表示装置1の一方の面から、反対側の他方の面側の背景BS1を視認できる。
【0084】
図20は、実施形態1の周辺領域を説明するための平面図である。図21は、図20のXXI-XXI’の断面を模式的に示す平面図である。図1に示す周辺領域FRは、図20に示す第1周辺領域FR1と、第2周辺領域FR2とを有する。第1周辺領域FR1と、第2周辺領域FR2とは、第1方向PXに、表示領域AAを挟む。第2周辺領域FR2の第2部分Q2には、第2配線GPLが配置されている。図2に示すように、第2配線GPLは、駆動回路4のゲート駆動回路43と、走査線GLとを電気的に接続する。第2配線GPLは、走査線GLと同層に形成され、かつ同じ材料で形成されている。
【0085】
実施形態1において、第1周辺領域FR1には、ゲート駆動回路43と、走査線GLとを電気的に接続する配線はない。第2配線GPLは、第2周辺領域FR2の透過率を下げる。ここで、第1周辺領域FR1の透過率と、第2周辺領域FR2の透過率とが大きく異なると、視認者に違和感を与える可能性がある。そこで、図20に示すように、実施形態1の表示装置1では、第1周辺領域FR1の第1部分Q1には、第1配線DPLが配置されている。図21に示すように、第1配線DPLは、走査線GLと同層に形成され、かつ同じ材料で形成されている。このため、第1周辺領域FR1の透過率と、第2周辺領域FR2の透過率とが同程度となっている。
【0086】
第1配線DPLは、図2に示す共通電位駆動回路45に接続され、上述したコモン電位配線COMLとほぼ同じ電位になる。これにより、表示領域AAに生じるノイズが低減される。第1配線DPLは、コモン電位に限られず、一定の電位であればよい。
【0087】
図21に示すように、対向基板20には、信号線SL及び走査線GLの少なくとも一部を覆う遮光層LSを備える。これに対して、遮光層LSは、第1配線DPL及び第2配線GPLを覆わない。これにより、第1周辺領域FR1では、遮光層LSが配置されていないので、光を透過しやすい。しかし、視認者は、第1周辺領域FR1と、第2周辺領域FR2とのコントラストの差にも気づきやすくなる。そこで、図20に示すように、実施形態1において、第1配線DPLが第1周辺領域FR1で占める形状は、第2配線GPLが第2周辺領域FR2で占める形状の鏡像反転された形状である。これにより、視認者は、第1周辺領域FR1と、第2周辺領域FR2とのコントラストの差に気づきにくくなる。このように、第1配線DPLは、走査線GLとは接続されていないので、第2配線GPLのダミー配線と言える。
【0088】
図15図16及び図17に示すように、アレイ基板10には、走査線GL及び信号線SLに沿って走査線GL及び信号線SLの上方を覆う格子状の有機の第3絶縁層13がある。このため、走査線GL及び信号線SLに囲まれる領域の絶縁層の厚みが小さくなる。これにより、表示パネル2の一方の面から、反対側の他方の面側への光の透過率が向上し、背景が視認されやすくなる。走査線GL及び信号線SLの上方においても、光の散乱割合を制御したいため、画素電極PEの一部は、第3絶縁層の斜面13F(図15)、斜面13R(図15)、斜面13S(図16)、及び斜面13G(図17)の上方に重なり、画素電極PEが対向基板20と近くなる。
【0089】
図22は、比較例に係る、図14のXV-XV’の断面図である。図22に示す比較例の表示装置では、保護膜21がない。図22に示すように、第3絶縁層の周辺に、導電性の異物FMが到達すると、第1配向膜AL1と、第2配向膜AL2が異物FMに破られ、第3絶縁層13の上方にある画素電極PEと共通電極CEとの間に、短絡が起こる可能性がある。図22に示すように、画素電極PEが保護膜21の縁を覆っている場合は、画素電極PEを覆う第1配向膜AL1が異物FMに破られる可能性がある。
【0090】
実施形態1の表示装置1は、対向基板20に保護膜21を有している。保護膜21は、第2配向膜AL2よりも異物FMに破られにくい。仮に、画素電極PEを覆う第1配向膜AL1が異物FMに破られたとしても、保護膜21が異物FMに破られていないのであれば、画素電極PEと共通電極CEとの間の短絡が抑制される。
【0091】
以上説明したように、表示装置1は、アレイ基板10と、対向基板20と、液晶層50と、光源3を備える。アレイ基板10は、画素Pix毎に配置された第1透光性電極である複数の画素電極PEを有する。アレイ基板10には、第1方向PXに間隔をおいて並ぶ複数の信号線SLと、第2方向PYに間隔をおいて並ぶ複数の走査線GLと、が設けられている。対向基板20は、平面視で、画素電極PEと重畳する位置に第2透光性電極である共通電極CEを有する。表示領域AA及び周辺領域FRにおいて、共通電極CEのアレイ基板10側を保護膜21が覆う。液晶層50は、アレイ基板10と対向基板20との間に封入される高分子分散型液晶LCを有する。光源3の発光部31は、対向基板20の側面に対し、第2方向PYに光を発光する。アレイ基板10及び対向基板20を伝播する光の入射方向は、第2方向である。なお、発光部31は、アレイ基板10の側面に向かって、アレイ基板10及び対向基板20を伝播する光を発光するようにしてもよい。
【0092】
(実施形態2)
図23は、実施形態2に係る、図14のXV-XV’の断面図である。上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
【0093】
図23に示すように、スペーサPSの第2透光性基材29側の面PSUは、共通電極CEと接している。スペーサPSは、保護膜21の非形成領域21Hに配置されている。
【0094】
スペーサPSは、有機材料であるので、無機材料である保護膜21と接しているよりも共通電極CEと接している方が密着する。このように、スペーサPSは、保護膜21の非形成領域21Hに配置されていることで、スペーサPSの姿勢が安定する。
【0095】
(実施形態3)
図24は、実施形態3に係る、図20のXXI-XXI’の断面を模式的に示す平面図である。上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
【0096】
図19に示すように、表示領域AAの外側の第1周辺領域FR1及び第2周辺領域FR2において、できるだけ光を透過させて、背景BS1を視認させた際の、違和感を抑制したい要望がある。実施形態3において、図24に示すように、周辺領域FRには、保護膜21が形成されていない。そうすると、図19に示すように、第1周辺領域FR1及び第2周辺領域FR2も透過率が向上し、第1周辺領域FR1及び第2周辺領域FR2において、表示装置1の一方の面から、反対側の他方の面側の背景BS1を視認されやすくなる。
【0097】
以上、好適な実施の形態を説明したが、本開示はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本開示の趣旨を逸脱しない範囲で種々の変更が可能である。本開示の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本開示の技術的範囲に属する。
【0098】
例えば、本開示について、スイッチング素子Trがボトムゲート型であるとして説明を行ったが、上述しているようにスイッチング素子Trは、ボトムゲート構造に限らずトップゲート型であってもよい。スイッチング素子Trがトップゲート型であれば、図15の絶縁膜積層構造を参考に説明すると、半導体層SCは第1透光性基材19と第1絶縁層その間に配置され、ゲート電極GEは第1絶縁層11と第2絶縁層12との間に配置され、ソース電極SE及びコンタクト電極DEAは第2絶縁層12と第3絶縁層13との間に形成される構造となる。
【0099】
さらに、コモン電位については、直流電圧が供給される、つまり一定のコモン電位であってもよく、また交流電圧が共有される、つまり上限値と下限値の2つを有するコモン電位であってもよい。コモン電位が直流であっても交流であっても保持容量電極IO及び共通電極CEには共通の電位が供給される。
【0100】
また、格子状の有機絶縁膜である第3絶縁層13については、格子状の内側の第3絶縁層13が完全に除去され下層の第2絶縁層12や保持容量電極IOを露出する構造を開示しているが、これに限られない。例えば、複数の信号線SLと複数の走査線GLとで囲まれる格子状領域の内側については、ハーフトーン露光で第3絶縁層13の膜厚の一部を薄く残す構造であってもよい。これにより、第3絶縁層13は、複数の信号線SLと複数の走査線GLとで囲まれる格子状領域よりも、格子状領域の内側の膜厚が薄くなる。
【符号の説明】
【0101】
1 表示装置
2 表示パネル
3 光源
4 駆動回路
9 上位制御部
10 アレイ基板
11 第1絶縁層
12 第2絶縁層
13 第3絶縁層
13F、13G、13R、13S 斜面
14 第4絶縁層
18 封止部
19 第1透光性基材
20 対向基板
20C 第1側面
20D 第2側面
29 第2透光性基材
AA 表示領域
CE 共通電極
DPL 第1配線
FR 周辺領域
FR1 第1周辺領域
FR2 第2周辺領域
GL 走査線
GPL 第2配線
L 光源光
LC 高分子分散型液晶
LS 遮光層
PX 第1方向
PY 第2方向
PZ 第3方向
Pix 画素
SL 信号線
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24